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Reply to the reports 

Report1 

I would suggest to pay attention to three points that would strike the reader.  

The first point is the abstract. It is too long and some sentences /paragraph are repetitive. I think it 

should be tightened and shortened, maybe by 1/3 or so. It is written very 'generoulsy' and certainly 

the sentences can be shortened and the whole abstract written more to the point.  

We have shortened the abstract and removed the repetitive sentences. 

The second point, in the introduction, is related to the discussions of previous proxy studies. The 

introduction sets off by explaining all what is known about the evolution of precipitation in Europe 

over the Holocene, which reads to be quite a lot (early Holocene, Midholocene, north-south, east-west 

dipoles), but then, a bit surprisingly, when highlighting the innovations of this study the authors point 

out that most previous studies are focused on the Midholocene (lines 147). The reader will wonder 

how we could know so much if most studied are limited to the Mid-Holocene. 

One innovation of this paper is to provide quantitative estimates of precipitation, and it’s true that 

previous large-scale quantitative paleoclimate reconstructions are limited to the mid-Holocene - 

6000 yrs BP (except the papers by Mauri et al 2015, and by Guiot and Kaniewski, 2015). The other 

studies we mentioned in the introduction are based on different proxies from which quantitative 

estimates of precipitation are often not available or are not at large scale.  

Regarding the modelling side, I think that the authors do not do a favor themselves. They present 

results from a regional simulation backed by the reasoning that a high-resolution model is necessary 

to better simulate precipitation, but on the other hand also discuss that the results of the regional 

model cannot deviate much from the driving global model, for instance considering the question of 

the extension of the African Monsoon in the Mid-Holocene. Again, the reader would wonder why is a 

regional model necessary in the first place, and why the authors could not look into global coupled 

simulations.  

For any given climate model, there is a trade off in computational expense between resolution 

(number of grid boxes) and duration of run (number of years of simulation).  Ideally, one needs 

both resolution and duration – resolution to represent fine scale features and processes (e.g., 

topography, complex coastlines, small scale dynamical processes) plus duration to robustly sample 

climate conditions (e.g., ‘natural’ chaotic variations on timescales of years or decades).   As a rule 

of thumb, a minimum of a few decades are needed to provide any meaningful sample of climate 

variability (one could easily argue from recent literature that much much longer simulations are 

actually required), and one might expect climate models to reliably resolve spatial processes to 

some extent on the order of a few-to-several grid boxes in size. 

At the time the simulations here were produced, a typical global model (GCM) capable of several 

hundred years of palaeoclimate simulations in a ‘standard-sized’ research project might have a 

grid-box resolution of a few hundred km (~200-300km for the model here, comparable to PMIP2).  

At this resolution we were able to produce a total of a few thousand ‘useful’ model years (not all of 



which have been reported in the literature).  We consider that these are capable of providing 

‘useful’ spatial information at ~1000km (‘useful’ is in inverted commas because it there is no 

absolute guarantee that the simulation is accurate to reality).  To halve the spatial scale of this 

‘useful’ data would require an 8-fold increase in computational expense, which would have 

massively restricted the number of models years that could be completed in the computing 

resource available. 

By using the regional model (~50km resolution but only covering a limited domain so less grid 

boxes than a global model at the same resolution), we were able to provide ‘useful’ spatial 

information down to, say, scales typically around ~200km.  While this is still quite ‘large’, it is, we 

believe, still more useful than the raw global model data when comparing to palaeo-observation 

data which is often inherently local (i.e., depends on very specific local conditions perhaps down to 

a ~few km in scale).  In this sense, it the regional model can add value, particularly in a complex 

region like the Mediterranean (e.g., complex coastlines, mountains etc). 

The regional model, however, takes the large scale circulation (> few 1000 km) produced by the 

global model as an input assumption: it cannot adjust this as part of the regional simulation.  In 

this case, if the global model does not simulate an extension of the West African Monsoon (a 

feature much larger than ~1000km), then it is hard for the regional model to do so either.  In this 

sense, the regional model cannot offer additional value. 

This is an issue that would be common to all one-way dynamical downscaling with regional climate 

models, so is not unique to this paper.  We therefore do not think it appropriate or helpful to go 

into a general discussion of this in the paper, nor do we seek to provide precise guidance as to 

which spatial scales are accurately represented in either of the models used (the numbers given 

above are approximate guidelines and can be considered to be based on expert judgement rather 

than quantitative analysis - see, e.g., Cannon et al 2015 Renewable Energy and Cannon et al in 

press for MetZet for similar exercises but in a very different context).  Furthermore, as already 

indicated in the present paper, a more in-depth, processed-based discussion of the circulation 

changes has already been provided in several papers and books (Brayshaw et al 2010, Phil Trans A; 

Brayshaw et al 2011, Holocene; Brayshaw et al 2011 WLC book) so are not discussed in detail here. 

 

Report2 

I thank the authors for their detailed reply to my original comments and for the changes that 

they have made to the manuscript. While the paper has improved, I have a few further 

comments that I would like to see addressed prior to publication: 

 

Line 33 (and elsewhere): “regional/local level”. Please define what is meant by these terms – 

I’m not convinced that a regional GCM can really inform local scale processes. 

See above discussion for detail.   

Line 33: “regional/local level” replaced with “regional (few ~100km) level”. 
 

Line 57: “general drying trend”. This is not really a trend, as it is based on two points in time 

It is not based on two points in time: all the values estimated inside the two time slices of 

2000 years each have been have been averaged to produce the values in figures 2 and 3. 

 

Lines 171-172. This seems like a small number of sites, and checking against the EPD records, 



suggest that there should be several more in both time periods. Clearly there has been some 

selection – please state what the criteria were.  

We used the data acquired in the framework of our funded project (ANR), and we also have 

choosen sites for which multi-proxies and good age control were available.  

Further, what are the time windows used to select samples? How much variation is there at 

sites within these windows?  

The time window is the two time slices: all the values reconstructed available during these 2 

time slices have been averaged to be compared with the model outputs. The variation within 

these windows depend of each site. 

Text has been changes lines 235. 

  

Lines 188-190: I don’t really follow this justification for the MAT method. If you are using a 

non-robust statistic such as the mean, then I would think it is more susceptible to bias from 

higher noise. Please add some more detail here. 

This method have been discussed in detail and compared with other methods in Peyron et 

al., 2011. 

 

Line 197: What about the winter precipitation reconstructions?  

The MAT seems to overestimate the winter precipitation reconstructions by about 60mm in 

comparison with the observed values (Combourieu-Nebout et al., 2009). However, this study 

was based on 22 marine top cores; more samples are then needed to validate these results at 

the scale of the Mediterranean basin, particularly in the eastern part where only one marine 

top core was available. 

Text has been added. 

 

 Line 203: Did the authors merge the simulations for 2000 and 4000, and those for 6000 and 

8000? Wouldn’t it have been easier to choose 2000 and 8000 to maximize the differences? 

Please justify this choice. 

The choice is motivated by two observations: 1) Long simulations are beneficial for robustly 

detecting differences in climate, and 2) the differences between adjacent timeperiods is small 

(both in terms of climate forcing and climate response).  As such, it was decided that 

combining simulations together (40 model years per experiment) was a more robust method 

for sampling the qualitative change between middle and late Holocene rather than taking 

the end points (20 model years per experiment).    As noted in the text, this follows the 

approach used in previously published work. 

 

Line 219/220 replaced:  

“These two experiments aid interpretability and increase the signal-to-noise ratio (the 

change in forcing between adjacent time-slices is relatively small, making it difficult to 

detect).” 

With 

“The combination of the simulations into two experiments (Mid- and Late- Holocene) 

rather than assessing the two extreme timeslices is intended to increase the signal-to-noise 

ratio by doubling the quantity of data in each experiment.  This is necessary and possible 

as the change in forcing between adjacent time-slices is relatively small, making it difficult 

to detect differences between each individual simulations.” 

 

Line 212. What is HadSM3? 

This is the name usually given to HadAM3 coupled to a slab ocean model.   

Line 200 replaced: 



 

“… coupled to a slab ocean (Hewitt et al., …” with 

“… coupled to a slab ocean (HadSM3; Hewitt et al., …” 

 

Line 228: What is being tested? The difference between simulations? 

The hatching representing statistical significance refers to the anomalies shown on the 

same plot – i.e., the difference between the experiment (either MidHolocene or 

LateHolocene) and the PresentDay control run – as per normal practice in the climate 

science literature.  Additional text has been added both at line 400 and at the figure 

caption of Fig.3 to clarify. 

Line 400 replaced  “…compared to present values (in anomalies)…” with 

“…compared to the Present Day control run (in anomalies, with statistical significance 

hatched). “ 

 

Section 3 Results and Discussion. While the maps show some apparently convincing matches 

between the reconstructions and simulations, it is very difficult to judge these. It would really 

help to have a figure that shows the reconstructed and simulated values perhaps as a function 

of longitude. This could also include the model and reconstruction uncertainty, and would 

make it easier to follow the points made in the discussion, as well as the assertion of “a 

remarkable qualitative agreement” 

We agree, but it will not be possible to build new figures: one of our author which did the 

model simulation is in sick leave for several months, so we don’t have access to the 

simulated values to build a figure that shows the reconstructed and simulated values as a 

function of longitude or other.  

 

Line 403. The author mention here (and elsewhere) that many of the changes are small and of 

marginal significance. However, even these null changes are of interest if found in both data 

and model. Again, a figure displaying the actual values would help. 

Same as above 
 

Line 409. What is a level of significance of 70%. A p-value of 0.7?  

Yes.  Line 409 replaced “ level of significance of 70%” with “level of significance of 70% 

(p-value=0.7)”. 

 

Line 479. Data limitations. Thank you for including this section, which provides a great 

overview of some of the limitations. There are a couple of phrases that should be reviewed by 

an native English speaker. 

These comments are surprising given that Belinda Gambin and Simon Goring, two native 

English speaker have reviewed all the text. 

Changed as follows: 

Line 493: replaced “it may be highlighting commenting on” with “it may be worth 

commenting on” 

Line 502 replaced “ All of these points may seem very picky on the ecology side, but they 

may have” with “Although these issues may initially appear to be of marginal importance, 

they may nevertheless have…” 

 

Figures. Figures 2 and 3 carry much of the same data. Do the authors really need both? 

Yes, we think that we need both to discuss more as clearly as we can the results. 
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Abstract  28 

Climate evolution of the Mediterranean region during the Holocene exhibits strong spatial and 29 

temporal variability which is notoriously difficult for models to reproduce. We propose here a 30 

new paleo-observations synthesis and its comparison – at regional (few ~100km) level – with 31 

a regional climate model to examine (i) opposing northern and southern precipitation regimes, 32 

and (ii) an east-to-west precipitation dipole during the Holocene across the Mediterranean 33 

basin. Using precipitation estimates inferred from marine and terrestrial pollen archives, we 34 

focus on the early to mid-Holocene (8000 to 6000 cal yrs BP) and the late Holocene (4000 to 35 

2000 yrs BP), to test these hypotheses on a Mediterranean-wide scale. Special attention was 36 

given to the reconstruction of season-specific climate information, notably summer and winter 37 

precipitation. The reconstructed climatic trends corroborate the north-south partition of 38 

precipitation regimes during the Holocene. During the early Holocene, relatively wet conditions 39 

occurred in the south-central and eastern Mediterranean region, while drier conditions prevailed 40 

from 45°N northwards. These patterns then reverse during the late Holocene. With regard to 41 

the existence of a west-east precipitation dipole during the Holocene, our results show that the 42 

strength of this dipole is strongly linked to the seasonal parameter reconstructed; early Holocene 43 

summers show a clear east-west division, with summer precipitation having been highest in 44 

Greece and the eastern Mediterranean and lowest over the Italy and the western Mediterranean. 45 

Summer precipitation in the east remained above modern values, even during the late Holocene 46 

interval. In contrast, winter precipitation signals are less spatially coherent during the early 47 

Holocene but low precipitation is evidenced during the late Holocene. A general drying trend 48 

occurred from the early to the late Holocene, particularly in the central and eastern 49 

Mediterranean. 50 

For the same time intervals, pollen-inferred precipitation estimates were compared with model 51 

outputs, based on a regional-scale downscaling (HadRM3) of a set of global climate-model 52 

simulations (HadAM3). The high-resolution detail achieved through the downscaling is 53 

intended to enable a better comparison between ‘site-based’ paleo-reconstructions and gridded 54 

model data in the complex terrain of the Mediterranean; the model outputs and pollen-inferred 55 

precipitation estimates show some overall correspondence, though modeled changes are small 56 

and at the absolute margins of statistical significance. There are suggestions that the eastern 57 

Mediterranean experienced wetter than present summer conditions during the early and late 58 

Holocene; the drying trend in winter from the early to the late Holocene also appears to be 59 

simulated. The use of this high-resolution regional climate model highlights how the inherently 60 
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 3 

patchy” nature of climate signals and palaeo-records in the Mediterranean basin may lead to 94 

local signals much stronger than the large-scale pattern would suggest. Nevertheless, the east 95 

to west division in summer precipitation seems more marked in the pollen reconstruction than 96 

in the model outputs. The footprint of the anomalies (like today or dry winters, wet summers) 97 

has some similarities to modern analogue atmospheric circulation patterns associated with a 98 

strong westerly circulation in winter (positive AO/NAO) and a weak westerly circulation in 99 

summer associated with anti-cyclonic blocking; although there also remain important 100 

differences between the palaeo-simulations and these analogues. The regional climate model, 101 

consistent with other global models, does not suggest an extension of the African summer 102 

monsoon into the Mediterranean; so the extent to which summer monsoonal precipitation may 103 

have existed in the southern and eastern Mediterranean during the mid-Holocene remains an 104 

outstanding question. 105 

 106 
  107 
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1 Introduction 109 

The Mediterranean region is particularly sensitive to climate change due to its position within 110 

the confluence of arid North African (i.e. subtropically influenced) and temperate/humid 111 

European (i.e. mid-latitudinal) climates (Lionello, 2012). Palaeoclimatic proxies, including 112 

stable isotopes, lipid biomarkers, palynological data and lake-levels, have shown that the 113 

Mediterranean region experienced climatic conditions that varied spatially and temporally 114 

throughout the Holocene (e.g. Bar-Matthews and Ayalon, 2011; Luterbacher et al., 2012; 115 

Lionello, 2012; Triantaphyllou et al., 2014, 2016; Mauri et al., 2015; De Santis and Caldara 116 

2015; Sadori et al., 2016a; Cheddadi and Khater, 2016) and well before (eg. Sadori et al., 117 

2016b). Clear spatial climate patterns have been identified from east to west and from north to 118 

south within the basin (e.g. Zanchetta et al., 2007; Magny et al., 2009b, 2011, 2013; Zhornyak 119 

et al., 2011; Sadori et al., 2013; Fletcher et al., 2013). Lake-level reconstructions from Italy thus 120 

suggest contrasting patterns of palaeohydrological changes for the central Mediterranean during 121 

the Holocene (Magny et al., 2012, 2013). Specifically, lake level maxima occurred south of 122 

approximately 40oN in the early to mid-Holocene, while lakes north of 40°N recorded minima. 123 

This pattern was reversed at around 4500 cal yrs BP (Magny et al., 2013). Quantitative pollen-124 

based precipitation reconstructions from sites in northern Italy indicate humid winters and dry 125 

summers during the early to mid-Holocene, whereas southern Italy was characterised by humid 126 

winters and summers; the N-S pattern reverses in the late Holocene, with drier conditions at 127 

southern sites and wet conditions at northern sites (Peyron et al., 2011, 2013). These findings 128 

support a north–south partition for the central Mediterranean with regards to precipitation, and 129 

also confirm that precipitation seasonality is a key parameter in the evolution of Mediterranean 130 

climates. The pattern of shifting N-S precipitation regimes has also been identified for the 131 

Aegean Sea (Peyron et al., 2013). Taken together, the evidence from pollen data and from other 132 

proxies covering the Mediterranean region suggest a climate response that can be linked to a 133 

combination of orbital, ice-sheet and solar forcings (Magny et al., 2013). 134 

An east-west pattern of climatic change during the Holocene is also suggested in the 135 

Mediterranean region (e.g. Combourieu Nebout et al., 1998; Geraga et al., 2010; Colmenero-136 

Hildago et al., 2002; Kotthoff et al., 2008; Dormoy et al., 2009; Finné et al., 2011; Roberts et 137 

al., 2011, 2012; Luterbacher et al., 2012; Guiot and Kaniewski, 2015). An east-west division 138 

during the Holocene is observed from marine and terrestrial pollen records (Dormoy et al., 139 

2009; Guiot and Kaniewski, 2015), lake-level reconstructions (Magny et al., 2013) and 140 

speleothem isotopes (Roberts et al. 2011).  141 
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This study aims to reconstruct and evaluate N-S and E-W precipitations patterns for the 143 

Mediterranean basin, over two key periods in the Holocene, the early Holocene 8000-6000 cal 144 

yrs BP, corresponding to the “Holocene climate optimum” and the late Holocene 4000-2000 145 

cal yrs BP corresponding to a trend towards drier conditions. Precipitation reconstructions are 146 

particularly important for the Mediterranean region given that precipitation rather than 147 

temperature represents the dominant controlling factor on the Mediterranean environmental 148 

system during the early to mid-Holocene (Renssen et al., 2012). Moreover, the reconstruction 149 

of precipitation parameters seems robust for the Mediterranean area (Combourieu-Nebout et 150 

al., 2009; Mauri et al., 2015; Peyron et al., 2011, 2013; Magny et al., 2013).  151 

Precipitation is estimated for five pollen records from Greece, Italy and Malta, and for eight 152 

marine pollen records along a longitudinal gradient from the Alboran Sea to the Aegean Sea. 153 

Because precipitation seasonality is a key parameter of change during the Holocene in the 154 

Mediterranean (Rohling et al., 2002; Peyron et al., 2011; Mauri et al., 2015), the quantitative 155 

climate estimates focus on reconstructing changes in summer and winter precipitation.  156 

Paleoclimate proxy data are essential benchmarks for model intercomparison and validation 157 

(e.g. Morrill et al., 2012; Heiri et al., 2014). This holds particularly true considering that 158 

previous model-data intercomparisons have revealed substantial difficulties for GCMs in 159 

simulating key aspects of mid-Holocene climate (Hargreaves et al., 2013) for Europe and 160 

notably for southern Europe (Davis and Brewer, 2009; Mauri et al., 2014). We also aim to 161 

identify and quantify the spatio-temporal climate patterns in the Mediterranean basin for the 162 

two key intervals of the Holocene (8000–6000 and 4000–2000 cal yrs BP) based on regional-163 

scale climate model simulations (Brayshaw et al., 2011a). Finally, we compare our pollen-164 

inferred climate patterns with regional-scale climate model simulations in order to critically 165 

assess the consistency of the climate reconstructions revealed by these two complimentary 166 

routes.  167 

The first originality of our approach is that we estimate the magnitude of precipitation changes 168 

and reconstruct climatic trends across the Mediterranean using both terrestrial and marine high-169 

resolution pollen records. The signal reconstructed is then more regional than in the studies 170 

based on terrestrial records alone. Moreover, this study aims to reconstruct precipitations 171 

patterns for the Mediterranean basin over two key periods in the Holocene while the existing 172 

large-scale quantitative paleoclimate reconstructions for the Holocene are often limited to the 173 

mid-Holocene - 6000 yrs BP- (Cheddadi et al., 1997; Bartlein et al., 2011; Mauri et al., 2014), 174 

except the climate reconstruction for Europe proposed by the study of Mauri et al. (2015).  175 
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The second originality of our approach is that we propose a data/model comparison based on 178 

(1) two time-slices and not only the mid-Holocene, a standard benchmark time period for this 179 

kind of data–model comparison; (2) a high resolution regional model (RCM) which provides a 180 

better representation of local/regional processes and helps to better simulate the localized, 181 

“patchy”, impacts of Holocene climate change, when compared to coarser global GCMs (e.g. 182 

Mauri et al., 2014); (3) changes in seasonality, particularly changes in summer atmospheric 183 

circulation which have not been widely investigated (Brayshaw et al., 2011). 184 

 185 

2 Sites, pollen records, and models  186 

The Mediterranean region is at the confluence of continental and tropical air masses. 187 

Specifically, the central and eastern Mediterranean is influenced by monsoonal systems, while 188 

the north-western Mediterranean is under stronger influence from mid-latitude climate regimes 189 

(Lionello et al., 2006). Mediterranean winter climates are strongly affected by storm systems 190 

originating over the Atlantic. In the western Mediterranean, precipitation is predominantly 191 

affected by the North Atlantic Oscillation (NAO), while several systems interact to control 192 

precipitation over the northern and eastern Mediterranean (Giorgi and Lionello, 2008). 193 

Mediterranean summer climates are dominated by descending high pressure systems that lead 194 

to dry/hot conditions, particularly over the southern Mediterranean where climate variability is 195 

strongly influenced by African and Asian monsoons (Alpert et al., 2006) with strong 196 

geopotential blocking anomalies over central Europe (Giorgi and Lionello, 2008; Trigo et al., 197 

2006).  198 

The palynological component of our study combines results from five terrestrial and eight 199 

marine pollen records to provide broad coverage of the Mediterranean basin (Fig. 1, Table 1). 200 

The terrestrial sequences comprise pollen records from lakes along a latitudinal gradient from 201 

northern Italy (Lakes Ledro and Accesa) to Sicily (Lake Pergusa), one pollen record from Malta 202 

(Burmarrad) and one pollen record from Greece (Tenaghi Philippon). The marine pollen 203 

sequences are situated along a longitudinal gradient across the Mediterranean Sea; from the 204 

Alboran Sea (ODP Site 976 and core MD95-2043), Siculo-Tunisian strait (core MD04-2797), 205 

Adriatic Sea (core MD90-917), and Aegean Sea (cores SL152, MNB-3, NS14, HCM2/22). For 206 

each record we used the chronologies as reported in the original publications (see Table 1 for 207 

references).  208 
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Climate reconstructions for summer and winter precipitation (Figs. 2 and 3) inferred from the 209 

terrestrial sequences and marine pollen records were performed for two key intervals of the 210 

Holocene: 8000–6000 cal yrs BP and 4000–2000 cal yrs BP; the climate values available during 211 

each period have been averaged. We use here the Modern Analogue Technique (MAT; Guiot, 212 

1990), a method which compares fossil pollen assemblages to modern pollen assemblages with 213 

known climate parameters. The MAT is calibrated using an expanded surface pollen dataset 214 

with more than 3600 surface pollen samples from various European ecosystems (Peyron et al., 215 

2013). In this dataset, 2200 samples are from the Mediterranean region, and the results shows 216 

that the analogues selected here are limited to the Mediterranean basin. Since the MAT uses the 217 

distance structure of the data and essentially performs local fitting of the climate parameter (as 218 

the mean of n-closest sites), it may be less susceptible to increased noise in the data set, and 219 

less likely to report spurious values than others methods (for more details on the method, see 220 

Peyron et al., 2011). Pinus is overrepresented in marine pollen samples (Heusser and Balsam, 221 

1977; Naughton et al., 2007), and as such Pinus pollen was removed from the assemblages 222 

(both modern and fossil) for the calibration of marine records using MAT. The reliability of 223 

quantitative climate reconstructions from marine pollen records has been tested using marine 224 

core-top samples from the Mediterranean in Combourieu-Nebout et al. (2009), which shows an 225 

adequate consistency between the present day observed and MAT estimations for annual and 226 

summer precipitations values, however the MAT seems to overestimate the winter precipitation 227 

reconstructions in comparison with the observed values. More top-cores are needed to validate 228 

these results at the scale of the Mediterranean basin, particularly in the eastern part where only 229 

one marine top core was available (Combourieu-Nebout et al., 2009).  230 

The climate model simulations used in the model-data comparison are taken from Brayshaw et 231 

al. (2010, 2011a, 2011b). The HadAM3 global atmospheric model (resolution 2.5o latitude x 232 

3.75o longitude, 19 vertical levels; Pope et al., 2000) is coupled to a slab ocean (HadSM3, 233 

Hewitt et al., 2001) and used to perform a series of time slice experiments. Each time-slice 234 

simulation corresponds to 20 model years after spin up (40 model years for pre-industrial). The 235 

time slices correspond to “present-day” (1960-1990), 2000 cal BP, 4000 cal BP, 6000 cal BP 236 

and 8000 cal BP conditions, and are forced with appropriate insolation (associated with changes 237 

in the Earth’s orbit), and atmospheric CO2 and CH4 concentrations. The heat fluxes in the ocean 238 

are held fixed using values taken from a pre-industrial control run (i.e., the ocean ‘circulation’ 239 

is assumed to be invariant over the time-slices) and there is no sea-level change, but sea-surface 240 

temperatures are allowed to evolve freely. The coarse global output from the model for each 241 
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time slice is downscaled over the Mediterranean region using HadRM3 (i.e. a limited area 245 

version of the same atmospheric model; resolution 0.44o x 0.44o, with 19 vertical levels). Unlike 246 

the global model, HadRM3 is not coupled to an ocean model; instead, sea-surface temperatures 247 

are derived directly from the HadSM3 output. 248 

Following Brayshaw et al. (2011a), time slice experiments are grouped into “mid Holocene” 249 

(8000 BP and 6000 cal yrs BP)  and “late Holocene” (4000 BP and 2000 cal yrs BP) experiments 250 

because (1) these two periods are sufficiently distant in the past to be substantially different 251 

from the present but close enough that the model boundary conditions are well known; (2) these 252 

two periods are rich in high resolution and well-dated palaeoecological sequences, providing a 253 

good spatial coverage suitable for large-scale model-data comparison. The combination of the 254 

simulations into two experiments (Mid- and Late- Holocene) rather than assessing the two 255 

extreme timeslices (2000 and 8000 cal yrs BP) is intended to increase the signal-to-noise ratio 256 

by doubling the quantity of data in each experiment. This is necessary and possible as the 257 

change in forcing between adjacent time-slices is relatively small, making it difficult to detect 258 

differences between each individual simulations. To aid comparison with proxies, changes in 259 

climate are expressed as differences with respect to the present day (roughly 1960-1990) rather 260 

than the pre-industrial control run: therefore the climate anomalies shown thus include a 261 

component which is attributable to anthropogenic increases in greenhouse gases in the 262 

industrial period, as well as longer term ‘natural’ changes (e.g., orbital forcing). We suggest it 263 

may be better to use ‘present day' to be in closer agreement with the pollen data (modern 264 

samples) which use the late 20th century long-term averages (1961-1990). However, there are 265 

some quite substantial differences between model runs under ‘present day’ and ‘preindustrial’ 266 

forcings (Figure 4). Statistical significance is assessed with the Wilcoxon-Mann-Whitney 267 

significance test (Wilks, 1995).  268 

The details of the climate model simulations are discussed at length in Brayshaw et al (2010, 269 

2011a, 2011b). These includes a detailed discussion of verification under present climate, the 270 

model’s physical/dynamical climate responses to Holocene period ‘forcings’, and comparison 271 

to other palaeoclimate modelling approaches (e.g., PMIP projects) and palaeo-climate 272 

syntheses. The GCM used (HadAM3 with a slab ocean) is comparable to the climate models in 273 

PMIP2, but a key advantages of the present dataset is: (a) the inclusion of multiple time-slices 274 

across the Holocene period; and (b) the additional high-resolution regional climate model 275 

downscaling enables the impact of local climatic effects within larger-scale patterns of change 276 

to be distinguished (e.g., the impact of complex topography or coastlines; Brayshaw et al 277 
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2011a), potentially allowing clearer comparisons between site-based proxy-data and model 281 

output. 282 

 283 

3 Results and Discussion 284 

 285 

A North-South precipitation pattern? 286 

Pollen evidence shows contrasting patterns of palaeohydrological changes in the central 287 

Mediterranean. The early- to mid-Holocene was characterized by precipitation maxima south 288 

of around 40°N while at the same time, northern Italy experienced precipitation minima; this 289 

pattern reverses after 4500 cal yrs BP (Magny et al., 2012b; Peyron et al., 2013). Other proxies 290 

suggest contrasting north-south hydrological patterns not only in central Mediterranean but also 291 

across the Mediterranean (Magny et al., 2013), suggesting a more regional climate signal. We 292 

focus here on two time periods (early to mid-Holocene and late Holocene), in order to test this 293 

hypothesis across the Mediterranean, and to compare the results with regional climate 294 

simulations for the same time periods.  295 

Early to mid-Holocene (8000 to 6000 cal yrs BP) 296 

Climatic patterns reconstructed from both marine and terrestrial pollen records seem to 297 

corroborate the hypothesis of a north-south division in precipitation regimes during the 298 

Holocene (Fig 2a). Our results confirm that northern Italy was characterized by drier conditions 299 

(relative to modern) while the south-central Mediterranean experienced more annual, winter 300 

and summer precipitation during the early to mid-Holocene (Fig. 2a). Only Burmarrad (Malta) 301 

shows drier conditions in the early to mid-Holocene (Fig 2a), although summer precipitation 302 

reconstructions are marginally higher than modern at the site. Wetter summer conditions in the 303 

Aegean Sea suggest a regional, wetter, climate signal over the central and eastern 304 

Mediterranean. Winter precipitation in the Aegean Sea is less spatially coherent than summer 305 

signal, with dry conditions in the North Aegean Sea and or near-modern conditions in the 306 

Southern Aegean Sea (Figs. 2a and 3). 307 

Non-pollen proxies, including marine and terrestrial biomarkers (terrestrial n-alkanes), indicate 308 

humid mid-Holocene conditions in the Aegean Sea (Triantaphyllou et al., 2014, 2016). Results 309 

within the Aegean support the pollen-based reconstructions, but non-pollen proxy data are still 310 

lacking at the basin scale in the Mediterranean, limiting our ability to undertake independent 311 

evaluation of precipitation reconstructions.  312 
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Very few large-scale climate reconstruction of precipitation exist for the whole Holocene (Guiot 313 

and Kaniewski, 2015; Tarroso et al., 2016) and, even at local scales, pollen-inferred 314 

reconstructions of seasonal precipitation are very rare (e.g. Peyron et al., 2011, 2013; 315 

Combourieu-Nebout et al., 2013; Nourelbait et al., 2016). Several « large-scale » studies focused 316 

on the 6000 cal years BP period (Cheddadi et al., 1997 ; Wu et al., 2007 ; Bartlein et al., 2011; 317 

Mauri et al., 2014). Wu et al. (2007) reconstruct regional seasonal and annual precipitation and 318 

suggest that precipitation did not differ significantly from modern conditions across the 319 

Mediterranean; however, scaling issues render it difficult to compare their results with the 320 

reconstructions presented here. Cheddadi et al. (1997) reconstruct wetter-than-modern conditions 321 

at 6000 yrs cal BP in southern Europe; however, their study uses only one record from Italy and 322 

measures the moisture availability index, which is not directly comparable to precipitation sensu 323 

stricto, since it integrates temperature and precipitation. At 6000 yrs cal BP, Bartlein et al. (2011) 324 

reconstruct Mediterranean precipitation at values between 100 and 500 mm higher than modern. 325 

Mauri et al. (2015), in an updated version of Davis et al. (2003), provide a quantitative climate 326 

reconstructions comparable to the seasonal precipitation reconstructions presented here. 327 

Compared to Davis et al. (2003), which focused on reconstruction of temperatures, Mauri et al. 328 

(2015) reconstructed seasonal precipitation for Europe and analyse their evolution throughout 329 

the Holocene. Mauri et al. (2015) results differ from the current study in using MAT with plant 330 

functional type scores and in producing gridded climate maps. Mauri et al. (2015) show wet 331 

summers in southern Europe (Greece and Italy) with a precipitation maximum between 8000 and 332 

6000 cal yrs BP, where precipitation was ~20 mm/month higher than modern. As in our 333 

reconstruction, precipitation changes in the winter were small and not significantly different from 334 

present-day conditions. Our reconstructions are in agreement with Mauri et al. (2015), with 335 

similar to present day summer conditions above 45°N during the early Holocene and wetter than 336 

today summer conditions over much of the south-central Mediterranean south of 45°N, while 337 

winter conditions appear to be similar to modern values. Mauri et al. (2015) results inferred from 338 

terrestrial pollen records and the climatic trends reconstructed here from marine and terrestrial 339 

pollen records seem to corroborate the hypothesis of a north-south division in precipitation 340 

regimes during the early to mid-Holocene in central Mediterranean. However, more high-341 

resolution above 45°N are still needed to validate this hypothesis.  342 

Late Holocene (4000 to 2000 cal yrs BP) 343 

Late Holocene reconstructions of winter and summer precipitation indicate that the pattern 344 

established during the early Holocene was reversed by 4000 cal yrs BP, with similar to present 345 
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day or lower than present day  precipitation in southern Italy, Malta and Siculo-Tunisian strait 350 

(Figs. 2b and 3). Annual precipitation reconstructions suggest drying relative to the early 351 

Holocene, with modern conditions in northern Italy, and modern conditions or drier than 352 

modern conditions in central and southern Italy during most of the late Holocene. 353 

Reconstructions for the Aegean Sea still indicate higher than modern summer and annual 354 

precipitation (Fig. 2b). Winter conditions reverse the early to mid-Holocene trend, with modern 355 

conditions in the northern Aegean Sea and wetter than modern conditions in the southern 356 

Aegean Sea (Fig. 3). Our reconstructions from all sites show a good fit with Mauri et al. (2015), 357 

except for the Alboran Sea where we reconstruct relatively high annual precipitations, whereas 358 

Mauri et al. (2015) reconstruct dry conditions, but here too, more sites are needed to confirm 359 

or refute this pattern in Spain. Our reconstruction of summer precipitation for the eastern 360 

Mediterranean is very similar to Mauri et al. (2015) where wet conditions are reported for 361 

Greece and the Aegean Sea.  362 

 363 

An East-West precipitation pattern? 364 

A precipitation gradient, or an east-west division during the Holocene has been suggested for 365 

the Mediterranean from pollen data and lakes isotopes (e.g. Dormoy et al., 2009; Roberts et al., 366 

2011; Guiot and Kaniewski, 2015). However, lake-levels and other hydrological proxies around 367 

the Mediterranean Basin do not clearly support this hypothesis and rather show contrasting 368 

hydrological patterns south and north of 40°N particularly during the Holocene climatic 369 

optimum (Magny et al., 2013). 370 

Early to mid-Holocene (8000 to 6000 cal yrs BP) 371 

The pollen-inferred annual precipitation indicates unambiguously wetter than today conditions 372 

south of 42°N in the western, central and eastern Mediterranean, except for Malta (Fig. 3). A 373 

prominent feature of the summer precipitation signal is an east-west dipole with increasing 374 

precipitation in the eastern Mediterranean (as for annual precipitation). In contrast, winter 375 

conditions show less spatial coherence, although the western basin, Sicily and the Siculo-376 

Tunisian strait appear to have experienced higher precipitation than modern, while drier 377 

conditions exist in the east and in north Italy (Fig. 2a).  378 

Our reconstruction shows a good match to Guiot and Kaniewski (2015) who have also discussed 379 

a possible east-to-west division in the Mediterranean with regard to precipitation (summer and 380 

annual) during the Holocene. They report wet centennial-scale spells in the eastern 381 

Mediterranean during the early Holocene (until 6000 years BP), with dry spells in the western 382 
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Mediterranean. Mid-Holocene reconstructions show continued wet conditions, with drying 383 

through the late Holocene (Guiot and Kaniewski, 2015). This pattern indicates a see-saw effect 384 

over the last 10,000 years, particularly during dry episodes in the Near and Middle East. Similar 385 

to in our findings, Mauri et al. (2015) also reconstruct high annual precipitation values over 386 

much of the southern Mediterranean, and a weak winter precipitation signal. Mauri et al. (2015) 387 

confirm an east-west dipole for summer precipitation, with conditions drier or close to present 388 

in south-western Europe and wetter in the central and eastern Mediterranean (Fig 2b). These 389 

studies corroborate the hypothesis of an east-to-west division in precipitation during the early 390 

to mid-Holocene in the Mediterranean as proposed by Roberts et al. (2011). Roberts et al. 391 

(2011) suggest the eastern Mediterranean (mainly Turkey and more eastern regions) 392 

experienced higher winter precipitation during the early Holocene, followed by an oscillatory 393 

decline after 6000 yrs BP. Our findings reveal wetter annual and summer conditions in the 394 

eastern Mediterranean, although the winter precipitation signal is less clear. However, the 395 

highest precipitation values reported by Roberts et al. (2011) were from sites located in western-396 

central Turkey; these sites are absent in the current study. Climate variability in the eastern 397 

Mediterranean during the last 6000 years is also documented in a number of studies based on 398 

multiple proxies (Finné et al., 2011). Most palaeoclimate proxies indicate wet mid-Holocene 399 

conditions (Bar-Matthews et al., 2003; Stevens et al., 2006; Eastwood et al., 2007; Kuhnt et al., 400 

2008; Verheyden et al., 2008) which agree well with our results; however most of these proxies 401 

are not seasonally resolved.  402 

Roberts et al. (2011) and Guiot and Kaniewski (2015) suggest that changes in precipitation in 403 

the western Mediterranean were smaller in magnitude during the early Holocene, while the 404 

largest increases occurred during the mid-Holocene, around 6000-3000 cal BP, before declining 405 

to modern values. Speleothems from southern Iberia suggest a humid early Holocene (9000-406 

7300 cal BP) in southern Iberia, with equitable rainfall throughout the year (Walczak et al., 407 

2015) whereas our reconstructions for the Alboran Sea clearly show an amplified precipitation 408 

seasonality (with higher annual/winter and similar to modern summer rainfall) for the Alboran 409 

sites. It is likely that seasonal patterns defining the Mediterranean climate must have been even 410 

stronger in the early Holocene to support the wider development of sclerophyll forests than 411 

present in south Spain (Fletcher et al., 2013). 412 

Late Holocene (4000 to 2000 cal yrs BP) 413 

Annual precipitation reconstructions suggest drier or near-modern conditions in central Italy, 414 

Adriatic Sea, Siculo-Tunisian strait and Malta (Figs. 2b and 3). In contrast, the Alboran and 415 
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Aegean Seas remain wetter. Winter and summer precipitation produce opposing patterns; a 416 

clear east-west division still exists for summer precipitation, with a maximum in the eastern 417 

and a minimum over the western and central Mediterranean (Fig. 2b). Winter precipitation 418 

shows the opposite trend, with a minimum in the central Mediterranean (Sicily, Siculo-Tunisian 419 

strait and Malta) and eastern Mediterranean, and a maximum in the western Mediterranean 420 

(Figs. 2b and 3). Our results are also in agreement with lakes and speleothem isotope records 421 

over the Mediterranean for the late Holocene (Roberts et al., 2011), and the Finné et al. (2011) 422 

palaeoclimate synthesis for the eastern Mediterranean. There is a good overall correspondence 423 

between trends and patterns in our reconstruction and that of Mauri et al. (2015), except for the 424 

Alboran Sea. High-resolution speleothem data from southern Iberia show Mediterranean 425 

climate conditions in southern Iberia between 4800 and 3000 cal BP (Walczak et al., 2015) 426 

which is in agreement with our reconstruction. The Mediterranean climate conditions 427 

reconstructed here for the Alboran Sea during the late Holocene is consistent with a climate 428 

reconstruction available from the Middle Atlas (Morocco), which show a trend over the last 429 

6000 years towards arid conditions as well as higher precipitation seasonality between 4000 430 

and 2000 cal yrs BP (Nourelbait et al., 2016). There is also good evidence from many records 431 

to support late Holocene aridification in southern Iberia. Paleoclimatic studies document a 432 

progressive aridification trend since ~7000 cal yr BP (e.g. Carrion et al., 2010; Jimenez-Moreno 433 

et al., 2015; Ramos-Roman et al., 2016), although a reconstruction of the annual precipitation 434 

inferred from pollen data with the Probability Density Function method indicate stable and dry 435 

conditions in the south of the Iberian Peninsula between 9000 and 3000 cal BP (Tarroso et al., 436 

2016).  437 

The current study shows that a prominent feature of late Holocene climate is the east-west 438 

division in summer precipitation: summers were overall dry or near-modern in the central and 439 

western Mediterranean and clearly wetter in the eastern Mediterranean. In contrast, winters 440 

were drier or near-modern in the central and eastern Mediterranean (Fig. 3) while they were 441 

wetter only in the Alboran Sea. 442 

 443 

Data-model comparison  444 

Figure 3 shows the data-model comparisons for the early to mid-Holocene (a) and late Holocene 445 

(b) compared to the Present day control run (in anomalies, with statistical significance hatched. 446 

Encouragingly, there is a good overall correspondence between patterns and trends in pollen-447 
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inferred precipitation and model outputs. Caution is required when interpreting climate model 449 

results, however, as many of the changes depicted in Fig. 3 are very small and of marginal 450 

statistical significance, suggesting a high degree of uncertainty around their robustness. 451 

For the early to mid-Holocene, both model and data indicate wet annual and summer conditions 452 

in Greece and in the eastern Mediterranean, and drier than today conditions in north Italy. There 453 

are indications of an east to west division in summer precipitation simulated by the climate 454 

model (e.g., between the ocean to the south of Italy and over Greece/Turkey), although the 455 

changes are extremely small with a level of significance of 70% (p-value=0.7). Furthermore, in 456 

the Aegean Sea, the model shows a good match with pollen-based reconstructions, suggesting 457 

that the increased spatial resolution of the regional climate model may help to simulate the 458 

localized, “patchy”, impacts of Holocene climate change, when compared to coarser global 459 

GCMs (Fig. 3). In Italy, the model shows a good match with pollen-based reconstructions with 460 

regards to the contrasting north-south precipitation regimes, but there is little agreement 461 

between model output and climate reconstruction with regard to winter and annual precipitation 462 

in southern Italy. The climate model suggests wetter winter and annual conditions in the far 463 

western Mediterranean (i.e. France, western Iberia and the NW coast of Africa) – similar to 464 

pollen-based reconstructions – and near-modern summer conditions during summers (except in 465 

France and northern Africa). A prominent feature of winter precipitation simulated by the model 466 

and partly supported by the pollen estimates is the reduced early Holocene precipitation 467 

everywhere in the Mediterranean basin except in the south east. 468 

Model and pollen-based reconstructions for the late Holocene indicate declining winter 469 

precipitation in the eastern Mediterranean and southern Italy (Sicily and Malta) relative to the 470 

early Holocene. In contrast, late Holocene summer precipitation is higher than today in Greece 471 

and in the eastern Mediterranean and near-modern in the central and western Mediterranean, 472 

and relatively lower than today in south Spain and north Africa. The east-west division in 473 

summer precipitation is strongest during the late Holocene in the proxy data and there are 474 

suggestions that it appears to be consistently simulated in the climate model; the signal is 475 

reasonably clear in the eastern Mediterranean (Greece and Turkey) but non-significant in 476 

central and western Mediterranean (Fig. 3). 477 

Our findings can be compared with previous data-model comparisons based on the same set of 478 

climate model experiments; although here we take our reference period as ‘present-day’ (1960-479 

1990) rather than preindustrial and thus include an additional ‘signal’ from recent 480 

anthropogenic greenhouse gas emissions. Previous comparisons nevertheless suggested that the 481 
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winter precipitation signal was strongest in the northeastern Mediterranean (near Turkey) 483 

during the early Holocene and that there was a drying trend in the Mediterranean from the early 484 

Holocene to the late Holocene, particularly in the east (Brayshaw et al., 2011a; Roberts et al., 485 

2011). This is coupled with a gradually weakening seasonal cycle of surface air temperatures 486 

towards the present. 487 

It is clear that most global climate models (PMIP2, PMIP3) simulate only very small changes 488 

in summer precipitation in the Mediterranean during the Holocene (Braconnot et al., 2007a,b, 489 

2012; Mauri et al., 2014). The lack of a summer precipitation signal is consistent with the failure 490 

of the northeastern extension of the West African monsoon to reach the southeastern 491 

Mediterranean, even in the early to-mid-Holocene (Brayshaw et al., 2011a). The regional 492 

climate model simulates a small change in precipitation compared to the proxy results, and it 493 

can be robustly identified as statistically significant. This is to some extent unsurprising, insofar 494 

as the regional climate simulations presented here are themselves “driven” by data derived from 495 

a coarse global model (which, like its PMIP2/3 peers, does not simulate an extension of the 496 

African monsoon into the Mediterranean during this time period). Therefore, questions remain 497 

about summer precipitation in the eastern Mediterranean during the Holocene. The underlying 498 

climate dynamics therefore need to be better understood in order to confidently reconcile proxy 499 

data (which suggest increased summer precipitation during the early Holocene in the Eastern 500 

Mediterranean) with climate model results (Mauri et al., 2014). Based on the high-resolution 501 

coupled climate model EC-Earth, Bosmans et al. (2015) show how the seasonality of 502 

Mediterranean precipitation should vary from minimum to maximum precession, indicating a 503 

reduction in precipitation seasonality, due to changes in storm tracks and local cyclogenesis 504 

(i.e. no direct monsoon required). Such high-resolution climate modeling studies (both global 505 

and regional) may prove a key ingredient in simulating the relevant atmospheric processes (both 506 

local and remote) and providing fine-grain spatial detail necessary to compare results to palaeo-507 

proxy observations.  508 

Another explanation proposed by Mauri et al. (2014) is linked to the changes in atmospheric 509 

circulation. Our reconstructed climate characterized by dry winters and wet summers shows a 510 

spatial pattern that is somewhat consistent with modern day variability in atmospheric 511 

circulation rather than simple direct radiative forcing by insolation. In particular, the gross NW-512 

SE dipole of reconstructed winter precipitation anomalies is perhaps similar to that associated 513 

with a modern-day positive AO/NAO.  The west coast of Spain is, however, also wetter in our 514 

early Holocene simulations which would seem to somewhat confound this simple picture of a 515 
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shift to an NAO+ like state compared to present. In summer, an anti-cyclonic blocking close to 516 

Scandinavia may have caused a more meridional circulation, which brought dry conditions to 517 

northern Europe, but relatively cooler and somewhat wetter conditions to many parts of 518 

southern Europe. It is of note that some climate models which have been used for studying 519 

palaeoclimate have difficulty reproducing this aspect of modern climate (Mauri et al., 2014). 520 

Future work based on transient Holocene model simulations are important, nevertheless, 521 

transient-model simulations have also shown mid-Holocene data-model discrepancies (Fischer 522 

and Jungclaus, 2011; Renssen et al., 2012). It is, however, suggested that further work is 523 

required to fully understand changes in winter and summer circulation patterns over the 524 

Mediterranean (Bosmans et al., 2015). 525 

 526 

Data limitations 527 

Classic ecological works for the Mediterranean (e.g. Ozenda 1975) highlight how precipitation 528 

limits vegetation type in plains and lowland areas, but temperature gradients take primary 529 

importance in mountain systems. Also, temperature and precipitation changes are not 530 

independent, but interact through bioclimatic moisture availability and growing season length 531 

(Prentice et al., 1996). This may be one reason why certain sites may diverge from model 532 

outputs; the Alboran sites, for example, integrate pollen from the coastal plains through to 533 

mountain (+1500m) elevations. At high elevations within the source area, temperature effects 534 

become be more important than precipitation in determining the forest cover type. Therefore, it 535 

is not possible to fully isolate precipitation signals from temperature changes. Particularly for 536 

the semiarid areas of the Mediterranean, the reconstruction approach probably cannot 537 

distinguish between a reduction in precipitation and an increase in temperature and PET, or vice 538 

versa.  539 

Along similar lines, while the concept of reconstructing winter and summer precipitation 540 

separately is very attractive, it may be worth commenting on some limitations. Although 541 

different levels of the severity or length of summer drought are an important ecological 542 

limitation for vegetation, reconstructing absolute summer precipitation can be difficult because 543 

the severity/length of bioclimatic drought is determined by both temperature and precipitation. 544 

We are dealing with a season that has, by definition, small amounts of precipitation that drop 545 

below the requirements for vegetation growth. Elevation is also of concern, as lowland systems 546 

tend to be recharged by winter rainfall, but high mountain systems may receive a significant 547 
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part of precipitation as snowfall, which is not directly available to plant life. This may be 549 

important in the long run for improving the interpretation of long-term Holocene changes and 550 

contrasts between different proxies, such as lake-levels and speleothems. Although these issues 551 

may initially appear to be of marginal importance, they may nevertheless have a real influence 552 

leading to problems and mismatches between different proxies (e.g. Davis et al., 2003; Mauri 553 

et al., 2015). 554 

Another important point is the question of human impact on the Mediterranean vegetation 555 

during the Holocene. Since human activity has influenced natural vegetation, distinguishing 556 

between vegetation change induced by humans and climatic change in the Mediterranean is a 557 

challenge requiring independent proxies and approaches. Therefore links and processes behind 558 

societal change and climate change in the Mediterranean region are increasingly being 559 

investigated (e.g. Holmgren et al., 2016; Gogou et al, 2016; Sadori et al., 2016a). Here, the  560 

behavior  of  the  reconstructed  climatic variables  between 4000 and 2000 cal yrs BP  is likely  561 

to  be  influenced  by  non-natural  ecosystem changes due to human activities such as the forest 562 

degradation that began in lowlands, progressing to mountainous areas (Carrión et al., 2010). 563 

These human impacts add confounding effects for fossil pollen records and may lead to slightly 564 

biased temperature reconstructions during the late Holocene, likely biased towards warmer 565 

temperatures and lower precipitation. However, if human activities become more marked at 566 

3000 cal yrs BP, they increase significantly over the last millennia (Sadori et al., 2016) which 567 

is not within the time scale studied here. Moreover there is strong agreement between summer 568 

precipitation and independently reconstructed lake-level curves (Magny et al., 2013). For the 569 

marine pollen cores, human influence is much more difficult to interpret given that the source 570 

area is so large, and that, in general, anthropic taxa are not found in marine pollen assemblages. 571 

 572 

Conclusions 573 

The Mediterranean is particularly sensitive to climate change but the extent of future change 574 

relative to changes during the Holocene remains uncertain. Here, we present a reconstruction 575 

of Holocene precipitation in the Mediterranean using an approach based on both terrestrial and 576 

marine pollen records, along with a model-data comparison based on a high resolution regional 577 

model. We investigate climatic trends across the Mediterranean during the Holocene to test the 578 

hypothesis of an alternating north-south precipitation regime, and/or an east-west precipitation 579 

dipole. We give particular emphasis to the reconstruction of seasonal precipitation considering 580 

the important role it plays in this system. 581 
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Climatic trends reconstructed in this study seem to corroborate the north-south division of 584 

precipitation regimes during the Holocene, with wet conditions in the south-central and eastern 585 

Mediterranean, and dry conditions above 45°N during the early Holocene, while the opposite 586 

pattern dominates during the late Holocene. This study also shows that a prominent feature of 587 

Holocene climate in the Mediterranean is the east-to-west division in precipitation, strongly 588 

linked to the seasonal parameter reconstructed. During the early Holocene, we observe an east-589 

to-west division with high summer precipitation in Greece and the eastern Mediterranean and 590 

a minimum over the Italy and the western Mediterranean. There was a drying trend in the 591 

Mediterranean from the early Holocene to the late Holocene, particularly in central and eastern 592 

regions but summers in the east remained wetter than today. In contrast, the signal for winter 593 

precipitation is less spatially consistent during the early Holocene, but it clearly shows similar 594 

to present day or drier conditions everywhere in the Mediterranean except in the western basin 595 

during the late Holocene. 596 

The regional climate model outputs show a remarkable qualitative agreement with our pollen-597 

based reconstructions, although it must be emphasised that the changes simulated are typically 598 

very small or of questionable statistical significance. Nevertheless, there are indications that the 599 

east to west division in summer precipitation reconstructed from the pollen records do appear 600 

to be simulated by the climate model. The model results also suggest that parts of the eastern 601 

Mediterranean experienced similar to present day or drier conditions in winter during the early 602 

and late Holocene and wetter conditions in annual and summer during the early and late 603 

Holocene (both consistent with the paleo-records).  604 

Although this study has used regional climate model data, it must always be recalled that the 605 

regional model’s high-resolution output is strongly constrained by a coarser-resolution global 606 

climate model, and the ability of global models to correctly reproduce large-scale patterns of 607 

change in the Mediterranean over the Holocene remains unclear (e.g. Mauri et al 2015).  The 608 

generally positive comparison between model and data presented here may therefore simply be 609 

fortuitous and not necessarily replicated if the output from other global climate model 610 

simulations was downscaled in a similar way. However, it is noted that the use of higher-611 

resolution regional climate models can offer significant advantages for data-model comparison 612 

insofar as they assist in resolving the inherently “patchy” nature of climate signals and palaeo-613 

records.  Notwithstanding the difficulties of correctly modeling large-scale climate change over 614 

the Holocene (with GCMs), we believe that regional downscaling may still be valuable in 615 
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facilitating model-data comparison in regions/locations known to be strongly influenced by 616 

local effects (e.g., complex topography). 617 

  618 
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 624 

Figure captions 625 

Figure 1: Locations of terrestrial and marine pollen records along a longitudinal gradient from 626 

west to east and along a latitudinal gradient from northern Italy to Malta. Ombrothermic 627 

diagrams are shown for each site, calculated with the NewLoclim software program and 628 

database, which provides estimates of average climatic conditions at locations for which 629 

no observations are available (ex.: marine pollen cores). 630 

Figure 2: Pollen-inferred climate estimates as performed with the Modern Analogues 631 

Technique (MAT): annual precipitation, winter precipitation (winter = sum of 632 

December, January and February precipitation) and summer precipitation (summer = 633 

sum of June, July and August precipitation). Changes in climate are expressed as 634 

differences with respect to the modern values (anomalies, mm/day). The modern values 635 

are derived from the ombrothermic diagrams (cf Fig. 1). Two key intervals of the 636 

Holocene corresponding to the two time slice experiments (Fig. 3) have been chosen: 637 

8000–6000 cal yrs BP (a) and 4000–2000 (b) cal yrs BP. The climate values available 638 

during these periods have been averaged (stars). 639 

Figure 3: Data-model comparison for mid and late Holocene precipitation, expressed in 640 

anomaly compared to present-day (mm/day). Simulations are based on a regional model 641 

(Brayshaw et al., 2010): standard model HadAM3 coupled to HadSM3 (dynamical 642 

model) and HadRM3 (high-resolution regional model. The hatching representing 643 

statistical significance refers to the anomalies shown on the same plot – i.e., the 644 

difference between the experiment (either 8000–6000 or 4000–2000) and the Present 645 

day control run. The hatched areas indicate areas where the changes are not significant 646 

(70% rank-significance test). Pollen-inferred climate estimates (stars) are the same as in 647 

Fig. 2: annual precipitation, winter precipitation (winter = sum of December, January 648 

and February precipitation) and summer precipitation (summer = sum of June, July and 649 

August precipitation). 650 
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Figure 4: Model simulation showing Present day minus Preindustrial precipitation anomalies 651 

(hatching at 70%/statistical significance over the insignificant regions) 652 

Table 1: Metadata for the terrestrial and marine pollen records evaluated. 653 

654 
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Figure 1: Locations of terrestrial (red) and marine (yellow) pollen records. 
Ombrothermic diagrams are calculated with the NewLoclim software, which provides estimates of average climatic 
conditions at locations for which no observations are available (ex.: marine pollen cores).
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Figure 2a: 8000-6000 cal years BP
 Pollen-inferred climate estimates as performed with the Modern Analogues Technique: annual precipitation, winter precipitation 
(winter = sum of December, January and February precipitation) and summer precipitation (summer = sum of June, July and August 
precipitation). Changes in climate are expressed as differences with respect to the modern values (anomalies, mm/day) , which are 
derived from the ombrothermic diagrams (cf Fig. 1). Climate values reconstructed during the 8000-6000 cal yrs BP have been averaged 
(stars).
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Figure 2b: 4000-2000 cal yrs BP 
Pollen-inferred climate estimates as performed with the Modern Analogues Technique: annual precipitation, winter precipitation 
(winter = sum of December, January and February precipitation) and summer precipitation (summer = sum of June, July and 
August precipitation). Changes in climate are expressed as differences with respect to the modern values (anomalies, mm/day), 
which are derived from the ombrothermic diagrams (cf Fig. 1). Climate values reconstructed during the 4000-2000 cal yrs BP 
have been averaged (stars). 
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Figure 3: Data-model comparison for mid and late Holocene precipitation, expressed in anomaly (mm/day)
Simulations are based on a regional model (Brayshaw et al., 2010): standard model HadAM3 coupled to HadSM3 
and HadRM3 (high-resolution regional model). The hatched areas indicate areas where the changes are not significant (threshold used here 70%). 
Pollen-inferred climate estimates (stars) are the same as in Fig.2: annual precipitation, winter precipitation and summer precipitation .
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Figure 4: Model simulation showing Present day minus Preindustrial precipitation anomalies 
(hatching at 70%/statistical significance over the insignificant regions)



Terrestrial pollen records      

 Longit. Latitude Elev. 

(m a.s.l) 

Temporal 

resolution 

  References  

(non- exhaustive) 

 Ledro (North Italy) 10°76’E  45°87’N 652 8000-6000: 71 

4000-2000: 60 

10966-10: 66 

Joannin et al. (2013), Magny et al. 
(2009, 2012a), Vannière et al. 
(2013), Peyron et al. (2013) 

Accesa (Central Italy) 10°53’E 42°59’N 157 8000-6000: 90 

4000-2000 : 133 

11029-100: 97 

Drescher-Schneider et al. (2007), 

Magny et al. (2007, 2013), 
Colombaroli et al. (2008), Sadori 
et al. (2011), Vannière et al. 
(2011), Peyron et al. (2011, 2013)  

Trifoglietti (Southern Italy) 16°01’E 39°33’N 1048 8000-6000: 95 

4000-2000: 86 

9967-14: 73 

Joannin et al. (2012), Peyron et 
al. (2013) 

Pergusa (Sicily) 14°18’E 37°31’N 667 8000-6000: 166 

4000-2000: 90 

12749-53: 154 

Sadori and Narcisi (2001); Sadori 
et al. (2008, 2011, 2013, 2016b); 
Magny et al. (2011, 2013)  

Tenaghi Philippon (Greece) 24°13.4’
E  

40°58.4’N 40 8000-6000: 64 

4000-2000: no 

10369-6371:53 

Pross et al. (2009, 2015), Peyron 
et al. (2011), Schemmel et al., 
(2016) 

Burmarrad (Malta) 14°25'E  

 

35°56'N 0.5 8000-6000: 400 

4000-2000: 285 

6904-1730: 110 

Djamali et al. (2013), Gambin et 
al., (2016) 

      

Marine pollen records 
     

 Longit. Latitude Water-

depth 

Temporal 

resolution 

  References 

ODP 976 (Alboran Sea)  4°18’W 36°12’ N 1108 8000-6000: 142 

4000-2000: 181 

10903-132: 129 

Combourieu-Nebout et al. (1999, 
2002, 2009) ; Dormoy et al., (2009) 

MD95-2043 (Alboran Sea) 2°37’W 36°9’N 1841 8000-6000: 111 

4000-2000: 142 

10952-1279: 106 

Fletcher and Sánchez Goñi 
(2008); Fletcher et al., (2010) 

MD90-917 (Adriatic  Sea) 17°37’E 41°97’N 845 8000-6000: 90 

4000-2000: 333 

10495-2641: 122 

Combourieu-Nebout et al. (2013) 

MD04-2797 (Siculo-Tunisian 
strait) 

11°40’E 36°57’N 771 8000-6000: 111 

4000-2000: 666 

10985-2215: 127 

Desprat et al. (2013) 

SL152 (North Aegean Sea) 24°36’ E  40°19’ N 978 8000-6000: 60 

4000-2000: 95 

9999-0: 76 

Kotthoff et al. (2008, 2011), 
Dormoy et al. (2009). 

NS14 (South Aegean Sea) 27°02’E 36°38’N 505 8000-6000: 80 

4000-2000: 333 

9988-2570: 107 

Kouli et al. (2012) ; Gogou et al. 
(2007); Triantaphyllou et al. 
(2009a, b) 

HCM2/22 (South Crete) 24°53’E 34°34 N 2211 8000-6000: 181 

4000-2000: 333 

8091-2390: 247 

Ioakim et.al. (2009) ; Kouli et al, 
(2012) ; Triantaphyllou et al. 
(2014) 



MNB-3 (North Aegean Sea) 25°00’E 

 

39°15’N 800 8000-6000: 153 

4000-2000: 166 

8209-2273: 138 

Geraga et al. (2010) ; Kouli et al., 
(2012) ; Triantaphyllou et al, 
(2014) 

 Table 1: Metadata for the terrestrial and marine pollen records evaluated. The temporal resolution is 

calculated for the two periods (8000-6000 and 4000-2000) and for the entire record. 
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