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Abstract. Latitudinal shifts in the Southern Ocean westerly wind jet could drive changes in the

glacial to interglacial ocean CO2 inventory. However, whilst CMIP5 model results feature consistent

future-warming jet shifts, there is considerable disagreement in deglacial-warming jet shifts. We find

here that the dependence of pre-industrial (PI) to Last Glacial Maximum (LGM) jet shifts on PI jet

position, or state dependency, explains less of the shifts in jet simulated by the models for the LGM5

compared with future-warming scenarios. State dependence is also weaker for intensity changes,

compared to latitudinal shifts in the jet. Winter sea ice was considerably more extensive during the

LGM. Changes in surface heat fluxes, due to this sea ice change, probably had a large impact on the

jet. Models which both simulate realistically large expansions in sea ice and feature PI jets which

are south of 50◦S, show an increase in wind speed around 55◦S, and can show a poleward shift in10

the jet between the PI and the LGM. However models with the PI jet positioned equatorwards of

around 47◦S do not show this response: the sea ice edge is too far from the jet for it to respond.

In models with accurately positioned PI jets; a +1◦ difference in the latitude of the sea ice edge

tends to be associated with a −0.85◦ shift in the 850 hPa jet. However, it seems that around 5◦ of

expansion of LGM sea ice is necessary to hold the jet in its PI position. Since the Gersonde et al.15

(2005) data supports an expansion of more than 5◦, this result suggests that a slight poleward shift

and intensification was the most likely jet change between the PI and the LGM. Without the effect of

sea ice, models simulate polewards shifted westerlies in warming climates and equatorward shifted

westerlies in colder climates. However, the feedback of sea ice counters and reverses the equatorward

trend in cooler climates so that the LGM winds were more likely to have also been shifted slightly20

poleward.
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1 Introduction

The concentration of CO2 in the atmosphere decreases by ~90 parts per million between warm

interglacial and cold glacial climate states, due to oceanic storage of the excess carbon. Mechanisms

behind this enhanced ocean storage are still unresolved. One hypothesis invokes latitudinal shifts in25

the Southern Ocean westerly wind belt. An equatorward, or weaker, westerly wind jet could suppress

deep water ventilation, leading to carbon becoming trapped in cold dense waters (Toggweiler et al.,

2006; Sigman et al., 2010; Denton et al., 2010).

The evidence in favour of jet shifts driving increased glacial oceanic carbon storage though direct

physical and biological carbon pumps is weak. Authors including Menviel et al. (2008); Tschumi30

et al. (2008); d’Orgeville et al. (2010); Lee et al. (2011) have investigated the effect that wind jet

shifts have on ocean circulation during the Last Glacial Maximum (LGM) using numerical models.

In one of the most complete recent studies, Völker and Köhler (2013) simulated the impact of jet

shifts with a full ocean general circulation model (MITgcm), spun up to simulate LGM conditions,

and used a dissolved inorganic carbon package (MITgcm Group, 2013) to simulate carbon changes.35

They found small net effects on atmospheric carbon, with a rise of only 3 to 9 ppm CO2 under both

a north and a southward 10◦ shift of the surface jet. These results are similar to those obtained using

some simpler ocean models (Menviel et al., 2008; Tschumi et al., 2008; d’Orgeville et al., 2010).

However, the effects on ocean circulation and biology are complex and non-linear, with competing

effects from physical and biological carbon pumps. Thus it is difficult to know if these model-based40

studies are sufficiently accurate to constrain the CO2 impact of a specified wind shift. So whilst

most, though not all (e.g. Lee et al., 2011), ocean and carbon modelling results do not support the

idea that shifts in the westerly wind belt played a dominant role in coupling atmospheric CO2 rise

and global temperature there is, as yet, no definitive answer to this question.

Jet shifts have been proposed to modify other aspects of the climate-CO2 system. Iron rich dust45

borne by Southern Hemisphere winds is thought to increase Southern Ocean productivity (Kohfeld

et al., 2005). Lamy et al. (2014) show that large-scale Southern Hemisphere climate forcings, likely

wind related, enhanced cold glacial period dust mobilization in Australia, New Zealand, and Patag-

onia. Ferrari et al. (2014) hypothesise a Southern Ocean dividing latitude between negative and

positive buoyancy forcing at the edge of the summer sea ice edge, with knock-on impacts for ocean50

dynamics. Völker and Köhler (2013) show that if the atmospheric jet shifts poleward, summer sea

ice extends, likely due to enhanced heat loss to the atmosphere. Thus both dust and buoyancy forcing

may provide an additional means for jet changes to influence glacial to interglacial climate shifts.

A wide range of paleodata has been interpreted as evidence for glacial to interglacial jet shifts. This

data includes proxies, or direct measurements of, terrestrial moisture, dust deposition, sea surface55

temperatures, and ocean productivity. Kohfeld et al. (2013) find that purely based on these paleodata,

one can hypothesise a variety of wind change scenarios including: no change, a southward shift, and a

northward shift. It remains an extraordinarily difficult task to constrain glacial to interglacial jet shifts
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and intensifications based on data alone (Hodgson and Sime, 2010). Whilst Sime et al. (2013) find

that the moisture change paleodata can be accurately modeled under a no jet shift scenario, Kohfeld60

et al. (2013) suggest that an equatorward jet shift, or intensification, could also be consistent with the

majority of the paleodata. Efforts to help solve this jet change problem using GCMs have benefitted

from the fifth Coupled Models Intercomparison Project (CMIP5), specifically the third Paleoclimate

Models Intercomparison Project (PMIP3), and its predecessor PMIP2 (Braconnot et al., 2007, 2012;

Taylor et al., 2011). PMIP2 and PMIP3 have provided ensembles of LGM and PI climate simulations,65

where each model is run under the same boundary conditions, permitting intermodel comparisons

and insight into crucial wind change mechanisims (e.g. Roche et al., 2012; Rojas, 2013; Chavaillaz

et al., 2013; Sime et al., 2013; Liu et al., 2015).

Existing analyses of PMIP2 and PMIP3 LGM simulation ensembles show considerable inter-

model disagreement in pre-industrial (PI) to LGM Southern Hemisphere jet changes (Rojas, 2013;70

Chavaillaz et al., 2013). This is despite the fact that nearly all CMIP5 models exhibit a poleward

shift, and all models a strengthening, of the surface jet from 1900 to 2100 (Bracegirdle et al., 2013).

Indeed Chavaillaz et al. (2013) find that future-warming scenario RCP4.5 (Representative Concen-

tration Pathway 4.5) shifts in the 850 hPa jet can be largely explained by tropospheric temperature

differences between the southern high latitudes and the tropics. Bracegirdle et al. (2013) and Kid-75

ston and Gerber (2010) examine another aspect: state dependency for Southern Ocean jet shifts and

intensity changes, where state dependency is defined as the dependence of jet shifts on the start jet

position. Bracegirdle et al. (2013) find that for some oceanic sectors, particularly the Pacific, the

starting position of the jet (state dependence) explains more than 85% of the jet shift variance found

between the different CMIP5 future-warming scenario simulations. This implies that the start lat-80

itude of the jet is potentially a strong contender as an explanation for CMIP5-PMIP3 inter-model

jet shift differences. Additionally, whilst tropical temperature changes dominate the future-warming

wind changes, high latitude temperature changes are as significant to the winds during the deglacial-

warming (Chavaillaz et al., 2013). Sea ice is thus highlighted also as being particularly significant

for the accurate jet simulations (Chavaillaz et al., 2013; Sime et al., 2013). Here we investigate past-85

cooling LGM state dependency, sea ice, and changes in the Southern Ocean westerly wind jet using

CMIP5-PMIP3 output.

2 Data: CMIP5-PMIP3 simulations

CMIP5-PMIP3 pre-industrial (PI) and Last Glacial Maximum (LGM) simulations are run with full

dynamic ocean and sea ice models. The LGM simulations all follow the PMIP3 protocol (https :90

//wiki.lsce.ipsl.fr/pmip3/doku.php/pmip3 : design : 21k : final):orbital parameters are set to

their 21 000 yr ago values; concentration of atmospheric greenhouse gases are set to 185 ppm for

CO2; 350 ppb for CH4; and 200 ppb for N2O. All models use the PMIP3 LGM ice sheet or ICE5.2G
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ice sheet configurations (Chavaillaz et al., 2013). Simulations are run for long enough to allow the

atmosphere and ocean to reach quasi-equilibrium (Braconnot et al., 2012; Rojas, 2013).95

Models and simulations are shown in Table 1. For some models more than one realization is

available (i.e. the same model is run more than once with the same forcing). Where more than one

realization is available (indicated in Table 1), the mean of those realizations is used. Additionally,

some models (e.g. GISS-E2-R-p150 and GISS-E2-R-p151) differ only slightly in their physics. In

this case, as above, we use a mean of these model simulations. This yields a total of nine independent100

PMIP3 simulations.

2.1 Southern Ocean wind jet diagnostics

The choice of Southern Ocean jet diagnostic can influence apparent glacial to interglacial wind

change results (Liu et al., 2015). Previous authors have used: surface winds (Kim et al., 2003);

above-surface winds; or surface shear stress (Otto-Bliesner et al., 2006). Where sea ice replaces105

open water, each of these diagnostics shows a different response (Sime et al., 2013; Liu et al., 2015).

Sea ice affects surface roughness and near surface stratification of the boundary layer, this can lead

to quite different results for glacial to interglacial changes in different wind diagnostics and shear

stress (Figure 1). For this reason, we concentrate on the above surface (850 hPa) winds, given that

any model specific specification of sea ice effects tends to have a lesser impact on this diagnostic110

(Sime et al., 2013). However, given the importance of surface wind speed and shear stress for driving

the Southern and global Ocean circulation and hence CO2 exchange, some discussion of all of these

three wind diagnostics is included in this study.

When calculating jet intensity and position for each diagnostic, we use a cubic spline interpolation

to quantify the jet maximum and determine its latitude. Jet shifts are defined here as PI to LGM115

changes in the latitudinal position of the zonal mean maximum in the jet. Data is regridded to a

consistent 0.1◦ resolution before these calculations are performed. In addition to these zonal mean

diagnostics, we also assess individual ocean sectors results. In these cases, sectors are defined by

longitude ranges as follows: Atlantic sector (290◦ to 20◦), Indian sector (20◦ to 150◦) and Pacific

sector (150◦ to 290◦). Jet diagnostics are calculated for the annual mean in the Southern Hemisphere120

850 hPa wind component; the annual mean 1000 hPa westerly wind is used as an indicator for surface

wind. This diagnostic is used in lieu of the 10-metre surface westerly wind speed ‘uas’ field, because

‘uas’ is not available for LGM simulations for two CMIP5 models. We also calculate the zonal shear

stress τU , ‘jet’ position and intensity. Required variables (‘ua’ and ‘tauu’) were downloaded from

the CMIP5 data archive between September and October in 2014.125

All CMIP5 models show an equatorward bias in the present-day zonal mean surface jet position.

The ensemble of present day CMIP5 simulations show a mean equatorward bias of 3.3◦ (inter-

model standard deviation of ± 1.9◦) in the position of the surface zonal mean jet (Bracegirdle et al.,

2013; Swart and Fyfe, 2012). A bias is still present, but is reduced, in atmospheric-only simulations.
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This implies that sea surface temperature and sea ice errors, i.e. ocean-atmosphere coupling, tends130

to generate wind jet biases. Simulations of Southern Ocean winds are similar for both standard

and high-top version models (Wilcox et al., 2012), which implies that inter-model differences in

stratospheric resolution and representation may not be critical. The equatorward jet biases are mainly

associated with the Indian and Pacific sectors.

2.2 The sea ice edge135

Where available, sea ice concentration data was downloaded for the model simulations. The sea ice

edge was calculated using a mean annual sea ice concentration of 15%. For a few model simulations

sea ice concentration data was not available. In this case a best fit relationship between sea surface

temperature and sea ice edge, derived from the models where both output were available, was used

to estimate the sea ice edge (COSMOS-ASO and IPSL-CM5A-LR).140

3 Results

3.1 Jet changes and state dependency

We focus in this study on the PI and LGM CMIP5-PMIP3 simulations. Table 2 indicates a wide

range of PI to LGM latitudinal jet shifts across the PMIP3 simulations, varying from + 2.0 to − 4.5
◦ for the 850 hPa jet. The mean 850 hPa jet shift for the nine models is small: − 0.2 ◦ (inter-model145

standard deviation of ± 2.1◦). The mean surface jet shift for the nine models is − 0.9 ◦ (inter-model

standard deviation of ± 1.6◦). The median shift for both 850 and 1000 hPa is 0◦. Similar inter-model

variation appears in the jet intensity changes (Table 2).

Following the Bracegirdle et al. (2013) approach, we calculate state dependency for Southern

Ocean jet shifts and intensity changes across the various oceanic sectors, i.e. the dependence of PI150

to LGM jet shifts with PI jet position. Feedbacks within the troposphere have been used to explain

state dependence in previous studies (e.g. Kidston and Gerber, 2010). We find that state dependency

can explain up to 56 % of the variance in PI to LGM jet shifts in the Atlantic (r = -0.75, N = 9, for

τU ), and 41 % in the Indian Ocean (r = -0.64, N = 9, for τU ). State dependency is much weaker in

the Pacific; here any influence is negligible. 850 hPa and 1000 hPa results are always very similar155

(not shown). We find state dependence is stronger for the τU jet than the 850 hPa jet (Figure 2), due

largely to the MRI-CGCM3 850 hPa outlier. With the anomalous MRI-CGCM3 850 hPa wind result

removed from the calculation, we obtain similar results between 850 hPa and τU . For the whole of

the Southern Ocean, the variance explained by state dependency is 38 % (r = -0.62, N = 9, for τU ).

Whilst these CMIP5-PMIP3 results bear similarities to the Bracegirdle et al. (2013) CMIP5-160

RCP8.5 analysis of state dependence, they also show distinct differences. Over the Atlantic sector

Bracegirdle et al. (2013) find the correlation, calculated between present day and RCP8.5 CMIP5

output, is relatively weak (r = -0.39) compared with the correlations over the Indian sector (r =
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-0.50) and Pacific sector (r = -0.91). Interestingly, Bracegirdle et al. (2013) also find that correla-

tion results over the Atlantic are conditional on omitting model MRI-CGCM3, which is again an165

influential outlier due to jumps in jet position.

For jet intensity Bracegirdle et al. (2013) find the state dependence is generally weaker than for

position; we find a similar result here. The state dependency in intensity change can explain only 25

% (r = -0.50, N = 9, for τU ) of the PI to LGM change.

This analysis indicates that, whilst state dependence plays a role in determining deglacial-warming170

jet shifts and intensity changes, overall the influence of state dependency alone is much weaker

compared with future-warming climate change scenarios. This implies that other factors must also

be important in determining the LGM wind changes; we now look at the factors which are most

likely to drive these changes.

3.2 The impact of sea ice175

The most recent compilation of LGM sea surface temperature data is the MARGO dataset (MARGO

Project Members, 2009). Although the coverage of MARGO data is good in tropical regions, it

is sparse poleward of 40◦S (MARGO Project Members, 2009). However, Gersonde et al. (2005)

provide LGM sea surface temperature and sea ice data from 122 Southern Ocean sediment core

sites. This data suggests that LGM sea ice extended in the Atlantic and Indian sector to close to 47◦S180

, and in the Pacific sector to 57◦S; a PI to LGM equatorward expansion of between 7 and 10◦ in

latitude. This is a large change, particularly compared with the sea ice changes which occur during

most future-warming scenario CMIP5 simulations.

All CMIP5-PMIP3 models for which we can retrieve sea ice output show an LGM expansion of

sea ice in the Southern Hemisphere (Table 3). There is considerable variability between the models.185

Expansions range between 2.1 and 7.0 ◦ (Figure 4, Table 3). Only two models, CCSM4 and MRI-

CGCM3 (with Gersonde et al. (2005) data agreements of 87% and 88%, see Appendix 1), appear to

yield an accurate simulation of LGM sea ice extent (Table 3), and some of the largest equatorward

expansions of sea ice at 5.6 and 7.0 ◦, respectively.

Changes in sea ice extent are associated with relatively strong surface heat flux anomalies, which190

can be as large as 100 W m−2 (Alexander et al., 2004). A strong non-linearity of wind response

can thus be generated, dependent on the location of the resultant changes in meridional temperature

gradients in the atmosphere. For example, surface cooling due to an expansion of sea ice causes an

anomalous increase in the meridional temperature gradient adjacent to the newly ice-covered ocean.

If this increased gradient lies immediately poleward of the jet and its associated baroclinic zone, it195

can be more effective at influencing developing baroclinic waves and the latitude of the jet. Support

for this idea is also found in the results of Chen et al. (2010) and Brayshaw et al. (2008), where

changes in surface heat fluxes have the largest impact when they are approximately co-located with

the maximum in the meridional temperature gradient.
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If we look at changes in CMIP5-PMIP3 sea ice along with westerly winds and meridional tem-200

perature gradients throughout the atmosphere, we see evidence of this effect (Figures 5 and 6).

Although, broadly, larger increases in temperature gradient over the troposphere give larger westerly

wind increases over the troposphere, this is actually because increases in horizontal temperature gra-

dient lead to increases in westerly wind with height. These wind changes are generally quite small

near the surface and either increase or decrease with height depending on the sign of the temperature205

gradient change.

When looking at all models, there are some commonalities in the meridional structure in wind and

temperature gradient changes. Between the top and 200 hPa level, poleward of 50◦S the temperature

gradient increases resulting in an increase in westerly wind speed, U. Equatorward of 50◦S the tem-

perature gradient tends to decrease, with the strongest decrease between 50 and 300 hPa. Upper and210

mid tropospheric U also decreases in all models equatorward of around 50◦S. Below 400 hPa there

tends to be an increase in the meridional temperature gradient poleward of around 40◦S, however

there is considerable inter-model variability in the details of the temperature gradient changes and in

associated wind changes.

As the above implies we find that the key differences, in westerly winds and meridional tem-215

perature gradients changes, are a function of state dependence and sea ice. Indeed, based on state

dependence (PI jet position) and sea ice changes, models can be roughly classed into four groups.

CCSM4 and MRI-CGCM3, in the first group (Figures 5ab and 6ab), both simulate large expansions

in sea ice (of 5.6 and 7◦, respectively) and feature the most southerly positioned jets (at 51◦S ±
1.1◦). This jet position tends to leave U sensitive to expansions in sea ice. The large increases in the220

meridional temperature gradient, especially around 55◦S from 1000 to about 650 hPa, thus tally with

the increases in U around these latitudes, and also results in a PI to LGM poleward shift in the jet in

both models, especially in MRI-CGCM3.

In the second group, whilst GISS-ER-R and CNRM-CM5 (Figures 5cd and 6cd) have PI jets

which are positioned relatively far to the south (at 48◦S ± 0.3◦) both feature rather small LGM225

expansions in sea ice (of around 2◦). The resultant small polar atmospheric cooling causes little

change in the meridional temperature gradient. U tends to weaken over the Southern Ocean latitudes,

likely due to the overall atmospheric cooling. These two models show a slight equatorward shift in

their jets between the PI and the LGM.

In the third group, COSMOS-ASO and MPI-ESM-P (Figures 5ef and 6ef) have PI jets positioned230

at 47◦S ± 0.6◦, and feature quite large LGM expansions in sea ice (of 5 and 6 ◦, respectively). The

position of these jets makes these models less sensitive to the LGM expansion of sea ice: they show

a slight weakening of U and no jet shifts. It seems that the storm track and its associated baroclinic

zone is not significantly affected by these sea ice increases, and associated meridional temperature

gradient changes, because they happen far poleward of the baroclinic jet zone.235
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In the last group, FGOALS-G2, IPSL-CM5A-LR, and MIROC-ESM (Figures 5ghi and 6ghi)

all have very northerly positioned PI jets (at 43◦S ± 0.5◦), they also all show a rather small (less

than 3◦) LGM increase in sea ice extent. The jets in these models thus seem to be responding to

influences other than sea ice: possibly tropical changes, or sea surface temperature changes nearer

43◦ have more impact. Chavaillaz et al. (2013) find a quasi-linear relationship between the jet shifts240

and tropical temperature changes in the atmosphere, where polar temperatures are held constant,

suggesting that tropical changes may be a stronger influence on these models.

3.2.1 The relationship between sea ice extent and jet position

In simulations with more poleward (i.e. accurately) positioned PI jets, the examination above of jet

and sea ice changes suggests that PI to LGM wind changes are strongly related to sea ice extent.245

Figure 7a shows that the PI jet position is inversely related to sea ice extent, in models with the most

accurately positioned PI jets. We find that an equatorwards sea ice edge correlates with a poleward

jet position (r = -0.95 for the PI, and r = -0.91 for the LGM). Whilst correlations are strongest for

850 hPa winds, similar results are obtained using 1000 hPa and τU (r < -0.80).

In terms of PI to LGM jet shifts, if we apply a linear least-squares fit, we find that a 1◦ difference250

in the sea ice edge suggests a -0.85◦ shift in the 850 hPa jet (r = -0.80; N=5). These results are

heavily influenced, but are not entirely dependent on, the MRI-CGCM3 model. This model features

the largest 7◦ expansion of the sea ice and a large 4.5◦S poleward shift in the 850 hPa jet (Figure 7;

Table 3). Without this model result included in the calculation, a 1◦ difference in the sea ice edge still

suggests a -0.43◦ shift in the 850 hPa jet (r = -0.96; N = 4). However, as the section above indicates,255

this relationship only applies to models which have jets which are relatively accurately positioned

i.e. those which are sensitive to the impact of sea ice changes; if the model has a jet which sits

equatorward of 47◦S then the relationship breaks down. This relationship also fits with the study of

Kidston et al. (2011) who found that the jet shifts significantly poleward when the sea ice extent is

substantially increased. However the jet exhibits little response for small changes, and particularly260

little response if the sea ice edge is far from the jet, for example during the summer, when the sea

ice edge is far from the jet maxima. The cause of the asymmetry in the atmospheric response relates

to the extent to which sea ice changes affect meridional temperature gradients in the near-surface

baroclinic zone. Together these results suggest that the impact of sea ice expansion during the LGM

is crucial, but is only be captured if the PI jet position is accurately simulated.265

In addition, the offset of the fitted line in Figure 7b suggests that, without any expansion in sea ice,

the jet might tend to shift towards the equator; by around 4◦ during the LGM. From the zero-cross

of the line, we tentatively suggest that around 5◦ of sea ice expansion is necessary to counteract this

tendency. Given that the Gersonde et al. (2005) data supports a latitudinal expansion of more than

5◦, this result does suggest that a slight poleward shift (and intensification) is likely to have been a270

feature of the LGM jet.
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3.2.2 Sea surface temperatures changes

If we also fit a linear model to jet shifts against sea surface temperature changes in the marginal

sea ice zone we find a weak positive relationship between sea surface temperature and 850 hPa jet

position.275

Given the strong relationship between Southern Ocean surface temperature and sea ice, it is dif-

ficult to separately assess any influences of sea ice and sea surface temperature on Southern Ocean

winds. However, Sime et al. (2013) conducted sensitivity experiments, using an atmospheric-only

GCM, in order to attempt to elucidate these relationships. As the analysis above suggests, Sime et al.

(2013) showed that cooling the Southern Ocean, near the sea ice edge, around 55◦S, and extending280

the sea ice promote the same response in the 850 hPa winds.

Here, with CMIP5-PMIP3 results, we find that for the five models with PI jets which are positioned

poleward of 47◦S an average temperature change of −1 K (over the Gersonde et al. (2005) data

network locations) results in a 3.0◦ poleward shift in the 850 hPa jet (r = 0.83; n=5; Figure 7c).

Sime et al. (2013) also found that cooling near the edge of the LGM Southern Ocean sea ice and285

extended sea ice coverage caused a wind intensification which is largest between 56-58◦S. This

drives the small poleward shift in the location of the winds maximum. Here, CMIP5 models with

accurately positioned PI jets, show a similar result.

4 Summary and conclusions

We have analysed the CMIP5-PMIP3 LGM and PI simulations for Southern Ocean region wind290

changes, and examined the impacts of sea surface changes and state dependency. Nine fully inde-

pendent CMIP5-PMIP3 model simulations were included in the analysis. We find a wide range of

PI to LGM latitudinal shifts in the jet across the PMIP3 simulations, varying from + 2.0 to − 4.5 ◦

for the 850 hPa jet, but the mean 850 hPa jet shift for the nine models is small: − 0.21 ◦. The de-

pendence of PI to LGM jet shifts on PI jet position, referred to here as state dependency (following295

Bracegirdle et al., 2013), explains up to 56 % of the variance in PI to LGM jet shifts in the Atlantic

sector of the Southern Ocean, for τU , and 41 % in the Indian sector. Since state dependence plays

a weaker role in determining jet shifts and strength changes for the deglacial-warming, compared

to future-warming scenarios, this implies that other factors are important in determining the LGM

wind changes. Changes in surface heat fluxes, due to sea ice changes, can have very large impact300

on the jet, particularly when they are located close to the position of the jet, which is itself usually

co-located with the maximum in the meridional temperature gradient. Given that LGM sea ice ex-

tended in the Atlantic and Indian sector close to 47◦S , and in the Pacific sector to 57◦S (Gersonde

et al., 2005), the key differences in jet shifts seem to be a dual function of state dependence and sea

ice change.305
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All CMIP5-PMIP3 models show an LGM expansion of sea ice in the Southern Hemisphere, but

there is considerable inter-model variability in the size of the expansion, which ranges from 2.1 and

7.0 ◦. State dependence (PI jet position) and sea ice changes together control jet shift behaviours.

Only two models, CCSM4 and MRI-CGCM3, both simulate realistically large expansions in sea

ice and simulate PI jets which are south of 50◦S. These models show an increase in westerly wind310

speed around 55◦S, and a large PI to LGM poleward shift in the jet in MRI-CGCM3. For models

which have jets that are positioned relatively far to the south (at 48◦S ± 0.3◦) but which do not

correctly simulate the observed expansion in sea ice, the resultant small polar atmospheric cooling

causes little change in the meridional temperature gradient. In this case, westerly wind speed simply

tends to weaken over the Southern Ocean latitudes. Models which simulate a large increase in sea315

ice extent, but which have jets positioned too far towards the equator are not sensitive to the LGM

expansion of sea ice: they show a slight weakening of U, but no jet shifts. The jet is not significantly

affected by these sea ice increases, and associated meridional temperature gradient changes, because

they happen too far poleward of the baroclinic jet zone. This also fits with the study of Kidston

et al. (2011) who found that whilst the jet will shift significantly poleward when the sea ice extent is320

substantially increased, there is little response if the sea ice edge is far from the jet.

We can generalise the relationship between sea ice extent and jet position. In models with ac-

curately positioned PI jets; a 1◦ difference in the sea ice edge tends to be associated with a -0.85◦

shift in the 850 hPa jet. However, without any expansion in sea ice, it seems that the jet would shift

towards the equator, by around 4◦ during the LGM. Thus we tentatively conclude that around 5 ◦ of325

sea ice expansion is necessary to hold the jet in its PI position. Given that data supports a northward

expansion of more than 5 ◦ (Gersonde et al., 2005; Roche et al., 2012), this result does suggest that

a slight poleward shift (and intensification) is likely to have been a feature of the LGM jet at 850

hPa. This fits with the findings of Sime et al. (2013), who found that cooling near the edge of the

LGM Southern Ocean sea ice caused a wind intensification which is largest between 56-58◦S. But330

we emphasise that these results only apply to CMIP5 models which have jets which are relatively

accurately positioned i.e. those which are sensitive to the impact of sea ice changes; if the model has

a jet which sits equatorward of about 47◦S then the relationship breaks down. We note also that sur-

face wind and shear stress changes may show different changes, so these results do not necessarily

hold for all wind prognostics (Sime et al., 2013; Liu et al., 2015).335

Finally, one perhaps overlooked feature of the CMIP5 present day simulations is the proliferation

of simulations which feature jets which are positioned 5◦, or more, equatorward of the current ob-

served position. Many CMIP5 simulations also feature jets which can be 20% too weak (Bracegirdle

et al., 2013). CMIP5 models can thus simulate jets which are considerably farther equatorward and

weaker than they are in our current climate. Further work could investigate whether these jet posi-340

tions could themselves be taken as evidence for the physical feasibility of the large LGM jet shift

hypothesis. The output from these simulations could perhaps also be compared with ongoing work
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on the development of reliable paleo-wind and sea ice reconstructions. Pending this however, we

conclude from our analysis of CMIP5-PMIP3 output that the LGM Southern Ocean extended sea

ice coverage was most likely responsible for a small wind intensification, which was largest around345

55-58◦S. Without the effect of sea ice and associated sea surface cooling, models simulate polewards

shifted westerlies in warming climates and equatorward shifted westerlies in colder climates. How-

ever, the impact of LGM sea ice counters and reverses the equatorward trend in cooler climates so

that the LGM winds were more likely to have also been shifted slightly poleward.

5 Appendix 1: Observational data and calculating model-data agreements350

Gersonde et al. (2005) provide LGM sea surface temperature and sea ice data from 122 Southern

Ocean sediment core sites. Sime et al. (2013) suggested using simple model-data evaluation metrics

based on simple percentage statistics. Here we use a similar approach, and assess sea ice model-

data agreement by classing simulated sea ice as present or absent, rather than using concentration

values. Simulation results are bi-linearly interpolated to the observation site prior to the model-data355

assessment, analogous to the exact-metric defined by Sime et al. (2013).
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Figure 1. Zonal mean Southern Ocean winds. (a) PI wind speed U at 850 hPa, (b) and the LGM − PI anomaly,

(c) PI wind speed U at 1000 hPa, and the ERA-Interim Bracegirdle et al. (2013) latitudinal position of the

surface jet maximum, to represent the observational position (d) and the 1000 hPa LGM − PI anomaly, (e) PI

surface shear stress τU , (f) and the τU LGM − PI anomaly. Colours as shown in the legend on panel (b) denote

the individual models. All values are annual means.
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Figure 2. The state dependence of jet latitudinal shifts. (a) Scatter plot of PI annual mean Southern Ocean jet

position versus LGM minus PI change in the CMIP5-PMIP3 models. (b), (c), and (d) show the same but for

individual ocean sectors: Atlantic, Indian, and Pacific, as marked. The Atlantic sector is defined as 290◦ to 20◦

, the Indian as 20◦ to 150◦, and the Pacific as 150◦ to 290◦. Individual symbols indicate individual models, as

marked in the legend in panel (a). The jet is defined using the zonal 850 hPa wind speed (red), and surface shear

stress (blue). Dashed lines indicate the model mean position and model mean shift for each panel. Specified r

values indicate the correlation coefficient; bracketed 850 hPa r values are calculated excluding the MRI-CGCM3

model. Correlation coefficients and relationships using 1000 hPa ‘surface wind speeds’ are almost identical to

those using 850 hPa.
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mean 15% sea ice extent for individual models. See legend for colours.

18



−80 −60 −40 −20

200

400

600

800

COSMOS−ASO

h
P

a

−80 −60 −40 −20

200

400

600

800

MPI−ESM−P

h
P

a

−80 −60 −40 −20

200

400

600

800

FGOALS G2

h
P

a

−80 −60 −40 −20

200

400

600

800

IPSL−CM5A−LR

h
P

a

−80 −60 −40 −20

200

400

600

800

MIROC−ESM

latitude

h
P

a −5 0 5

Change in U [ms-1]

−80 −60 −40 −20

200

400

600

800

CCSM4

h
P

a

−80 −60 −40 −20

200

400

600

800

MRI−CGCM3

h
P

a

−80 −60 −40 −20

200

400

600

800

GISS−E2−R

h
P

a

−80 −60 −40 −20

200

400

600

800

CNRM−CM5

h
P

a

a b

c d

e f

g h

I

Figure 5. Change is the zonal mean wind velocity component in the westerly direction U (LGM − PI) through-

out the atmosphere (shaded). Black contours show mean U for the PI. Red and blue bars at the bottom left of

each panel indicate the extent of the zonal mean sea ice for the PI and LGM, respectively. Individual panels are

labeled to indicate individual models. All values are annual means.
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Figure 6. Change is zonal mean temperature gradient (LGM − PI) throughout the atmosphere (shaded). Black

contours show the mean temperature gradient for the PI. All temperature gradients are meridional. Red and

blue bars at the bottom left of each panel indicate the extent of the zonal mean sea ice for the Pi and LGM,

respectively. Individual panels are labeled to indicate individual models. All values are annual means.
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Figure 7. The relationship between sea ice, SST, and the position of the 850 hPa jet. Symbols represent indi-

vidual models as shown in Figure 2. All values are calculated using annual means. Red indicates the PI; blue

indicates the LGM; and black indicates changes between the PI and the LGM (LGM − PI). (a) The jet position

against sea ice extent (15%); (b) jet shift against sea ice extent change; and (c) jet shift against Southern Ocean

SST change. We use models where the PI jet position is poleward of 47 ◦S, and results are interpolated to the

position of the Gersonde et al. (2005) observations before each calculation.
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Table 1. List of all CMIP5-PMIP3 simulations used in this study. The individual simulations (r < N > i <

M > p < L > ) formatted as shown below (e.g. ‘r3i1p21’ with r for ‘realization’, i for ‘initialization method

indicator’ and p for ‘perturbed physics’) distinguishes among closely related simulations by a single model.

Grid size Simulations

Model Institute Lat. Long. Control (PI) LGM

CCSM4 National Center for Atmo-

spheric Research, U.S. Dept. of

Energy/NSF

192 288 r1i1p1,r2i1p1

CNRM-CM5 Centre National de Recherches

Météorologiques/Centre

Européen de Recherche et

Formation Avancée en Calcul

Scientifique, France

128 256 r1i1p1 (CNRM-

CM5)

r1i1p1 (CNRM-

CM5)

COSMOS-ASO Max Planck Institute for Mete-

orology, Hamburg, Germany

48 96 r1i1p1 (COSMOS-

ASO)

r1i1p1 (COSMOS-

ASO)

FGOALS-g2 Institute of Atmospheric

Physics, Chinese Academy of

Sciences and CESS, Tsinghua

University, China

60 128 r1i1p1 (FGOALS-

g2)

r1i1p1 (FGOALS-

g2)

GISS-E2-R NASA Goddard Institute for

Space Studies,

90 144 r1i1p142 (GISS-

E2-R-p150)

r1i1p142 (GISS-

E2-R-p151)

r1i1p150 (GISS-

E2-R-p150)

r1i1p151 (GISS-

E2-R-p151)

IPSL-CM5A-LR Institut Pierre-Simon Laplace,

France

96 96 r1i1p1 (IPSL-

CM5A-LR)

r1i1p1 (IPSL-

CM5A-LR)

MIROC-ESM Japan Agency for Marine-Earth

Science and Technology, At-

mosphere and Ocean Research

Institute (The University of

Tokyo), and National Insti-

tute for Environmental Studies,

Japan

64 128 r1i1p1 (MIROC-

ESM)

r1i1p1 (MIROC-

ESM)

MPI-ESM-P Max Planck Institute for Mete-

orology, Hamburg, Germany

96 192 r1i1p1 (MPI-ESM-

P-p1) r1i1p1 (MPI-

ESM-P-p2)

r1i1p1 (MPI-ESM-

P-p1) r1i1p2 (MPI-

ESM-P-p1)

MRI-CGCM3 Meteorological Research Insti-

tute, Tsukuba, Japan

160 320 r1i1p1 (MRI-

CGCM3)

r1i1p1 (MRI-

CGCM3)
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Table 3. The model-data agreement from the sea ice edge latitude; the mean zonal sea ice edge latitude; and the

PI to LGM jet shift. Simulation results are bi-linearly interpolated to each Gersonde et al. (2005) observation

site. Model-data agreement is then calculated by classing simulated sea ice as present or absent, analogous to

the exact-metric defined by Sime et al. (2013). A simple agreement percentage metric is then calculated using

the equivalent Gersonde et al. (2005) sea ice (present or absent) observations.

Sea ice agreement Sea ice edge position Sea ice shift

Model PI LGM PI LGM LGM-PI

[%] [%] [oN] [oN] [o]

CCSM4 94 87 -58.2 -52.6 5.57

CNRM-CM5 98 56 -61.6 -59.3 2.27

COSMOS-ASO NaN NaN NaN NaN NaN

FGOALS-g2 85 37 -59.2 -56.4 2.78

GISS-E2-R 85 37 -63.3 -61.2 2.05

IPSL-CM5A-LR NaN NaN NaN NaN NaN

MIROC-ESM 85 37 -60.3 -57.4 2.91

MPI-ESM-P 87 59 -64.3 -57.8 6.57

MRI-CGCM3 92 88 -61.1 -54.1 7.04
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