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Abstract 11 

Climate models project that rising atmospheric carbon dioxide concentrations will increase 12 

the frequency and the severity of some extreme weather events. The flood events represent a 13 

major risk for populations and infrastructures settled on coastal lowlands. Recent studies of 14 

lagoon sediments have enhanced our knowledge on extreme hydrological events such as 15 

paleo-storms and on their relation with climate change over the last millennium. However few 16 

studies have been undertaken to reconstruct past flood events from lagoon sediments. Here, 17 

the past flood activity was investigated using a multi-proxy approach combining 18 

sedimentological and geochemical analysis of surfaces sediments from the Southeast of 19 

Tunisia catchment in order to trace the origin of sediment deposits in the El Bibane lagoon. 20 

Three sediment sources were identified: marine, fluvial, and aeolian. When applying this 21 

multi-proxy approach on the core BL12-10, recovered from the El Bibane lagoon, we can see 22 

that finer material, high content of the clay and silt, and high content of the elemental ratios 23 

(Fe/Ca and Ti/Ca) characterize the sedimentological signature of the paleoflood levels 24 

identified in the lagoonal sequence. For the last century which is the period covered by the 25 
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BL12-10 short core, three paleo-flood events were identified. The age of these flood events 26 

have been determined by 210Pb and 137Cs chronology and give age of AD 1995 ± 6, AD 1970 27 

± 9 and AD 1945 ± 9. These results show a good temporal correlation with historical flood 28 

events recorded in the Southern of Tunisia in the last century (A.D 1932, A.D 1969, A.D 1979 29 

and A.D 1995). Our finding suggests that reconstruction of the history of the hydrological 30 

extreme events during the upper Holocene is possible in this location, by the use of the 31 

sedimentary archives.  32 

Keywords: El Bibane Lagoon; watershed basin; surface sediments; geochemistry; grain size; 33 

paleo-floods, upper Holocene, Southeast Tunisia. 34 

1. Introduction 35 

The Mediterranean region has experienced numerous extreme coastal events, such as flood 36 

events which caused casualties and economic damages (Lionello et al., 2006). However, the 37 

meteorological instrumental records are limited to only a few decades, especially in Southern 38 

Mediterranean countries. Geological data offer a way to reconstruct the historical records of 39 

intense flood events. Deciphering records of extreme precipitation and damaging floods 40 

preserved in geologic archives enables society to understand and plan for floods in the future 41 

(Parris et al., 2010). The importance of studying trees, river and lake sediments has already 42 

been shown for reconstructing extreme flooding events (Baker, 1989; Ely et al., 1993; Brown 43 

et al., 2000; Benito et al., 2003; Wolfe et al., 2006; Moreno et al., 2008; Wilhelm et al., 2012; 44 

St. George and Nielsen, 2003; Gilli et al., 2013). Few studies have been undertaken to 45 

reconstruct past flood events from lagoon sediments (Raji, 2014). Most of the studies were 46 

interested to flooding associated with both hurricanes and tsunamis where overwash deposits 47 

are preserved within back-barrier lagoons and salt ponds can provide a mean for documenting 48 

previous flooding activity (Liu & Fearn, 1993; Donnelly and Woodruff, 2007; Sabatier et al., 49 

2008; Dezileau et al., 2011, 2016; Raji et al., 2015; Degeai et al., 2015). Heavy rain flooding 50 
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events recorded within these lagoon environments are still poorly documented. Moreover, 51 

reconstruction of past flood events from sedimentary archives has been poorly studied in 52 

Tunisia. Some fluvial archives have been used to reconstruct past flood events in the northern 53 

part of Tunisia (Zielhofer et al. 2004; Zielhofer and Faust; 2008) but not in the southern part. 54 

In this study we tried to reveal the importance of lagoonal archives to reconstruct past flood 55 

activities under a semi-arid environment in southern part of Tunisia, studying the paleo-floods 56 

from high resolution geochemical and sedimentogical analyses. The first aim of this study 57 

was to identify the different sediment sources and to retrace the marine, the fluvial and the 58 

aeolian contributions to the sedimentation in the El Bibane Lagoon. The second aim was to 59 

reconstruct flood events from the lagoonal archives during the last century. To reach these 60 

objectives, we undertook the calibration of the sedimentological and geochemical proxy data 61 

with historical flood records.  62 

2. Study site: El Bibane Lagoon and its watershed 63 

Morphologically, Southern Tunisia known as the Tunisian platform includes two 64 

distinguished morpho-tectonic domains (Fig. 1) namely:  The Djeffara (Inner domain) and the 65 

Dahar (Outer domain). The Djeffara extends over all the coastal plain from Gabes 66 

(Southeastern Tunisia) to the Libyan borders. It is limited to the west by the Matmata and the 67 

Dahar mountains and to the east by the Gulf of Gabes and the Mediterranean Sea. The Dahar 68 

belongs to the Saharan platform domain and is constituted by successions sequences ranging 69 

in age from the Late Permian to the Late Cretaceous (Fig. 1). The lithostratigraphic 70 

successions could be summarized as follows: The Early–Middle Triassic sequence in the 71 

Dahar plateau is mainly constituted by continental sandstone, conglomerate and clay; whereas 72 

the Late Triassic outcrops exhibit shallow marine carbonate (Busson, 1967). The Jurassic 73 

series are represented by a thick Liassic evaporitic sequence, Dogger marine carbonate and 74 

late Jurassic–Neocomian mixed facies with continental predominance (Bouaziz et al., 2002). 75 
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The Cretaceous series represents a general succession from neritic, lagoonal and continental 76 

facies (Mejri et al., 2006). The Late Cretaceous is characterized by thick shallow marine 77 

carbonates-marl sequences and covered by sand dunes of the Eastern Saharan Erg. 78 

The Mio-Pliocene series represent the substratum of the coastal plain of Djeffara.  Jedoui 79 

et al. (1998) subdivided these series into two principal facies: (1) the red coloured clays rich 80 

in gypsum and (2) the sands which locally associated with conglomerates and grey clays. The 81 

Pleistocene marine deposits of the Southeast Tunisian coastal zone assigned to the 82 

“Tyrrhenian” (marine isotopic stage 5e) overly unconformably the Mio-Pliocene. These 83 

deposits form a ridge parallel to the actual coast.  They show the superposition of two units 84 

described by Jedoui et al. (2002) as the lower “quartz-rich unit” and the upper “carbonate 85 

unit” with Strombus bubonius. 86 

The study area is focused on the El Bibane Lagoon and its watershed (El Bibane Lagoon: 87 

33° 15' 01"N-11° 15' 41"E; Fig. 1). This lagoon which has an elongated elliptic form (33 x10 88 

km) and a major WNW-ESE axis covers an area of about 230 Km2. It has a maximum water 89 

depth of 6m in the middle part of the basin (Guélorget et al., 1982; Medhioub, 1984). The 90 

Eastern periphery of the EBL is partially separated from the Mediterranean Sea (Gulf of 91 

Gabes) by two peninsulas namely El Gharbi (western) and Ech Chargui (eastern), each of 92 

about twelve kilometres long (Medhioub, 1979). These two peninsulas, called slobs, are cut at 93 

their mid-part by nine small islets and channels: the zone of connection with the 94 

Mediterranean waters (Medhioub & Perthuisot, 1981). The two slobs are represented by 95 

emerged Tyrrhenian aeolian littoral dunes and carbonate sand beach (Jedoui, 2000; Jedoui et 96 

al., 2002). The El Bibane Lagoon has a microtidal regime where tidal amplitude varies from 97 

0.8 to 1.5 m (Davaud and Septfontaine, 1995; Sammari et al., 2006). The intertidal flats are 98 

flooded and exposed daily at regular intervals during the periodically rising and retreating 99 

tide. Supratidal flats are flooded at irregular intervals during spring tides or strong onshore 100 
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winds (Bouougri & Porada, 2012). The El Bibane lagoon is relatively unaffected by human 101 

activities (Pilkey, 1989; Ounalli, 2001) where it is only exploited by traditional fisheries 102 

(Guélorget et al., 1982).  103 

3. Climate and hydrology 104 

 The southeastern Tunisia region is characterized by a pre-Saharan and arid to semi-arid 105 

climate. The hot season extends beyond the summer (Amari 1984; Ferchichi, 1996; Hamza, 106 

2003) and the number of sunny days may reach 64.4%. The rainfall is low with an annual 107 

average that does not exceed 200 mm (Hamza, 2003). Furthermore, rainfall is very 108 

fluctuating with high inter-annual variability and intensity. Most of the rainfall is 109 

concentrated within 30 days/year (Genin and Sghaier, 2003) leading to high fluctuations in 110 

water discharge. The highest precipitation occurs mainly in October to March while in the 111 

summer months there are drought conditions.  112 

The annual precipitations of Medenine and Tataouine stations during the last century were 113 

obtained from the Tunisian General Administration of Water Resources (DGRE, 2010, Fig.2). 114 

Five major enhanced precipitation events were recorded from these two stations (i.e. A.D 115 

1932, A.D 1969, A.D 1979, A.D 1984 and A.D 1995). These pluvial episodes have induced 116 

large flood events in the Fessi River watershed (Poncet, 1970; Bonvallot, 1979; Oueslati, 117 

1999; Boujarra and Ktita 2009; Fehri, 2014). 118 

4. Materials and Methods 119 

4.1. Materials 120 

Eighteen surface sediment samples were collected from the watershed (Jerba, Zarzis, 121 

Medenine, Tataouine and Ben Guerdane localities) in order to assess the origin of the material 122 

transported into lagoon (Fig. 3). The location of all sampling stations was recorded by GPS 123 

(GPSmap 60, Garmin, Table 1). The main potential sediment sources were sampled in order 124 

to characterize their sedimentological and chemical signatures as follows: 125 
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- three samples from the beach area (S1, S2 and S3) representing the marine source, 126 

- ten samples (S7 to S16) from Fessi River catchment representing the fluvial/river 127 

sources, 128 

- two dune samples (S17 and S18) representing the eolian component. 129 

- three surface samples (S4 to S6) from El Bibane lagoon have been selected to 130 

represent the present-day sedimentation. The S6 representing the first three 131 

centimeters of a lagoon sediment core BL12-10 was used to characterize the surface 132 

sediments samples. 133 

Moreover, to reconstruct recent flood events occurred in the studied area, a short 134 

sediment core (BL12-10, 40 cm length; Latitude: 33°14'58.7"; Longitude: 11°10'3.7" Fig.3) 135 

was recovered from the El Bibane Lagoon (EBL) by a hand corer 75mm diameter PVC tube 136 

in the southern part of the lagoon, at 35 km from the Fessi River delta and 14 Km from the 137 

connection with the sea. 138 

4.2. Analytical methods 139 

4.2.1. Sedimentological and geochemical analysis  140 

The BL12-10 core was first split, photographed and logged in detail. Elemental 141 

geochemical analyses by energy-dispersive X-ray fluorescence spectrometry were undertaken 142 

with a hand-held Niton XL3t. Measurements were realized on the watershed surface samples 143 

and each 2 cm along the BL12-10 core.  BL12-10 core and surface samples had been covered 144 

with a 4µm thin Ultralene film to avoid contamination of the XRF measurement unit and the 145 

desiccation of the sediment (Richter et al., 2006). The elemental analyses from XRF 146 

measurement were performed in mining type ModCF prolene mode. These data show directly 147 

concentrations in ppm or percentage values. This is a semi-quantitative measurement. 148 

International powder standards (NIST2702 and NIST2781) were used to assess the analytical 149 

error and accuracy of measurement, which are lower than 5% for Ti, Cr, Fe, Zn, Pb, between 150 
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5 and 15% for Ca, Mn, As, Rb, Sr, and between ca. 15 and 25% for K and Co.  151 

 Laser grain-size analyses were achieved with a Beckmann-Coulter LS13320 Particle 152 

Size Analyser (Geosciences Montpellier). Grain-size analyses were performed on surface 153 

samples and on the BL12-10 sequence with an average interval of 1 cm. Each sample was 154 

sieved through a 1 mm mesh, suspended in deionised water and gently shaken to achieve 155 

disaggregation. Ultrasound was used to avoid particles flocculation of sediment in the fluid 156 

module of the granulometer. For each sample, a small homogeneous amount of sediment was 157 

mixed in deionized water, then sieved at 1.5 mm diameter before pouring in the Fluid 158 

Module of the Particle Sizer until to obtain an optimal obscuration rate between 7 and 12% in 159 

the Fraunhofer optical cell. The time of background and sample measurement was set to 90 s 160 

and sonication was applied during the measurement of the sample in order to improve the 161 

dispersion of fine particles in the fluid. Each sample was measured twice and the good 162 

repeatability of measurement was verified according to the statistics from the international 163 

standard ISO 13320-1. 164 

 GRADISTAT program version 4.0 (Blott, 2000) was used for grain size statistical 165 

analysis. The following sample statistics are calculated using the Method of Moments in 166 

Microsoft Visual Basic programming language: mean, mode(s), sorting (standard deviation), 167 

skewness and kurtosis.  Grain size parameters are calculated arithmetically, geometrically (in 168 

microns) and logarithmically (using the phi scale) (Krumbein and Pettijohn, 1938).  Linear 169 

interpolation is also used to calculate statistical parameters by the Folk and Ward (1957) 170 

graphical method and derive physical descriptions (such as “very coarse sand” and 171 

“moderately sorted”). 172 

Finally, the percentage of the granulometric classes <2µm, 2-63µm and 63-2000µm, which 173 

stand for clay, silt and sand fractions, respectively, were calculated.  174 

4.2.2. BL12-10 core dating   175 
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Dating of sedimentary layers was carried out using 210Pb and 137Cs methods on a 176 

centennial timescale. The 137Cs and 210Pbex activities analyses were performed on the fraction 177 

< 150μm by gamma spectrometry using a CANBERRA Broad Energy Ge (BEGe) detector 178 

(CANBERRA BEGe 3825). The sediment was then finely crushed after drying, and 179 

transferred into small tubes (diameter 14 mm), and stored for more than 3 weeks to ensure 180 

equilibrium between 226Ra and 222Rn. Generally, counting times of 24 to 48 h were required to 181 

reach a statistical error of less than 10% for 210Pbex in the deepest samples and for the 1963 182 

137Cs peak. Activities of 210Pb were determined by integrating the area of the 46.5-keV photo-183 

peak. 226Ra activities were determined from the average of values derived from the 186.2-keV 184 

peak of 226Ra and the peaks of its progeny in secular equilibrium with 214Pb (295 and 352 185 

keV) and 214Bi (609 keV). In each sample, the (210Pb unsupported) ex activities were calculated 186 

by subtracting the (226Ra supported) activity from the total (210Pb) activity. We then used the 187 

Constant Flux/Constant Sedimentation (CFCS) model and the decrease in 210Pbex to calculate 188 

the sedimentation rate (Goldberg, 1963). The uncertainty of the sedimentation rate obtained 189 

by this method was derived from the standard error of the linear regression of the CFCS 190 

model. 191 

 137Cs was studied on the core BL12- 10 in order to assess sediment accumulation rates 192 

and chronology of the first 30 centimetres of the core. 137Cs (t1/2 = 30.1 yr) is an 193 

anthropogenic radionuclide. It entered the environment in response to atmospheric nuclear 194 

tests from 1954 to 1980 AD that induced global fallouts (the first year of atmospheric releases 195 

was 1953 AD, whereas the maximum atmospheric production is reached in 1963 AD. 137Cs 196 

depth profiles have been extensively used in various environments to assess sediment 197 

accumulation rates (Nittrouer et al., 1984; He and Walling, 1996; Radakovitch et al., 1999; 198 

Frignani et al., 2004).  199 

4.2.3 Statistical analyses 200 
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Statistical methods were applied to complete and refine the analysis. Principal 201 

Component Analysis (PCA) is widely used statistical techniques in environmental 202 

geochemistry. This multivariate approaches is used to reduce the large number of variable that 203 

result from XRF analysis. Principal Component Analysis (PCA) was applied to elements in 204 

order to distinguish the different sediment sources of surface sediments and link them to the 205 

geochemical processes or proprieties. In the present work, the dataset contains 18 samples, 206 

each of which includes concentration of 8 elements (Ca, Sr, Fe, K, Al, Ti, Si and Zr). Data are 207 

presented in the form of elemental concentration (8 variables). In this study, a statistical 208 

analysis was performed using the STATITCF (1987) which is based on variables and it is 209 

suitable for identifying the associations of variables with a set of observations. A 210 

representation quality of the parameters (positions in the factorial plane) was then performed.  211 

5. Results 212 

5.1. Surface sediments 213 

5.1.1. Sediment description:  grain size and morphology 214 

Grain size analysis and binocular observation of the surface sediment samples have 215 

permitted to characterize three groups of sediments as follows, depending on the 216 

environmental setting: Marine, Fluvial and Aeolian sources (Fig. 4 and 5). The first group 217 

encompasses sediment samples (S1, S2 and S3) collected along the coastal zone from Jerba to 218 

Zarzis beaches and the lido of El Bibane Lagoon. In this marine area, surface sediments are 219 

composed of a mixture of coarse sub-rounded quartz grains, mollusc shells and foraminifera 220 

(Fig. 4). The grain size analysis (Table 2) of samples S1 and S2 show unimodal distributions 221 

in 169µm and 203µm, respectively indicating moderately sorted fine sand sediments (Folk, 222 

1954; Folk and Ward, 1957; Fig. 5).  The sample S3 is muddy sand namely very coarse silty 223 

to coarse sand sediment with unimodal distribution in 518µm.   224 
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The second group of samples (S7, S8, S9, S10, S11, S12, S13, S14, S15 and S16) came 225 

from the El Bibane delta and the Fessi River. It is assigned as the fluvial source. Binocular 226 

observations of the samples reveal reddish-brown heterogeneous particles composed mainly 227 

of shiny angular to sub angular quartz grains. Some grains display rust colour with iron oxide 228 

(Fig. 4). Figure 5 displays that the fluvial source has a unimodal to multimodal distribution 229 

with two or three modes. In order to obtain the best resolution in the identification of the 230 

fluvial source, we choose to use the sediment samples which were collected only along the 231 

River Fessi: S9, S10, S12 and S13. These surface sediment samples show a decrease in the 232 

mean grain size from upstream to downstream of the River Fessi watershed (Fig. 6). The 233 

decrease in the mean grain size could be explained by a strong change of the topographic 234 

slope around Tataouine (located at approximately 85 km from the lagoon). Here, the coarser 235 

material is deposited and the finer material is transported further by the river. These finer 236 

sediments are deposited in the low plain of the river and in the El Bibane lagoon. Therefore, 237 

we suggest that S9 and S10 (collected between Tataouine and the lagoon) characterize the 238 

fluvial component in the lagoon. The grain size distribution for S9 is unimodal with a mean 239 

grain size around 96 µm indicating a moderately sorted muddy sand. The corresponding size 240 

range very coarse silty/very fine sand. Sample S10 is fine silt with trimodal distribution in 241 

7µm, 26µm and 73µm, and poorly sorted mud sediment type. These characteristics will serve 242 

to identify the fluvial source into the lagoon. 243 

The third group consists of two samples (S17 and S18) recovered in the Aeolian sand 244 

dunes of southern Tunisia. They are composed of homogenous dark yellow sand with angular 245 

grains; some of them are coated by iron oxide (Fig. 4). Unimodal distribution in 116µm 246 

(Table 2) characterizes the aeolien samples S17 and S18. These samples are well (S18) to 247 

very well sorted (S17) and correspond to very fine sand. The characteristics of this group will 248 

serve to identify the aeolian sand dune source.  249 
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The El Bibane Lagoon surface sediments samples S4, S5 and S6 were characterized by 250 

multimodal grain size distribution (Table 2, Fig. 5). The grain size distribution of sample S4 251 

shows very poorly sorted sandy mud with trimodal distribution at 154µm, 96µm and 31µm, 252 

which indicates a very fine sand/very coarse silt. The sample S5 is very coarse silty/very fine 253 

sand sediment, with a bimodal distribution in 106µm and 429µm, poorly sorted muddy sand. 254 

The sample S6 is unimodal, with a mode in 116µm. It is moderately sorted very coarse 255 

silty/fine sand sediment with a muddy sand texture (Folk, 1954; Folk and Ward, 1957). 256 

5.1.2. Distribution of major and trace elements 257 

The spatial distribution of major and trace elements in surface sediments collected in the 258 

El Bibane lagoon and in all the area mainly along the Fessi River are displayed in figure 7.   259 

The iron (Fe) shows its highest percentages in the Fessi River samples (0.53-1.52%). 260 

Lower values characterise the aeolian dunes (0.38-0.4%) whereas this element is totally 261 

absent in marine sediments (Table 3). The same distribution pattern is also observed for Ti, K 262 

and Al. The highest contents of these elements in the Fessi River samples contrast with the 263 

lowest ones retrieved in the marine surface sediment. Aeolian dunes are characterised by 264 

intermediate values. These four elements will thus be used as indicators of terrigenous input 265 

of material to the lagoon.  266 

Calcium (Ca) and Strontium (Sr) in the sediment are usually associated to the carbonate 267 

fraction, which can be either of allochtonous or autochtonous origin. In the sediments, 268 

carbonates are mainly of biogenic origin. In fact, due to its compatible ionic radius, Sr can 269 

replace Ca in calcite, but remains however as trace element (Fig.7). Nevertheless, both 270 

elements show the same distribution pattern. Marine surface sediments are associated with the 271 

highest values (Ca ≈ 14, 7%; Sr ≈ 1548 ppm) whereas the lowest values and thus the lowest 272 

calcite contents are retrieved in dune samples (Ca ≈ 0.8%; Sr ≈ 52 ppm). Intermediate 273 



12 
 

concentrations are associated with the Fessi River catchment (Ca ≈ 7%; Sr ≈ 150 ppm) (Table 274 

3). 275 

 Silicon (Si) and Zircon (Zr) follow similar spatial distribution pattern (Fig. 7). Higher 276 

content of these elements are observed in the River catchment samples (Si ≈20 %; Zr ≈ 300 277 

ppm) and in the aeolian dune samples (Si ≈33%; Zr ≈ 400 ppm), whereas marine sediments 278 

show generally lower contents (Si ≈ 10%; Zr ≈ 41 ppm) (Table 3). 279 

5.1.3. Principal component analysis (PCA) 280 

We used Principal Component Analysis (PCA) to identify the main factors controlling 281 

the chemical composition of the catchment and El Bibane lagoon surface sediments and to 282 

identify different groups of common origin and process. Application of Principal Component 283 

Analysis (PCA) varimax rotation has permitted to identify two components that explained 284 

83% of the total variance (Fig. 8). Factor 1 account for 64.46% of total variance. It is 285 

characterized by high positive loadings for Fe, Ti, K, and Al which indicates the dominance 286 

of alumino-silicates minerals in surface sediments (Spagnoli et al., 2008; Plewa et al., 2012). 287 

These elements are prevailing in the river surface samples and their granulometric 288 

distributions display that their grain sizes are in the range of clay and silt. Zr and Si display a 289 

moderate positive loading in factor 1 and are high in the Aeolian surface sediments. Zr and Si 290 

are associated to silicates originating either from adjacent desert areas by erosion or from 291 

western Saharan dunes by storms. 292 

 Factor 2 account for 17.73% of the total variance (Fig. 8). It shows positive loading for 293 

Ca, Sr, Fe and K, whereas Ti, Al, Zr and Si have negative loadings. Ca is high in the marine 294 

samples. The high percentage of Ca in these samples is related to both the significant presence 295 

of biogenic material and also probably the precipitation of authigenic carbonate. These results 296 

corroborate the marine origin of these sediments as revealed by the binocular observations 297 

mainly due to the existence of shell debris and confirmed by the grain size distributions. 298 
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Therefore, we suggested that the first component agreed with the fine fraction of the 299 

sediment, which is mainly composed of various types of clay minerals, usually abundant in 300 

surface sediments (De Lazzari et al., 2004). On the other hand, factor 2 (Fig. 8) provides a 301 

better definition of the relatively carbonate fraction of the sediments. Consequently, these two 302 

factors differentiated carbonates from both sand and clay sediments. This method allowed us 303 

to label elements of terrigeneous source (Fe, Ti, K and Al) from those from in situ marine 304 

origin (Ca and Sr). These proxies will be used to reconstruct past flood and storm events with 305 

the help of sedimentary archives. 306 

5.1.4. El Bibane lagoon: Main sediment sources 307 

Geochemical parameters as well as grain size data are useful indicators for the 308 

detection of significant facies changes in the stratigraphical record (Vött et al., 2002, Zhu & 309 

Weindorf, 2009). Statistical analyses of geochemical data have permitted to characterise the 310 

different sediment sources around El Bibane lagoon. Ca, Ti and Fe elements have been 311 

chosen in order to recognize the contribution of these sources to the surface sediments of the 312 

Lagoon. Ca displays its highest abundances in marine area and is lower in sand dunes and 313 

river samples. By contrast, Ti characterises the continental source (see section 5.1.2) and 314 

shows low contents in marine samples. On the other hand, Fe is present as a maximum in the 315 

river samples and as a trace element in marine samples. Taking into account this geographic 316 

distribution, Fe/Ca as well as Ti/Ca ratios values would be higher in the continental supply 317 

(fluvial and aeolian samples) and lower in the marine source. High Fe/Ca values due to high 318 

iron content may also reflect dominating subaerial weathering and oxidation. The Fe/Ca and 319 

Ti/Ca ratio values and the position on a Fe/Ca vs. Ti/Ca diagram (Fig. 9) of El Bibane Lagoon 320 

surface sediments (samples S4, S5 and S6) are intermediate between the marine and fluvial 321 

source.  Accordingly, higher Fe/Ca and Ti/Ca ratio in the lagoon sediments would be a signal 322 

of more sediment contribution from fluvial source to the lagoon during flooding. As shown 323 
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before, the Fessi River sediments were characterized by fine material with a grain size which 324 

does not exceed 63 µm (case of S9 and S10) (See Chap.5.1.1, page 10). 325 

5.2 Core BL12-10 326 

5.2.1. 210Pb and 137Cs dating 327 

 The measured 210Pb values in the uppermost 30 cm of the BL12-10 core range from 328 

14.5 to 0.1 mBq /g (Table 4). In general, the down core distribution of 210Pbex values follows a 329 

relatively exponential decrease with depth and the “Constant flux: Constant Supply” (CF/CS) 330 

sedimentation model was applied. The calculated sedimentation rate (SR) is about 0.48 cm/ 331 

year. The down core 137Cs activity profile (Fig. 10) shows a maximum at 18 cm depth (Table 332 

4). We attributed this maximum to the period of maximum radionuclide fallout in the 333 

Northern Hemisphere associated with the peak of atomic weapons testing in 1963. The 137Cs-334 

derived SR (0.37 cm/ year) is lower than that of the 210Pb (Fig. 10). The difference between 335 

the two methods could be explained by a change of the accumulation rate between the 336 

beginning and the last part of the 20th century. 337 

5.2.2 Sedimentary and geochemistry 338 

 The sediment sequence from El Bibane lagoon presented in this study come from the 339 

core BL12-10 recovered in the nearest part of the delta of Fessi River in May 2012. This 340 

study proposes the preliminary analyses performed on the first 30 cm only although the whole 341 

BL12-10 core length is 90 cm. The BL12-10 core is composed of coarse-grained layers of 342 

siliciclastic sand and shell fragments inter-bedded with organic rich dark grey fine grained 343 

sediment (mud) of clay and silt (Fig. 11). These coarse layers are interbedded with three mud 344 

layers from 6 to 10 cm, 14 to 18 cm and 26 to 30 cm core depth (Fig. 11). The thickest fine 345 

grained layers are typically composed of clay and silt sediments. The core BL12-10 is 346 

dominated by the bimodal and trimodal grain size distributions. These distributions were 347 

labeled as very coarse silty to very fine sand, poorly to very poorly sorted, fine skewed with 348 



15 
 

leptokurtic distribution (Table 5). Down-core profiles of heavy and light elements through the 349 

depth also delineate the different units distinguished by sedimentological analysis (Fig.11). 350 

Based on their profiles, the first group composed by Fe, Ti, K and Al exhibit similar 351 

variations, concentration values are mainly high in fine-grained intervals and are low in 352 

coarse-grained intervals. These high values are probably due to high inputs from the Fessi 353 

River. The Si and Zr which characterized the second group display a different behaviour than 354 

the first group (Fig.11). These two elements are high in the fine sandy intervals. This probably 355 

suggests that their highest values are related to aeolian inputs in the lagoon. The Ca and Sr 356 

characterised the third group show a reverse distribution pattern by comparison to the first 357 

group with higher values in the coarse grained intervals and lower values in the fine grained 358 

intervals (Fig.11). Single element concentrations may be sensitive to dilution effects to allow 359 

reliable reconstructions of terrestrial climate, elemental ratios often better reflect the origin of 360 

the sedimentary material. The measured elemental ratios Fe/Ca and Ti/Ca will be used to 361 

reconstruct pas flood events (Fig. 9). A higher Fe/Ca and Ti/Ca ratio in the lagoon sediments 362 

would be a signal of more sediment contribution from the Fessi River during flooding. 363 

6. Discussion 364 

6.1 Paleoflood reconstructions 365 

In order to identify the paleo-flood events of the El Bibane Lagoon, we applied these 366 

previously discussed proxies to BL12-10 core samples. The BL12-10 core shows 3 mud 367 

layers (clay and silt mixture) preserved in the core which seems to be flood layers, i.e., 368 

coming from fluvial incursions during intense flood events. Multiproxy analysis on these mud 369 

layers show that they are characterized by high content in clay+silt, as well as high Fe/Ca and 370 

Ti/Ca elemental ratios which represent the sedimentological signature of the River Fessi. The 371 

combination of geochemical and grain size data suggest that the BL12-10 core deposits had 372 
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registered three flood events namely FL1, FL2 and FL3 (Fig. 12). These flood deposits have a 373 

thickness of 5cm, 4cm and 2.5cm respectively.  374 

Our paleoflood reconstruction has been compared with historical rainfall data of 375 

Tataouine and Medenine (DGRE, 2000; Fehri, 2014). A good correlation is observed between 376 

instrumental rainfall records and past flood events recorded in the El Bibane lagoon. Based on 377 

our age model, FL1 would have occurred around AD 1995 ± 6 yrs (Fig. 12). This sediment 378 

deposit could correspond to the 1995 flood event recorded in hydrological data (Fehri, 2014) 379 

and which affected the entire Tataouine region. This flood reached a maximum discharge of 380 

1200 m3/s due to a heavy precipitation event during 24 hours (Boujarra and ktita, 2009). 381 

These events provoked heavy losses in human lives and agricultural goods (Boujarra and 382 

Ktita, 2009). Using the same approach, FL2 would have occurred around AD 1970±9 yrs, i.e. 383 

between AD 1965 to 1980 (Fig.12). Between these dates, two historical extreme flood events 384 

are known (AD.1969 and AD.1979) and one flood event of lower magnitude (AD.1972). The 385 

1969 flood event is characterized by a heavy precipitation (400 to 600 mm) during 24 to 48 386 

(Pias et Stuckmann, 1970, Kallel et al., 1972 and Boujarra and Ktita, 2009). The 1979 flood 387 

event is characterized by a heavy precipitation during 4 days (Bonvallot, 1979). Only one 388 

horizon corresponds to these events in the BL12-10 core. Consequently, we assume that this 389 

unique flood deposit registers a period during which these three high precipitation events 390 

occurred (i.e. AD.1969, AD.1972 and AD.1979). The activity of 210Pb in this flood deposit is 391 

not disturbed; it is homogeneous (Fig. 10). For this reason we assume that no significant 392 

erosion happened in the lagoon during this period. During these heavy precipitation events, 393 

most of the sedimentary material was deposited in the floodplain, in the lagoon and probably 394 

transported to the Mediterranean Sea through the passes. The sedimentation rate 395 

corresponding to these events is not very high. The thickness of the sediment layer associated 396 

with these flood events is low, i.e. about 5 cm. The grain size and geochemical values of this 397 
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flood deposit are rather homogeneous. This homogeneity is probably linked to the action of 398 

weak bottom currents within the El Bibane lagoon. Finally, since these three extreme flood 399 

events are very close together in time (1969-1979) and the sedimentation rate is low, they are 400 

recorded as only one sedimentary deposit (FL2) in our archive. The third flood event FL3 was 401 

dated at A.D 1945±9 (Fig. 12). It could be associated to the 1932 flood event (Fehri, 2014). 402 

This event was characterized by a flash flood event with a precipitation of 449 mm in few 403 

days. Bonvallot (1979) demonstrated that this event presents a similar characteristic than that 404 

of 1979.  405 

El Bibane flood record shows temporal correspondence of flood layers to historical heavy 406 

precipitation events. Considering the historical data, we can assume that FL3 flood deposit 407 

corresponds to A.D 1932 flood.  FL2 flood deposit is associated to A.D 1969, A.D 1972 and 408 

A.D 1969 flood events. FL1 flood deposit could be associated to the A.D 1995 flood event 409 

(Fig. 12). In this lagoonal environment, one flood deposit is not always associated to a single 410 

event but sometimes to two or three events especially when heavy precipitation events are 411 

close together in time (i.e. FL2 flood deposit). Moreover these data demonstrate that finer 412 

material with a high content of mud (clay+silt), and high ratios of Fe/Ca and Ti/Ca are 413 

associated to flood events in the lagoonal sequence. The association of these proxies in the 414 

sedimentary sequence of the El Bibane lagoon can therefore be used to reconstruct flood 415 

activities in Southeastern Tunisia.  416 

6.2. The El Bibane lagoon: A key region for paleohydrological reconstructions 417 

Lagoon records shows that such costal environments are good study areas to record 418 

past climatic and environmental changes, and extreme sea events. These fields of research 419 

were successfully applied in the western North Atlantic (Donnelly and Woodruff, 2007), 420 

Northwest Florida (Liu and Fearn, 2000; Lane et al., 2011; Das et al., 2013), the Northeastern 421 

United States (Parris et al., 2010), the Central Pacific (Toomey et al., 2013), Southern Japan 422 
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(Woodruff et al., 2009), Western Australia (Nott, 2011), Northeastern New Zealand (Page et 423 

al., 2010), Northern Europe (Sorrel et al., 2012), or the Western Mediterranean (Dezileau et 424 

al., 2011, 2016; Sabatier et al., 2012; Raji et al., 2015; Degeai et al., 2015). Such studies are 425 

still scarce in southern Tunisia, despite the importance of these topics in Mediterranean 426 

coastal areas. The El Bibane lagoon is different from the other studied lagoons because it 427 

cannot record coastal overwash events. Such particularity is linked to the morphology of 428 

barriers that separate this lagoon from the open sea. These barriers consist of two narrow 429 

fossil carbonate consolidated peninsula formed during the last interglacial period and reaching 430 

10 m elevation (Medhioub, 1979; Jedoui, 2000). Thus they cannot not be over-washed during 431 

extreme sea events. However, we have demonstrated from this study that this lagoon could 432 

record past flood events during exceptional heavy precipitation episodes that punctuated the 433 

recent meteorological and climatic history of Tunisia and North Africa. Tramblay et al., 434 

(2013) have analysed the influence of large-scale atmospheric circulation, including the North 435 

Atlantic Oscillation (NAO), Mediterranean Oscillation (MO), El Nino-Southern Oscillation 436 

(ENSO) and Western Mediterranean Oscillation (WEMO) on precipitations and extreme 437 

events in 22 stations located in Algeria, Morocco and Tunisia for the last 50 years. Although 438 

some spatial patterns for the different precipitation indices have been identified over Maghreb 439 

countries the southern part of Tunisia was only represented by one meteorological station 440 

(Gabes). This clearly avoid to identify an homogeneous climatic region, there is a need to 441 

include more stations with longer record length.  El Bibane lagoon paleoflood record can be 442 

of great importance to better understand the physical mechanism responsible for the changes 443 

in the frequency and/or the intensity of extreme events in the southern part of Tunisia. It will 444 

be interesting to study the natural variability of past flood events in this semi-arid 445 

environment through contrasting climatic periods (cold and warm periods). Further coming 446 

investigations on long core sediments could clarify the relationship between large-scale 447 
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atmospheric circulation reconstructions and the major flood periods (Affouri et al., data in 448 

progress). Additionally, such studies could be a crucial tool to evaluate the role of 449 

Mediterranean paleo-climate on the development and growth of human society. 450 

Conclusion 451 

This study focuses on the sedimentological and geochemical characterization of the main 452 

surface sediments sources of El Bibane Lagoon (southeast Tunisia) and its watershed in order 453 

to identify the specific signature of paleoflood events recorded in the sedimentary core 454 

archives. We used Principal Component Analysis (PCA) to identify the main factors 455 

controlling the chemical composition of the catchment and El Bibane lagoon surface 456 

sediments and to discriminate between the sources of detrital inputs into the lagoon. Three 457 

sediments sources were identified: Marine, fluvial and Aeolian. Our results display that El 458 

Bibane Lagoon surface sediment characteristics are situated between marine and river 459 

sources. The application of this multi-proxy analysis on the BL12-10 core shows that finer 460 

material, high content of mud (clay+silt), as well as high elemental ratios (Fe/Ca and Ti/Ca) 461 

typify the sedimentological signature of flood events in the lagoonal sequence. The BL12-10 462 

age model based on 210Pb and 137Cs activity profiles have allowed us to identify three periods 463 

of past flood events dated at AD 1995±6, AD 1970±9, and 1945±9. The good agreement 464 

between our estimated ages and the historical flood events suggests that sedimentological and 465 

geochemical data of lagoon sediment cores could be used to reconstruct paleoflood history in 466 

South-eastern Tunisia in arid and semi-arid environment during the upper Holocene. 467 
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Figures Captions 696 

Figure 1. Location of the study area of El Bibane Lagoon (EBL) South East of Tunisia (A) 697 

and the geological map of South Eastern Tunisia (Modified from the Geological map of 698 

Tunisia 1/500000 after Ben Haj Ali et al., 1985) (B). 699 

Figure 2.Variation of the annual precipitations of the Medenine and Tataouine meteorological 700 

stations during the period between 1900 and 2000 (DGRE, 2010). Dashed line: mean annual 701 

precipitation. 702 

Figure 3. Location of the investigated surface samples from the catchment basin and from the 703 

El Bibane Lagoon. 704 

Figure 4. Microtextural photos under binocular observation of five representative samples 705 

from the catchment basin of El Bibane Lagoon.  S3 Marine sample; S8 and S11: Fessi River 706 

samples; S17 and S18: Dunes samples (Diameter of the photos: 3 cm; G x 6.5). 707 

Figure 5. Particle size distributions (<2000µm) of representative samples from the catchment 708 

basin and the El Bibane Lagoon. 709 

Figure 6: Distribution of the mean size of the samples collected in the Fessi River  710 

Figure 7. Distribution map of major and trace elements in surface sediments from catchment 711 

basin and the El Bibane lagoon. 712 

Figure 8. Principal Component Analysis (PCA) loadings plot of major and trace elements 713 

concentrations displaying the three main sources: marine, fluvial and aeolian sand dune. 714 

Figure 9. Distribution of the investigated surface samples from the watershed and the El 715 

Bibane Lagoon on a cross-plot Fe/Ca versus Ti/Ca 716 

Figure 10. 210Pbex and 137Cs activity-depth profiles along the core BL12-10. SR: 717 

sedimentation rate (cm yr-1). 718 

Figure 11. Records of eight geochemical elements (expressed in percentage or ppm) versus 719 

depth in core BL12-10. 720 
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Figure 12. (a) Paleoflood records in sedimentary archive of core BL12-10 based on elemental 721 

ratios of Fe/Ca and Ti/Ca and grain size analysis (clay + silt ; fraction <63µm). Triangles 722 

indicate the age control obtained using 210Pb and 137Cs along the core. Colored areas display 723 

the three periods of floods recorded in the core (FL1, FL2 and FL3). (b) Observed rainfall 724 

record since, 1932 in Medenine and Tataouine stations, is also shown.  725 

Tables captions 726 

Table 1. Geographic location and GPS coordinate of the studied samples 727 

Table 2. Grain size statistical analysis of surface samples from the watershed of the El Bibane 728 

Lagoon. 729 

Table 3. XRF analysis results of the major and trace element in studied samples. 730 

Table 4. Activities of radionuclides 210Pb, 137Cs and 226Ra along the core BL12-10. 731 

Table 5. Grain size statistical analysis along the core BL12-10.  732 
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Figure 1 746 
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Figure 2 751 
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Figure 3 757 
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Figure 4 763 
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Figure 5 776 
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Figure 6 778 
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Figure 7 805 

 806 
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Figure 8 807 
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Figure 9 822 
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Figure 10 836 
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Figure 11 851 
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Figure 12 854 
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Table 1 856 

Sample Locality 
GPS coordinates 

Latitude Longitude 

S1 Beach 33°45'12.4" 10°59'57.9" 

S2 Beach 33°35'31.5" 11°04'45.2" 

S3 Beach 33°16'39.9" 11°17'39.6" 

S4 Lagoon 33°15'38.7" 11°16'40.6" 

S5 Lagoon 33°14'0.01" 11°17'.02" 

S6 Lagoon 33°13'52.3" 11°06'31.3" 

S7 River 33°16'52.3" 11°07'31.3" 

S8 River 33°08'03.0" 11°06'51.6" 

S9 River 33°03'32.1" 11°02'00.4" 

S10  River 33°04'13.6" 10°40'56.0" 

S11  River 32°59'23.4" 10°28'12.7" 

S12 River 32°55'18,0" 10°24'15.1" 

S13 River 32°55'09.7" 10°22'35,3" 

S14 River 33°03'38.0" 10°24'05.6" 

S15 River 33°09'59.2" 10°21'35.8" 

S16 River 33°12'25.37" 10°26'46.78" 

S17 Aeolian 33°07'18.9" 10°44'58.6" 

S18 Aeolian 32°50'28.4" 10°13'43.7" 
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Table 2 865 

Sample 
name 

Sampling 
Locality SAMPLE TYPE  TEXTURAL 

GROUP SEDIMENT NAME 

S1 
Beach 

Unimodal, Moderately Sorted Sand Moderately Sorted Fine Sand 
S2 Unimodal, Moderately Sorted Sand Moderately Sorted Fine Sand 

S3 Unimodal, Very Poorly Sorted Muddy Sand Very Coarse Silty Coarse Sand 
S4 Surface 

sediments 
El Bibane 
Lagoon 

Polymodal, Very Poorly Sorted Sandy Mud Very Fine Sandy Very Coarse Silt 

S5 Unimodal, Moderately Sorted Muddy Sand Very Coarse Silty Fine Sand 
S6 Bimodal, Poorly Sorted Muddy Sand Very Coarse Silty Very Fine Sand 

S9 

Fessi 
River 

Unimodal, Poorly Sorted Muddy Sand Very Coarse Silty Very Fine Sand 
S10 Trimodal, Poorly Sorted Mud Fine Silt 
S11 Unimodal, Well Sorted Sand Well Sorted Very Fine Sand 

S12 Unimodal, Poorly Sorted Muddy Sand Very Coarse Silty Very Fine Sand 
S13 Bimodal, Poorly Sorted Muddy Sand Very Coarse Silty Coarse Sand 

S17 Sand 
dune 

Unimodal, Very Well Sorted Sand Very Well Sorted Very Fine Sand 
S18 Unimodal, Well Sorted Sand Well Sorted Very Fine Sand 

 866 

Table 2.  Continued   867 
 868 
 FOLK AND WARD METHOD (µm)    

Sample 
name 

MEAN SORTING SKEWNESS KURTOSIS 
MODE 1 (µm) MODE 2 (µm) MODE 3 (µm) 

S1 196.20 1.79 0.23 1.31 169.10   
  
  
  
  
  

S2 249.10 1.81 0.18 1.11 203.70 
S3 204.20 4.23 -0.66 1.02 517.80 
S4 43.46 4.68 -0.03 0.93 154.00 31.54 96.60 
S5 112.50 1.81 -0.22 1.20 116.40   

  
S6 80.39 3.15 -0.24 1.70 106.00 429.70   

  
S9 54.69 2.24 -0.57 1.49 96.60  

S10 7.13 3.89 0.00 0.84 7.09 26.17 73.02 
S11 102.50 1.34 -0.24 1.22 116.40   

  
  
  

S12 56.17 2.25 -0.57 1.42 96.60 
S13 370.90 3.90 -0.41 0.88 825.40 106.00   

  
S17 110.50 1.26 -0.13 1.01 116.40   

  
  
  

S18 106.40 1.29 -0.13 1.03 116.40 
 869 
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Table 3 874 

Sample name Locality Zr (ppm) Sr (ppm) Ca (%) Fe (%) Ti (%) K (%) Al (%) Si (%) 

S1 Beach 113 1497 14.67 0.00 0.03 0.14 0.00 9.71 

S2 Beach 41 1548 14.51 0.00 0.01 0.10 0.00 6.85 

S3 Beach 24 899 13.36 0.00 0.01 0.10 0.00 8.38 

S4 Lagoon 133 1035 17.35 0.75 0.13 0.74 0.40 15.00 

S5 Lagoon 85 747 9.00 0.47 0.10 0.47 0.18 8.70 

S6 Lagoon 203 418 7.90 0.27 0.07 0.56 0.69 12.00 

S7 River 134 358 17.35 0.75 0.13 1.10 2.08 15.00 

S8 River 488 90 9.00 0.53 0.10 0.81 2.60 8.70 

S9 River 178 97 7.90 0.98 0.07 1.13 2.76 12.00 

S10 River 235 105 7.30 1.52 0.21 1.36 4.20 26.16 

S11 River 704 92 6.00 0.59 0.16 0.56 2.20 26.93 

S12 River 275 173 7.37 1.22 0.21 1.12 3.60 27.43 

S13 River 391 123 7.35 1.28 0.18 0.93 2.60 27.13 

S14 River 458 186 7.16 0.79 0.20 0.87 2.70 26.18 

S15 River 350 102 3.95 0.59 0.17 0.77 2.40 29.08 

S16 River 263 73 3.22 0.62 0.11 0.74 1.80 25.62 

S17 Aeolian 473 52 0.80 0.40 0.10 0.75 2.50 33.38 

S18 Aeolian 357 54 0.81 0.38 0.12 0.74 2.40 33.09 
 875 
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Table 4 889 

Sample name Locality Zr (ppm) Sr (ppm) Ca (%) Fe (%) Ti (%) K (%) Al (%) Si (%) 

S1 Beach 113 1497 14.67 0.00 0.03 0.14 0.00 9.71 

S2 Beach 41 1548 14.51 0.00 0.01 0.10 0.00 6.85 

S3 Beach 24 899 13.36 0.00 0.01 0.10 0.00 8.38 

S4 Lagoon 133 1035 17.35 0.75 0.13 0.74 0.40 15.00 

S5 Lagoon 85 747 9.00 0.47 0.10 0.47 0.18 8.70 

S6 Lagoon 203 418 7.90 0.27 0.07 0.56 0.69 12.00 

S7 River 134 358 17.35 0.75 0.13 1.10 2.08 15.00 

S8 River 488 90 9.00 0.53 0.10 0.81 2.60 8.70 

S9 River 178 97 7.90 0.98 0.07 1.13 2.76 12.00 

S10 River 235 105 7.30 1.52 0.21 1.36 4.20 26.16 

S11 River 704 92 6.00 0.59 0.16 0.56 2.20 26.93 

S12 River 275 173 7.37 1.22 0.21 1.12 3.60 27.43 

S13 River 391 123 7.35 1.28 0.18 0.93 2.60 27.13 

S14 River 458 186 7.16 0.79 0.20 0.87 2.70 26.18 

S15 River 350 102 3.95 0.59 0.17 0.77 2.40 29.08 

S16 River 263 73 3.22 0.62 0.11 0.74 1.80 25.62 

S17 Aeolian 473 52 0.80 0.40 0.10 0.75 2.50 33.38 

S18 Aeolian 357 54 0.81 0.38 0.12 0.74 2.40 33.09 
 890 
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Table 5 904 

DEPTH 
(cm) 

Sample 
name SAMPLE TYPE TEXTURAL 

GROUP SEDIMENT NAME 

1 BL12-10-1 Bimodal, Poorly Sorted Muddy Sand Very Coarse Silty Very Fine Sand 

2 BL12-10-2 Trimodal, Very Poorly Sorted Muddy Sand Very Coarse Silty Very Fine Sand 

3 BL12-10-3 Trimodal, Poorly Sorted Muddy Sand Very Coarse Silty Very Fine Sand 

4 BL12-10-4 Trimodal, Very Poorly Sorted Muddy Sand Very Coarse Silty Very Fine Sand 

5 BL12-10-5 Trimodal, Poorly Sorted Muddy Sand Very Coarse Silty Very Fine Sand 

6 BL12-10-6 Trimodal, Poorly Sorted Muddy Sand Very Coarse Silty Very Fine Sand 

7 BL12-10-7 Trimodal, Poorly Sorted Muddy Sand Very Coarse Silty Very Fine Sand 

8 BL12-10-8 Bimodal, Poorly Sorted Muddy Sand Very Coarse Silty Very Fine Sand 

9 BL12-10-9 Bimodal, Poorly Sorted Muddy Sand Very Coarse Silty Very Fine Sand 

10 BL12-10-10 Trimodal, Poorly Sorted Muddy Sand Very Coarse Silty Very Fine Sand 

11 BL12-10-11 Trimodal, Poorly Sorted Muddy Sand Very Coarse Silty Very Fine Sand 

12 BL12-10-12 Trimodal, Very Poorly Sorted Muddy Sand Very Coarse Silty Very Fine Sand 

13 BL12-10-13 Trimodal, Poorly Sorted Muddy Sand Very Coarse Silty Very Fine Sand 

14 BL12-10-14 Trimodal, Very Poorly Sorted Muddy Sand Very Coarse Silty Very Fine Sand 

15 BL12-10-15 Trimodal, Poorly Sorted Muddy Sand Very Coarse Silty Very Fine Sand 

16 BL12-10-16 Trimodal, Very Poorly Sorted Muddy Sand Very Coarse Silty Very Fine Sand 

17 BL12-10-17 Trimodal, Very Poorly Sorted Muddy Sand Very Coarse Silty Very Fine Sand 

18 BL12-10-18 Trimodal, Very Poorly Sorted Muddy Sand Very Coarse Silty Very Fine Sand 

19 BL12-10-19 Trimodal, Very Poorly Sorted Muddy Sand Very Coarse Silty Very Fine Sand 

20 BL12-10-20 Bimodal, Poorly Sorted Muddy Sand Very Coarse Silty Very Fine Sand 

21 BL12-10-21 Bimodal, Poorly Sorted Muddy Sand Very Coarse Silty Very Fine Sand 

22 BL12-10-22 Trimodal, Poorly Sorted Muddy Sand Very Coarse Silty Very Fine Sand 

23 BL12-10-23 Trimodal, Poorly Sorted Muddy Sand Very Coarse Silty Very Fine Sand 

24 BL12-10-24 Bimodal, Poorly Sorted Muddy Sand Very Coarse Silty Very Fine Sand 

25 BL12-10-25 Trimodal, Poorly Sorted Muddy Sand Very Coarse Silty Very Fine Sand 

26 BL12-10-26 Trimodal, Poorly Sorted Muddy Sand Very Coarse Silty Very Fine Sand 

27 BL12-10-27 Trimodal, Very Poorly Sorted Muddy Sand Very Coarse Silty Very Fine Sand 

28 BL12-10-28 Trimodal, Very Poorly Sorted Muddy Sand Very Coarse Silty Very Fine Sand 

29 BL12-10-29 Trimodal, Poorly Sorted Muddy Sand Very Coarse Silty Very Fine Sand 

30 BL12-10-30 Bimodal, Poorly Sorted Muddy Sand Very Coarse Silty Very Fine Sand 
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