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a pilot study on inverse paleoclimate record modelling 
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RESPONSE TO REVIEWER#2:  
 
We also would like to thank reviewer#2 for the expert review and the constructive comments for 
improving the manuscript. Below we cite the reviewer’s remarks in italics and our direct responses in 
normal text. 
 
Reviewer#2: 
Heinze et al. use a coarse resolution ocean biogeochemical model to estimate the effect of changes in 
SST, terrestrial biosphere release, dissolution rate constant of POC and BSi, CaCO3:POC rain ratio, 
3D oceanic velocity field, dust deposition and Redfield C/P ratio on sedimentary d13C, BSi and 
CaCO3. A linear statistical model is then used to explore the parameter space. The parameters giving 
the best fit with a range of paleoproxy records are shown. 
 
(No response required.) 
 
Reviewer#2: 
This is a useful manuscript, which allows the study of a wide range of parameters, but 
with a “linear response” caveat. 
The parameters for the full solution (rank 8) give a large decrease in CaCO3/POC, which the authors 
suggest is unlikely. They thus decrease the rank to 7, but obtain too large changes in SST. The final 
“best” solution is thus the rank 6. But with that solution, there is only little change in atmospheric 
pCO2. Since the basis of the model is to reproduce a range of paleoproxy records, I am a bit surprised 
that no model data comparison is shown for the ranks 8, 7 and 6. Shouldn’t at least correlation 
coefficients between model and proxy given for the 3 ranks? 
 
We have computed correlation coefficients between observations and predicted values from the linear 
response model for each paleoclimatic record employed in the fitting procedure for the three ranks 
considered (and also smaller ranks). We then summarised the findings in a diagram for full rank, rank 
7, and rank 6, structured into tracer types and ranks. We plan to insert this figure as Figure 11.  We 
plan to include the following text passage after page 17 line 24: 
“Correlation coefficients between observations and predicted tracer values from the linear response 
model are given in Figure 11. While for a series of single records the correlation is good, for other 
single records the correlation is poor or even anti-correlations resulted. This is especially the case for 
the planktonic δ13Cplanktonic records. This deficiency can be in part explained through the coarse model 
resolution. If the regional extent of upwelling zones is different between model and reality also the 
respective surface tracers for paleo-productivity as recorded in the sediment cores will show respective 
differences.” 
(A respective figure caption will be added.) 
 
Reviewer#2: 
There is limited discussion on previous glacial/interglacial studies, particularly for recent studies, 
granted the approach used here is quite different. 
 
We plan to add the following text in the discussion section before the start of the conclusion section, 
(i.e., after the text as suggested in the response to the previous referee comment):  
“In previous studies on the glacial-interglacial changes in the ocean carbon cycle, often hypotheses 
involving one specific mechanism were presented or the multitude of potential mechanisms was 
reviewed. Studies were the simultaneous contributions from several processes to glacial carbon 
dynamics have been discussed are relatively scarce. Brovkin et al. (2007) employed an Earth system 
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model of intermediate complexity including oceanic and terrestrial biogeochemical modules to test the 
impact of simultaneous changes on the atmospheric CO2 concentration. Their results are fairly 
consistent with those of this study. According to Brovkin et al. (2007), largest contributions to the CO2 
drawdown came from circulation and SST changes as well as from a strengthening of the biological 
pump through improved nutrient utilisation, while the land outgassing amounted to an atmospheric 
pCO2 increase by 15 ppm. Rain ratio changes contributed to about 15 ppm, a process also cited as a 
less certain mechanism by Brovkin et al. (2007). In addition they report secondary changes of 
atmospheric pCO2 due to weathering, sea level change, and changes in sedimentation (shallow water 
vs. deep water).  
      Recent studies focused again on the mineral dust hypothesis involving increased iron supply 
especially to the Southern Ocean (originally revived by Martin et al. (1994) and Berger and Wefer 
(1991)) and a respective regional strengthening of biological production and carbon export. Increased 
LGM aerosol iron flux to the Southern Ocean could be corroborated by Conway et al. (2015). With 
our approach, in a separate experiment (not shown in this study where we only consider dust for 
solution of sedimentary material) we also had tested increased ocean productivity and related surface 
nutrient drawdown due to changing dust deposition. The inverse approach did not favour this process. 
This is fairly consistent with the modelling study by Lambert et al. (2015) arriving at a direct effect of 
the iron induced biological pump strengthening of less than 10 ppm and delayed effect due to carbon 
burial and carbonate compensation by about 10 ppm. 
       Inspired by the suggestion of temperature-dependent export production of Laws et al. (2000), 
Matsumoto et al. (2007) quantify in a further single mechanism study the effect of temperature 
dependent  remineralisation on the atmospheric CO2 using an ocean biogeochemical model. According 
to their findings, an LGM atmospheric CO2 decline by 30 ppm would be possible through this process. 
In our study, the parameter change of the POC remineralisation rate with temperature forcing did not 
result in a similarly likely drawdown when tested in the inverse approach against evidence from the 
sedimentary record. Rather our work suggests that simple temperature and pCO2 dependent changes of 
ocean physics as well as biogeochemistry do not straightforwardly translate into atmospheric CO2 
changes and respective sedimentary imprints, but that the problem is more complicated. 
       The Southern Ocean has been established to be one of the key regions for regulating glacial-
interglacial carbon dynamics. Apart from processes involving dissolved iron and nutrients, especially 
the physical dynamical processes - and hence stratification, deep water production, upwelling, water 
mass formation, and lateral advection - have been considered in conjunction with the 
physical/chemical and biological carbon pumps. Special attention has been placed on a northward shift 
of the westerlies wind forcing at the LGM as compared to today (Toggweiler et al. (2006); Watson and 
Garabato (2006); Watson et al. (2015)). The general idea is that a northward shift of Southern Ocean 
upwelling leads to reduced CO2 outgassing and enhanced carbon export to the deep waters resulting in 
a deep ocean accumulation of organic matter from the surface and hence a vertical “fractionation” of 
carbon as well as nutrients as described already by Boyle (1988a) and Boyle (1988b)). This general 
view is corroborated also by recent proxy data findings (for the Southern Ocean by Gottschalk et al., 
2014; also for the North Atlantic by Hoogakker et al., 2015). Refined Southern Ocean dynamics could 
also improve the results of our studies, but we have been limited to the flow fields available. In 
general, Southern Ocean flow field and tracer simulations show traditionally a large intermodel spread 
(Broecker et al. (1998); Roy et al. (2011); Orr (2002)). One of the reasons is the complex interplay of 
sea-ice as well as wind forcing and also the subgrid-scale parameterisation of convection events which 
occur on narrow regional scales in reality (Gordon (1978)). Still, simulating the Southern Ocean flow 
field and mixing remains a key challenge even for the modern ocean (Farneti et al. (2015): Downes et 
al. (2015); Mignot et al. (2013); Abernathey et al. (2016)).” 
 
Reviewer#2: 
Figures: Some lines fall out of the y axis range in figures 6 and 7. I understand this is to highlight the 
fact that CaCO3/POC and SST parameters are going outside the expected range, but aesthetically it is 
not the best. Also text and lines are sometimes one on top of each other. 
 
Technically improved figures will be provided.  
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Reviewer#2: 
Typos: There are a few typos throughout the text and some sentences could be simplified or rewritten 
for a better flow. Some typos are listed below: p. 6 “EPICA” p15, L16 “on” iof “om” Legend figure 
3: “experiment” 
 
The language issues will be addressed together with the respective remarks by Reviewer#1. 
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