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Abstract. A total of 84 seismic profiles mainly from the western and eastern deltas of Lake Issyk-Kul 

were used to identify lake-level changes. Seven stratigraphic sequences were reconstructed each 

containing a series of delta lobes that were formed during former lake-level stillstands or during slow 

lake-level increase or decrease. Lake-level has experienced at least four cycles of stepwise fall and rise 

of 400 m or more. These fluctuations were mainly caused by past changes in the atmospheric circulation 20 

pattern. During periods of low lake levels, the Siberian High likely was strong, bringing dry air masses 

from the Mongolian steppe blocking the mid-latitude Westerlies. During periods of high lake levels, the 

Siberian High must have been weaker or displaced, and the mid-latitude Westerlies could bring moister 

air masses from the Mediterranean and North Atlantic regions.  

 25 



2 
 

1 Introduction 

In the marine environment, global eustatic sea-level curves are traditionally used to reconstruct the 

amount of water stored on continents and in the oceans (e.g., Haq et al., 1987; Fleming et al., 1998; 

Lambeck et al., 2014; Dutton et al., 2015). Sea level is a good measure for the volume of water stored as 

ice for shorter time periods during which other factors such as tectonic subsidence, seafloor spreading, 5 

and thermal expansion can be ignored. Hence, sea-level curves can be used to reconstruct 

glacial/interglacial cycles on a global scale. During the Last Glacial Maximum, for example, the eustatic 

sea level was some 125 to 135 m lower than today (e.g., Fleming et al., 1998; Lambeck et al., 2014).  

Lake-level curves, in contrast, often store a more local signal that might or might not be controlled by 

glacial/interglacial cycles. Many lakes with large water bodies and volumes of sediment infill are fed by 10 

extensive catchments, and hence provide a powerful tool for understanding paleoenvironmental and 

paleoclimate change not only on local but also on regional scale. Changes in lake level can be in the 

order of some meters, but also be much larger than those recorded in the marine environment. Large-

scale lake-level changes of up to several hundreds of meters were observed in a series of large lakes, 

such as Lake Tanganyika (Lezzar et al., 1996), Lake Malawi (Scholz, 2007; Lyons et al., 2015), Lake 15 

Van (Cukur et al., 2014), Lake Lisan (Machlus et al., 2000), Lake Peten-Itza (Anselmetti et al., 2006), 

Laguna Potrok Aike (Anselmetti et al., 2009; Gebhardt et al., 2012), Lake Bosumtwi (Scholz et al., 

2002) and Lake Challa (Moernaut et al., 2010). Lake Van (eastern Anatolia) is a large lake basin 

(Degens et al., 1984; Litt et al., 2009). During the past 600 ka, i.e. since its formation, its water level 

changed by as much as 600 m (Cukur et al., 2014). While climate forcing was identified as the 20 

dominant factor in driving lake-level changes in Lake Van, other factors such as volcanic and tectonic 

forcing could also be observed (Cukur et al., 2014; Stockhecke et al., 2014). Lake Petén Itzá is located 

in the lowland Neotropics of northern Guatemala on the Yucatan Peninsula. A paleoshoreline was 

identified at 56 m below present lake level, which means a reduction of ca. 87% of the total water 

volume at that time (Anselmetti et al., 2006). Lake-level changes in Lake Petén Itzá were correlated to 25 

wet-dry paleoclimate patterns with lowstands during the stadials and highstands during the interstadial 

periods (Hodell et al., 2008). In Laguna Potrok Aike, a maar lake located in Patagonia, lake-level 

variations of up to 200 m during the past ca. 50 ka point at latitudinal shifts in the Southern Hemisphere 
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Westerlies and hence difference in moisture availability (Anselmetti et al., 2009; Gebhardt et al., 2012). 

Lake Lisan, the late Pleistocene precursor of the Dead Sea, is located in the Levant. The ancient lake is 

not filled with water anymore, but its sediments crop out at several locations around the Dead Sea. Lake 

Lisan existed between ~70 and 17 ka when it started to recede to the present-day Dead Sea lake level 

(Schramm et al., 2000). Lake-level changes as large as 170 m (Bartov et al., 2002) have on one hand 5 

been attributed to paleoclimate change, but on the other hand, basin morphology and barriers between 

subbasins are able to modify and restrict lake-level changes in this area (Bartov et al., 2002, and 

references therein). The impact crater of Lake Bosumtwi (Ghana, West Africa) is rather small with a 

diameter of ~8 km (Scholz et al., 2002). This lake is hydrologically closed (Shanahan et al., 2006). Lake 

level in Lake Bosumtwi, therefore, is purely driven by evaporation/precipitation ratio, and the lake, 10 

hence, is sensitive on changes in regional (and global) climate.  

Lake Issyk-Kul (Kyrgyzstan, Central Asia), subject of this study, is a large lake in a tectonically active 

region surrounded by the Tien Shan Mountains. It is comparable in size with other large lakes 

worldwide, and thus likely to archive changes of the atmospheric circulation as well as indications of 

tectonic changes affecting the lake’s drainage basin in its sediments. We use high-resolution sparker 15 

seismic data to reconstruct past water-level changes in Lake Issyk-Kul. Possible mechanisms are 

discussed that led to lake-level changes of up to 400 m. Additionally, the potential of the lake to help 

unravel regional paleoclimate change is shown. 

2 Study area 

2.1 Lake settings 20 

Lake Issyk-Kul is an endorheic lake located in an intermontane basin in the northern part of the Tien 

Shan Mountains in Kyrgyzstan, Central Asia (42°30’ N and 77°10’ E, 1607 m altitude) between the 

relatively rigid Tarim Basin to the south and the Kazakh Platform to the north. The lake is bordered by 

the high mountains of the Terskei Alatau Range to the south (max. height 5212 m) and the Kungei 

Alatau Range to the north (max. height 4771 m) (Fig. 1). The lake is elongated: ~180 km E-W and ~60 25 

km S-N. With a surface area of 6232 km2, Lake Issyk-Kul is the second largest lake in the higher 
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altitudes (De Batist et al., 2002). It has a mean water depth of ca. 278 m and an approximate water 

volume of 1,736 km3 (Korotaev, 1967; Kodyaev, 1973; Zabirov, 1978).   

The lake has a deep central basin with a flat bottom (668 m water depth) that extends over 

approximately 25% of the present lake area (Fig. 1). Two large-scale shallow platforms characterize the 

lake at its western and eastern end, with the deltaic area being as wide as 60 km in the eastern and 40 5 

km in the western part. Shelf areas in the north and south of the lake are rather narrow and separated 

from the central lake basin by steep slopes. At the delta areas, the shelf is divided into two parts, one 

shallower part with water depths down to 110 m with an average inclination of 0.5°, and the other with 

water depths between 110 and 340 m and an average inclination of 1° (De Mol, 2006). Incised channels 

of up to 2-3 km width and 50 m depth are visible on both the eastern and the western shelf (Fig. 1), but 10 

are limited to the shallower part of the shelf. They are found in the prolongation of modern river mouths 

at the eastern part of the lake, and are quite likely connected to former in- and outlets of the Chu river at 

the western delta (De Mol, 2006). The deeper part of the shelf is characterized by a series of terraces 

that were interpreted as ancient delta lobes, indicating lower water levels (De Batist et al., 2002). 

The lake is fed by a total of 118 rivers and creeks draining an area of 22,080 km2. These rivers mainly 15 

carry meltwater of snow and glaciers, rain and groundwater (Aizen et al., 1995). The largest rivers are 

the Djyrgalan and Tyup rivers that feed into Lake Issyk-Kul at its eastern end. At present, Lake Issyk-

Kul has no outlet, but during its history, it drained through the Chu River at its western end (De Batist et 

al., 2002). Approximately 640 km2 of the drainage area are currently covered by glaciers that are 

located in altitudes of at least 3000 m asl. Most of these glaciers are found on the north flanks of the 20 

Terskei Alatau range. During the last glacial period, the glaciers extended down to the coast of Lake 

Issyk-Kul (Grosswald et al., 1994). It is unclear if the lake was ice-covered during glacials or if the 

glaciers extended onto the shelf.  

Lake Issyk-Kul is oligothrophic to ultra-oligotrophic and well oxygenated through the entire water 

column down to the lake bottom. Surface water temperature does not drop below 2-3°C in the winter 25 

and reaches values of 19-20°C during the summer. The lake is located in an arid area with deserts in the 

west, followed by semi-deserts and steppe towards east (Merkel and Kulenbekov, 2012). Salinity of the 

lake water is currently approximately 6 mg/l (Merkel and Kulenbekov, 2012). 
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2.2 Tectonic setting 

The Tien Shan Mountains are one of the most important intracontinental orogenetic regions in Central 

Asia. Uplift and exhumation of the crystalline basement with its Paleozoic sediment cover has possibly 

started in late Oligocene. This has happened as a consequence of the progressive convergence of India 

and Eurasia after their collision in the Eocene (e.g., Goryachev, 1959; Molnar and Tapponier, 1975; 5 

Trofimov, 1990; Abdrakhmatov et al., 2002). During the Cenozoic, several strike-slip faults were active 

in this area, resulting in a transpressional tectonic context (Vermeesch et al., 2004). Exhumation of the 

Terskei Alatau and deposition of the basin fill began in the Late Oligocene (Macaulay et al., 2013; 

Wack et al., 2014; Macaulay et al., 2015). GPS measurements show that the Tarim Basin moves 

towards the north with approximately 15 to 20 mm per year with respect to Eurasia. The area is 10 

tectonically highly active as documented by recent and historic high-magnitude earthquakes (e. g. 1911: 

M 8.2) that often result in large subaerial landslides and quite likely also trigger large subaquatic mass 

movements. Most of the present-day tectonic activity is focused along the margins of the intermontane 

basins. Uplifted Pliocene lacustrine deposits are exposed at the southern shore of the lake. They are 

truncated by horizontal Quaternary lacustrine terraces, and some of the sediments were identified as 15 

deposited or deformed during earthquakes (Bowman et al., 2004). These subaerial lacustrine deposits 

could be exposed due to geodynamic activity in this area, but at the same time, they could also point at 

lake-level variations to higher lake levels than today. Hydrologically-induced lake-level changes and 

uplift/subsidence are the two mechanisms that can form lake-level terraces at different heights. Hence, 

these two endmembers have to be considered for interpretation.  20 

3 Data acquisition and processing 

First seismic data of the Lake Issyk-Kul sedimentary infill and architecture were acquired in 1982 by 

the Moscow State University with a total of 31 profiles across the lake. Unfortunately, only a few 

profiles were ever published (Stavinsky et al., 1984). Additional seismic profiles were acquired in 1997 

and 2001 (Fig. 1) by the Renard Centre of Marine Geology (RCMG, Ghent University, Belgium). In 25 

1997, 62 profiles (~990 km) were collected using a CENTIPEDE multi-electrode sparker (150-1500 Hz, 
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operated at 500 J) as acoustic source (Imbo, 1998). In 2001, 40 additional profiles (~600 km) were 

acquired with the same source, and another 12 profiles using a SIG sparker (200-800 Hz, operated at 

500 J). During both surveys, a single-channel streamer (2.7 m length, 10 hydrophones at 0.3 m spacing) 

was used as seismic receiver (Naudts, 2002). Recording time and shot interval were chosen depending 

on the water depth of the specific area. The incoming signal was bandpass-filtered between 100 and 5 

3000 Hz and subsequently digitized using a Triton-Elics DELPH2 data acquisition system with a 

sampling frequency of 5 kHz. Data were later converted to standard SEG-Y format for further 

processing. Navigation was recorded using a SIMRAD Shipmate GPS system. Seismic processing 

comprised filtering, deconvolution, migration and amplitude scaling. 

For the interpretation of the seismic database, all profiles were imported into KingdomSuite. Prominent 10 

sequence boundaries, both erosive and non-erosive, were mapped throughout all profiles except where 

either the sequences were not imaged due to the geographical location of the profiles or due to limits in 

acoustic penetration/masking by the multiple. Even though sequence boundaries could not be mapped 

continuously between the eastern and western stacked-delta complexes, it was still possible to identify 

the same sequences in both areas due to similar two-way traveltime depths of the individual 15 

corresponding delta lobes. Two-way traveltime was converted to depth below lake level (bll) using a 

sound velocity of 1500 m s-1. Thickness maps for sequence boundaries were generated using the 

“Natural Neighbour” tool of ArcGIS with a cell size of 500 m. Around the seismic profiles, a buffer of 

500 m was calculated and used to mask the grid. 

4 Results and Interpretation 20 

4.1 Seismic facies analysis 

The seismic profiles of Lake Issyk-Kul are characterized by a variety of acoustic facies. While the 

central part of the lake is characterized by inclined strata that were deposited in a layer-cake manner, the 

slope and shelf are much more diverse in their acoustic image. We here concentrate on the eastern and 

western slope and shelf areas where we identified four different seismic facies types SF1 to SF4 (Fig. 25 

2). These can be described as follows: 
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Seismic facies 1 (SF1): This facies type is characterized by parallel to subparallel reflections with high 

to moderate amplitudes (Fig. 2a). Amplitudes are generally lower in the deeper sequences, which is 

rather the result of limited acoustic penetration than a real signal. In between the parallel to subparallel 

reflections a succession of prograding sequences with sinusoidal outer shape are observed (Fig. 2a). 5 

These are characterized by moderate to low amplitudes and moderate-continuity reflections. SF1 is 

found throughout almost all stratigraphic sequences both in the eastern and western delta area. The 

parallel to subparallel reflections can be interpreted as topsets and bottomsets of a delta, while the 

sinusoidal sequences are the corresponding foresets. SF1 is hence interpreted as prograding delta lobes 

with the characteristic lateral and/or vertical succession of topsets, foresets, and bottomsets. The 10 

sediments likely consist of coarse-grained material brought into the lake by the large rivers such as the 

Tyup and Djyrgalan rivers in the eastern and the Chu River in the western delta. 

Seismic facies 2 (SF2): This facies type is characterized by parallel to subparallel reflections of high to 

moderate amplitudes that can be followed over distances of several kilometers (Fig. 2b). The reflections 

form a drape or onlap onto the underlying reflections, and they are mostly found in locations distal to 15 

SF1. This facies is interpreted as distal deltaic sediments, i.e. prodelta sediments, and likely consist of 

fine-grained material brought by the rivers, possibly intercalated with turbidites. 

Seismic facies 3 (SF3): This facies type is characterized by a series of parallel to subparallel reflections 

with high to moderate amplitudes (Fig. 2c), similar to the topset part of SF1. The reflections form 

onlaps onto the underlying sequence boundary/reflections as well as onto the overlying layers. Each 20 

superjacent reflection is located closer to the shoreline. This facies type is interpreted as transgressional 

deltaic sediments or backstepping deltas during times of rapid lake-level rise.  

Seismic facies 4 (SF4): This facies type is mostly acoustically transparent with low amplitudes (Fig. 

2d). Where amplitudes are high enough for reflections to be detected, they are chaotically distributed. 

This facies is mainly found in the deeper parts of the delta where it forms a thick package of sediments, 25 

laterally bounded by sediments of SF2 towards the more distal part of the delta. SF4 may be interpreted 

as former delta sediments that have been affected by post-depositional processes (e.g. sediment 
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remobilization, slumping, liquefaction) that caused them to loose their internal structure, or they may 

just consist of coarse-grained sediments.  

 

4.2 Identification of stratigraphic sequences in the seismic profiles 

The seismic profiles across the eastern and western delta areas were interpreted in terms of stratigraphic 5 

sequences following the principles of Vail et al. (1977). Stratigraphic sequences are always determined 

by their upper and lower boundaries. Unconformities are easily recognized as surfaces onto which 

reflections converge. Erosion truncates older strata that hence form toplaps or onlaps onto the erosional 

discordance (Fig. 3). Also the occurrence of downlaps, i.e. strata that terminate onto an underlying 

stratigraphic boundary, is indicative for sequence boundaries. Once the boundary is identified, it can be 10 

traced along the entire profile even in areas where it becomes conformable (Fig. 3).  

Boundaries between the different sequences in Lake Issyk-Kul are often erosive, but in places they are 

also non-erosive, i.e. conformable. Erosive boundaries, i.e. erosional unconformities marked by 

truncation of underlying reflections and/or irregular morphology, point at a lake-level fall while non-

erosive boundaries, i.e. conformities, were formed during times with stagnating or rising lake levels. 15 

Seven stratigraphic sequences were identified. The sequences are imaged on almost all seismic profiles 

except where they were masked by the lake-floor multiple, where acoustic penetration was limited, or 

where the location of the profiles was not suited to image that specific sequence.  

S3 and S4 were clearly identified on the western profiles, but could not be differentiated from each 

other on the profiles across the eastern delta area. 20 

 

4.3 Description of seismic profiles 

Profile ik01: Profile ik01 was acquired near the center of the lake and is aligned almost straight in 

north-south direction (Fig. 1). The profile shows well-layered sediments with a gentle dip towards south 

(Fig. 3). While the lake floor is not inclined, dip angle increases to roughly 15° at 200 m sediment 25 
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depth. Small mass-transport deposits are intercalated with the well-layered sediments and are mainly 

found close to the slopes (Fig. 4). 

Profile issyk049: Profile issyk049 is located in the western part of the lake (Fig. 1). It was acquired 

perpendicular to the shelf to best image the delta sequences below. The profile shows sedimentary 

layers that generally dip towards east, i.e. towards the lake center (Fig. 5). In profile issyk049, seven 5 

different stratigraphic sequences S1 (youngest) to S7 (oldest) could be identified. Underneath the 

lowermost sequence, more lacustrine sediments are visible, but could not be interpreted due to poor 

acoustic penetration. The acoustic basement was not detected in this profile. In each of the 7 

stratigraphic sequences several deltas could be identified (Fig. 5). In accordance with the other profiles 

of both the western and eastern area, these deltas could be numbered consequently. Deltas were named 10 

x.y where x indicates the sequence in which it was detected, and y indicates number of the delta within 

this sequence. y starts with 1 for the first delta deposited in this sequence, and is consecutively 

incremented by 1 for each subsequent delta (Fig. 5). None of the profiles contained all of the delta 

lobes. For example, for S1 a total of 7 deltas were identified, while only 1.3, 1.5, and 1.6 were observed 

in profile issyk049. In some cases, deltas were missing because they were eroded after deposition. In 15 

other cases, they may not have been deposited at all, maybe due to varying input paths of the sediment. 

The current rivers on the eastern and the Chu River on the western end of the lake may not always have 

had the same river bed, mainly during lake-level lowstands, they may have changed their pathway. 

Sediment supply hence may have limited the buildup of deltas.  

Profile issyk019: Profile issyk019 is located in the eastern part of the lake (Fig. 1). Similar to issyk049, 20 

it was acquired perpendicular to the shelf to best image the delta sequences below, but it does not 

extend as far into the basin as the former. The profile shows sedimentary layers that generally dip 

towards west, i.e. towards the lake center (Fig. 6). In profile issyk019, only 6 different stratigraphic 

sequences could be identified, and in comparison with the other profiles of both east and west it became 

obvious that the sequence boundary between S3 and S4 could not be identified in the eastern area. S3 25 

and S4 were hence treated as a combined sequence to stay consistent with the western area. Again, more 

lacustrine sediments were visible underneath the lowermost sequence but could not be interpreted. The 
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acoustic basement was not detected in this profile either. In each of the six stratigraphic sequences 

except S3 & S4 several deltas could be identified and numbered accordingly to issyk0149 (Fig. 6).  

 

4.4 Description and interpretation of stratigraphic sequences 

The sequences are described and interpreted in the following sections following the stratigraphic order, 5 

i.e. from the oldest sequence (S7) towards present (S1). We use delta depth (expressed in meters below 

current lake level) as an indicator for past lake-level change. The topset-foreset roll-over point of the 

prograding clinoforms is considered as a proxy for the lake level at the time of its formation. The 

current topset-foreset roll-over point is at ~30 m bll, therefore, all delta depths were corrected by -30 m 

for the lake-level curve. No corrections were made for compaction and/or tectonic subsidence. Sediment 10 

thickness for S1 to S6 was calculated using a mean acoustic velocity of 1500 m s-1 for conversion 

between two-way traveltime and depth. Sediment thickness, however, gives only a minimum estimate 

of the original thickness; even more if considering that acoustic velocities for coarser-grained sediments 

could be slightly higher than 1500 m s-1. Many parts of the sequences were eroded before the deposition 

of the overlying sequence, which is clearly visible by truncated strata and erosional discontinuities (Fig. 15 

3). Furthermore, additional accommodation space for the overlying sequences was created by incision 

of rivers into older strata during lake-level lowstands. 

S7 is the lowermost sequence that is visible in the seismic profiles (Figs. 5 and 6). Its lower boundary is 

masked in places by the multiple and/or limited penetration of the acoustic signal. Where its lower 

boundary is visible, it is clear that the seismic survey did not penetrate down to the acoustic basement, 20 

but that S7 is actually overlying sediments of unknown thickness. The upper boundary is defined by 

truncated strata within S7 and conformable sediment layers in S6 in the distal parts, and can be traced 

throughout the more proximal part of the profiles. Within S7, a series of 5 delta lobes could be 

identified, i.e. spatially well-defined parts of the sequence characterized by the seismic SF1. Some of 

these occur only in the western delta area (7.5, 7.4), some only the eastern delta area (7.2), and some in 25 

both areas (7.3, 7.1). The stratigraphic succession of delta lobes 7.1 to 7.5 indicates a stepwise lake-

level fall with stillstands at 330, 381, 412, 454, and 504 m bll (Table 1).  
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S6 is clearly visible both on the western and eastern delta areas. It overlies S7 and is rather thin and 

forms downlaps onto the underlying and toplaps/onlaps onto the overlying erosional discontinuity in 

many profiles (Fig. 5). Two delta lobes could be identified at 461 (6.1) and 361 m bll (6.2) (Table 1). S6 

can thus be interpreted as deposited during lake-level rise with a first stillstand at 461 and a second 

stillstand at 361 m bll. Sediment thickness of S6 is increasing with increasing water depth at least in the 5 

western delta area (Fig. 7). 

S5 overlies S6 (Figs. 5 and 6). It is characterized by two deltas at 284 m bll (5.1) and 364 m bll (5.2) 

(Table 1). The topographically higher delta 5.1 exhibits extensive erosion on the eastern delta (Fig. 6). 

The bathymetrically lower delta 5.2 is still visible in the modern lake floor morphology as it is only 

draped by the overlaying sequences; it forms the current shelf edge. S5 can be interpreted as having 10 

formed during a step-wise lake-level fall from a first stillstand at 284 m bll to a second stillstand at 364. 

It is quite likely that extensive erosion of the upper part of delta lobe 5.1 took place during the 

deposition of the lower lobe 5.2. Sediment thickness of S5 reveals two distinct depot centers in the 

western and one in the eastern delta area. Furthermore, sediment thickness could point at a paleo-river 

channel incised in S6 in the eastern delta area that is not located in the prolongation of one of the 15 

present large rivers (Tyup and Djyrgalan, see figure 1). 

S4 overlies S5, and it is visible in both the western and eastern delta areas. On the latter, its upper 

boundary with S3 is unclear due to the fact that S3 is not clearly visible in this area (Fig. 6). S4 in the 

eastern delta area either includes S3 and the boundary in between is not visible, or S3 is completely 

eroded here. Sediment thickness for the combined S3&S4 in the eastern area shows increasingly thicker 20 

sediments towards the northern part of the delta, and a surprisingly thin thickness with little variance in 

the area south of 42°30’ (Fig. 7). It is likely that erosion was larger in this area, but the causes cannot be 

addressed with the current seismic database. In the western delta, in contrast, S4 is rather thick (Fig. 7) 

and its strata are truncated indicating an erosive discontinuity between S4 and S3 (Fig. 3). In S4, the 

delta lobes are characterized by predominantly acoustically transparent sediments of SF4, but the 25 

sequence also contains packages of well-layered prodeltaic sediments of SF2 (Fig. 5) in the distal parts 

distal of the different delta lobes. Three delta lobes were identified: the oldest (4.1) at ca. 319 m bll, 

followed by a delta (4.2) at approximately 250 m bll and a third, younger (4.3), at 397 m bll (Table 1). 
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S4 indicates a lake-level rise from a lower stillstand at 319 m bll to a second stillstand at 250, followed 

by a subsequent lake-level fall with another stillstand at 397 m bll. 

S3 could only be clearly identified in the western delta areas (Figs. 5 and 6). In the western delta 

complex, S3 is characterized by a lower boundary that was partially erosive into the underlying 

sediments but grades into a correlative conformity in other places. Two distinct delta lobes were 5 

identified within S3, the older at 330 (3.1) and the younger at 172 m bll (3.2) (Table 1). S3 can be 

interpreted as having formed during a lake-level rise with two stillstands, one at 330 m bll, followed by 

a rapid lake-level rise and a second stillstand at 172 m bll. 

S2 is visible in almost all profiles in the eastern and western delta areas (Figs. 5 and 6). In the eastern 

delta area, due to the partial acoustic transparency of the underlying S3&S4 it is not clear if the lower 10 

boundary of S2 is erosive or non-erosive; where S3&S4 is not acoustically transparent but layered, the 

boundary between S2 and S3 seems to be non-erosive. In the western delta area, the lower boundary of 

S2 is clearly non-erosive. S2 is characterized by 2 delta lobes that were formed at 210 (2.1) and at 250 

m bll (2.2) (Table 1). S2 can be interpreted as a succession of step-wise, slow lake-level fall with 

stillstands at 210 and later at 250 m bll. During the lake-level fall, erosion may have taken place in the 15 

upper, proximal parts of the lake that were aerially exposed, but this is not visible in our seismic 

network. The thickness map of S2 shows a distinct depot center at the center of the eastern delta area. A 

closer look onto S2, however, reveals that the current sediment thickness is not representing the initial 

sequence thickness (Fig. 8b). With a closer look on profile issyk019 it becomes obvious that large parts 

of both delta 2.2 and delta 2.1 were eroded. Where delta 2.1 was initially deposited, a river deeply 20 

incised the sediments, making this originally thick part of the sequence the presently thinnest. A second, 

more elongate, moderately thick depot center in the more proximal part could be a paleo-river channel 

that was incised into S3. It is located at the prolongation of the current Djyrgalan sub-lacustrine channel 

and must have formed during a time span with lower-than-present lake level. 

S1 could be identified on seismic profiles in both the eastern and western delta areas (Figs. 5 and 6). It 25 

contains the uppermost, youngest sediments and its upper boundary forms the current lake floor. It lies 

above an erosional unconformity with channels deeply incised (up to 35 m) into S2 at several spots 

(Fig. 8a). Sediments of S1 fill these channels, which is clearly visible in sediment thickness (Fig. 7). In 
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its distal part, it drapes the underlying topography with a shelf break at ca. 340 m and prodeltaic 

sediments of SF2 deeper down. The lowermost part of S1 forms a small delta lobe (1.1) at 

approximately 285 m bll. This lobe is overlain by a succession of transgressional units of SF3 (Fig. 8a). 

On some profiles, a series of smaller delta lobes (1.2 to 1.5) is visible at water depths of 263, 251, 228, 

and 201 m bll (Table 1). A distinct large delta lobe (1.6) is visible in almost all profiles at a water depth 5 

of ca. 153 m bll. Only on profiles issyk024 and ik07 that reach into the shallowest parts of the lake on 

the eastern delta area, the uppermost, currently active delta lobe (1.7) at 28 m bll was identified. The 

distal prodeltaic sediments associated with delta lobe 1.7, however, can be identified as thin drape on 

almost all profiles of both the eastern and western delta areas (Fig. 8a). The lake-floor morphology 

shows a shelf break at approximately 150 m bll. The large shallow areas above the present-day delta at 10 

ca. 30 m bll are characterized by subaquatic channels that begin at the mouths of the large rivers at the 

eastern shore and in front of the paleo-channel of the Chu River at the western shore. These channels 

can be followed over the entire plateaus and end at approximately 110 bll. S1 can be interpreted as 

starting with a relative lake-level lowstand during the formation of its lowermost delta 1.1. During this 

lake-level lowstand, erosion took place in the hinterland and likely formed the river incisions that are 15 

visible at the boundary between S1 and S2 on profile issyk019 (Fig. 8a) and in nearby profiles. The 

lake-level lowstand was followed by a rapid transgressional phase ending with a slightly slower lake-

level rise from 263 to 201 m bll. The sedimentary infill of the deeper channel likely was deposited 

during this transgressional phase. A second lake-level stillstand took place during the formation of the 

delta 1.6, followed by the current situation in which delta 1.7 is being deposited approximately 28 m bll.  20 

5 Discussion 

5.1 Tectonic origin of the lake 

Most of the 84 sparker profiles used in this study are located either in the eastern or western shallow 

parts of the lake (Fig. 1). While they image the delta areas in great detail, they do not provide much 

information on the tectonic origin of the lake. Profile ik01 crosses the lake in N-S direction, and here 25 

the tectonic nature of the lake becomes obvious: Sediments dip towards the south, pointing to higher 
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subsidence rates in that region (Fig. 4). This is visible to at least 200 m below lake floor. Within the 

imaged lake profiles, the faults responsible for the asymmetry of the basin are not visible, but studies 

along the southern margin of the lake document the presence of a series of faults roughly parallel to the 

long axis of the lake (e.g., Burgette, 2008; Macaulay et al., 2014; Macaulay et al., 2015). The north-

vergent Main Terskey Fault (MTF) is the most important basin-bounding fault, with over 8 km of 5 

structural relief with respect to the lake (Macaulay et al., 2013) (Fig. 1). Apatite fission-track studies 

show that this structure became active in the latest Oligocene-Early Miocene. In seismic profile ik01, 

the dip angle of the strata seems to change quite continuously over time with no sign of an abrupt 

change, and the deformation seems to be still active. This points at an ongoing process. Short cores 

retrieved from the northern slope reveal that the sediment consists of a mixture of a terrigenous fraction 10 

(ranging from coarse sands to silty clays and clays) and a lacustrine micritic carbonate fraction. 

Reported sedimentation rates vary between 0.47-0.56 mm/yr (Ricketts et al., 2001), 0.49-0.59 mm/yr 

(Giralt et al., 2004), and 0.23-0.39 mm/yr (Larrasoaña et al., 2011; Gómez-Paccard et al., 2012) for the 

Holocene, based on 14C and nuclide dating. Using a mean value of 0.45 mm/yr, this points at a 

minimum age of ca. 830 ka for the lowermost sediment layers visible in the profiles. It is quite likely 15 

that the lake is significantly older, because the acoustic basement was not detected in any of the profiles, 

and because compaction of deeply buried sediments would additionally reduce apparent sedimentation 

rates. Deep bore holes and outcrops within the basin adjacent to the lake reveal up to 5 km of Cenozoic 

strata (Knauf, 1965; Turchinskiy, 1970; Fortuna, 1983); the older lacustrine record is poorly studied. 

Sedimentation rates used here are derived from cores located proximal to the northern shore, and 20 

sedimentation rates might be significantly lower in the central part of the lake. Additionally, large 

differences in sedimentation rates between glacials and interglacials are to be expected. 

 

5.2 Lake-level curve and age information 

Combining all information on lake-level stillstands, delta formation, regressional and erosional phases, 25 

a lake-level curve for Lake Issyk-Kul was established (Fig. 9). It comprises 4 phases of lake-level 

regression (in S7, S5, second part of S4, and S2) and 4 phases of lake-level transgression (S6, first part 
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of S4, S3, and S1). The transition between the different sequences and thus the transition between 

regression and transgression cannot be clearly described due to the fact that the boundaries are mostly 

of erosive nature, mainly in the shallower parts of the lake. This is easily explained by the observation 

that the shallower parts of the sequences were subaerially exposed during the formation of lowstand 

deltas and thus were subject to erosion.  5 

The lake-level curve in its present form only comprises the deltas/terraces that were formed inside the 

current lake; subaerially exposed terraces are not imaged in the seismic data, and their distal 

counterparts, i.e. the distal well-layered prodelta sediments, are likely not identified because they lie 

concordantly on the underlying sediment.  

Different authors describe a series of terraces that are today subaerially exposed. The uppermost terrace 10 

in the lake area is located at 1675-1680 m above sea level (asl) (Trofimov, 1990), which is some 70 m 

above the present-day lake level. Bowman et al. (2004) describe beach cliffs at an altitudinal range of 

1620-1640 m asl. These subaerially exposed terraces point at lake levels that were 70 and 13-33 m 

higher than present. Bowman et al. (2004) date these terraces to ages between 26.0 ± 2.1 ka for the 

upper ones and 10.5 ± 0.7 ka for the lower ones, which is in agreement with an older date of 26.34 ± 15 

0.54 ka for an upper terrace (Markov, 1971). This means that the lake-level highstand at 33 m above 

lake level occurred roughly at the beginning of MIS2. Lake Issyk-Kul’s lake surface today is almost at 

the spill-over level. Terraces at 33 and 70 m higher than the current lake surface would mean that the 

outflow must have been dammed by a dam approximately 33 and 70 m higher than today for a 

substantial time so terraces could have formed. With the current topography, this scenario is rather 20 

unlikely, and the subaerial terraces might also just have been uplifted from their original position. On 

the other hand, young lacustrine sediments are interbedded with fluvial conglomerates in Boom Canyon 

(Fig. 1), suggesting that the narrow gorge was dammed in the past. This could have blocked the current 

lake’s spill-over point, maybe resulting in lake levels higher than would be possible today. 

Sub-lacustrine channels are visibly incised into S1 (Fig. 1) on the large shallow parts of the eastern 25 

stacked-delta complexes. On the eastern complex, these are associated with the prolongation of the 

rivers that currently feed Lake Issyk-Kul. On the western complex, the paleo-channel marks the ancient 

position of where the Chu River entered the lake before it was redirected (De Batist et al., 2002). Today 



16 
 

the Chu River flows approximately 10 km west of the lake. The channels were likely formed at a lake-

level lowstand at 110 m bll, which – taking into account the 30 m of water that are today measured 

ontop of the currently active delta – corresponds to a delta depth of roughly 140 m. The channel 

morphology is still very distinct, pointing at a rather young event during which they were formed, so it 

is quite likely that they eroded into the subaerially exposed sediments of S1 while delta 1.6 was formed 5 

at a water depth of 153 m. Older Russian literature dates this lowstand as following the MIS2 regression 

marked by the subaerial terraces mentioned above (Markov, 1971; Bondarev and Sevastyanov, 1991). 

This would imply that delta 1.6 was deposited after a significant lake-level fall of more than 100 m. 

Seismic data, however, show a succession of a delta (1.1) at a water depth of 285 m bll, a 

transgressional phase followed by a stepwise increase with small-scale deltas (1.2 to 1.5) at water 10 

depths of 263, 251, 228, and 201 m bll before the formation of delta 1.6 at 153 m bll, with no sign of a 

lake-level highstand in between. It is thus unlikely that lake level was high before the formation of delta 

1.6, providing evidence that the subaerially exposed lake terraces might not be located in their original 

position but significantly uplifted.  

 15 

5.3 Lake-level variations and their trigger mechanisms 

Lake-level variations are always a sign of changes in the hydrological regime of a lake. Basically, two 

different mechanisms can affect the hydrological regime: (i) a change in lake geometry, e.g. 

(differential) subsidence, a blocking of the outlet stream or, contrarily, the formation of a new outlet, 

and (ii) a change in the balance between precipitation/inflow and evaporation/outflow.  20 

5.3.1 Changes in lake geometry 

Lake Issyk-Kul is located in a tectonically highly active area, which at first glance makes it likely that 

lake-level changes may have their primary origin in tectonic events. The lake basin is located in the 

intramontane Issyk-Kul Basin that is separated from the surrounding mountain ranges (the Kunghei 

Alatau towards north and the Terskei Alatau towards south, Fig. 1) by fault zones. Most of the Late 25 

Cenozoic strain has been accommodated by the adjacent mountain ranges, and as a result, the Issyk-Kul 
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Basin and the lake basin in its center have been mostly protected from strong deformation 

(Abdrakhmatov et al., 2002). This is confirmed by the mostly well-layered sediments observed in the 

lake; however, evidence for tectonic influence is present (e.g. the tilting of the central basin deposits 

towards the south, and the occurrence of mass transport deposits likely caused by underwater slope 

destabilization due to seismic shaking).  5 

Lake-level changes could be linked to tectonically-driven subsidence or exhumation that would (a) 

either influence the entire lake, (b) parts of it, or (c) the inlets and/or outlets: (a) From the well-layered 

sediments in the central part of the lake it is quite obvious that the general sedimentation pattern did not 

change significantly during the time interval which we can observe. The strata are almost perfectly 

horizontal in W-E direction, but dip gently towards south with dip angles increasing with depth. This 10 

points at differential subsidence only between the northern and the southern part of the lake, and the 

subsidence seems to have been relatively constant through time. In order to generate such a highly 

dynamic lake-level curve as for Lake Issyk-Kul (Fig. 9) with several cycles of increases and decreases 

and a total difference of at least 400 m, it is virtually impossible that the lake-level variations were 

generated by fault driven uplift or subsidence within the lake. A general trend is nonetheless probable 15 

and confirmed by the differential subsidence between the northern and southern shore imaged in the 

sediments, but superimposed by another mechanism that is responsible for the dynamic change in lake 

level. (b) Delta depths for almost all delta lobes are almost identical on both the eastern and western 

delta, hence it is unlikely that these two areas experienced significantly different histories. Even though 

some delta lobes were only identified on one delta, many other lobes are observed at identical depths on 20 

both deltas. In the case of S7, lobe 7.1 was observed in 327 m bll in the west and 333 m bll in the east, 

lobe 7.2 is missing in the west, 7.3 was observed in 415 m bll in the west and 409 m bll in the east, lobe 

7.4 was found at 454 m and lobe 7.5 at 504 m bll in the west only. The differences between east and 

west are not larger than those between the lobe depths identified within one delta if identified in several 

profiles. Also, for example lobe 7.5 was only identified on one profile in the western delta. It is 25 

therefore likely that those delta lobes that were only observed in one of the deltas are in fact not missing 

in the other, but were just not identified in our study, either because our seismic profiles were not placed 

perfectly to image that specific lobe, or maybe even because this lobe was eroded after its deposition. 
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(c) Tectonic events can also influence inlets and outlets of a lake, which in turn at least partly control 

lake level. At present, Lake Issyk-Kul is a closed system without any outlet, but in former times, the 

lake was drained through an outlet at its western end. The Chu River entered the lake in the southern 

and left it in the northern part of the western delta. At some point during the late Pleistocene, its course 

changed and it currently bypasses the lake and flows through Boom Canon towards northwest due to a 5 

gentle topographic barrier between the river and the lake. This barrier was likely caused by changes in 

the tectonic settings (Bondarev and Sevastyanov, 1991). This means that Lake Issyk-Kul not only has 

no current outlet, but also no large inflow through the western delta. Should the Chu River keep its 

current course, this would result in a decline in sediment accumulation in the western delta, and delta 

lobes would likely not develop as pronounced in future in this part of the lake. A lake-level rise of 13 m, 10 

however, would flood the barrier and reactivate the Chu River as an outflow. In the beginning of the 

19th century, Lake Issyk-Kul drained through the Chu River for some 25 years (Merkel and 

Kulenbekov, 2012). The maximum documented lake level that Lake Issyk-Kul has experienced is at 

1,680 m above sea level (asl), i.e. 73 m above present lake level (Trofimov, 1990). With the current 

topography, it would not be possible to generate terraces at 73 m above lake level, as the lake would 15 

overflow at +13 m already. This suggests that during the period where water reached to 73 m above lake 

level, either the current possible overflow channel – the Boom Canyon - was blocked, or the lake 

surroundings have been uplifted relative to the lake itself since that time and the +73 m terraces were 

initially deposited at another – lower – altitude. Or the entire lake basin and lake have been uplifted and 

all terraces are not at their original position. As the present structural setting would be predicted to raise 20 

the range with respect to the lake, the latter scenario seems unlikely. Grosswald et al. (1994) report that 

alpine glaciers have extended to the present shoreline and likely into the Chu river valley in the past, so 

they may have dammed the lake and facilitated lake levels higher than currently possible. 

It is unlikely that the current bypassing of the Chu River is a common situation in the lake’s history. In 

addition to the blocked outlet, this in fact also means that a large river entering from the west is missing. 25 

The pronounced delta lobes that formed contemporarily in the east and west point at sediment sources at 

both ends during at least the period that is spanned by sequences 7 to 1. 
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All things considered, we propose that the lake-level fluctuations identified on our seismic data do not 

originate from tectonic activity only. Tectonic activity in this region might result in an overall trend of 

the lake level, but not in the highly dynamic, repeated cycles of fall and rise. These must have been the 

result of significant changes in precipitation and/or evaporation. 

5.3.2 Changes in precipitation/evaporation 5 

Today, climate and hence precipitation/evaporation in the Tien Shan is mainly controlled by the 

interaction between the mid-latitude Westerlies and the Siberian Anticyclone (e.g., Aizen et al., 1997; 

Zech, 2012). The mid-latitude Westerlies bring moisture from the Aral-Caspian Basin, the 

Mediterranean, the Black Sea and the North Atlantic (Aizen et al., 2006; Lauterbach et al., 2014), while 

the Asian summer monsoon has been only of minor importance at least since the Mid Holocene (Cheng 10 

et al., 2012). The Siberian Anticyclone reaches south to the Tien Shan area and blocks the mid-latitude 

Westerlies during winter, which results in low winter precipitation due to the dry air masses of the 

Siberian High (Aizen et al., 1995; Aizen et al., 2001; Ricketts et al., 2001). Maximum precipitation is 

observed in spring and summer, and additionally in autumn in areas with altitudes of less than 3000 m 

(Aizen et al., 2001). Between 1931 and 1990, precipitation has increased significantly in the northern 15 

Tien Shan by up to 108 mm (Aizen et al., 2001). Aizen et al. (2001) interpret this increase as a stronger 

influence of the mid-latitude Westerlies on precipitation, which might result from an increase in global 

air temperature and a weakening or displacement of the Siberian High. Lake level, however, has fallen 

by 3 m since 1926 (Ricketts et al., 2001), partly due to Soviet era hydrological projects, but also by 

increased evaporation due to increased temperature (Romanovsky, 1990; Ricketts et al., 2001; 20 

Romanovsky, 2002). 

Lake Issyk-Kul is currently mainly fed by riverine input, which in turn is mainly controlled by snow 

and glacier melt as well as by rainfall. Lake-level changes are therefore highly dependant on 

precipitation and evaporation, which in turn are controlled by moisture and air temperature. With lake-

level changes of up to 400 m, the lake’s archive shows that the interplay between Siberian High and 25 

mid-latitude Westerlies has been highly dynamic during the past, and likely since the formation of the 

lake. Unfortunately, we do not have age information from the delta lobes. Even though some age and 
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sediment accumulation information is available from short sediment cores mostly from the mid-slope 

area (e.g., Ricketts et al., 2001; Giralt et al., 2004), these data are not helpful to estimate ages of the 

different delta lobes. Delta systems are just too dynamic with large differences in accumulation rates 

depending on the proximity to the rivers and to their total sediment load (bedload and suspended load) 

to use generalized accumulation rates. Additionally, erosional contacts between the different sequences 5 

could be observed but the amount of missing sediment could not be quantified. Drilling of sediment 

cores from the different sediment lobes would be required in order to reliably date the lake-level 

stillstands. Lake Issyk-Kul with its long sedimentary archive therefore provides an ideal drill site to 

study the history of the interplay between the Siberian Anticyclone, the mid-latitude Westerlies and the 

Asian summer monsoon through time (Oberhänsli and Molnar, 2012). The lake is located in an area 10 

with high relief, implying different climate conditions over short distance. Nevertheless, lake-level 

changes of up to 400 m are significant and rather a result of large-scale changes in climate patterns 

rather than of regional differences.  

In an arid area such as the Issyk-Kul region, glaciers are highly sensitive to changes in 

precipitation/evaporation. Evidence from glacial features such as moraines, however, is limited and 15 

does not reach further back in time than to MIS6 (e.g., Zech, 2012); in the Kyrgyz Tien Shan, existing 

ages only reach back to MIS5e (Koppes et al., 2008). Zech (2012) showed that the glaciation in the Tien 

Shan and Pamir became successively more restricted from MIS4 to MIS2, which was also observed in 

Siberia with limited ice sheet and glacier extents (e.g., Svendsen et al., 2004; Zech et al., 2011). Zech 

(2012) interprets this as a result from reduced moisture advection through the mid-latitude Westerlies 20 

due to the lee effect when flowing over the massive Fennoscandian Ice Sheet, and additionally by a 

blocking situation of the Westerlies by a strong Siberian High. Low lake level would likely be caused 

by low precipitation and, thus, points at a strong Siberian High. This would imply that sequences 7, 5, 

and 2 represent times of a strong Siberian High and weakened mid-latitude Westerlies. Sequences 6, 3, 

and 1, in turn, would point at a displaced or weakened Siberian High, with enhanced moisture input 25 

from the mid-latitude Westerlies and, possibly, also by the Asian summer monsoon. The extent of the 

past glaciations in the Arctic region was variable (e.g., Svendsen et al., 2004; Jakobsson et al., 2014), 

which makes it likely that the precipitation regime was also different. Glaciation in the Tien Shan might 
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have been rather limited during arid glacials and lake level may have been low. During glacials with 

wetter conditions, glaciers may have reached the lake and may even have blocked the outlet, potentially 

leading to the highest lake levels recorded, higher than during (moist) interglacials without blocked 

outlet. It is therefore impossible to relate sequence boundaries to glacials or interglacials without direct 

dating of sedimentary material. 5 

6 Conclusions 

A seismic study of mainly the western and eastern delta of Lake Issyk-Kul exhibits seven stratigraphic 

sequences (S7 = oldest, S1 = youngest). Boundaries between the sequences are often erosive (erosional 

unconformities), and each stratigraphic sequences contains at least 2 delta lobes formed during times of 

relatively constant lake level. The topset-foreset roll-over point was considered as a proxy for lake-level 10 

change. In this context, S7, S5, and S2 can be interpreted as formed during falling lake level, while S6, 

S3, and S1 indicate a lake-level rise. S4 exhibits a lake-level rise followed by a lake-level fall. Taking 

into account the subaerially exposed lake terraces, a total of at least 400 m of lake-level change could be 

observed. 

While tectonic reasons may have had some influence on lake-level evolution, they were clearly not 15 

causal for the cyclic fall and rise. Changes in precipitation/evaporation are more likely causing changes 

in water level. Currently, the dry air masses of the Siberian High are strong in winter, blocking the mid-

latitude Westerlies. During summer, the mid-latitude Westerlies bring moist air into the area, resulting 

in precipitation peaks in spring/summer and autumn. Lake-level changes point at changes in the 

atmospheric circulation pattern during the past. Low lake levels point at less precipitation, likely with a 20 

strong and stable Siberian High, and high lake levels may have been caused by a weakened or displaced 

Siberian High and stronger mid-latitude Westerlies, possibly even influence of the Asian summer 

monsoon. Dating of the cyclic regression/transgression cycles would be fundamental for a better 

understanding of the regional climate. Drilling into the delta sediments would be needed to establish a 

chronostratigraphic framework.  25 
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7 Data availability 

Seismic profiles are stored at Renard Centre of Marine Geology, Universiteit Gent, Belgium, and can be 

obtained from Marc De Batist upon request (Marc.DeBatist@UGent.be). 
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Fig. 1: Geographical settings of Lake Issyk-Kul. Tracklines of all profiles used in this study 

are shown in green (data from 1997) and orange (2001). Profiles shown in figures 3-6 and 8 

are shown with bold lines. The axes of two anticline structures visible in the seismic profiles 

in the southeastern part of the lake are marked in red. Grey hatched areas mark the 



approximate position of the Issyk-Kul Broken Foreland, and turquoise line shows the 

approximate location of the Main Terskey Fault MTF (after Macaulay et al., 2014). Digital 

terrain model for lake and surrounding from Delvaux et al. (2001). Small inset shows the 

location of our study site marked with a yellow star (map generated using the ETOPO1 

dataset; Amante and Eakins (2009); Projection: WGS84 UTM Zone 43N).  

 

 
 

Fig. 2: Facies types SF1 to SF4 of Lake Issyk-Kul sediments. All examples were taken from 

profile issyk019 (for location of the profile refer to fig. 1). 

 



 
Fig. 3: Identification of sequence boundaries of Lake Issyk-Kul sediments. Sequence 

boundaries could best be determined in places where underlying strata was truncated by 

erosion and strata hence form onlaps or toplaps onto the erosional discordance. Also where 

overlying strata form downlaps or onlaps onto the stratigraphic boundary these were easily 

identified. Once identified, stratigraphic boundaries could also be traced as distinct 

reflections into places where they separate the upper and lower stratigraphic sequence as a 

conformity. 

 



 
Fig. 4: N-S profile ik01. The asymmetric nature of the lake basin is clearly visible with 

considerably higher subsidence rates towards South. 

 



 
Fig. 5: Seismic profile issyk049. Upper panel: Seismic data. Lower panel: Linedrawing and 

interpretation of all sequences identified in the profile. All delta lobes identified in issyk049 

are indicated. See figure 1 for location of profile issyk049. 

 



 
Fig. 6: Seismic profile issyk019. Upper panel: Seismic data. Lower panel: Linedrawing and 

interpretation of all sequences identified in the profile. All delta lobes identified in issyk019 

are indicated. One delta lobe was spotted in S6 but could not be clearly identified because it 

is too eroded. This delta lobe is marked as 6.x in the figure and was not considered for the 

reconstruction of the lake-level curve. See figure 1 for location of profile issyk019. 

 



 
Fig. 7: Minimum thickness of sequences in the western and eastern areas. Thickness is 

converted from two-way traveltime using a seismic velocity of 1500 m s-1. Thickness color 

scale is similar for all panels and shown in the figure. Color scales for topography and 

bathymetry are similar to fig. 1. Grey lines show where data were available for thickness 

calculation. Note that sequences 3 and 4 could only be distinguished in the western delta, 

while a combined thickness for sequences 3 & 4 was calculated for the eastern delta.  

 



 
Fig. 8: Sequences 1 and 2 on seismic profile issyk019. Upper panel: Sequence 1 with 

distinct deltas 1.1 and 1.6 and the transgressional phase. Deltas 1.2 to 1.5 are only visible in 

parallel profiles, but their relative location is marked. Note that the lower boundary of 

Sequence 1 is highly erosive with deeply incised channels. Lower panel: Sequence 2. The 

missing (eroded) parts of deltas 2.1 and 2.2 are tentatively completed in light colors for better 

visualization. Seismic data overlaying the respective sequences is removed. 

 



 
 
Fig. 9: Lake-level curve of Lake Issyk-Kul. Red line: mean value of delta depths; gray 

shading: standard deviation of delta depths. Numbers correspond to delta numbers in the 

text and in table 1. Boundaries in between the different sequences are at least partially 

erosive. 

 
 
 



 Western delta Eastern delta Combined 
Lobe No. issyk049 ik30 ik28 issyk017 issyk019 issyk021 ik49 issyk022 issyk024 ik07 mean std dev 

1.7         29 26 27.5 2.1 
1.6 161 155 155 154 151 147 154 153 149 154 153.3 3.8 
1.5      199 203    201.0 2.8 
1.4  228    228     228.0 0.0 
1.3 252 246    250 254 254   251.2 3.3 
1.2      263     263.0 - 
1.1    294 279 283     285.3 7.8 
2.2 244  244 252 248 261     249.8 7.1 
2.1  206  215 203 217     210.3 6.8 
3.2 174 180 162        172.0 9.2 
3.1   330        330.0 - 
4.3 399 395         397.0 2.8 
4.2 252 255 251   241     249.8 6.1 
4.1 315 327 314        318.7 7.2 
5.2 366 373 379 359 358 350     364.2 10.6 
5.1 280 274  283 295 286     283.6 7.8 
6.2 386 371 370 335 344 360     361.0 18.8 
6.1 474 448         461.0 18.4 
7.5 504          504.0 - 
7.4 471 448 444        454.3 14.6 
7.3 424 411 410 406 405 417     412.2 7.2 
7.2    384 381 378     381.0 3.0 
7.1 326 320 335 330 328 342     330.2 7.6 

 
Table 1: Water depth below current lake level for each identified delta. Profiles issyk0049, ik30 and ik28 are located on the western and all other 
profiles are located on the eastern delta. Two-way traveltime was converted to water depth using a sound velocity of 1500 m s-1. mean = average 
value, std dev = standard deviation calculated for each delta lobe including measurements from the eastern and western areas as available. 
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