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Abstract 25 

An arrangement of three stalagmites from Zoolithencave (southern Germany) was analysed 26 

for different types of annual laminae using both microscopic and geochemical methods. The 27 

speleothems show visible laminae (consisting of a clear and a brownish, pigmented layer pair) 28 
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as well as fluorescent and elemental laminae. The age of the speleothems was constrained to 29 

1800 to 1970 AD by 14C-dating of a charcoal piece below the speleothems, detection of the 30 

14C bomb peak, as well as counting of annual laminae. Dating by the 230Th/U-method was 31 

impossible due to detrital contamination. 32 

On the annual time-scale, the variability of Mg, Ba, and Sr is controlled by Prior Calcite 33 

Precipitation (PCP) resulting in lower values during the wet season (autumn/winter) and vice 34 

versa. Yttrium and P are proxies for soil activity and are enriched in the brownish, pigmented 35 

layers. However, Y and P are also influenced by detrital content superimposing the soil 36 

activity signal. Aluminium and Mn are proxies for detrital content.  37 

Lamina thickness shows a significant correlation with the amount of precipitation of previous 38 

December and current January, February, March, April, May, and December (DJFMAMD) 39 

recorded at the nearby meteorological station Bamberg. Thus lamina thickness is a proxy for 40 

past precipitation, which is confirmed by the good agreement with a precipitation 41 

reconstruction based on tree-ring width from the Bavarian forest. This highlights the potential 42 

of these speleothems for climate reconstruction at annual resolution. 43 

 44 

1 Introduction 45 

In the last decade, archives containing high-resolution climate proxies, which reflect past 46 

climate variability on a time-scale relevant for civilisation, have achieved increasing attention 47 

(e.g., Büntgen et al., 2011; Kennett et al., 2012). High-resolution climate reconstructions for 48 

central Europe are mostly available from tree-rings span the last 2000 years (e.g., Wilson et 49 

al., 2005; Büntgen et al., 2008; Trouet et al., 2009; Esper et al., 2012). Tree-ring records 50 

covering longer time spans such as the entire Holocene are rare (Spurk et al., 2002; Friedrich 51 

et al., 2004) and hold the problem of preserving low frequency climate signals. Speleothems, 52 

such as stalagmites and flowstones, can grow continuously for several thousand years. They 53 

can be precisely dated by the 230Th/U-method (e.g., Richards and Dorale, 2003; Scholz and 54 

Hoffmann, 2008) and provide up to annual-resolution climate proxies. Therefore, they have 55 

large potential to extend the existing tree-ring records (Tan et al., 2006). Some speleothems 56 

show annual laminae and have the potential for annually or even seasonally resolved climate 57 

reconstruction (Brook et al., 1999; Proctor et al., 2002; Boch and Spötl, 2008; Mattey et al., 58 

2008; Hardt et al., 2010; Orland et al., 2012; Myers et al., 2015; Ridley et al., 2015).  59 
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Typically, five types of annual laminae can be observed in speleothems: i) visible laminae 60 

with a white and a dark/clear layer representing one year (Genty and Quinif, 1996; Scholz et 61 

al., 2012; Van Rampelbergh et al., 2014), ii) fluorescent laminae induced by humic and fulvic 62 

acid (van Beynen et al., 2001; Proctor et al., 2002; Shopov, 2003; Sundqvist et al., 2005), iii) 63 

elemental laminae visible in cyclic (seasonal) changes in the concentration of specific 64 

elements (Roberts et al., 1998; Huang et al., 2001; Treble et al., 2003; Johnson et al., 2006; 65 

Borsato et al., 2007; Smith et al., 2009), iv) stable carbon and oxygen isotope laminae visible 66 

in changes in the 13C and 18O values over an annual cycle (Mattey et al., 2008; Baker et al., 67 

2011; Boch et al., 2011; Van Rampelbergh et al., 2014; Myers et al., 2015; Ridley et al., 68 

2015), and v) mineralogical laminae consisting of calcite-aragonite pairs representing one 69 

year (Railsback et al., 1994; Baker et al., 2008). All types of laminae have been analyse in 70 

several studies and their potential for reconstruction of climate variability evaluated. Visible 71 

annual laminae in speleothems can be induced by cave ventilation, which controls the super 72 

saturation of the drip water with respect to calcite via modulation of the pCO2 of in the cave 73 

air. Cave ventilation is controlled by the temperature difference between outside atmospheric 74 

and cave air and may result in a temperature signal in 13C and 18O speleothem records 75 

(Boch et al., 2011). In addition, the annual cycle in the concentration of Mg, Sr, Ba, and/or P 76 

were used both as temperature (Mattey et al., 2008) or precipitation proxies (Roberts et al., 77 

1998; Huang et al., 2001; Treble et al., 2003). The lamina thickness of both visible and 78 

fluorescent laminae were used as proxies for past precipitation and water excess (Genty and 79 

Quinif, 1996; Baker et al., 1999; Brook et al., 1999; Proctor et al., 2000; Boch and Spötl, 80 

2008) or temperature (Frisia et al., 2003; Scholz et al., 2012).  81 

In this study, we analysed an arrangement of three small stalagmites from Zoolithencave, 82 

southern Germany, for their visible, fluorescent, and elemental laminae. The aims of this 83 

study are i) to test the potential of different analytical methods to detect annual laminae in 84 

speleothems, ii) analyse the origin of the different types of laminae, and iii) evaluate their 85 

potential as climate proxies.  86 

 87 

2 Cave setting 88 

Zoolithencave (49°47’ N, 11°17’ E) is located in the Franconian Alb, south-eastern Germany, 89 

and developed in the Upper Jurassic Franconian Dolomite (Fig. 1). The dolomitisation of this 90 

massive spongal reef limestone already started in the Upper Jurassic (Meyer, 1972). The first 91 
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karstification of the dolomite occurred predominantly along fissures with NW-SE and NE-SW 92 

orientation during the uplift of the Franconian Alb at the transition from the Jurassic to the 93 

Cretaceous. The main phase of karstification took place in the Quaternary and coincided with 94 

the further uplift of the Franconian Alb and erosion by rivers (Groiß, 1988). 95 

The Zoolithencave is famous for its paleontological inventory, which was first described by 96 

Esper (1774) and Rosenmüller (1794). Bones of several Pleistocene mammals were found, 97 

and the cave is the first location where cave bear (Ursus spelaeus) bones were found. Further 98 

archaeological excavations found charcoal and pottery from the Iron Age, and an ash layer in 99 

a flowstone was dated to the late Mesolithicum (Rosendahl, 2005). This proves human 100 

utilisation of the cave. Zoolithencave was intensively studied during the late 18th to early 20th 101 

century due to its paleontological inventory. The second phase of scientific investigation 102 

started in 1971 when further parts of the cave where discovered and paleontological analyses 103 

were performed by, for instance Groiß (1979) and Diedrich (2014). At the same time, 104 

speleological studies were conducted (e.g., Tietz, 1988; Wurth et al., 2000; Wurth, 2002; 105 

Richter et al., 2014; Riechelmann et al., 2014). 106 

The cave entrance is located 455 m above sea level on the north-east facing slope of the Hohle 107 

Berg. The peak of the Hohle Berg is 469.9 m above sea level and forms a small karst plateau. 108 

The average rock overburden of the cave is 15-20 m, which is covered by soil consisting of a 109 

15 cm thick humic A-horizon and a > 30 cm thick loamy B-horizon (Wurth, 2002). The 110 

vegetation above the cave mainly consists of deciduous forest (i.e., predominately beech).   111 

 112 

3 Material and Methods 113 

3.1 Stalagmite Zoo-rez 114 

Stalagmite Zoo-rez is an arrangement of two stalagmites with a distance of 7 cm between 115 

their tops, which grew in entrance hall of Zoolithencave. Zoo-rez-1 has a height of 3 cm, 116 

whereas Zoo-rez-2 is 2.7 cm high. A third, 2.5 cm-high stalagmite (Zoo-rez-3) grew at close 117 

distance. All three stalagmites were sampled in August 1999 (Fig. 2; Wurth (2002)). The base 118 

of the arrangement of Zoo-rez-1 and -2 consists of cave loam, as well as sinter and charcoal 119 

pieces, which are consolidated by calcite. The stalagmite was fed by an active drip when it 120 

was sampled suggesting recent growth. 121 

 122 
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3.2 Dating methods 123 

Two samples (ca. 300 mg) from the top and the base of Zoo-rez-1 (Fig. 3a), respectively, 124 

were drilled for 230Th/U-dating using a hand held dental drill. The samples were dissolved in 125 

7N HNO3 and spiked with a mixed 229Th-233U-236U spike solution. The Th and U fractions 126 

were separated by ion-exchange column chemistry (see Yang et al. (2015), for details) and 127 

subsequently analysed using a Nu Plasma MC-ICP mass-spectrometer (Nu Instruments Ltd., 128 

Wrexham) at the Max Planck Institute for Chemistry, Mainz. For further methodological and 129 

analytical details, the reader is referred to Obert et al. (accepted). 130 

All activity ratios and 230Th/U-ages were calculated using the half-lives of Cheng et al. 131 

(2000). To account for potential detrital contamination, corrected ages were calculated 132 

assuming an upper continental crust 232Th/238U weight ratio of 3.8 ± 1.9 (Wedepohl, 1995) 133 

and secular equilibrium between 230Th, 234U, and 238U. 134 

A piece of charcoal found at the base of Zoo-rez-2 (Fig. 3b) was analysed by accelerator mass 135 

spectrometer (AMS) 14C-dating at the Curt-Engelhorn-Zentrum for Archeometry gGmbH, 136 

Mannheim, Germany. The sample was prepared with the ABA-method (HCl/NaOH/HCl), 137 

whereat the insoluble components were burned and the resulting CO2 catalytically reduced to 138 

graphite. The 14C content was determined with a MICADAS accelerator mass spectrometer 139 

(Synal et al., 2007). In addition, three calcite samples from the top of stalagmite Zoo-rez-1 140 

(Fig. 3a) were analysed for their 14C content in order to detect the atmospheric 14C bomb 141 

peak. These samples were dissolved in vacuo and subsequently reduced to graphite at 575°C 142 

under a H2 atmosphere. The measurements were performed using the same setup as for the 143 

charcoal sample. 144 

 145 

3.3 Fluorescence and polarisation microscopy and determination of lamina 146 

thickness 147 

Fluorescence microscopy was performed on thin sections of 30 µm thick using a Leica 148 

DM4500P microscope, which is equipped with a Canon Eos 60D camera at the Institute for 149 

Geology, Mineralogy and Geophysics at Ruhr-University Bochum. For UV-luminescence, a 150 

BP360/40 excitation filter, a dichromatic mirror of 400 nm and an LP425 suppression filter 151 

were used. Polarisation microscopy was performed with a Leica DM750P microscope. The 152 

thin sections were further scanned with a Colorview I camera (Olympus) installed on an 153 
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Olympus EX51 microscope, which is equipped with a Märzhäuser LPT15 microscope stage 154 

and a Plan N20x objective resulting in high resolution pictures. Determination of lamina 155 

thickness on these pictures was performed using the software analySIS pro (Olympus Soft 156 

Imaging Solutions). On Zoo-rez-1, three tracks were measured. On Zoo-rez-2 and -3 one track 157 

each was measured. The microscopy tracks followed the LA-ICPMS tracks (Fig. 3, see also 158 

section 3.5). Cross dating of the lamina thickness of the different tracks was performed using 159 

the tree-ring analysis software tools TSAP-Win® (RINNTECH, Heidelberg) and COFECHA 160 

(Holmes, 1983).   161 

 162 

3.4 LA-ICPMS measurements for elemental concentrations  163 

The elemental concentration of the three stalagmites was determined with an Element2 ICP 164 

mass spectrometer (ThermoScientific, Waltham, USA) equipped with a high energy Nd:YAG 165 

laser ablation system ( = 213 nm) (New Wave, Fremont, USA). The reference material used 166 

for calibration was NIST SRM 612, a synthetic glass with a high trace element content 167 

(Jochum et al., 2011). The spot size of the laser beam was 110 µm, the puls repetition rate 10 168 

Hz and the scan speed 10 µm/s. The elemental concentrations were normalised using Ca as an 169 

internal standard. In total, 33 elements were measured: Na, Mg, Al, Si, P, Ca, Ti, Mn, Fe, Cu, 170 

Zn, Rb, Sr, Y, Cd, Ba, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Pb, Th and 171 

U. Seven (Mg, Al, P, Mn, Sr, Y, Ba) revealed reliable concentrations well above the detection 172 

limit. As for the microscopy tracks, three tracks on stalagmite Zoo-rez-1, and one track each 173 

on Zoo-rez-2 and -3 were measured (Fig. 3). 174 

 175 

3.5 UV-Luminescence Scanning 176 

UV-luminescence of the three speleothems was measured with an Aavatech core scanner at 177 

the NIOZ (Texel, Netherlands). Images were acquired with a resolution of 70 µm/pixel using 178 

a JAI CCD camera, equipped with a beam splitter separating the red, green and blue colour 179 

channels (Grove et al., 2010). The speleothem samples were irradiated with a 365 nm UV-180 

LED lamp to initiate the luminescence. The CCD camera was equipped with a 435 nm cut off 181 

filter to avoid recording of reflecting light of the initial light source. RGB colour information 182 

was obtained from the images along selected transects, corresponding to the elemental and 183 

lamina thickness transects, using the software Line Scan 2.0 of the Avaatech scanner. 184 
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 185 

3.6 Data analysis 186 

Principal Component Analysis (PCA) and wavelet analysis of the elemental data series were 187 

performed using the software PAST (Hammer et al., 2001). For both analyses, the data were 188 

normalised. In addition, Pearson correlation coefficients (r) were calculated between the 189 

different elemental data series as well as between the proxy series and different climate 190 

parameters. Wiggle matching of the different tracks (Mg content, UV-luminescence, and 191 

lamina thickness) was conducted using the software AnalySeries (Paillard et al., 1996). 192 

Interpolation of the elemental and UV-luminescence data series as well as the calculation of 193 

mean curves were performed with R (R Core (Team, 2015). Detrending of the lamina 194 

thickness and mean annual Mg records with a 10 point FFT (Fast Fourier Transformation) 195 

filter was performed using Origin®. 196 

 197 

4 Results 198 

4.1 Visible laminae 199 

Visible laminae in Zoo-rez appears as layer pairs consisting of a clear layer and a layer with 200 

brownish pigmentation (Fig. 4a). Counting these laminae along the three tracks of Zoo-rez-1, 201 

results in 124, 161, and 135 laminae, respectively. In Zoo-rez-2, we counted 165 laminae, and 202 

in Zoo-rez-3, 144 laminae. The mean laminae thickness varies from 129 (Zoo-rez-2) to 203 203 

µm (Zoo-rez-1, track 1). The minimum lamina thickness varies from 25 (Zoo-rez-1, track 2) 204 

to 56 µm (Zoo-rez-1, tracks 1 and 3), whereas the maximum lamina thickness ranges from 205 

388 (Zoo-rez-2) to 917 µm (Zoo-rez-3). Further microscopic analysis of the thin sections of 206 

the three stalagmites did not provide any evidence for growth stops. Therefore, continuous 207 

growth is assumed. The crystal fabric of all stalagmites is columnar facicular optic and only 208 

some patches of Zoo-rez-1 show a columnar radiaxial fabric (Richter et al., 2011; Frisia, 209 

2015). 210 

 211 

4.2 Chronology of stalagmite Zoo-rez 212 

The corrected 230Th/U-ages determined for Zoo-rez-1 are of 4670 ± 1000 years BP (this refers 213 

to 2014 AD) for the sample taken at 0.3 cm distance from top (dft) and 340 +3314/-295 years 214 
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BP  for the sample from 1.4 cm dft (Table 1). The very large age uncertainties result from the 215 

large degree of detrital correction, which results in differences between corrected and 216 

uncorrected ages of up to 5000 years (Table 1). This is a result of the low U and elevated 217 

232Th content of the two samples and is also evident from a very low (230Th/232Th) activity 218 

ratio, which range from 0.9 to 2.6 (Table 1). For (230Th/232Th) ratios lower than 20, a 219 

correction for detrital contamination is necessary (Schwarcz, 1989). However, in particular 220 

for very young samples, such as stalagmite Zoo-rez-1, the conventionally applied bulk Earth 221 

correction is not adequate and more elaborate methods are required (Ku and Liang, 1984; 222 

Schwarcz and Latham, 1989; Bischoff and Fitzpatrick, 1991; Przybylowicz et al., 1991; 223 

Kaufman, 1993; Ludwig, 2003; Pons-Branchu et al., 2014; Wenz et al., in review). Thus, the 224 

two 230Th/U-ages determined for stalagmite Zoo-rez-1 cannot be considered reliable, which is 225 

also obvious from the age inversion (i.e., the age close to the surface is older than the age at 226 

the base of the stalagmite, Table 1). As a consequence, other methods to establish the 227 

chronology of stalagmite Zoo-rez have to be used.  228 

The 14C-age of the charcoal piece from the base of stalagmite Zoo-rez-2 is 165±21 years BP 229 

(refers to 1950 AD), with a calibrated 1-range of 1671-1951 AD (Table 2). Calibration was 230 

performed with INTCAL13 (Reimer et al., 2013) and SwissCal 1.0 (L. Wacker, ETH-Zürich). 231 

Furthermore, the 14C-activity of three samples from the top of stalagmite Zoo-rez-1 was 232 

determined in order to detect the atmospheric bomb peak (Hua et al., 2013). This atmospheric 233 

bomb peak was induced by the above ground atomic bomb tests in 1945-1963 AD. The 14C 234 

from this tests was circulated worldwide by the atmosphere and reached for example 235 

stalagmites via rain and drip water. The 14C activity detected in a speleothem is always lower 236 

than in the atmosphere, due to dissolution of the hostrock which contains carbon as well. The 237 

sample from 0.8 mm dft shows the highest 14C-activity (Fig. 5). The subsequent decrease in 238 

atmospheric 14C-activity has not been observed in the stalagmite suggesting that Zoo-rez did 239 

not grow until 1999 AD (the year of sampling). The maximum of speleothem bomb spikes 240 

appears to be near the atmospheric peak as long as the increase in radiocarbon is large. For 241 

speleothems with a smaller increase in 14C the maximum in the speleothem is delayed. This is 242 

explained by the age spectrum of SOM (Fohlmeister et al., 2011). Since the increase in 14C in 243 

Zoo-rez is large (compare e.g.,  Noronha et al., 2015), the peak is near the maximum of the 244 

atmospheric 14C values. Thus, we suggest that the highest 14C value corresponds to about 245 

1967 AD and attributed a 5 years uncertainty. It follows that the stalagmite stopped growing 246 

around 1970 AD ± 5 years by adjusting the 14C sampling site by lamina counting. The age of 247 
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the charcoal, which must be older than the stalagmite growing on top, is in good agreement 248 

with the number of 124 to 165 layers counted. Therefore, stalagmite Zoo-rez most likely grew 249 

during the last 150-200 years and shows visible annual laminae.  250 

 251 

4.3 Elemental laminae 252 

Seven elements (Mg, Al, P, Mn, Sr, Y, Ba) revealed reliable concentrations well above the 253 

detection limit. The element records obtained from the five sampling tracks were compared 254 

by calculation of correlations that reveal in two groups of elements. The first group reveals 255 

positive correlation with each other contains of the elements Mg, Sr, and Ba, whereas the 256 

second group shows positive correlations with each other contains of Al, P, Mn, and Y (Table 257 

3). This is confirmed by the results of the Principle Component Analysis (PCA; von Storch 258 

and Zwiers, 2002; Navarra and Simoncini, 2010), performed with the normalised elemental 259 

concentrations, with Mg, Sr, and Ba grouping together, as well as Al, P, Mn, and Y. Only for 260 

the PCA of Zoo-rez-2 Al and Mn as well as P and Y form two different groups (Fig. 6). 261 

The time series of Mg, P, Sr, Y, and Ba show a cyclicity with higher and lower values (Figs. 262 

7a and b). Aluminium and Mn do not show this pattern (Fig. 7c). However, both elements 263 

show extreme concentrations (i.e., spikes) in some sections of the speleothems and very low 264 

concentrations in other parts (Fig. 7c). The observed cyclicity, which probably results from 265 

annual variations in elemental supply, is most pronounced for Mg (Fig. 7a). Phosphorus, Sr, 266 

Y, and Ba show several spikes superimposed on the cyclicity, which is not the case for Mg 267 

(Figs. 7a and b). Therefore, potential annual elemental lamination seems to be most 268 

pronounced for Mg. In order to test whether the observed cyclicity is annual, wavelet analysis 269 

has been performed for the five Mg time series (cf., Smith et al., 2009). The five wavelet plots 270 

show a continuous cyclicity in the range of 64 to 256 µm over the whole length of all 271 

measuring tracks (Fig. 8), which is in agreement with thickness of the visible laminae 272 

(compare section 4.1). This strongly suggests that the observed cyclicity of Mg concentration 273 

reflects an annual signal. Due to the observed positive correlation and grouping in the PCA 274 

between Mg, Ba, and Sr (Table 3), it is likely that the variability of all three elements reflect 275 

an annual signal. 276 

 277 

4.4 Luminescent laminae 278 
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The pixel resolution of UV-luminescence scanning does not allow an annual signal (cf., Fig. 279 

14) as the mean lamina thickness of the visible layers observed for the five different tracks of 280 

Zoo-rez is in the range of two pixels (compare section 4.1). However, this method is not really 281 

suitable to detect annual laminae in speleothem Zoo-rez, but rather for multi-annual scale 282 

fluctuations. 283 

UV-luminescence microscopy clearly shows a lamination, with the brownish layers exhibiting 284 

a stronger luminescence than the clear layers under UV light (Fig. 4). Pronounced brownish 285 

layers provide a stronger and more easily detectable luminescence than less pronounced 286 

layers, which confirms the observations of the visible laminae. Therefore, fluorescence 287 

microscopy does not provide additional information for stalagmite Zoo-rez. 288 

 289 

5 Interpretation and Discussion 290 

5.1 Chronology 291 

Based on the five laminae thickness tracks, a chronology with an annual resolution was built 292 

by visual cross-dating using the tree-ring software TSAP-Win®. Due to the geometry of 293 

stalagmite Zoo-rez-1, the laminae get thinner and even disappear with increasing distance 294 

from the growth axis (Fig. 3a). This is especially the case for those sections of Zoo-rez-1 295 

showing no clear plateau (Fig. 3a) and is probably also the major reason for the different 296 

number of laminae counted for the three different tracks on Zoo-rez-1. Track 2 is closest to 297 

the growth axis and should therefore have less missing laminae than the other tracks. This is 298 

confirmed by the observed number of laminae (161 for track 2 and 124 and 135 for track 1 299 

and 3, respectively). Consequently, tracks 1 and 3 were cross-dated to track 2, and the 300 

corresponding number of missing laminae was inserted into the chronology using TSAP-Win. 301 

We assumed a lamina thickness of 10 µm for the missing laminae, which is the accuracy of 302 

the thickness determination. In total, 19 missing laminae were inserted into track 1, nine 303 

laminae into track 2 and 11 into track 3. Also in the master track 2 nine laminae were inserted, 304 

which most likely is due to irregularities in the continuous growth of the laminae over the 305 

stalagmite surface. Furthermore, the total amount of laminae after the cross-dating differ for 306 

the different tracks, which is due to more or less clear laminae structure near to the base part 307 

of the stalagmites. We note that this procedure is a standard technique in tree-ring research 308 

(Fritts, 1976; Schweingruber, 1983; Speer, 2010). Subsequently, the two individual tracks on 309 
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Zoo-rez-2 and -3 were cross-dated to the mean curve of the three tracks on Zoo-rez-1. Into 310 

track Zoo-rez-2, six laminae were inserted, and into track Zoo-rez-3, eleven laminae were 311 

inserted. As in tree-ring cross-dating, each inserted laminae is present in at least one of the 312 

tracks and, thus not missing in all tracks. Subsequently to visual cross-dating of the five 313 

tracks, the chronology was checked using the tree-ring software COFECHA (Holmes, 1983). 314 

This check calculates the series intercorrelation, which is the mean of the correlations of each 315 

series with the mean of the remaining series. For our chronology, the series intercorrelation is 316 

0.51. Furthermore, COFECHA calculates the correlation of the series with the mean of the 317 

other series to detect potential dating errors by shifting by maximum 10 years in both 318 

direction using segments of 50 years with an overlap of 25 years. For some segments, the 319 

correlation was lower than for the shifted segment. However, these correlation coefficients 320 

were not significantly higher and do therefore, not suggest an error during cross-dating 321 

(Holmes, 1983; Speer, 2010). In summary, the cross-dating procedure results in a chronology 322 

of 171 years, which represents the mean annual lamina thickness of the five series. Note that 323 

neither additional missing laminae nor laminae not representing a full year can be excluded. 324 

However, due to the five series and the cross-dating, which do not show distinct dating errors, 325 

this chronology can be considered as relatively robust.  326 

To assign an absolute age to the floating chronology, the 14C-ages were used (see section 4.2) 327 

and assuming annual laminae in the stalagmite, the age of the uppermost layer was set to 1970 328 

AD. This assumes a fast percolation of the rain water into the cave, which is supported by the 329 

low (10-12 m) rock overburden of the entrance hall of Zoolithencave. A short residence time 330 

in the aquifer is a general prerequisite for the formation of annual laminae in speleothems 331 

(Baker et al., 2008). Another factor, potentially producing annual laminae in speleothems is 332 

strong cave ventilation resulting in a strong annual variability of cave pCO2 (Huang et al., 333 

2001; Mattey et al., 2008; Boch et al., 2011). However, this can be excluded for 334 

Zoolithencave because monitoring results show that cave pCO2 is relatively low (530-1662 335 

ppmV) in the entrance hall and does not vary by more than 1000 ppmV throughout the year 336 

(Meyer, 2014). Hence, the observed annual lamination in stalagmite Zoo-rez is most likely 337 

related to annual changes in drip water composition (Roberts et al., 1998; Huang et al., 2001; 338 

Treble et al., 2003; Wassenburg et al., 2012). 339 

The age of the lowermost lamina of stalagmite Zoo-rez is 1800 AD, which is in a good 340 

agreement with the calibrated 1-range of the 14C dating of the charcoal resulting in 1671-341 

1951 AD, whereas one possible calibration range spikes around 1800 AD. Due to the good 342 
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agreement of the number of counted laminae with the 14C-dating results, the number of 343 

missing and/or double-counted years should be very low and can be neglected. Nevertheless, 344 

the absolute age of the chronology may vary by a few years (cf., Shen et al., 2013). The 345 

resulting annually resolved chronology for Zoo-rez (Fig. 9) can be further used to assign a 346 

chronology to the proxy signals.  347 

 348 

5.2 Wiggle matching and data interpolation 349 

Due to the potential annual nature of Mg cycles, wiggle matching between the individual Mg 350 

series was performed using the software AnalySeries. As for the visible laminae (compare 351 

section 5.1), track Zoo-rez-1.2 was chosen as the master series, which shows the largest 352 

number of visible layers and is closest to the growth axis (Fig. 3a). All other Mg tracks were 353 

wiggle matched on this master track (Fig. 10), which leads to an increase in the correlation 354 

coefficients between the individual tracks to of r = 0.43 to r = 0.49. This is substantially 355 

higher than correlation coefficients prior to wiggle matching, which range from r = 0.10 to r = 356 

0.24. On average, the data points on track Zoo-rez-1.1 were shifted by 179 µm, by 502 µm on 357 

track Zoo-rez-1.3, by 344 µm on Zoo-rez-2, and by 1253 µm on Zoo-rez-3. The relatively 358 

large shift on Zoo-rez-3 is probably related to the largest distance of this track from the master 359 

track (Zoo-rez-1.2). Subsequently to wiggle matching, a mean curve of all five Mg signals 360 

was calculated. This mean Mg series was cut off at the end of the shortest series (i.e., Zoo-rez-361 

2).  Lamina thickness was determined on thin sections, which were produced from the 362 

opposite sides of the slices used for the elemental measurements. Therefore, it is not possible 363 

to use the individual lamina thickness chronologies to construct an age model for the Mg 364 

individual signals. Thus, the lamina thickness chronology was wiggle matched to the mean 365 

Mg curve. The laminae consist of a clear layer and brownish-pigmented layer. The clear layer 366 

corresponds to higher Mg concentration and the brownish pigmented to lower Mg 367 

concentration. The end of the brownish pigmented layer represents approximately the end of 368 

the flush in of humic particles. Therefore, this boundary for the laminae in the mean Mg 369 

record was set in the middle of the increasing slope of the cycle in the Mg concentration (Fig. 370 

11). The average shifting of the laminae boundaries was 44 µm (Fig. 11). Since both the 371 

lamina thickness and the Mg curve are based on five individual tracks, we consider the 372 

chronology of the resulting proxy time series as relatively robust. Since the resolution of the 373 

Mg curve is much higher than that of the lamina thickness series, the mean Mg concentration 374 
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of the individual years was calculated. This results in an annually resolved Mg time series 375 

(Fig. 12). 376 

The G/B ratio series of the UV-luminescence scanning analyses from the three tracks on Zoo-377 

rez-1 were wiggle matched in the same way as the Mg curves and a mean curve was 378 

calculated. Due to the lower resolution of 70 µm/pixel of the G/B ratios, Mn, and Y 379 

concentration series need to be interpolated on the scale of the G/B ratios to compare these 380 

series. 381 

 382 

5.3 Interpretation of the proxy signals in terms of past climate variability 383 

5.3.1 Elemental laminae 384 

Magnesium, Ba, and Sr concentration are significantly correlated with each other (Table 3) 385 

and also form a group in PCA (Fig. 6). The Mg, Ba, and Sr content of Zoo-rez is higher in 386 

spring and summer (drier conditions, clear laminae) and lower in autumn and winter (wetter 387 

conditions, brownish laminae). This is probably induced by prior calcite precipitation (Treble 388 

et al., 2003; Smith et al., 2009) occurring in air filled pockets and cavities in the aquifer above 389 

the cave. PCP increases the Mg, Sr, and Ba content of the drip water and, hence, in 390 

speleothem calcite (Fairchild et al., 2006). The occurrence of air filled cavities and pockets in 391 

the karst aquifer is most pronounced in the summer season, which results in increased PCP 392 

(Wassenburg et al., 2012). Therefore, Mg, Ba, and Sr concentration is a proxy for recharge of 393 

the karst aquifer and directly linked to precipitation. These three elements, thus, reflect the 394 

annual cycle of infiltration with higher amounts of infiltration during autumn and winter and 395 

lower infiltration in spring and summer. During spring and summer, evapotranspiration 396 

reduces the amount of infiltrating rain water (Wackerbarth et al., 2010; Mischel et al., 2015). 397 

Magnesium and Sr concentration were also determined for a small section of another 398 

stalagmite from Zoolithencave by Wurth (2002). The results show a higher Mg and Sr content 399 

of the clear layers and a lower content of the brownish layers. The brownish layers probably 400 

result from a flush of organic material into the cave during autumn (Huang et al., 2001; 401 

Sundqvist et al., 2005) when the recharge of the aquifer increases after the summer, which is 402 

characterised by strong evapotranspiration (Mischel et al., 2015). 403 

The second group identified by the PCA consists of Al, Mn, P, and Y. An exception is Zoo-404 

rez-2, where Al and Mn as well as P and Y form two different groups (Fig. 6d). Phosphorus 405 

and Y are interpreted as proxies for vegetation density and soil activity (Treble et al., 2003; 406 
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Borsato et al., 2007; Wassenburg et al., 2012). Therefore, their concentration should be 407 

elevated in the brownish layers reflecting increasing recharge. Yttrium and P are positively 408 

correlated in all tracks (Table 3), supporting this interpretation. For track Zoo-rez-2, a 409 

negative correlation between Mg and Y is observed (Table 3 and Fig. 13) (cf., Mattey et al., 410 

2008). For the others tracks, this relationship is only observed for some sections. This is 411 

probably a result of detrital contamination, which is also visible in the positive correlations of 412 

P and Y with Al and Mn (Wassenburg et al., 2012) as well as in the grouping of these 413 

elements in the PCA (Fig. 6), because Al and Mn are proxies for detrital material. In Zoo-rez-414 

2, only a low correlation of P and Y with Al and Mn is observed (Fig. 6d), suggesting that 415 

Zoo-rez-2 contains less detrital material. This is supported by the observed lowest amounts of 416 

Al and Mn of all tracks. Therefore, P and Y cannot be considered as pure proxies for soil 417 

activity/precipitation, but also for detrital input. However, the detrital input seams not to be 418 

regular as the input of humic particles. This is determined by the results of the fluorescence 419 

microscopy, where the brownish pigmented layers show a stronger UV-luminescence (Fig. 420 

4b). In the case of detrital input during the flushing phase of the year the brownish-pigmented 421 

layers should not show a strong luminescence, because the detrital material appears dark in 422 

the UV-luminescence. Furthermore, Mn and Al do not show a seasonal cyclicity, but show 423 

very high concentrations in the detrital rich sections at approximately 2 and 15 mm dft 424 

confirming their association with detrital material. 425 

Magnesium shows the strongest seasonal cyclicity and is interpret as a proxy for the seasonal 426 

recharge cycle. Therefore, we averaged the Mg concentration for each year by wiggle 427 

matching the visible annual laminae to the Mg (see section 5.2). The resulting annually 428 

resolved Mg series from 1839 to 1970 AD shows a positive correlation of r = 0.22 (p < 0.05) 429 

with the lamina thickness chronology (Fig. 12). This correlation is not only due to the same 430 

long-term trend, but also the year to year variability especially in the 20th century show a 431 

correlation of r = 0.26 (p < 0.05) after detrending with a 10 point FFT (Fast Fourier 432 

Transformation) filter. Since lamina thickness is also interpreted as a proxy for precipitation 433 

(see section 5.3.3), this positive correlation is surprising, in particular as the annual Mg cycle 434 

shows a negative correlation to infiltration. However, this positive correlation may be 435 

explained as follows: Higher rainfall may induce more active vegetation, which results in 436 

higher soil pCO2 (Harper et al., 2005; Wassenburg et al., 2012; Borsato et al., 2015). This 437 

CO2 is dissolved in the seeping water and may result in an increased dissolution of the 438 

hostrock, which in the case of Zoolithencave consist of dolomite. Due to more dissolved ions 439 
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in the drip water and as well still air filled cavities, more PCP takes place. This results in an 440 

increase of both the total amount dissolved Ca2+ ions and the Mg/Ca ratio of the drip water. 441 

Consequently, during years of higher rainfall, both growth rate and the annual Mg content of 442 

the speleothem should increase (Wassenburg et al., 2012). Thus, both growth rate and mean 443 

annual Mg concentration should be proxies for past precipitation. The opposite interpretation 444 

of the Mg concentration on the seasonal and annual time-scale highlights the complexity of 445 

trace element signals in speleothems. A similar phenomenon was also detected by Treble et 446 

al. (2003) for Sr.   447 

 448 

5.3.2 UV-luminescence 449 

Luminescence in speleothems induced by UV-light has been associated due to humic and 450 

fulvic acids, which are transported from the soil zone into the cave via the drip water 451 

(McGarry and Baker, 2000; van Beynen et al., 2001; Shopov, 2003). In the UV-microscopy 452 

picture, it is obvious that the brownish layers are luminescent, which is due to their higher 453 

content of humic and fulvic acids originating from the soil. These layers are formed during 454 

autumn and winter, when the organic material produced during the vegetation period is 455 

flushed into the cave (Sundqvist et al., 2005; Orland et al., 2012). 456 

The G/B ratios taken with the Aavatech core scanner have been interpreted as reflecting the 457 

amount of humic acids in corals (Grove et al., 2010). This relationship should generally be 458 

also valid for speleothems. Since, Y and P are elevated in the brownish layers (Borsato et al., 459 

2007), a positive correlation between the G/B ratio and these elements should occur. Indeed, 460 

Y has been associated with fluorescent laminae in speleothems (Fairchild et al., 2010). This is 461 

not the case for the three Zoo-rez stalagmites. The reason for this observation is the inclusion 462 

of detrital material in all stalagmites, which shows no or only very low UV-luminescence. 463 

This is obvious in the comparison of the G/B ratio with the content of Mn and Y (Fig. 13). 464 

The G/B ratio is low when Mn and, therefore, the content of detrital material is high. In some 465 

sections Y is positively correlated with the G/B ratio. However, in other sections, containing 466 

more detrital material (which may also contain Y), a negative correlation is observed to the 467 

G/B ratio. In this case, the humic acid signal in the G/B ratio is overprinted by detrital 468 

material. Similarly, the long-term decreasing trend in the G/B ratios of the three Zoo-rez 469 

stalagmites results from the higher amount of detrital material in the top sections of the 470 

stalagmites and cannot be used as a proxy for past precipitation. In summary, the G/B ratio 471 

Clim. Past Discuss., doi:10.5194/cp-2016-18, 2016
Manuscript under review for journal Clim. Past
Published: 15 February 2016
c© Author(s) 2016. CC-BY 3.0 License.



 

16 

 

appears to be not appropriate to detect changes in humic acid content of these speleothems, 472 

which contain – at least in some parts – relatively high amounts of detrital material. 473 

Furthermore, as discussed previously, the resolution of 70 µm/pixel makes it impossible to 474 

detect thinner (i.e., with a thickness < 140 µm) annual laminae. 475 

 476 

5.3.3 Lamina thickness 477 

We interpret annual lamina thickness as a proxy for past precipitation. Thus, we correlated the 478 

lamina thickness series to instrumental data from the meteorological station Bamberg 479 

(www.dwd.de), which provides data from 1949 AD to present. Since stalagmite Zoo-rez 480 

stopped growing in 1970 AD, only 22 years of overlapping proxy and instrumental data are 481 

available. We found no significant correlation between lamina thickness and surface 482 

temperature, neither for the annual mean nor for individual months. In contrast, a positive, but 483 

insignificant correlation (r = 0.33; p > 0.05; N = 22) between lamina thickness and annual 484 

precipitation was found, as has been reported in other studies (Genty and Quinif, 1996; 485 

Proctor et al., 2000). In order to test for a better correlation, the lamina thickness chronology 486 

was shifted along the precipitation time series (both back in time and up to 1999 AD, the year 487 

when the stalagmites were sampled). The maximum correlation was found, assuming a 488 

cessation of stalagmite growth in 1970 AD. This is in good agreement with the dating results 489 

(see section 5.1). A probable reason for the three stalagmites to stop growing in 1970 could be 490 

that further exploration of the deeper parts of the cave started in 1971. Furthermore, the 491 

correlation between precipitation of all individual months of the previous, the current, and the 492 

next year and lamina thickness was calculated (cf., Tan et al., 2006). In addition, different 493 

seasons were compiled to check whether the correlation increases. This is a standard approach 494 

in tree-ring research (e.g., Treydte et al., 2001; Buentgen et al., 2005; Wilson et al., 2005; 495 

Konter et al., 2014). The highest correlation for an individual month (r = 0.64; p < 0.001) is 496 

observed for December of the current year and r = 0.57 (p < 0.01) is observed for the season 497 

of previous December and current January, February, March, April, May, and December 498 

(DJFMAMD). Most probably the clear layer is formed during January to May and the 499 

brownish layer during December. This would also explain the contribution of the previous 500 

December, because the boundary from the brownish to the clear layer is not sharp (Fig. 4a) 501 

and could be not exactly at the end of one year. This shows that stalagmite growth is 502 

dominated by the winter season as expected from the higher amount of recharge during winter 503 
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(Wackerbarth et al., 2010; Mischel et al., 2015). Furthermore, this proves that the upper limit 504 

of the brownish, pigmented layers corresponds to the end of the year.  505 

These results provide the background in order to reconstruct past precipitation further back in 506 

time using lamina thickness in speleothems from Zoolithencave. A comparison of the sum of 507 

precipitation during DJFMAMD and the lamina thickness series with a precipitation 508 

reconstruction based on tree-ring width in the Bavarian forest (Wilson et al., 2005) shows a 509 

similar pattern (Fig. 15) further supporting that lamina thickness reflects past precipitation 510 

variability. Note that the tree-ring width reconstruction is for spring and summer months 511 

(March, April, May, June, July, and August; MAMJJA) and, thus, a different season than our 512 

record. 513 

 514 

6 Conclusions 515 

1. The arrangement of the three Zoo-rez stalagmites grew from 1800 to 1970 AD, which 516 

is supported by the detection of the 14C bomb peak, 14C-dating of a charcoal piece 517 

below the stalagmite, and lamina counting.  518 

2. The three stalagmites show three types of annual laminae: visible, UV-luminescent, 519 

and elemental laminae.  520 

3. Visible laminae consist of a clear and a brownish pigmented layer pair. Measurements 521 

of lamina thickness along five tracks on the three stalagmites results in a cross-dated 522 

lamina thickness chronology, which is a proxy for winter and spring (DJFMAMD) 523 

precipitation.  524 

4. UV-luminescent laminae correspond to the brownish pigmented layers. Using UV-525 

luminescence scanning, the annual laminae could not be detected due to the minimum 526 

resolution of 70 µm/pixel. 527 

5. Elemental laminae are clearly visible in Mg, Ba, and Sr, and are strongest for Mg. All 528 

three elements are influenced by PCP, which is higher during spring and summer and 529 

lower during autumn and winter. 530 

6. Yttrium and P content are higher in the brownish pigmented layers and induced by an 531 

annual flush of humic and fulvic acids, when infiltration increases. Both elements are 532 

also incorporated in association with detrital material. Thus, Y and P are no clear 533 

precipitation proxies. Manganese and Al are associated with detrital material. 534 
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7. A mean curve of the Mg content of all tracks was wiggle matched to the lamina 535 

thickness chronology resulting in an annual Mg time series. This correlates positively 536 

with the lamina thickness chronology and is also influenced by PCP, which is higher 537 

in years with more precipitation due to more active vegetation and therefore, more 538 

hostrock dissolution. 539 

8. These results highlights the potential of annually laminated speleothems from 540 

Zoolithencave for reconstruction of past precipitation variability.  541 
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Table 1. Results of 230Th/U-dating. All errors are given at the 2-level. 847 

Sample dft 238U 

[µg/g] 

234/238U 230Th/238U 230/232Th Age uncorr. 

[ka] 

Age 

corr. 

[ka] 

Zoo-

rez-1-o 

0.1-0.6  

cm 

0.0351  

±0.0002 

1.1686 

±0.0046 

0.0695 

±0.0016 

2.6 ±0.1 6.6822 

±0.1629 

4.6699 

±0.9998 

Zoo-

rez-1-u 

1.2-1.7  

cm  

0.0233 

±0.0001 

1.1881 

±0.0052 

0.0639 

±0.0031 

0.9 ±0.04 6.0255 

±0.2985 

0.3402 

+3.3143 

-0.2947 

 848 

 849 

 850 

 851 

 852 

 853 

 854 

 855 

 856 

 857 

 858 

 859 

 860 

 861 

 862 

 863 

 864 
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Table 2. Results of 14C-dating of charcoal and carbonate. 865 

Sample Age [a] refer to 

1950 AD 

13C [‰] 14C-activity 

[pmC] 

Cal 1

Zoo-rez-1,  

0.8 mm dft 

-1,440 ± 22 -10.5 ± 0.3 119.6287  

± 0.32494 

 

Zoo-rez-1,  

2.2 mm dft 

-527 ± 22 -8.6 ± 0.3 106.7865  

± 0.297579 

 

Zoo-rez-1, 

6.9 mm dft 

740 ± 24 -7,4 ± 0.3 91.19406 

± 0.275865 

 

Zoo-rez-2, 

charcoal 

165 ± 21 -23.0 ± 2  AD 1671-1951 

 866 

 867 

 868 

 869 

 870 

 871 

 872 

 873 

 874 

 875 

 876 

 877 

 878 

 879 

 880 
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Table 3. Correlation coefficients calculated between the different elemental concentrations of 881 

the individual tracks. a) Zoo-rez-1.1, b) Zoo-rez-1.2, c) Zoo-rez-1.3, d) Zoo-rez-2, e) Zoo-rez-882 

3. Correlation coefficients, r > 0.25 are marked in green, r > 0.5 in orange, and r > 0.7 in red. 883 

Negative correlation coefficients, r < -0.3 are marked in blue. All coloured correlations have p 884 

values < 0.001.  885 

a) Mg Al P Mn Sr Y 

Mg       

Al 0.10      

P 0.07 0.25     

Mn 0.22 0.45 0.47    

Sr 0.19 0.03 -0.01 0.14   

Y -0.13 0.24 0.32 0.44 0.01  

Ba 0.32 0.05 0.04 0.14 0.30 0.06 

 886 

b) Mg Al P Mn Sr Y 

Mg       

Al 0.12      

P 0.14 0.21     

Mn 0.18 0.31 0.65    

Sr 0.16 -0.01 -0.03 0.02   

Y 0.07 0.07 0.52 0.51 0.07  

Ba 0.19 0.02 0.04 0.06 0.18 0.10 

 887 

c) Mg Al P Mn Sr Y 

Mg       

Al 0.22      

P 0.12 0.26     

Mn 0.23 0.45 0.78    

Sr 0.19 0.02 -0.01 0.02   

Y 0.02 0.26 0.68 0.72 0.04  

Ba 0.35 0.07 0.12 0.17 0.27 0.16 

 888 

d) Mg Al P Mn Sr Y 

Mg       

Al 0.09      

P -0.09 0.23     

Mn 0.18 0.26 0.28    

Sr 0.33 0.01 -0.07 0.03   

Y -0.46 0.06 0.47 -0.02 -0.17  

Ba 0.63 0.17 0.09 0.13 0.40 -0.10 

 889 

e) Mg Al P Mn Sr Y 

Mg       

Al 0.10      

P 0.09 0.13     

Mn 0.14 0.24 0.34    

Sr 0.17 -0.03 -0.03 0.05   

Y -0.12 0.09 0.45 0.22 -0.06  

Ba 0.51 0.08 0.21 0.24 0.18 0.11 
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 890 

Figure 1. Map of the Upper Jurassic containing marl, limestone, and dolomite (modified after 891 

Groiß, 1988). The location of Zoolithencave is indicated by the red star. Location of the 892 

region is marked in the map of Central Europe in the upper left.  893 
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 902 

Figure 2. Map of Zoolithencave with the sampling site of Zoo-rez indicated (modified after 903 

Dreyer, 2000). 904 
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 910 

Figure 3. Pictures of the sampling slices of Zoo-rez-1 (a), Zoo-rez-2 (b), and Zoo-rez-3 (c) 911 

subsequent to cutting. The laser ablation tracks (labelled 1.1, 1.2, 1.3, 2.1, and 3.1, 912 

respectively), the sampling positions for 14C bomb peak detection as well as 230Th/U-dating, 913 

and the charcoal used for 14C-dating are indicated. 914 
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 931 

Figure 4. a) Visible laminae in Zoo-rez. Which is present as layer pairs consisting of a clear 932 

and a brownish pigmented layer. b) Fluorescence is stronger for the brownish pigmented 933 

layers than for the clear layers. 934 
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 958 

Figure 5. 14C-activity determined for three samples from the top section of Zoo-rez-1 (at 0.8, 959 

2.2, and 6.9 mm dft, respectively) compared with the atmospheric bomb peak (Hua et al., 960 

2013).  961 
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 974 

Figure 6. Results of PCA of the element data for the five different tracks. Zoo-rez-1.1 (a), 975 

Zoo-rez-1.2 (b), Zoo-rez-1.3 (c), Zoo-rez-2 (d), and Zoo-rez-3 (e). 976 
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 978 

Figure 7. Compilation of Mg, Ba, and Sr (a), Y and P (b), and Al and Mn (c) concentrations in 979 

Zoo-rez-1.1 in section 5000 to 10,000 µm dft. The same patterns are observed for Zoo-rez-980 

1.2, 1.3, 2, and 3. 981 
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 982 

Figure 8. Wavelet analysis of the Mg concentration of the five tracks: Zoo-rez-1.1 (a), Zoo-983 

rez-1.2 (b), Zoo-rez-1.3 (c), Zoo-rez-2 (d), and Zoo-rez-3 (e). 984 
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 992 

Figure 9. Mean lamina thickness chronology of all five tracks measured on stalagmite Zoo-993 

rez. 994 
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 1008 

Figure 10. Mg concentration along the five individual tracks on stalagmite Zoo-rez in the 1009 

section 0 to 4000 µm dft before (a) and after (b) wiggle matching. 1010 
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 1014 

Figure 11. Mean curve of Mg concentration compared with both the matched (red lines) and 1015 

the measured (green lines) lamina thickness series for the section between 4000 and 8000 µm 1016 

dft. The boundaries of the lamina were matched to the increase (from bottom to top of the 1017 

stalagmite) of the Mg concentration. 1018 
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 1025 

Figure 12. Comparison of lamina thickness and mean annual Mg concentration. The 1026 

correlation coefficient is r = 0.22. The straight lines represent linear fits of the time series. 1027 
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 1041 

Figure 13. Evolution of Mg and Y on track Zoo-rez-2 between 8000 and16,000 µm dft.  1042 
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 1057 

Figure 14. Comparison of the G/B ratio with the content of Y and Mn for track Zoo-rez-3.  1058 
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 1073 

Figure 15. Comparison of the sum of the amount of precipitation during previous December, 1074 

January, February, March, April, May and December (DJFMAMD) at the meteorological 1075 

station Bamberg (DWD), a precipitation reconstruction for March, April, Mai, June, July, and 1076 

August (MAMJJA) based on tree-ring width (Wilson et al., 2005) and the lamina thickness 1077 

chronology of Zoo-rez.  1078 
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