1	Sedimentary record from the Canada Basin, Arctic Ocean:
2	implications for late to middle Pleistocene glacial history
3	Linsen Dong ^{a,b} , Yanguang Liu ^{a,b} , Xuefa Shi ^{a,b,*} , Leonid Polyak ^c , Yuanhui Huang ^{a,b} , Xisheng Fang ^a ,
4	Jianxing Liu ^{a,b} , Jianjun Zou ^{a,b} , Kunshan Wang ^{a,b} , Fuqiang Sun ^a , Xuchen Wang ^d
5	^a Key Laboratory of Marine Sedimentology and Environmental Geology, First Institute of Oceanography, State
6	Oceanic Administration, Qingdao, 266061, China
7	^b Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 26
8	6061, China
9	^c Byrd Polar and Climate Research Center, The Ohio State University, 43210, USA
10	^d Key Laboratory of Marine Chemistry Theory and Technology, Ocean University of China, Qingdao, 266100,
11	China
12	
13	*Corresponding author.Tel./fax:+86 532 88967491
14	E-mail address: <u>xfshi@fio.org.cn</u> (X.Shi)
15	
16	Abstract: Sediment core ARC4–BN05 collected from the Canada Basin, Arctic
17	Ocean, covers the late to middle Quaternary (Marine Isotope Stages (MIS) 1-15, ca.
18	0.5-0.6 Ma) as estimated by correlation to earlier proposed Arctic Ocean
19	stratigraphies and AMS ¹⁴ C dating of the youngest sediments. Detailed examination of
20	clay and bulk mineralogy along with grain size, content of Ca and Mn, and planktic
21	foraminiferal numbers in core ARC4–BN05 provides important new information

22	about sedimentary environments and provenance. We use increased contents of coarse
23	debris as an indicator of glacier collapse events at the margins of the western Arctic
24	Ocean, and identify the provenance of these events from mineralogical composition.
25	Notably, peaks of dolomite debris, including large dropstones, track the Laurentide
26	Ice Sheet (LIS) discharge events to the Arctic Ocean. Major LIS inputs occurred
27	during the stratigraphic intervals estimated as MIS 3, intra-MIS 5 and 7 events, MIS 8,
28	and MIS 10. Inputs from the East Siberian Ice Sheet (ESIS) are inferred from peaks of
29	smectite, kaolinite, and chlorite associated with coarse sediment. Major ESIS
30	sedimentary events occurred in the intervals estimated as MIS 4, MIS 6 and MIS 12.
31	Differences in LIS vs. ESIS inputs can be explained by ice-sheet configurations at
32	different sea levels, sediment delivery mechanisms (iceberg rafting, suspension
33	plumes, and debris flows), and surface circulation. A long-term change in the pattern
34	of sediment inputs, with an apparent step change near the estimated MIS 7/8 boundary
35	(ca. 0.25 Ma), presumably indicates an overall glacial expansion at the western Arctic
36	margins, especially in North America.

Keywords: Sediment core, Pleistocene, western Arctic Ocean, clay minerals, bulk
minerals, sediment provenance, Laurentide Ice Sheet, East Siberian Ice Sheet

1. Introduction

42 The advances and decays of continental ice sheets play a significant role in the43 alteration of global climatic system, such as changing atmospheric circulations,

creating large area albedo anomalies and regulating the global sea level fluctuations
(Clark et al., 1990). Reconstruction of the history of ice sheets is therefore important
not only for a better understanding of feedbacks of the future climate change and its
impact on regional climates, but also for getting insights into the mechanisms of
abrupt climate change.

49	Studies of Pleistocene glaciations around the Arctic Ocean dealt mostly with the
50	late Quaternary history of the Eurasian Ice Sheet during Marine Isotope Stages (MIS)
51	1-6 (e.g., Svendsen et al.,2004;Larsen et al.,2006) or the Laurentide Ice Sheet (LIS)
52	with a special attention to the Last Glacial Maximum (LGM)(e.g. Dyke et al.,2002;
53	England et al., 2009). In addition to terrestrial data, studies of sediment cores from the
54	Arctic Ocean are critical for comprehending the history of glacial advances and
55	retreats (e.g., Polyak et al., 2004; 2009; Spielhagen et al., 2004; Stein et al., 2012;
56	Kaparulina et al., 2015). However, the long-term history of circum-Arctic glaciations
57	is still poorly understood, especially with respect to the western Arctic including the
58	North America and East Siberia. A major impact of the North American ice sheets on
59	circulation and depositional environments in the Arctic Ocean is indicated by various
60	marine and terrestrial data (e.g., Phillips and Grantz, 2001; Stokes et al., 2005),
61	whereas, the East Siberian Ice Sheet (ESIS) remained largely hypothetical until
62	recently. While terrestrial data are limited and remain to be better investigated
63	(Grosswald, 1989; Basilyan et al., 2010; Ivanova, 2012), seafloor mapping data now
64	provide ample evidence for the existence of considerable ice masses on the East
65	Siberian margin (Niessen et al., 2013; Dove et al., 2014; Jakobsson et al., 2014, 2016),

66	but the timing and extent of these glaciations is virtually unknown. Marine
67	sedimentary records from the Arctic Ocean adjacent to the East Siberian margin could
68	add valuable information to this intriguing paleoglaciological problem.
69	In this paper, we present a multiproxy study of glacial-interglacial changes
70	during the late to middle Pleistocene based on sediment core ARC4-BN05 from the
71	Canada Basin north of the Chukchi Plateau and east of the Mendeleev Ridge (Fig. 1).
72	This location can be affected by the two main Arctic Ocean circulation systems, the
73	Beaufort Gyre and the Transpolar Drift, which carry sea ice, icebergs, and sediment
74	discharge from the North America and Siberia, respectively. As this circulation along
75	with sedimentary environments and sources varied greatly during the Pleistocene
76	climate cycles, resulting variations in sediment delivery and deposition make for a
77	valuable paleoclimatic record for the western Arctic. Biogenic proxies (such as
78	foraminifers) have uneven and overall limited distribution in Arctic Ocean sediments,
79	while the terrigenous component provides a more consistent material for
80	paleoceanographic studies (e.g.Stein, 2008; Polyak et al., 2009). As sediments in the
81	Arctic Ocean are primarily transported by sea ice and/or icebergs during glacial
82	events, sediment composition yields important information not only on the
83	provenance and transport pathways, but also on the attendant glacial and
84	paleoclimatic history (e.g. Spielhagen et al., 1997; Vogt et al., 2001;Knies et al.,
85	2001).By using clay and bulk mineralogy, along with grain size and the content of
86	major elements Ca and Mn, we reconstruct depositional environments and sediment
87	provenance to provide clues to the history of western Arctic ice sheets and their

88 interaction with the Arctic Ocean.

89

90 2. Regional background

91	The Arctic Ocean is surrounded by land masses composed of an assortment of
92	lithologies and situated in a variety of climatic, tectonic, and physiographic settings.
93	Figure 1depicts a schematic geological map showing the main terrains and associated
94	lithologies (Fagel et al., 2014). The West Siberian Basin and East Siberian platform of
95	the Eurasian continent are mainly composed of terrigenous sediment (Fagel et
96	al.,2014). The Siberian (Putorana) traps constitute one of the largest flood basalts in
97	the world (Sharma et al., 1992). The western Okhotsk - Chukotsk volcanic belt
98	contains acidic to intermediate rocks, whereas intermediate to basic rocks are more
99	characteristic of the eastern side (Viscosi-Shirley et al., 2003). The Kara Plate and the
100	Taymyr foldbelt, as well as the Ural and Novaya Zemlya foldbelt are mainly
101	composed of intrusive and metamoprhic rocks (Fagel et al., 2014).
102	The geology of outcropping terraines of Alaska mainly includes
103	Canadian-Alaskan Cordillera, Brooks Range, and part of the Northern-American
104	platform containing mostly intrusive, metamoprhic, and some clastic rocks (Fagel et
105	al., 2014). The outcrops of the Canadian Arctic Archipelago are mainly composed of
106	carbonate and clastic rocks (Phillips and Grantz, 2001; Fagel et al., 2014), whereas
107	intrusive and clastic rocks are mostly characteristic for Greenland (Fagel et al., 2014).
108	Dissolved and suspended matter is transported to the Arctic Ocean by
109	voluminous rivers, with the Lena and Mackenzie Rivers being the largest on the

110	Siberian and North American side, respectively, both directly affecting the western
111	Arctic Ocean. The transported material is further distributed across the Arctic Ocean
112	in water and/or ice by currents. The two main surface, wind-driven circulation
113	systems are the clockwise Beaufort Gyre (BG) in the western Arctic and the
114	Transpolar Drift (TPD) that carries water and ice from the Siberian margin to the
115	Norwegian-Greenland Sea (e.g., Rudels, 2009). The strength and trajectories of these
116	current systems may vary depending on changes in atmospheric pressure fields known
117	as the Arctic Oscillation (Rigor et al., 2002).
118	Sedimentation in the Arctic Ocean is strongly controlled by sea ice that acts as
119	sediment carrier, but can also suppress sediment deposition under thick and persistent
120	ice cover (Darby et al., 2006; Polyak et al., 2009). During glacial/deglacial events,
121	multiple icebergs discharged into the Arctic Ocean from the termini of marine-based
122	ice sheets and strongly affected sediment dispersal and deposition (e.g., Spielhagen et
123	al., 2004; Polyak et al., 2009). Fine-grained sediments can also be transported by
124	subsurface and deep-water currents, such as the Atlantic water (Winkler et al., 2002),
125	but their role in the overall Arctic Ocean sedimentation is not well understood.
126	[Figure 1]
127	
128	3. Materials and methods
129	Gravity core ARC4-BN05 (referred hereafter as BN05) was collected from the

m water depth) (Figs. 1, 2) on the fourth Chinese National Arctic Research Expedition

130

6

Canada Basin in the vicinity of the Mendeleev Ridge(80°29.04'N, 161°27.90'W, 3156

132	(CHINARE-IV) in 2009. The BN05 site was chosen in a close proximity to earlier
133	investigated cores FL224 and PS72/392-5 (Clark et al., 1980; Stein et al., 2010a) to
134	enable robust correlation with the established stratigraphies. A total of 119 samples
135	were taken at 2-cm intervals over the 238-cm BN05 length, and kept frozen until
136	analyzed.
137	[Figure 2]
138	For age constraint within the radiocarbon range, Accelerator Mass
139	Spectrometry ¹⁴ C dating was performed on 1000–1200 tests of planktic foraminifers
140	<i>Neogloboquadrina pachyderma</i> sin. (>63 μ m) from core depths at 4-6, 8-10, 18-20
141	and 22-24 cm, using the NOSAMS facilities at Woods Hole Oceanographic
142	Institution.
143	For grain-size analysis, ~2-g sediment samples were successively treated with
144	15 ml 15% H ₂ O ₂ , 5 ml 3mol/L HCl, and 20 ml 1mol/L Na ₂ CO ₃ for removing organic
145	matter, biogenic carbonates, and biogenic silica, respectively. Grain size
146	measurements in the range of 0.02 to 2000 μ m were performed on a Malvern
147	Mastersize laser particle sizer (Mastersizer 2000) at the First Institute of
148	Oceanography, SOA, China.
149	Coarse sediment >63 μ m was sieved from ~10–15 g samples and counted under
150	the microscope for foraminiferal and mineral grain numbers; planktonic foraminiferal
151	amounts were expressed as percent of the total grain numbers (at least 300 grains per
152	sample counted).
153	Concentrations of major elements, such as Ca and Mn, were determined on point

154	samples by ICP-OES (iCAP6300) at the First Institute of Oceanography, SOA, China,
155	following the standard procedures. For a more detailed downcore distribution, relative
156	elemental abundances were obtained at 1 cm resolution using the Itrax XRF core
157	scanner at the Polar Research Institute of China, setting at 20 s count times, 10 kV
158	X-ray voltage and an X-ray current of 20 mA. A good match of the ICP-OES and
159	Itrax XRF data (Fig. 3) verifies the consistency of results. To account for the dilution
160	effects on the background sedimentation, such as by coarse debris and biogenic
161	processes, element contents were normalized to Al (e.g., März et al., 2011).
162	Color reflectance was measured using a hand-held MinoltaCM-2002
163	spectrofotometer at 1 cm intervals. Only the grayscale lightness index (L*) is used in
164	this paper.
165	A total of 60 2-cm-thick samples were collected at 4-cm interval for
166	paleomagnetic measurements performed at the Paleomagnetism and Geochronology
167	Laboratory of the Institute of Geology and Geophysics, Chinese Academy of Science.
168	Magnetic susceptibility was measured using the KLY-4s Kappabridge instrument.
169	Subsequently, stepwise alternating field (AF) demagnetization of natural remanent
170	magnetization (NRM) was conducted using the 2-G Enterprises Model 760-R
171	cryogenic magnetometer (2G760) installed in a magnetically shielded (<300 nT)
172	space. AF demagnetization steps of 5-10 mT were used up to a maximum AF of 100
173	mT.
174	For bulk sediment mineralogy~5-g samples were dried, pulverized, passed
175	through a $63\mu m$ sieve, and loaded into aluminum holders. Samples were X-rayed

176	from 5 to 65° 2 θ with Cu K-alpha radiation (40 kV, 100 mA) using a step size of
177	$0.02^{\circ} 2 \theta$ and a counting time of 2 s per step on a D/max-2500 diffractometer (XRD)
178	equipped with a graphite monochromator with 1° slits in the laboratory of the First
179	Institute of Oceanography, SOA, China. Prior to the analysis, instrument was blank
180	corrected and all samples were measured under the same conditions. Peak areas were
181	estimated from XRD traces using Jade6.0 software, and semi-quantitative estimates of
182	bulk mineral percentages were calculated following Cook (1975) (Table1).
183	Samples for clay minerals determination (~5g) were first treated with H_2O_2 (10%)
184	and HCl (1mol /L) to oxidize the organic matter and remove biogenic carbonates,
185	respectively. Clay fractions (<2 μ m) were obtained by the Atterberg settling tubes
186	method according to Stoke's Law. Each sample was transferred to two slides by wet
187	smearing. Samples were then air-dried prior to XRD analysis. One sample slide was
188	air dried at 60 °C for 2 h and analyzed. The second sample was solvated with ethylene
189	glycol in an underpressured desiccator for at least 24 h at 60 °C. Every
190	ethylene-glycol solvated sample was measured twice: the first scanning was done
191	from 3° to 30° 20 with a step size of 0.02°, and the second scanning from 24° to 26°
192	2θ with a 0.01° step. The latter was run as a slow scan to distinguish the 3.54/3.58 Å
193	kaolinite/chlorite double peak. Clay minerals were also identified by X-ray diffraction
194	(XRD) using a D/max-2500 diffractometer with CuK α radiation (40 kV and 100 mA)
195	in the laboratory of the First Institute of Oceanography, SOA, China. Peak areas
196	representing the clay mineral groups were estimated from glycolated XRD traces
197	using the17 Å smectite, 10 Åillite, and 7 Åchlorite plus kaolinite peaks. Chlorite (004)

198	was identified at 3.54Å and kaolinite (002) at 3.58Å (Biscaye, 1964), respectively.
199	Semi-quantitative estimates of clay mineral percentages were calculated by means of
200	Biscaye's factors (1965).
201	To enhance the identification of potential contributions from various sediment
202	sources, and thus the interpretation of downcore proxy distributions, Principal
203	Component Analysis (PCA) was performed in MATLAB [MathWorks, 2014]. To
204	account for proxies potentially indicative of sediment provenance and depositional
205	processes and environments, PCA included all analyzed mineralogical proxies along
206	with main grain-size groups (clay, silt, fine to medium sand (63-250 μ m), and coarser
207	grains), Ca and Mn concentrations, and foraminiferal numbers (Table S1). A
208	combined use of various sedimentological and geochemical data gives informative
209	results in PCA application to paleoclimatic research, including studies of Arctic
210	marine sediments (Pelto, 2014; Simon et al., 2014). The choice of variables for PCA
211	performance was tested by Pearson correlation coefficients (Table S3).
212	
213	4. Results

214 **4.1 General stratigraphy**

As common for sediment cores from the Arctic Ocean (e.g., Jakobsson et al., 2000; Polyak et al., 2004, 2009; Spielhagen et al., 2004; Stein et al., 2010a, b), core 217 ARC4-BN05 displays distinct cycles in sediment color and composition expressed in 218 interlamination of dark brownish and lighter-colored grayish muds (silty clays, clay

219	silts and sandy silt), with coarser dropstones occurring in several layers. The color
220	cyclicity is approximated by changes in sediment lightness that largely mirrors the
221	content of Mn (Fig. 3), consistent with other studies from the Arctic Ocean (e.g.,
222	Jakobsson et al., 2000; Polyak et al., 2004; Löwemark et al., 2008; Adler et al., 2009).
223	We identify 18 distinctly brown units, from B1 to B18, characterized by elevated
224	content of Mn (Fig. 3). Another prominent lithostratigraphic feature in the western
225	Arctic Ocean, widely used for core correlation, is pink-white to whitish layers (PW)
226	rich in detrital carbonates (e.g., Clark et al., 1980; Polyak et al., 2009; Stein et al.,
227	2010a, b). We identify three major PW layers expressed both visually and in high Ca
228	content (Fig. 3).Lower Ca peaks occur throughout the record without being clearly
229	expressed in the core macroscopic appearance.
230	Foraminiferal abundances are generally high (mostly >50% of >63µm grains) in
231	brown units, except for B11-B13 and below B17-B18, and are very low to absent in
232	grey units. This pattern is consistent with foraminiferal stratigraphy reported in earlier
233	studies from the western Arctic Ocean (e.g., cores NP-26, HLY0503-JPC6 & 8,
234	P1-92AR-P23 &39: Polyak et al., 2004, 2013; Adler et al., 2009; Cronin et al., 2013;
235	Lazar and Polyak, 2016). While only planktic foraminifers have been counted, data
236	from correlative records indicate similar downcore variability in relative abundance of
237	benthic foraminifers.
238	[Figure 3]

4.2 AMS 14C dating

241	The measured AMS ¹⁴ C ages of core ARC4-BN05 were calibrated to calendar
242	ages based on calibration using CALIB 7.10 (http://calib.org/calib/calib.html) (Table
243	2). The reservoir corrections of 790 and 1400 years were applied to Holocene and
244	glacial-age samples, respectively, according to Coulthard et al. (2010) and Hanslik et
245	al. (2010).Same corrections have also been applied to ${}^{14}C$ ages in core 03M03 from
246	the Chukchi Abyssal Plain (Wang et al., 2013; see Fig. 2 for location).

4.3 Paleomagnetic stratigraphy

249	While detailed paleomagnetic investigation is not an objective of this paper, we
250	utilize the inclination data for an independent stratigraphic constraint in line with
251	earlier studies (e.g., Jakobsson et al., 2000; Spielhagen et al., 2004; Polyak et al.,
252	2009). Paleomagnetic inclination in core ARC4-BN05 shows mostly positive values
253	oscillating around $+70^{\circ}$ in the upper part of the core, with a major polarity change
254	occurring at \sim 120 cm (Fig.3). A similar inclination drop has been identified in
255	multiple sediment cores across the Arctic Ocean in the same stratigraphic position
256	within estimated MIS7, although the nature of this change in paleomagnetic
257	characteristics is not well understood (e.g., Jakobsson et al., 2000; Polyak et al., 2009;
258	Xuan and Channell, 2010).
259	Other paleomagnetic parameters, such as magnetic susceptibility (MS), can

260	provide additional correlation means (e.g., Sellén et al., 2010). Two prominent peaks
261	in MS occur in the intervals between units B7/B8 and B10/ B11(Fig. 3).
262	

4.4 Grain size and dropstones

264	Based on the results of grain-size analysis, sediment in core BN05 can be
265	generally classified as sandy, poorly sorted mud (e.g., Blott and Pye, 2012). Overall,
266	silt and clay predominate grain-size composition (33-60% and 23-61%, respectively),
267	but coarser particles also make a considerable contribution, with up to $>30\%$ peak
268	contents of sand (>63 μ m) (Fig. 4a). We note that 4 μ m was used as a cut-off size
269	between clay and silt to account for overestimation of fine sediment diameters by
270	laser diffraction, especially in the presence of platy particles (Beuselinck et al., 1998;
271	Ramaswamy and Rao, 2006). Coarse size fractions, from coarse silt to various sand
272	fractions (e.g., >63, >125, and >250 μ m) mostly co-vary downcore.
273	[Figure 4]
274	Grain size distribution is mostly polymodal with three distinct major modes
275	centered at ~4, 7-7.5, and 85-90 $\mu m,$ plus a smaller but consistent mode at ~400-450
276	μ m (Fig. 4b), which can be approximated by clay (<4 μ m), silt, and sand size
277	fractions, respectively. Mode 1 (4-µm) is overall most common in core BN05,
278	occurring mostly in combination with the fine- and/or coarse-sand mode, but also
279	forming very fine-grained intervals (e.g., at 37 cm, Fig. 4b). Mode 2 (7-7.5 $\mu m)$ is
280	common in the lower part of the core (below ~175 cm), where it mostly co-occurs

with mode 1 and coarse-grain tail, and also in distinct grey units around 30-40 and 281 90-100 cm in combination with the fine-sand mode 3 (e.g., 39 and 93 cm, Fig. 4b). 282 Several core intervals contain large rock fragments >5mm (dropstones). These 283 rock fragments are mostly poorly rounded, subangular to angular in shape. 284 Composition of sampled dropstones is illustrated in Fig. 4c. Most dropstones are 285 represented by dolomite and low metamorphic quartz sandstone fragments of up to 5 286 cm in diameter. Also found were individual dropstones composed of volcanic rock 287 and shale, as well as a few greisen dropstones near the base of the core. 288

289

290 **4.5 Sediment mineralogy**

291	The clay assemblage in samples from core ARC4-BN05 mainly consists of illite,
292	chlorite, kaolinite and smectite (Fig.5). The illite group is overall the major constituent
293	of the clay mineral fraction, ranging between 43% and 73%. Its downcore distribution
294	pattern is opposite to that of the three other major clay-mineral groups - kaolinite,
295	chlorite, and smectite (mostly present in very low contents). These three groups largely
296	co-vary except for some lithostratigraphic intervals, such as PW layers. Elevated
297	content of these clay minerals is characteristic for grayish sedimentary units.
298	[Figure 5]
299	The bulk mineral assemblage in core ARC4-BN05 mainly consists of quartz,
300	K-feldspar, plagioclase, calcite, dolomite and pyroxene (Fig. 5). Quartz is generally
301	the most abundant mineral ranging between 20% and 51% and typically peaking in

302	grayish sediment units. K-feldspar, plagioclase and pyroxene (mainly augitic) mostly
303	co-vary, with peaks in grey units in the upper part of the core, but more in brown units
304	in the lower part starting from unit B10. Calcite has a high content in brown units of
305	the upper part and much lower values below unit B9. Dolomite distribution shows
306	distinct peaks reaching up to 53%, with the highest peaks occurring in or adjacent to
307	the PW layers. Similar to other minerals, the pattern of dolomite distribution changes
308	around unit B10, with maxima in thick grey units below and in thin interlayers within
309	brown units above this stratigraphic level.

311 4.6 Principal Component Analysis

The first five Principal Components identified by PCA with a Varimax rotation

account for 77% of the total variance, with relatively evenly distributed

communalities (Table 3). This pattern presumably reflects a complexity of

315 multi-proxy variables characterizing sedimentary environments and provenance, and

their strong variability occurring over multiple climatic cycles. To further test the

317 PCA performance, we have also run a Factor Analysis with the Maximum Likelihood

extraction, which produced similar factor loadings and variance explained, thus

319	indicating	the robustness	of the results.
	<i>C</i>		

320

321

322 5. Discussion

5.1 Stratigraphic framework

324	As no single existing chronostratigraphic method can comprehensively constrain
325	the age of the Arctic Ocean Pleistocene sediments, the age model for core
326	ARC4-BN05 was developed by correlating multiple proxies (such as paleomagnetic,
327	foraminiferal, and lithological; see Figs. 3, 5), combined with ¹⁴ C ages in the youngest
328	part of the record, to earlier established Arctic Ocean stratigraphies (e.g., Adler et al.,
329	2009; Polyak et al., 2009, 2013; Stein et al., 2010a). Core PS72/392-5, raised very
330	close to ARC4-BN05 and investigated in much detail (Stein et al., 2010a), was used to
331	exemplify the correlation (Fig.6).
332	[Figure 6]
333	The two ¹⁴ C dates from the uppermost, 10-cm-thick brown sedimentary unit (B1)
334	in core ARC4-BN05 clearly identify its Holocene age (Table 2; Fig. 3). Compilations
335	of ¹⁴ C ages from the surficial and downcore sediments in the western Arctic Ocean
336	(Polyak et al., 2009; Xiao et al., 2014) indicate that the age of this unit extends from
337	~2-3 ka on top to ~10-11 ka at the bottom contact, although an accurate estimate is
338	impeded by the uncertainties with the reservoir ages.
339	Two ¹⁴ C dates of ca. 42-44 ka from the brown unit B2 (Table 2; Fig. 3)
340	apparently fall into MIS 3, consistent with earlier stratigraphic results (e.g., Polyak et
341	al., 2004, 2009; Adler et al., 2009; Stein et al., 2010a). These ages should be, however,
342	considered as crude estimates as they are close to the ¹⁴ C dating limit, and the age
343	distribution in B2 has common inversions (e.g., Polyak et al., 2009). In cores with
344	relatively elevated sedimentation rates this unit occurs as two distinct brown layers,

345	indicated in some papers as B2a and B2b (e.g., Stein et al., 2010a, b; Wang et al.,
346	2013). In core ARC4-BN05 this partitioning is less apparent due to low sedimentation
347	rates, but the brownish sediment on top of the coarse detrital carbonate peak PW/W3,
348	typically located between B2a and B2b, probably corresponds to B2a.
349	An abrupt increase in sediment age between closely spaced B1 and B2in core
350	ARC4-BN05 suggests a very condensed section or a hiatus between MIS1 and MIS3.
351	This age distribution is common for the western Arctic Ocean, and has been attributed
352	to very low to no sedimentation due to a very solid sea-ice cover or an ice shelf during
353	the Last Glacial Maximum in MIS2 (e.g. Polyak et al., 2009; Wang et al., 2013).
354	Below the range of 14 C ages the age model is based entirely on proxy
355	correlations with earlier developed Arctic Ocean stratigraphies (e.g., Fig.6). This
356	correlation is enabled by the cyclic nature of sediment lithology and attendant proxies,
357	where brown and grayish units generally correspond to interglacial (or major
358	interstadial) and glacial climatic intervals, respectively (e.g., Jakobsson et al., 2000;
359	Polyak et al., 2004, 2009; Adler et al., 2009; Stein et al., 2010a, b). In addition,
360	correlation tie points are provided by rare or unique events, such as prominent detrital
361	carbonate peaks (PW/W), major paleomagnetic inclination swings, and changes in
362	foraminiferal assemblages and abundance pattern.
363	According to this approach, we identify foraminiferal- and Mn-rich brown units
364	B3-B7 and B8-B10 as warm substages of MIS 5 and 7, respectively (Figs. 3,6). This
365	age assignment is corroborated by the prominent detrital carbonate peaks PW2 and 1
366	near the bottom of MIS5 and 7, respectively. Furthermore, the principal drop in

367	paleomagnetic inclination in core ARC4-BN05 occurs in the lower part of MIS7,
368	consistent with many cores from the Arctic Ocean (e.g., Jakobsson et al., 2000;
369	Spielhagen et al., 2004; Adler et al., 2009; Polyak et al., 2009). Solidly grayish,
370	foraminiferal- and Mn-poor unit separating brown units B2 and B3 is accordingly
371	considered as related to glacial MIS4, and a similar unit between B7 and $B8 - to$
372	MIS6. It is possible, however, that most of the fine-grained, greyish sediment was
373	deposited during deglaciations following the actual glacial intervals, which may have
374	been very compressed, similar to the LGM.
375	Stratigraphy below MIS7 has been less investigated in prior studies, and is more
376	difficult to address due to often less distinct units and scarce to absent foraminifers,
377	probably resulting from stronger dissolution (e.g., Lazar and Polyak, 2016). Therefore
378	the age model for the lower part of the core is more tentative. Nevertheless, a
379	prominent oldest foraminiferal peak in units B14-B15 (Fig. 3) allows us to identify
380	these units as MIS11 by comparison with other microfaunal records reported from the
381	western Arctic Ocean (e.g., Cronin et al., 2013; Polyak et al., 2013). While individual
382	species have not been counted in ARC4-BN05, predominant planktic foraminifers in
383	this peak are identifiable as Turborotalitaegelida, constituting a unique event in the
384	Arctic stratigraphy (see Cronin et al., 2013, 2014, for more detail).MIS13 and 15 have
385	been tentatively assigned to Units B17 and B18 underlying a prominent grey interval
386	attributed to MIS12. Overall, the record in core ARC4-BN05 is estimated to represent
387	the last ca. 0.5-0.6 Ma, that is, most of the middle to late Quaternary with an average
388	sedimentation rates of 4-5 mm/ka.

5.2 Depositional environments and sediment provenance

390	Distribution of various terrigenous components in Arctic sediment records
391	carries information on sediment sources and depositional environments, and thus
392	paleocirculation and changes in paleoclimatic conditions, such as connection to other
393	oceans and build-up/disintegration of ice sheets (e.g., Bischof and Darby, 1997;
394	Krylov et al., 2008; Polyak et al., 2009; Stein et al., 2010a, b; Yurco et al., 2010;
395	Fagel et al., 2014). We utilize the data on clay and bulk minerals along with the grain
396	size and total Ca and Mn distribution in core ARC4-BN05 to reconstruct changes in
397	glacial conditions and circulation in the western Arctic Ocean during several glacial
398	cycles extending to estimated ca. 0.5-0.6 Ma. In this work we capitalize on earlier
399	studies on the distribution of bulk and/or clay minerals in surface and downcore
400	Arctic Ocean sediments (e.g., Vogt, 1997; Stein, 2008; Krylov et al., 2014; Zou,
401	2016), corroborated by more targeted provenance proxies, such as radiogenic isotopes
402	(Fagel et al., 2014; Bazhenova et al., 2017), heavy minerals (Stein, 2008; Kaparulina
403	et al., 2015), composition of coarse debris (Bischof et al., 1996; Wang et al., 2013),
404	and iron-oxide grains (e.g., Bischof and Darby, 1997; Darby et al., 2002). To optimize
405	the PCA results for clarifying relationships between various sedimentary proxies, we
406	plotted the leading PC loading scores as biplots in the PC 1-2 and PC 3-4 space (Fig.
407	7a). These plots help to identify several sedimentary variable groups with high loadings
408	(>0.7 average) in at least one of the leading PCs. Group 1 consists of various proxies
409	characteristic of brown layers (primarily Mn, foraminifera, calcite, and clay, with an
410	apparent affinity to chlorite). The opposing Group 2 includes most clay minerals

411	except chlorite, with a proximity to sand and, to a lesser extent, silt size fractions.
412	Bulk mineralogy proxies are largely represented by the opposing groups 3 and 4.
413	Group 3 comprises feldspar, pyroxene, and more distant quartz and plagioclase.
414	Group 4 builds around dolomite that has high loading scores in both PC 3 and 4,
415	along with bulk Ca, and shows affinity to Kfsp/Plag and Qz/Fsp indices. In addition to
416	these groups revealed by the leading PC biplots, PC5 (10% variance) shows high
417	scores for sand and coarser sediment, with silt as the main opposing variable.
418	To gain insight into stratigraphic changes in sedimentary environments and
419	provenance, we plotted the distribution of the identified variable groups 1-4 using the
420	combined downcore scores of PC 1-2 and PC 3-4 (Fig. 7b). A combination of the PC
421	group composition and downcore variability provides useful guidance for interpreting
422	major sedimentary controls and their stratigraphic evolution.

423 [Figure 7]

424 5.2.1 Grain size and depositional processes

A variable, mostly multimodal distribution of grain size in core BN05 indicates multiple controls on sediment delivery and/or deposition. The prevailing mode 1 at ~4 μ m (Fig. 4b), often in variable combinations with the fine-sand mode, is common for brown units, except for the oldest layers B16-B18 (estimated MIS 13/15 and partly 11; Fig. 6). This granulometric pattern is similar to grain-size distribution with an average mode at ~3.4 μ m reported for Holocene sediments across the Arctic Ocean (Darby et al., 2009). Furthermore, sediment in core BN05 with the same mode also makes up

432	the most fine-grained intervals in glacial/deglacial units, such as MIS 4 and 6 (at
433	\sim 30-40 and 100-110 cm; Fig. 4b). We infer that mode 1 represents some combination
434	of deposition from sea ice and from suspension that could result from winnowing of
435	fines from the basin margins and ridges during interglacials, as well as overflow
436	plumes discharged by retreating glaciers during glacial/deglacial intervals. An
437	occurrence of apparently similar grain-size pattern in interglacial and fine-grained
438	glacial/deglacial intervals might indicate a convergence of glacial erosion processes
439	with those related to sea-ice formation and transportation. A similar grain-size
440	interpretation has been earlier proposed for sediment from the Canada Basin with the
441	principal mode at ~2 μ m (Clark et al., 1980). This apparent discrepancy may be
442	related to the methodological offset between grain size determined by the pipette
443	method vs. laser diffraction, where the latter produces larger diameters for fine
444	sediment, especially in the presence of platy particles (Beuselinck et al., 1998;
445	Ramaswamy and Rao, 2006).
446	Mode 2 centered at 7-7.5 μ m is more stratigraphically restricted. Its combination
447	with the fine-sand mode (e.g., Fig. 4b) is characteristic for coarser grained portions of
448	MIS 4, 6, and 12 (~ 25-30, 40-45, 90-95, and 205-215 cm), which also have a specific
449	mineralogical composition (sedimentary variable group 2: Fig.7; Table 3). This
450	stratigraphic pattern suggests that the formation of this sediment was related to
451	glacial/deglacial processes; however, the prevailing grain size mode around 7-7.5 μ m
452	is distinctly coarser than in deglacial intervals characterized by mode 1 and likely
453	deposited from suspension plumes, which suggests a different sedimentation regime.

454	While being too fine-grained for massive deposition from icebergs, fine to medium
455	silts are susceptible to intermediate currents and are thus common for turbiditic
456	deposits, including glacigenic environments (e.g., Wang and Hesse, 1996; Hesse and
457	Khodabaksh, 2016). We propose that mode 2 sediment type is related to glacial
458	underflows that formed debris lobes on glaciated margins grading into turbidites in
459	the adjacent basins, along with iceberg-rafted debris. Multiple debris lobes have been
460	mapped on the Chukchi and East-Siberian slopes in association with glacigenic
461	diamictons on the margin (Jakobsson et al., 2008; Niessen et al., 2013; Dove et al.,
462	2014). Close to the margins glacioturbidites can form deposits of several meters thick
463	(Polyak et al., 2007), but thin out towards the inner parts of the basins, such as the
464	BN05 site. In particular, deposits similar to fine-grained turbidites, attributed to
465	MIS4/lower MIS3, have been recovered from the Northwind and Chukchi basins
466	affected by glacigenic inputs from the Chukchi and East Siberian margins,
467	respectively (Polyak et al., 2007; Matthiessen et al., 2010; Wang et al., 2013). In the
468	Chukchi Basin this unit, correlative to a much thinner MIS4 interval in core BN05, is
469	characterized by a high content of fine silt with a peaky downcore distribution (Wang
470	et al., 2010, 2013).

Additionally, modes 1 and 2 make up a bimodal distribution in the lowermost part of the core – mostly in estimated MIS 13/15 and near the bottom of MIS11. The predominant stratigraphic position in brown units makes unlikely the glacigenic origin of this sediment. We hypothesize that this grain-size pattern reflects a combination of "normal" interglacial environments with winnowed silts deposited by downwelling of

476	shelf waters enriched in dense brines. Although no observational evidence exists for
477	such waters penetrating deeper than the halocline (~200 m) under modern Arctic
478	conditions, periods of stronger cascading in the past have been inferred from sediment
479	distribution on the slopes (Darby et al., 2009) and some sedimentary proxies, such as
480	radiogenic isotopes (Haley and Polyak, 2013; Jang et al., 2013). The bimodal
481	distribution of fine sediment in the lower part of the record is accompanied in most
482	samples by a small but consistent coarse-sand mode (400-450 μ m), likely indicating
483	the presence of iceberg rafting.

484 Coarse sediment, up to dropstones of several cm large, is a consistent feature in core BN05. In the apparent absence of strong current control on sedimentation, except 485 for some shelf areas, and a pervasive presence of floating ice, coarse sediment in the 486 487 Arctic Ocean is typically attributed to ice rafting, including sea ice and icebergs (e.g., Stein, 2008; Polyak et al., 2010, and references therein). Sedimentological studies in 488 areas of sea-ice formation or melting and in ice itself indicate that sediment carried by 489 sea ice in the Arctic Ocean is predominated by silt and clay, while coarser fractions 490 are of minor importance (Clarkand Hanson, 1983; Nürnberg et al., 1994; Hebbeln, 491 2000; Darby, 2003; Dethleff, 2005; Darby et al., 2009). Some studies suggest a higher 492 content of sand in ice formed at the sea floor (anchor ice) (Darby et al., 2011), but the 493 contribution of this source yet needs to be evaluated. Furthermore, the role of sea ice 494 on sedimentation in the Arctic Ocean is not clear for glacial intervals, when most of 495 the sediment entrainment areas were exposed or covered by ice sheets. In contrast, in 496 iceberg-rafted sediment, deposited mostly in glacial/deglacial environments, the 497

content of large size fractions, from sand to boulders, is typically high, in excess of
10-20% (Clark and Hanson, 1983; Dowdeswell et al., 1994; Andrews, 2000). Thus,
elevated content of coarse sediment can be regarded as a good indicator of intense
iceberg rafting. Such events are not probable during full interglacials, exemplified by
modern conditions, but most likely occurred at times of instability and disintegration
of ice sheets that extended to the Arctic Ocean in the past (e.g., Spielhagen et al., 2004;
Stokes et al., 2005; Polyak et al., 2009).

In core BN05, coarse fractions (from coarse silt to sand) measured at different 505 506 sizes show very similar distribution patterns (Fig. 4a), indicating the same predominant delivery mechanism, that is, iceberg rafting. This pattern is reflected in a 507 good correlation of fine to medium sand (63-250 µm) with coarser, >250µm fractions, 508 509 that defines one of the Principal Components (PC 5: Table 3). Increased coarse-grain content mostly characterizes gravish units, especially near gray-to-brown sediment 510 transitions, and the PW layers, but also occurs in brown units in the upper part of the 511 record. The latter peaks enriched in detrital carbonates (high dolomite and total Ca) 512 represent interstadial or incomplete interglacial conditions, such as MIS3, MIS5a, and 513 parts of MIS7 (Fig. 6). 514

A common occurrence (separate or combined) of two coarse grain modes,
around 85-90 and 400-450µm, may indicate different sourcesfor iceberg-rafted
material or different thresholds for glacial disintegration of various rock types. While
a more thorough interpretation requires further research, we note that grain-size mode
1 may co-occur with both fine-and coarse-sand modes, mode 2 – only with the

fine-sand mode, and bimodal 1/2 sediment type – only with the coarse-sand one.

522 5.2.2 North American provenance

523	One of the most robust sedimentary variable groups is distinctly characterized by
524	high loadings of dolomite along with total Ca content (Group 4: Fig.7a, Table 3).
525	Dolomite has been proposed as the main contributor of Ca in sediment cores from the
526	western Arctic Ocean, with an especially high content in multiple coarse-grain peaks
527	of detrital carbonates (Bischof et al., 1996; Phillips and Grantz, 2001; Polyak et al.,
528	2009; Stein et al., 2010a, b). High correlation (r=0.81) and consistent PC grouping of
529	dolomite and total Ca (Fig. 7a) corroborates their affinity in ARC4-BN05, although
530	calcite can also contribute to Ca content (r=0.58), especially in interglacial intervals
531	with high foraminiferal numbers. We note that total Ca may be a redundant proxy in
532	the presence of dolomite and calcite data; however, it is convenient for a comparison
533	with a growing number of cores analyzed for elemental composition using XRF
534	scanners (e.g., Löwemark et al., 2008; Polyak et al., 2009).
535	The main western Arctic source for dolomite is the extensive, carbonate-rich
536	Paleozoic terrane in the northern Canada (North American Platform; Fig. 1; Okulitch,
537	1991; Harrison et al., 2008). During the Pleistocene this terrane has been repeatedly
538	impacted by the LIS with a subsequent transport of eroded material into the western
539	Arctic Ocean (e.g., Stokes et al., 2005; England et al., 2009). The distribution of
540	dolomite in Arctic sediment cores is thus a robust indicator of the North American

541 provenance and can be used for reconstructing the history of the LIS sedimentary542 inputs.

543	Consistent with other cores from the western Arctic Ocean, overall high dolomite
544	content in core ARC4-BN05 has major peaks corresponding to visually identifiable
545	PW/W layers enriched in coarse debris (Fig.5). As has been suggested in earlier
546	studies (e.g., Stokes et al., 2005; Polyak et al., 2009), we infer that the dolomite peaks
547	are related to pulses of massive iceberg discharge from the LIS during the periods of
548	its destabilization and disintegration. Furthermore, radiogenic isotope studies
549	demonstrate that fine sediment in the dolomitic peaks also has North American
550	provenance (Fagel et al., 2014; Bazhenova et al., 2017). These results indicate that
551	dolomite may have been transported not only by icebergs, but also in meltwater
552	plumes coming during deglaciations from the Canadian Archipelago or the Mackenzie
553	River.
554	As noted above, a change in the stratigraphic pattern of dolomite distribution
555	occurs around unit B10 estimated to correspond to the lower part of MIS7 (Fig. 6). In
556	older sediments dolomite maxima co-occur with glacial (predominantly gray)
557	intervals, whereas, in the younger stratigraphy dolomite peaks in brown sediment or
558	grayish interlayers within brown units (MIS 3, 5, and 7), presumably corresponding to
559	transitional paleoclimatic environments, such as interstadials or stadials within
560	complex interglacial stages.
561	Other potential mineral indicators related to the North American provenance are

562 quartz/feldspar and K-feldspar/plagioclase ratios as exemplified by the BN-05 PCA

563	results (Group 4: Fig. 7a), consistent with earlier studies (e.g., Vogt, 1997; Zou, 2016;
564	Kobayashi et al., 2016). High Qz/Fsp ratio has been related to a considerable presence
565	of sedimentary rocks enriched in quartz, but not feldspar, in the Canadian Arctic in
566	comparison with the Siberian margin (Vogt, 1997; Zou, 2016; Kobayashi et al., 2016).
567	In core ARC4-BN05 the distribution of this index is generally similar to dolomite (Fig.
568	5), except for some coarse-grain peaks, notably low Qz/Fsp values in PW1 and 3
569	resulting in an overall lower correlation (r=0.46). This pattern may be related to grain
570	size variance or might reflect provenance differences. Low plagioclase content has
571	also been identified for intervals with high detrital inputs from the Canadian Arctic
572	(Vogt, 1997; Zou, 2016). Especially high Kfsp/Plag values accompany dolomitic
573	peaks in the older glacial intervals corresponding to MIS 12 and 10 (Figs. 5, 6).
574	

575 **5.2.3 Siberian provenance**

Mineral proxies potentially linked to Siberian provenance make two distinct 576 groups, as reflected in the PCA results (Groups 2 and 3: Fig. 7a, Table 3). Group 3 577 comprises primarily pyroxene, feldspar, and plagioclase, and strongly anticorrelates 578 with the North-American proxies, primarily dolomite. The downcore distribution 579 pattern of this group changes from the affinity to interglacials in the lower part of the 580 record to peaks in glacial/deglacial intervals related to MIS 4 and 6 (Fig. 7b). The 581 major source for pyroxene in the Arctic Ocean is the Siberian trap basaltic province 582 that drains to the Kara Sea and western Laptev Sea (Fig. 1; Washner et al., 1999; 583

584	Schoster et al., 2000; Krylov et al., 2008). On the other hand, basaltic rocks related to
585	the Okhotsk-Chukotka province (Fig. 1) may have also provided a significant source of
586	pyroxenes, as exemplified in surface sediments by a relative pyroxene enrichment in
587	the Chukchi Basin on the background of overall low values in the western Arctic Ocean
588	(Dong et al., 2014). Distributions of feldspar and plagioclase at the Siberian margin
589	show elevated contents occurring both in the western Laptev Sea and the East
590	Siberian Sea (Zou, 2016).
591	Based on a considerable affinity of the pyroxene-feldspar group to brown units

and a lack of correlation with coarse sediment fractions, we infer that it is primarily 592 related to sea-ice transport during interglacial/deglacial intervals, with sources 593 potentially including the East Siberian margin and more westerly areas. The 594 difference in both the sources and delivery processes from the LIS proxies may 595 explain an especially strong opposition of these groups. Multiple studies suggest that 596 sea ice from the Kara and Laptev seas may transport sediments to the Canada Basin 597 under favorable atmospheric conditions, such as the positive phase of the Arctic 598 Oscillation (Behrends, 1999; Darby et al., 2003; Darby et al., 2004; Yurco et al., 2010; 599 Darby et al., 2012), although it remains to be investigated, to what extent this 600 circulation pattern could have provided a significant sediment source for the western 601 Arctic Ocean in the Pleistocene. 602

603

604 5.2.4 East-Siberian Ice Sheet

605	Another leading sedimentary variable group comprises primarily clay minerals
606	smectite, kaolinite, and chlorite, and shows affinity to coarse sediment, especially
607	consistently to fine sand (63-250 μ m) (Group 2: Fig.7a, Table 3). This composition is
608	especially characteristic for intervals estimated as MIS 4, 6, and 12. The association
609	of clay minerals with coarse sediment (correlation reaching as high as $r=0.65$ for
610	kaolinite) is unusual and suggests that they may have been derived by glacial erosion
611	of source hard rocks. This linkage has been elaborated for kaolinite distribution in the
612	Barents Sea and central Arctic Ocean (Junttila, 2007; Vogt and Knies, 2009; Krylov et
613	al., 2014). While kaolinite sources, such as Meso-Cenozoic paleosols and shales, are
614	mostly known in the western Arctic from northern Alaska and Canada (Naidu et al.,
615	1971; Darby, 1975; Dalrymple and Maass, 1987), kaolinite weathering crusts have
616	been also described from the East Siberian margin (Slobodin et al, 1990; Kim and
617	Slobodin, 1991). Smectite, which is typically related to chemical weathering of basic
618	rocks has been mostly associated in Arctic sediments with delivery from Siberian trap
619	basalts (Fig. 1) as reflected in the surface sediments, suspended particulate material,
620	and sea-ice samples from the Kara Sea and western Laptev Sea (Stein et al., 1994;
621	Wahsner et al., 1999; Schoster et al., 2000; Dethleff et al., 2000). Peaks of smectite
622	related to that source are especially charcteristic for deglacial intervals in sediment
623	cores from the eastern Arctic Ocean (Vogt and Knies, 2008). However, considerable
624	sources of smectite also exist further east along the Siberian margin due to basaltic
625	outcrops related to the Okhotsk-Chukotka volcanic province(Fig. 1), resulting in high

626	content of smectite in surface sediments of the East Siberian and Chukchi seas (Naidu
627	et al., 1982; Viscosi-Shirley et al., 2003; Nwaodua et al., 2014).Chlorite is also
628	common insurface sediments and suspended particulate material at the East Siberian
629	margin(Dethleff et al., 2000; Viscosi-Shirley et al., 2003). Modern and Holocene
630	sediments on the Chukchi shelf are especially enriched in chlorite due to advection
631	from the North Pacific at high sea-level stands (Kalinenko, 2001; Ortiz et al., 2009;
632	Nwaodua et al., 2014; Kobayashi et al., 2016), however this mechanism is only
633	applicable to interglacial periods.
634	We infer that sediment with a concerted enrichment in smectite, kaolinite, and
635	chlorite clay minerals associated with coarse fractions was transported to the Canada
636	Basin primarily in relation to the existence of large ice sheets in northern East Siberia
637	during glacial periods. Radiogenic isotope signature in upper Quaternary records from
638	the Mendeleev Ridge also indicates that the Okhotsk-Chukotka volcanic rocks
639	provided one of the principal end members, especially during MIS 4 and 6 (Fagel et
640	al., 2014; Bazhenova et al., 2017). This sediment had to be transported into the Arctic
641	Ocean directly from the East-Siberian/Chukchi margin as the alternative pathway via
642	the Bering Sea only operated at high interglacial sea levels, when the Bering Strait
643	was open for throughflow (e.g., Keigwin et al., 2006; Ortiz et al., 2009).Considering
644	an affinity of the kaolinite-smectite-chlorite group with sediments coarser than clays,
645	corresponding to grain-size modes 2 and 3, their distribution across the basin was
646	likely related to iceberg rafting and glacial underflows, as discussed above in section
647	5.2.1. A relatively fast and direct delivery mechanism by debris flows and ensuing

turbidites may explain a good preservation of fragile clay minerals, normally notresistant to physical erosion.

650	Some early paleoglaciological studies proposed the existence of a thick
651	Pleistocene ice sheet centered over the East Siberian shelf (Hughes et al., 1977;
652	Grosswald and Hughes, 2002). The inference of former ice sheets/shelves in this
653	region is now corroborated by multibeam bathymetry and sub-bottom data revealing
654	multiple glacigenic features on the top and slopes of the Chukchi and East Siberian
655	margin (Polyak et al., 2001, 2007; Jakobsson et al., 2008, 2014, 2016; Niessen et al.,
656	2013; Dove et al.,2014). ESIS has also been reproduced by numerical paleoclimatic
657	modeling for a large Pleistocene glaciation exemplified by MIS6 (Colleoni et al.,
658	2016). Sedimentary proxies indicative of the Okhotsk-Chukotka provenance in cores
659	from the Canada Basin may provide an additional tool for reconstructing the ESIS
660	history.

661

662 **5.2.5 Interglacial signature**

Data points from brown units make up a distinct sedimentary variable group with Mn, foraminiferal numbers, calcite, and fine sediment as lead variables (Group 1: Fig. 7a; Table 3). This composition is consistent with the modern-type Arctic Ocean environments characterized by predominant controls of sediment deposition by sea ice, considerable biological activity in summer, and high sea levels. The latter is important for providing supply of Mn from the surrounding shelves (März et al., 2011;

669	Löwemark et al., 2014). The same condition may also control biological production,
670	and thus foraminiferal numbers, via export of nutrients from the marginal seas (e.g.,
671	Xiao et al., 2014), although interaction of this factor with sea-ice conditions yet needs
672	to be clarified. We note that the absence (dissolution) of foraminiferal tests in brown
673	units corresponding to MIS9 and below MIS11 likely weakens their relationship to
674	other interglacial proxies. Nevertheless, the foraminiferal variable shows a consistent
675	proximity to Mn, clay, and calcite in the PCA results (Fig. 7a).
676	The mineral having the closest distribution to the main constituents of PC Group
677	1 is illite, consistent with a predominant occurrence in brown, interglacial/major
678	interstadial units (Figs. 5, 7a). Illite is atypical high-latitude clay mineral, mainly
679	supplied by physical weathering of metasedimentary and plutonic rocks (Chamley,
680	1989; Junttila, 2007). High illite concentrations in surficial Arctic Ocean sediments
681	have been found in many areas including the Alaska margin and adjacent Canada
682	basin (Dong et al., 2014; Kobayashi et al., 2016), East Siberian Sea and the adjacent
683	part of the Laptev Sea (Wahsner et al., 1999; Kalinenko, 2001; Viscosi- Shirley et al.,
684	2003; Dethleff, 2005; Zou., 2016), and northern Greenland and Svalbard regions
685	(Stein et al., 1994). In core ARC4-BN05 illite has consistently high values in
686	generally fine-grained brown units (Fig. 5), although peak values may not exactly
687	coincide with those of Mn or foraminiferal numbers. In addition, illite shows a
688	prominent peak in a very fine-grained interval at ~35 cm within glacial/deglacial
689	sediment of estimated MIS4. This distribution is consistent with the pattern in both
690	surface sediments and sediment cores, where illite is characteristic for fine-grained

691	sediment indicative of transportation by sea ice or in the water column (Krylov, 2014)
692	As shown by sediment-core studies, these mechanisms can provide high illite levels
693	under both interglacial (this study) and glacial/deglacial environments (Knies and
694	Vogt, 2003; Yurco et al., 2010). The latter is probably associated with deposition of
695	fine sediment from glacial overflows, as exemplified by the fine-grained part of MIS
696	4 deglaciation.
697	High contents of calcite in core ARC4-BN05 mostly co-occur with high numbers
698	of foraminifers (Fig. 7a; Table 3), indicating that calcite in these sediments is to a
699	large extent biogenic, consistent with earlier results from the study area (Stein et al.,
700	2010a). Nevertheless, in the lower part of the record, where calcareous fossils are
701	mostly not preserved, calcite shows a considerable affinity to dolomite, which
702	corroborates a mixed, biogenic and detrital nature of calcite in Arctic Ocean
703	sediments (e.g., Vogt, 1997).

705 5.3 Evolution of sedimentary environments

The stratigraphically changing pattern of sediment delivery and deposition, including cyclic glacial-interglacial fluctuations and longer-term changes, indicates complex interactions of climatic and oceanographic factors controlling depositional environments in both glacial and interglacial intervals. A long-term trend in interglacial environments is indicated by a shift from predominantly Siberian to more North American provenance, especially strong in MIS5 and 1, and increasingly high

712	scores of interglacial proxies(Group 1), with a threshold around the bottom of MIS 7
713	(Fig. 7b). Glacial environments show an apparentlymore complex provenance change,
714	with Siberian sources predominating MIS 4 and 6, and Laurentide provenance
715	controlling MIS 8 and 10 (Fig. 7b).Earlier glaciations, exemplified by a prominent
716	MIS12 unit, have a mixed signature of high smectite and dolomite contents, likely
717	reflecting a combination of East-Siberian and LIS inputs. In addition, interglacial-type
718	signature (Group 1) characterizes some intervals in MIS 4 and 6 as well as
719	intermittent (stadial) intra-MIS 3, 5, and 7 events. We note that MIS 2 is not
720	represented in this data due to its very compressed nature.
721	

722 **5.3.1 Glacial environments**

The identified changes in sedimentary environments and provenance can be 723 724 explained by several types of controls, including configuration of ice sheets against sea level and climatic conditions, sediment delivery mechanisms, and circulation. Ice 725 sheet sites and geometry at specific time intervals dictate the timing and location of 726 major sediment discharge events into the Arctic Ocean. Transportation mechanisms, 727 such as by icebergs, debris flows, or suspension plumes, further control sediment 728 delivery to specific sites. Finally, oceanic circulation affects the distribution of 729 sediment across the oceanic basins. This may include surface circulation driving 730 seaice, icebergs, and surface plumes, deep circulation affecting turbidite/contourite 731 pathways, and downwelling of sediment-laden dense waters. 732

733	We infer that sedimentary variations observed in core BN05 and correlative				
734	records from the western Arctic Ocean can be explained by the evolution of				
735	surrounding ice sheets and associated changes in oceanic conditions, such as				
736	circulation, sea ice, and biota. It has been known from early studies (e.g., Clark et al.,				
737	1980; Winter et al., 1997) that glacial, notably LIS impact on the western Arctic				
738	Ocean has been steadily increasing over the time span covered by sediment cores				
739	from this region. A recent investigation utilizing a more up-to-date stratigraphic				
740	paradigm estimated the timing of a step increase in LIS inputs as ca. 0.8 Ma (Polyak				
741	et al., 2013), consistent with the onset of major glaciations in the Northern				
742	Hemisphere (Head and Gibbard, 2015). Core BN05 provides a record of sediment				
743	deposition in the Canada Basin, and thus glacial inputs into the western Arctic Ocean				
744	during most of the time interval to follow.				
745	Considering the overall gradual growth of Pleistocene Arctic ice sheets, we infer				
746	that the shift from Siberian to North American sources between MIS 12 and 10 was				
747	primarily related to the expansion of the LIS, especially the northwestern Keewatin				
748	sector that discharges into the western Arctic Ocean. However, its further growth may				
749	have had an opposite effect due to a more massive ice sheet that required warmer				
750	climatic conditions and/or higher sea levels to destabilize it. Based on data for the last				
751	glacial cycle, the Keewatin sector of the LIS rested mostly on relatively elevated				
752	terrane of the Canadian Archipelago and adjacent mainland, fringed by a narrow				
753	continental shelf and dissected by numerous channels providing conduits for ice				
754	streams and evacuation of icebergs at rising sea levels (Stokes et al., 2005, 2009;				

755	England et al., 2009; Margold et al., 2015). The latter events are illustrated in BN05
756	data by intra-MIS 5 stadials with a consistent LIS signature (Group 4: Fig. 7b).
757	Especially high LIS scores characterize PW layers 2 and 3 attributed to MIS 5d and
758	late MIS 3, respectively. A similar, LIS-dominated pattern likely represents the last
759	deglaciation as indicated by a number of provenance studies (e.g., Stokes et al., 2005;
760	Jang et al., 2013; Bazhenova et al., 2017).
761	In comparison to the LIS, a presumably much smaller ESIS, formed on a broad
762	and overall flat East-Siberian/Chukchi margin (Niessen et al., 2013; Dove et al., 2014;
763	Colleoni et al., 2016), had to be responsive to sea-level changes even at low levels.It
764	may be possible that the ESIS also increased in size by MIS 6, known as a time of a
765	dramatic increase of glacial inputs from the Barents-Kara Ice Sheet into the eastern
766	Arctic Ocean (e.g., O'Regan et al., 2008). A synchronous MIS 6 expansion of both
767	North American and Siberian ice sheets and related ice shelves might explain the
768	deep-keel glacial erosion of the Lomonosov Ridge at modern water depths exceeding
769	1000 m (Jakobsson et al., 2016, and references therein).
770	A concurrent interpretation can be proposed with a focus on sediment
771	transportation processes as deposits of some glacial intervals, notably MIS 12 and
772	parts of MIS 4 and 6, are associated with grain size mode 2 potentially indicating
773	glacial debris flow/turbidite emplacement. Large debris flows entering the Chukchi
774	Basin and continuing as turbidites into Canada Basin, as exemplified by subbottom
775	sonar profiles (Niessen et al., 2013; Dove et al., 2014), may have overprinted
776	deposition from icebergs. We note that deposits of MIS 4 and 6 also contain intervals,

777	where Siberian provenance is combined with interglacial positive scores (Group 1:
778	Fig. 7b) due to their fine-grained composition along with high illite content. These
779	sediments likely represent deposition from suspension plumes, potentially marking
780	especially strong deglacial meltwater discharge. A prominent fine grained, finely
781	laminated interval within MIS4 deglaciation (possibly extending into MIS3) has been
782	reported from multiple cores across the Chukchi Basin – Mendeleev Ridge area
783	(Adler et al., 2009; Matthiessen et al., 2010; Wang et al., 2013; Bazhenova et al.,
784	2017).
785	Under modern conditions the BN05 site is mostly controlled by the Beaufort
786	Gyre current circulation system, although can also be affected by the Transpolar Drift
787	during strong shifts in the Arctic Oscillation (Rigor et al., 2002). This setting
788	porobably applies to the Holocene and comparable interglacial conditions (Darby and
789	Bischof, 2004). Some authors suggested that during glacial periods the surface
790	circulation that controls pathways of iceberg and sea-ice drift may have been
791	considerably different from the modern pattern, with both North American and
792	Siberian sources shortcutting the Arctic Ocean towards the Fram Strait (Bischof and
793	Darby, 1997; Stärz et al., 2012). These changes would have potentially affected the
794	study area, possiblymaking it more exposed to the Siberian provenance than under

795 present conditions. However, the existing reconstructions based on very limited

records with only crude stratigraphic controls, need to be elaborated by spatially and

stratigraphically more representative dataconstraining past circulation changes. In

particular, glacial maxima may be elusive, especially in the western Arctic Ocean, due

799	to extremely low sedimentation rates or a hiatus, as exemplified by the Last Glacial
800	Maximum (Polyak et al., 2009; Poirier et al., 2012).

area during major identified types of glacial environments are illustrated in Fig. 8.

An overall integration of potential controls on sediment deposition in the study

- 803 More studies are needed to discriminate between different controls, including proxy
- records providing higher resolution for target intervals as well as modeling
- experiments to test spatial and stratigraphic variability in such factors as iceberg and
- 806 meltwater discharge and their ensuing distribution pathways.
- 807

[Figure 8]

808

801

809 **5.3.2 Interglacial environments**

The long-term trend in interglacial environments reflected in a shift from 810 negative to increasingly positive scores of interglacial proxies (Group 1:Fig. 7b), with 811 a threshold around the bottom of MIS 7, can be partially explained by the absence of 812 813 calcareous foraminifers in the lower part of the record. However, even MIS11 that has abundant foraminifers has low interglacial scores, suggesting more controls. One 814 possibility is that this trend was related to the evolution of circum-Arctic ice sheets 815 that would have inevitably incurred changes in oceanic conditions, such as circulation 816 and sea ice. An expansion of perennial sea ice in the western Arctic Ocean near the 817 MIS 7 bottom has been proposed based on foraminiferal assemblages (Polyak et al., 818 2013; Lazar and Polyak, 2016). This step change has been tentatively attributed to the 819

820	LIS growth that may have affected sea-ice conditions via increased albedo and/or
821	higher meltwater inputs. This inference is consistent with a coeval change from
822	mostly Siberian (Group 3) to North American (Group 4) provenance during
823	interglacials in BN05 (Fig. 7b). In addition to a more lingering LIS during
824	interstadials/interglacials, this shift in provenance could be related to a strengthening
825	of the Beaufort Gyre as more sea ice filled the western Arctic Ocean.
826	More limited sea-ice cover in the older part of the middle Pleistocene could have
827	also enhanced the production of dense brines at the Siberian margin, resulting in a
828	deeper convection and cascading of shelf sediments to the deep basin. This scenario
829	would explain an unusual grain-size composition of sediments in the older
830	interglacials combining mode 2, indicative of winnowed silt, with a typical
831	interglacial fine-grained mode 1.
832	

833 6. Summary and conclusions

Sediment core ARC4–BN05 was collected from the Canada Basin in the vicinity
of the Chukchi Plateau and the Mendeleev Ridge, Arctic Ocean, on the fourth Chinese
National Arctic Research Expedition (CHINARE-IV). Based on correlation to earlier
proposed Arctic Ocean stratigraphies (e.g., Adler et al., 2009; Stein et al., 2010a;
Polyak et al., 2013) and AMS¹⁴C dating of the youngest sediments, the BN05 record
covers the late to middle Quaternary (MIS 1-15, ca. 0.5-0.6 Ma).The core was
investigated for multiple sedimentary proxies including clay and bulk mineralogy,

grain size, paleomagnetism, elemental content, and planktonic foraminiferal numbers
with an average estimated age resolution of 4-5 ka per sample. This study, facilitated
by Principal Component Analysis of major paleoceanographic variables, provides
important new information about sedimentary environments and provenance in the
western Arctic Ocean on glacial time scales. The results enhance our knowledge on
the history of Arctic glaciations and interglacial conditions.

Glacially derived sediment can be discriminated between the North American 847 and Siberian provenance by their mineralogical and textural signature. In particular, 848 849 peaks of dolomite debris, including large dropstones, track the Laurentide Ice Sheet (LIS) discharge events, while the East Siberian Ice Sheet (ESIS) inputs are inferred 850 from combined peaks of smectite, kaolinite, and chlorite associated with coarse 851 852 sediment. Siberian provenance is also identified from high content of pyroxene, feldspar, and plagioclase, unrelated to coarse sediment. This sedimentary signature is 853 interpreted to indicate sea-ice transport from the Siberian margin during 854 855 interglacial/deglacial intervals. Full interglacial environments are characterized by overall fine grain size, high content of Mn (and resulting dark brown sediment color), 856 and elevated contents of calcite and chlorite. Foraminiferal tests are abundant in 857 interglacial units in the upper part of the record (MIS 1-7) and estimated MIS 11, but 858 have very low numbers in other interglacials older than MIS 7, apparently due to 859 dissolution. 860 In addition to glacial-interglacial cyclicity, the investigated record indicates 861

861 In addition to gradial-intergradial cyclicity, the investigated record indicates
 862 variable impacts of LIS vs. ESIS on sediment inputs at different glacial events, along

863	with a long-term change in middle to late Quaternary sedimentary environments.
864	Based on the age model employed, major LIS inputs to the study area occurred during
865	MIS 3, intra-MIS 5 and 7 events, MIS 8, and MIS 10, while ESIS signature is
866	characteristic for MIS 4, MIS 6 and MIS 12. These differences may be related to
867	ice-sheet configurations at different sea levels, sediment delivery mechanisms
868	(iceberg rafting, suspension plumes, and debris flows), and surface circulation. A
869	long-term shift in the pattern of sediment inputs shows an apparent step change near
870	the estimated MIS7/8 boundary (ca. 0.25 Ma), consistent with more sea-ice growth in
871	the Arctic Ocean inferred from benthic foraminiferal assemblages (Lazar and Polyak,
872	2016). This development of Arctic Ocean paleoenvironments possibly indicates an
873	overall glacial expansion at the western Arctic margins, especially in North America.
874	Such expansion may have affected not only glacial, but also interglacial conditions via
875	increased albedo and/or higher meltwater inputs, as well as a strengthening of the
876	Beaufort Gyre circulation as more sea ice filled the western Arctic Ocean.
877	

878 Acknowledgements

We are grateful to the team of the 4th Chinese Arctic Research Expedition for their assistance with sample collection. Special thanks to Dr. Shijuan Yan for help with sampling and to Dr. Quanshu Yan for help in paper editing. This work was jointly supported by the Research Foundation of the First Institute of Oceanography, State Oceanic Administration of China (No. 2013G07, 2014G30), the Chinese Polar

- 884 Environment Comprehensive Investigation & Assessment Programmes (No.
- 885 CHINARE 2017-03-02), and the National Natural Science Foundation of China
- 886 (No.41306205, 41676053, 40176136). L.Polyak's participation was supported by the
- US National Science Foundation award ARC–1304755. Comments from two
- anonymous reviewers helped improving the manuscript.

890 **References**

- 891 [1] Adler, R. E., Polyak, L., Ortiz, J. D., Kaufman, D. S., Channell, J. E.T., Xuan, C., Grottoli, A. G., Sellén,
 892 E., Crawford, K. A.: Sediment record from the western Arctic Ocean with an improved Late Quaternary
- age resolution: HOTRAX core HLY0503-8JPC, Mendeleev Ridge, Global and Planetary Change,
 68,18-29,2009.
- 895 [2] Andrews, J. T.: Icebergs and iceberg rafted detritus (IRD) in the North Atlantic: Facts and assumptions,
 896 Oceanography, 13(3), 100–108, 2000.
- 897 [3] Basilyan, A.E., Nikol'skyi, P.A., Maksimov, F.E., Kuznetsov, V.Y.: Age of Cover Glaciation of the New
 898 Siberian Islands Based on 230Th/U-dating of Mollusk Shells, Structure and Development of the
- **Lithosphere**, Paulsen, Moscow, pp. 506-514, 2010.
- 900 [4] Bazhenova, E., Fagel, N., Stein, R.: North American origin of "pink–white" layers at the Mendeleev
 901 Ridge (Arctic Ocean): New insights from lead and neodymium isotope composition of detrital sediment
- **902** component, **Marine Geology**, 386, 44–55, 2017.
- 903 [5] Behrends, M.: Reconstruction of sea-ice drift and terrigenous sediment supply in the Late Quaternary:
 904 heavy-mineral associations in sediments of the Laptev-Sea continental margin and the central Arctic
- **905** Ocean, **Reports on Polar Research**, 310, 1-167, 1999.
- 906 [6] Beuselinck, L., Govers, G., Poesen, J., Degraer, G., Froyen, L.: Grain-size analysis by laser
- 907 diffractometry: comparison with the sieve-pipette method, Catena, 32, 193–208, 1998.
- 908 [7] Bischof, J.F. and Darby, D.A.: Mid-to Late Pleistocene ice drift in the Western Arctic Ocean: evidence
 909 for a different circulation in the past, Science, 277, 74–78, 1997.
- 910 [8] Bischof, J.F., Clark, D.L., Vincent, J.S.: Origin of ice-rafted debris: Pleistocene paleoceanography in the
 911 western Arctic Ocean, Paleoceanography, 11, 743–756, 1996.
- 912 [9] Biscaye, P.F.: Distinction between kaolinite and chlorite in recent sediments by X-ray diffraction,
- **913 American Mineralogist,** 49, 1281–1289, 1964.
- 914 [10] Biscaye, P.F.: Mineralogy and sedimentation of recent deep-sea clay in the Atlantic Ocean and adjacent
 915 seas and oceans, The Geological Society America Bulletin, 76, 803–832, 1965.
- 916 [11] Blott, S.J. and Pye, K.: Particle size scales and classification of sediment types based on particle size

917 distributions: review and recommended procedures, Sedimentology, 59, 2071–2096, 2012.

918 [12] Chamley, H.: Clay Sedimentology, Springer, Berlin. 623 pp, 1989.

- 919 [13] Clark, D. L., Whitman, R. R., Morgan, K. A., Mackey, S. D.: Stratigraphy and glacialmarine sediments of 920 the Amerasian Basin, central Arctic Ocean, Geological Society of America, Special Paper, 181, 57, 921 1980.
- 922 [14] Clark, D. and Hanson, A.: Central Arctic Ocean sediment texture: a key to ice transport mechanisms. In:
- 923 Molnia, B.F. (Ed.), Glacial-Marine Sedimentation, Plenum Press, New York, pp. 301–330, 1983.
- 924 [15] Clark, D. L., Chern, L. A., Hogler, J. A., Mennicke, C. M., Atkins, E. D.: Late Neogene climate evolution 925 of the central Arctic Ocean, Marine Geology, 93, 69-94, 1990.
- 926 [16] Colleoni, F., Kirchner, N., Niessen, F., Quiquet, A., Liakka, J.: An East Siberian ice shelf during the Late 927 Pleistocene glaciations: Numerical reconstructions, Quaternary Science Reviews, 147, 148-163, 2016.
- 928 [17] Cook, H. E., Johnson, P.D., Matti, J.C., Zemmels, I.: Methods of sample preparation and X- ray
- 929 diffraction data analysis, X-ray mineralogy laboratory, In: Kaneps AG, ed. Init Repts, DSDP XXVIII, 930 999 -1007, http://www.deepseadrilling.Org/28/ volume/dsdp28- appendix-IV. Pdf, 1975.
- 931 [18] Coulthard, R.D., Furze, M.F.A., Pienkowski, A.J., Nixon, F.C., England, J.H.: New marine ΔR values for 932 Arctic Canada, Quaternary Geochronology, 5, 419-434, 2010.
- 933 [19] Cronin, T.M., Polyak, L., Reed, D., Kandiano, E.S., Marzen, R.E., Council, E.A.: A 600-ka Arctic sea-ice 934
- record from Mendeleev Ridge based on ostracodes, Quaternary Science Reviews, 79, 157-167, 2013.
- 935 [20] Cronin, T.M., DeNinno, L.H., Polyak, L., Caverly, E.K., Poore, R.Z., Brenner, A., Rodriguez-Lazaro, J., 936 Marzen, R.E.: Quaternary ostracode and foraminiferal biostratigraphy and paleoceanography in the
- 937 western Arctic Ocean, Marine Micropaleontology, 111,118 - 133, 2014.
- 938 http://dx.doi.org/10.1016/j.marmicro.2014.05.001.
- 939 [21] Dalrymple, R.W. and Maass, O. C.: Clay mineralogy of late Cenozoic sediments in the CESAR cores,
- 940 Alpha Ridge, central Arctic ocean, Canadian Journal of Earth Science, 24, 1562–1569, 1987.
- 941 [22] Darby, D.A.: Kaolinite and other clay minerals in Arctic Ocean sediments, Journal of Sedimentary 942 Petrology, 45,272-279, 1975.
- 943 [23] Darby, D. A., Bischof, J. F., Jones, G. A.: Radiocarbon chronology of depositional regimes in the western 944 Arctic Ocean, Deep Sea Research Part II, 44 (8), 1745–1757, 1997.
- 945 [24] Darby, D. A., Bischof, J. F., Spielhagen, R. F., Marshall, S. A., Herman, S. W.: Arctic ice export events 946 and their potential impact on global climate during the Late Pleistocene, Paleoceanography, 17(2), 1025,
- 947 doi:10.1029/2001PA000639, 2002.
- 948 [25] Darby, D. A.: Sources of sediment found in sea ice from the western Arctic Ocean, new insights into

949 processes of entrainment and drift patterns, Journal of Geophysical Research, 108(C8), 3257, 950 doi:10.1029/2002JC001350, 2003. 951 [26] Darby, D. A., and Bischof, J. F.: A Holocene record of changing Arctic Ocean ice drift, analogous to the 952 effects of the Arctic Oscillation, Paleoceanography, 19, PA1027, doi:10.1029/2003PA000961, 2004. 953 [27] Darby, D.A., Polyak, L., Bauch, H.A.: Past glacial and interglacial conditions in the Arctic Ocean and 954 marginal seas — a review, Progress in Oceanography, 71,129–144, 2006. 955 [28] Darby, D. A., Ortiz, J., Polyak, L., Lund, S., Jakobsson, M., Woodgate, R.A.: The role of currents and sea 956 ice in both slowly deposited central Arctic and rapidly deposited Chukchi-Alaskan margin sediments, 957 Global and Planetary Change, 68, 58-72, 2009. 958 [29] Darby, D. A., Myers, W., Jakobsson, M., Rigor, I.: Modern dirty sea ice characteristics and sources: The 959 role of anchor ice, Journal of Geophysical Research, 116: C09008, doi:10.1029/2010JC006675, 2011. 960 [30] Darby, D., Ortiz, J., Grosch, C., Lund, S.:1,500-year cycle in the Arctic Oscillation identified in 961 Holocene Arctic sea-ice drift. Nature Geoscience, 5, 897-900, 2012. 962 [31] Dethleff, D. A., Rachold, V., Tintelnot, T., Antonow, M.: Sea-ice transport of riverine particles from the 963 Laptev Sea to Fram Strait based on clay mineral studies, International Journal of Earth Science, 89, 964 496-502, 2000. 965 [32] Dethleff, D.: Entrainment and export of Laptev Sea ice sediments, Siberian Arctic, Journal of 966 Geophysical Research—Oceans 110, C07009, doi:10.1029/2004JC002740, 2005. 967 [33] Dove, D., Polyak, L., Coakley, B.: Widespread, multi-source glacial erosion on the Chukchi margin, 968 Arctic Ocean, Quaternary Science Reviews, 92, 112-122, 2014. 969 [34] Dong, L., Shi, X., Liu, Y., Fang, X., Chen, Z., Wang, C., Zou, J., Huang, Y.: Mineralogical study of 970 surface sediments in the western Arctic Ocean and their implications for material sources, Advances in 971 Polar Science, 25(3),192-203, 2014. 972 [35] Dowdeswell, J. A., Villinger, H., Whittington, R. J., Marienfeld, P.: Iceberg scouring in Scores by Sund 973 and on the East Greenland continental shelf, Marine Geology, 111, 37-53, 1993. 974 [36] Dyke, A. S., Andrews, J. T., Clark, P. U., England, J. H., Miller, G. H., Shaw, J., Veillette, J. J.: The 975 Laurentide and Innuitian ice sheets during the Last Glacial Maximum, Quaternary Science Review, 21, 976 9-31, 2002. 977 [37] England, J.H., Furze, M.F.A., Doupé, J.P.: Revision of the NW Laurentide Ice Sheet: implications for 978 paleoclimate, the northeast extremity of Beringia, and Arctic Ocean sedimentation, Quaternary Science

- **979 Review**, 28, 1573-1596, 2009.
- 980 [38] Fagel, N., Not, C., Gueibe, J., Mattielli, N., Bazhenova, E.: Late Quaternary evolution of sediment
- 981 provenances in the Central Arctic Ocean: mineral assemblage, trace element composition and Nd and Pb
 982 isotope fingerprints of detrital fraction from the Northern Mendeleev Ridge, Quaternary Science
- **983 Reviews,**92,140-154, 2014.
- 984 [39] Grosswald, M.G.: An ice sheet on the East Siberian shelf in the late Pleistocene. In: The Pleistocene of
 985 Siberia. Stratigraphy and interregional correlations. Novosibirsk, Nauka, Sibirskoye otdeleniye, pp.
 986 48–57, 1989.
- 987 [40] Grosswald, M.G.and Hughes, T.J.: The Russian component of an Arctic Ice Sheet during the Last Glacial
 988 Maximum, Quaternary Science Review, 21, 121-146, 2002.
- 989 [41] Haley, B.A. and Polyak, L.: Pre-modern Arctic Ocean circulation from surface sediment neodymium
 990 isotopes, Geophysical Research Letters, 40, 1–5, 2013.
- 991 [42] Hanslik, D., Jakobsson, M., Backman, J., Björck, S., Sellén, E., O'Regan, M., Fornaciari, E., Skog, G.:
 992 Quaternary Arctic Ocean sea ice variations and radiocarbon reservoir age corrections, Quaternary
- **993** Science Reviews,29, 3430–3441, 2010.
- 994 [43] Harrison, J.C., St-Onge, M.R., Petrov, O., Strelnikov, S., Lopatin, B., Wilson, F., Tella, S., Paul, D.,
- 995 Lynds, T., Shokalsky, S., Hults, C., Bergman, S., Jepsen, H.F., Solli, A.:Geological Map of the Arctic.
 996 Geol. Survey Canada, p. 5816. Open File, 2008.
- 997 [44] Head, M.J. and Gibbard, P.L.: Early-Middle Pleistocene transitions: linking terrestrial and marine realms,
 998 Quaternary International, 389, 7-46, 2015.
- 999 [45] Hebbeln, D.: Flux of ice-rafted detritus from sea ice in the Fram Strait, Deep-Sea Research PartII, 47,
 1000 1773–1790, 2000.
- 1001 [46] Hesse, R.and Khodabakhsh, S.: Anatomy of Labrador Sea Heinrich layers, Marine Geology, 380, 44–66,
 1002 2016.
- 1003 [47] Hughes, T.J., Denton, G.H., Grosswald, M.G.: Was there a late-Würm Arctic ice sheet? Nature, 266,
 1004 596-602, 1977.
- 1005 [48] Ivanova, V.V.: Geochemical features of formation of massive ground ice bodies (New Siberian Island,
 1006 Siberian Arctic) as the evidence of their genesis, Earth's Cryosphere, 16, 56–70, 2012 (in Russian).
- 1007 [49] Jakobsson, M., Løvlie, R., Al-Hanbali, H., Arnold, E., Backman, J., Mörth, M.: Manganese and color
- 1008 cycle in Arctic Ocean sediments constrain Pleistocene chronology, Geology, 28, 23–26, 2000.

- 1009 [50] Jakobsson, M., Polyak, L., Edwards, M., Kleman, J., Coakley, B.: Glacial geomorphology of the Central
- 1010 Arctic Ocean: the Chukchi Borderland and the Lomonosov Ridge, Earth Surface Processes and
 1011 Landforms, 33, 526–545, 2008.
- 1012 [51] Jakobsson, M., Andreassen, K., Bjarnadóttir, L. R., Dove, D., Dowdeswell, J. A., England, J.H., Funder,
- 1013 S., Hogan, K., Ingólfsson,Ó., Jennings, A., Larsen, N, K., Kirchner, N., Landvik, J.Y., Mayer, L.,
- 1014 Mikkelsen, N., Möller, P., Niessen, F., Nilsson, J., O'Regan, M., Polyak, L., Nørgaard-Pedersen, N.,
- 1015 Stein. R.:Arctic Ocean glacial history, Quaternary Science Reviews, 92, 40–67, 2014.
- 1016 [52] Jakobsson, M., Nilsson, J., Anderson, L., Backman, J., Björk, G., Cronin, T.M., Kirchner, N.,
- 1017 Koshurnikov, A., Mayer, L., Noormets ,R., O'Regan, M., Stranne, C., Ananiev, R., Macho, N. B.,
- 1018 Cherniykh, D., Coxall, H., Eriksson, B., Flodén, T., Gemery, L., Gustafsson, O., Jerram, K., Johansson, C.,
- 1019 Khortov, A., Mohammad, R., Semiletov, I.: Evidence for an ice shelf covering the central Arctic Ocean
- during the penultimate glaciation, Nature Communications, doi: 10.1038/ncomms10365, 2016.
- 1021 [53] Jang, K., Han, Y., Huh, Y., Nam, S., Stein, R., Mackensen, A., Matthiessen, J.: Glacial freshwater
 1022 discharge events recorded by authigenic neodymium isotopes in sediments from the Mendeleev Ridge,
- 1023 western Arctic Ocean, Earth and Planetary Science Letters, 369-370,148–157, 2013.
- 1024 [54] Junttila, J.: Clay minerals in response to Mid-Pliocene glacial history and climate in the polar regions
- 1025 (ODP, Site 1165, Prydz Bay, Antarctica and Site 911, Yermak Plateau, Arctic Ocean), Acta Universitat
 1026 Ouluensis, A 481,2007.
- 1027 [55] Kalinenko, V.V.: Clay minerals in sediments of the Arctic Seas. Lithology and Mineral Resources, 36,
 1028 362–372, 2001.
- 1029 [56] Kaparulina, E., Strand, K., Lunkka, J. P.: Provenance analysis of central Arctic Ocean sediments:
- 1030 Implications for circum-Arctic ice sheet dynamics and ocean circulation during Late Pleistocene,
 1031 Quaternary Science Reviews, 147, 210-220, 2016.
- 1032 [57] Keigwin, L.D., Donnelly, J.P., Cook, M.S., Driscoll, N.W., Brigham-Grette, J.: Rapid sea-level rise and
 1033 Holocene climate in the Chukchi Sea, Geology, 34 (10), 861–864, doi:10.1130/G22712.1, 2006.
- 1034 [58] Kim, B.I. and Slobodin, V.Ya.: Main stages of the evolution of East Arctic shelves of Russia and
- 1035 Canadian Arctic in the Paleogene and Neogene, In: Geologiya skladchatogo obramleniya
- 1036 Ameraziiskogo subbasseina (Geology of the Folded Framing of the Amerasian Subbasin), St.
- 1037 Petersburg: Sevmorgeologiya, 104–116, 1991.
- 1038 [59] Knies, J., Kleiber, H. P., Matthiessen, J., Müller, C., Nowaczyk, N.: Marine ice-rafted debris records

1039 constrain maximum extent of Saalian and Weichselian ice-sheets along the northern Eurasian margin, 1040 Global and Planetary Change, 31, 45–64, 2001. 1041 [60] Knies, J. and Vogt, C.: Freshwater pulses in the eastern Arctic Ocean during Saalian and early 1042 Weichselian ice-sheet collapse, Quaternary Research, 60, 243-251, 2003. 1043 [61] Kobayashi, D., Yamamoto, M., TIrino, T., Nam, S.-I., Park, Y.-H., Harada, N., Nagashima, K., Chikita, 1044 K., Saitoh, S.I.: Distribution of detrital minerals and sediment color in western Arctic Ocean and 1045 northern Bering Sea sediments: changes in the provenance of western Arctic Ocean sediments since the 1046 last glacial period, Polar Science, 10, 519-531, 2016. 1047 [62] Krylov, A. A., Andreeva I. A., Vogt C., Backman J., Krupskaya V. V., Grikurov G. E., Moran K., Shoji H.: 1048 A shift in heavy and clay mineral provenance indicates a middle Miocene onset of a perennial sea ice 1049 cover in the Arctic Ocean, Paleoceanography, 23, PA1S06, doi:10.1029/2007PA001497, 2008. 1050 [63] Krylov, A.A., Stein, R., Ermakova, L.A. Clay minerals as indicators of late quaternary sedimentation 1051 constraints in the Mendeleev Rise, Amerasian Basin, Arctic Ocean, Lithology and Mineral Resources, 1052 49, 103-116, 2014. 1053 [64] Larsen, E., Kjær, K.H., Demidov, I.N., Funder, S., Grøsfjeld, K., Houmark-Nielsen, M., Jensen, M., Linge, 1054 H., Lyså, A.: Late Pleistocene glacial and lake history of northwestern Russia, Boreas, 35, 394-424, 1055 2006. 1056 [65] Lazar, K.B. and Polyak, L.: Pleistocene benthic foraminifers in the Arctic Ocean: Implications for seaice 1057 and circulation history, Marine Micropaleontology, 126, 19-30, 2016. 1058 [66] Löwemark. L., Jakobsson, M., Mörth, M., Backman, J.: Arctic Ocean Mn contents and sediment colour 1059 cycles, Polar Research, 27, 105-113, 2008. 1060 [67] Löwemark. L., März, C., O'Regan, M., Gyllencreutz, R. Arctic Ocean Mn-stratigraphy: genesis, 1061 synthesis and inter-basin correlation, **Quaternary Science Reviews**, 92, 97-111, 2014. 1062 [68] Margold M., Stokes C. R., Clark C. D.: Ice streams in the Laurentide Ice Sheet: Identification, 1063 characteristics and comparison to modern ice sheets, Earth-Science Reviews, 143, 117-146, 2015. 1064 [69] März, C., Stratmann, A., Matthiessen, J., Meinhardt, A., Eckert, S., Schnetger, B., Vogt, C., Stein, R., 1065 Brumsack, H.: Manganese-rich brown layers in Arctic Ocean sediments: composition, formation 1066 mechanisms, and diagenetic overprint, Geochimica et Cosmochimica Acta, 75, 7668-7687, 2011. 1067 [70] Matthiessen, J., Niessen F., Stein, R., Naafs, B. D.: Pleistocene Glacial Marine Sedimentary Environments at the Eastern Mendeleev Ridge, Arctic Ocean, Polarforschung, 79 (2), 123-137, 2009 1068

1069 (erschienen 2010). 1070 [71] Naidu, A.S., Burrell, D.C., Hood, D.W.: Clay mineral composition and geological significance of some 1071 Beaufort Sea sediments, Journal of Sedimentary Petrology, 41, 691–694, 1971. 1072 [72] Naidu, A. S., Creager, J. S., Mowatt, T. C.: Clay mineral dispersal patterns in the north Bering and 1073 Chukchi Seas. Marine Geology, 47(1), 1-15,1982. 1074 [73] Niessen, F., Hong, J.K., Hegewald, A., Matthiessen, J., Stein, R., Kim, H., Kim, S., Jensen, L., Jokat, W., 1075 Nam, S.-I., Kang, S.-H.: Repeated Pleistocene glaciation of the East Siberian Continental Margin, 1076 Nature Geoscience, 6, 842-846, 2013. 1077 [74] Nürnberg, D., Wollenburg, I., Dethleff, D., Eicken, H., Kassens, H., Letzig, T., Reimnitz, E., Thiede, J.: 1078 Sediments in Arctic sea ice: Implications for entrainment, transport and release, Marine Geology, 119, 1079 185-214,1994. 1080 [75] Nwaodua, E.C., Ortiz J. D., Griffith E. M.: Diffuse spectral reflectance of surficial sediments indicates 1081 sedimentary environments on the shelves of the Bering Sea and western Arctic, Marine Geology, 355, 1082 218-233, 2014. 1083 [76] Okulitch, A.V. (compiler): Geology of the Canadian Archipelago and North Greenland. In: Trettiln, 1084 H.P. (Ed.), Innuitian orogen and Arctic Platform: Canada and Greenland. The Geology of North America. 1085 The Geological Society of America, Boulder, Colorado, E, 1:200,000, 1991. 1086 [77] O'Regan, M., King, J., Backman, J., Jakobsson, M., Pälike, H., Moran, K., Heil, C., Sakamoto, T., Cronin, 1087 T.M., Jordan, R.W.: Constraints on the Pleistocene chronology of sediments from the Lomonosov Ridge, 1088 Paleoceanography, 23, PA1S19, doi:10.1029/2007PA001551, 2008. 1089 [78] Ortiz, J.D., Polyak, L., Grebmeier, J.M., Darby, D., Eberl, D.D., Naidu, S., Nof, D.: Provenance of 1090 Holocene sediment on the Chukchi-Alaskan margin based on combined diffuse spectral reflectance and quantitative X-Ray diffraction analysis, Global and Planetary Change, 68 (no. 1-2), 73-84, 2009. 1091 1092 [79] Pelto, B.M.: Sedimentological, geochemical and isotopic evidence for the establishment of modern 1093 circulation through the Bering Strait and depositional environment history of the Bering and Chukchi 1094 seas during the last deglaciation, Master Thesis, University of Massachusetts - Amherst, Paper 108, 134 1095 pp., 2014 (http://scholarworks.umass.edu/masters theses 2/108). 1096 [80] Phillips, R. L. and Grantz, A.: Regional variations in provenance and abundance of ice-rafted clasts in 1097 Arctic Ocean sediments: Implications for the configuration of late Quaternary oceanic and atmospheric 1098 circulation in the Arctic, Marine Geology, 172, 91-115, 2001.

- 1099 [81] Poirier, R.K., Cronin, T.M., Briggs Jr., W.M., Lockwood, R.: Central Arctic paleoceanography for the last
- **1100** 50 kyr based on ostracode faunal assemblages, **Marine Micropaleontology**, 88–89, 65–76, 2012.
- 1101 [82] Polyak, L., Edwards, M.H., Coakley, B.J., Jakobsson, M.: Ice shelves in the Pleistocene Arctic Ocean
 1102 inferred from glaciogenic deep-sea bedforms, Nature, 410, 453–459, 2001.
- 1103 [83] Polyak, L., Curry, W. B., Darby, D. A., Bischof, J., Cronin, T. M.: Contrasting glacial/interglacial regimes
 1104 in the Western Arctic Ocean as exemplied by a sedimentary record from the Mendeleev Ridge,

1105 Palaeogeography, Palaeoclimatology, Palaeoecology, 203, 73–93, 2004.

- 1106 [84] Polyak, L., Darby, D.A., Bischof, J., Jakobsson, M.: Stratigraphic constraints on late Pleistocene glacial
 1107 erosion and deglaciation of the Chukchi margin, Arctic Ocean, Quaternary Research, 67:234–245,
 1108 doi:10.1016/j.yqres.2006.08.001, 2007.
- 1109 [85] Polyak, L., Bischof, J., Ortiz, J.D., Darby, D.A., Channell, J.E.T., Xuan, C., Kaufman, D.S., Lovlie, R.,
 1110 Schneider, D.A., Eberl, D.D., Adler, R.E., Council, E.A.: Late Quaternary stratigraphy and sedimentation
- 1111 patterns in the western Arctic Ocean, Global and Planetary Change, 68, 5-17, 2009.
- 1112 [86] Polyak, L., Alley, R.B., Andrews, J.T., Brigham-Grette, J., Cronin, T.M., Darby, D.A., Dyke, A.S.,
- 1113 Fitzpatrick, J.J., Funder, S., Holland, M., Jennings, A.E., Miller, G.H., O'Regan, M., Savelle, J., Serreze,
- 1114 M., St. John, K., White, J.W.C., Wolff, E.: History of sea ice in the Arctic, Quaternary Science Reviews,
 1115 29, 1757-1778, 2010.
- 1116 [87] Polyak, L., Best, K. M., Crawford, K. A., Council, E. A., St-Onge, G.: Quaternary history of sea ice in
 1117 the western Arctic Ocean based on foraminifera, Quaternary Science Reviews, 79, 145-156, 2013.
- 1118 [88] Ramaswamy V. and Rao P. S.: Grain Size Analysis of Sediments from the Northern Andaman Sea:
 1119 Comparison of Laser Diffraction and Sieve-Pipette Techniques, Journal of Coastal Research, 22,

1120 1000–1009, 2006.

- 1121 [89] Rigor, I.G., Wallace, J.M., Colony, R.L.: Response of sea ice to the Arctic Oscillation, Journal of
 1122 Climate, 15, 2648–2663, 2002.
- [90] Rudels, B.: Arctic Ocean circulation. Encyclopedia of Ocean Sciences, J.H. Steele, K.K. Turekian, S.A.
 Thorpe (Eds.-in-Chief), Elsevier, 211-225, 2009.
- 1125[91] Sharma, M., Basu, A.R., Nesterenko, G. V.: Temporal Sr-, Nd- and Pb isotopic variations in the Siberian1126flood basalts: implications for the plume-source characteristics, Earth and Planetary Science Letters,

1127 113, 365-381, 1992.

- 1128 [92] Simon, Q., Hillaire-Marcel, C., St-Onge, G., Andrews, J.: North-eastern Laurentide, western Greenland
- and southern Innuitian ice stream dynamics during the last glacial cycle, Journal of Quaternary
 Science, 29, 14–26, 2014.
- 1131 [93] Slobodin, V.Ya., Kim, B.I., Stepanova, G.V., Kovalenko, F.Ya.: Differentiation of the Aion borehole

1132 section based on the biostratigraphic data, In: Stratigrafiya i paleontologiya mezo-kainozoya

- Sovetskoi Arktiki (Stratigraphy and Paleontology of the Meso-Cenozoic in the Soviet Arctic),
 Leningrad: Sevmorgeologiya, 43–58, 1990.
- 1135 [94] Spielhagen, R. F., Bonani, G., Eisenhauer, A., Frank, M., Frederichs, T., Kassens, H., Kubik, P. W.,
- 1136 Mangini, A., Nörgaard-Pedersen, N., Nowaczyk, N. R., Schäper, S., Stein, R., Thiede, J., Tiedemann, R.,
- 1137 Wahsner, M.:Arctic Ocean evidence for Late Quaternary initiation of northern Eurasian ice
- **1138** sheets, **Geology**, **25**, 783–786, 1997.
- 1139 [95] Spielhagen, R. F., Baumann, K. H., Erlenkeuser, H., Nowaczyk, N. R., Nørgaard-Pedersen, N., Vogt, C.,
- Weiel, D. Arctic Ocean deep-sea record of Northern Eurasian ice sheet history, Quaternary Science
 Review, 23, 1455–1483, 2004.
- 1142 [96] Schoster, F., Behrends, M., Müller, C., Stein, R., Wahsner, M.: Modern river discharge in the Eurasian
 1143 Arctic Ocean: Evidence from mineral assemblages and major and minor element distributions,
- **1144** International Journal of Earth Science, 89, 486–495, 2000.
- 1145 [97] Sellén, E., O'Regan, M., Jakobsson, M.: Spatial and temporal Arctic Ocean depositional regimes: a key
 1146 to the evolution of ice drift and current patterns, Quaternary Science Reviews, 29, 3644-3664, 2010.
- 1147 [98] Stärz, M., Gong, X., Stein, R., Darby, D.A., Kauker, F., Lohmann, G.: Glacial shortcut of Arctic sea-ice
 1148 transport, Earth and Planetary Science Letters, 357–358, 257–267, 2012.
- 1149 [99] Stein, R., Grobe, H., Wahsner, M.: Organic carbon, carbonate, and clay mineral distributions in eastern
 1150 central Arctic Ocean surface sediments, Marine Geology, 119, 269-285, 1994.
- 1151 [100] Stein R.: Arctic Ocean Sediments: Processes, Proxies, and Paleoenvironment, Elsevier, Amsterdam,
 1152 1-592 pp, 2008.
- 1153 [101] Stein, R., Matthiessen, J., Niessen, F.: Re-Coring at Ice Island T3 Site of Key Core FL-224 (Nautilus
 1154 Basin, Amerasian Arctic): Sediment Characteristics and Stratigraphic Framework, Polarforschung, 79
- **1155** (2), 81 96, 2010a.
- 1156 [102] Stein, R., Matthiessen, J., Niessen, F., Krylov, A., Nam, S., Bazhenova, E., Shipboard Geology Group.:
 1157 Towards a better (litho-) stratigraphy and reconstruction of Quaternary paleoenvironment in the

- 1158 Amerasian Basin (Arctic Ocean), **Polarforschung**, 79 (2), 97–121, 2010b.
- 1159 [103] Stein, R., Fahl, K., Müller J.: Proxy Reconstruction of Cenozoic Arctic Ocean Sea-Ice History– from
 1160 IRD to IP25, Polarforschung, 82 (1), 37–71, 2012.
- 1161 [104] Stokes, C.R., Clark, C.D., Darby, D., Hodgson, D.A.: Late Pleistocene ice export events into the Arctic
- 1162 Ocean from the M'Clure Strait Ice Stream, Canadian Arctic Archipelago, Global and Planetary Change,
 1163 49, 139—162, 2005.
- 1164 [105] Stokes, C.R., Clark, C.D., Storrar, R.: Major changes in ice stream dynamics during deglaciation of the
 1165 north-western margin of the Laurentide Ice Sheet, Quaternary Science Reviews, 28, 721-738, 2009.
- 1166 [106] Svendsen, J. I., Alexanderson, H., Astakhov, V. I., Demidov, I., Dowdeswell, J. A., Funder, S., Gataullin,
- 1167 V., Henriksen, M., Hjort, C., Houmark-Nielsen, M., Hubberten, H. W., Ingólfsson, O., Jakobsson, M.,
- 1168 Kjær, K. H., Larsen, E., Lokrantz, H., Lunkka, J. P., Lyså, A., Mangerud, J., Matioushkov, A., Murray, A.,
- 1169 Möller, P., Niessen, F., Nikolskaya, O., Polyak, L., Saarnisto, M., Siegert, R., Siegert, M. J., Spielhagen,
- 1170R. F., Stein, R.: Late Quaternary ice sheet history of Northern Eurasia, Quaternary Science Review, 23,
- **1171** 1229–1271, 2004.
- 1172 [107] Vogt, C.: Regional and temporal variations of mineral assemblages in Arctic Ocean sediments as climatic
 1173 indicator during glacial/interglacial changes, **Report on Polar Marine Research**, 251, 309, 1997.
- 1175 Indicator during glacial interglacial changes, Report on Folar Marine Research, 251, 509, 1997.
- 1174 [108] Vogt, C., Knies, J., Spielhagen, R. F., Stein, R.: Detailed mineralogical evidence for two nearly identical
 1175 glacial/deglacial cycles and Atlantic water advection to the Arctic Ocean during the last 90,000 years,
- **Global and Planetary Change**, 31, 23–44, 2001.
- 1177 [109] Vogt, C.and Knies, J.: Sediment dynamics in the Eurasian Arctic Ocean during the last deglaciation —
 1178 The clay mineral group smectite perspective, Marine Geology, 250, 211–222, 2008.
- [110] Vogt, C.and Knies, J.: Sediment pathways in the western Barents Sea inferred from clay mineral
 assemblages in surface sediments, Norwegian Journal of Geology, 89, 41–55, 2009.
- 1181 [111] Viscosi-Shirley, C., Mammone, K., Pisias, N., Dymond, J.: Clay mineralogy and multi-element chemistry
- of surface sediments on the Siberian-Arctic shelf: Implications for sediment provenance and grain size
 sorting, Continental Shelf Research, 23, 1175–1200, 2003.
- 1184 [112] Wahsner, M., Müller, C., Stein, R., Ivanov, G., Levitan, M., Shelekova, E., Tarasov, G.: Clay mineral
- distributions in surface sediments from the Central Arctic Ocean and the Eurasian continental margin as
- indicator for source areas and transport pathways: a synthesis, **Boreas**, 28, 215-233, 1999.

1187	[113] Wang, D. and Hesse, R.: Continental slope sedimentation adjacent to an ice-margin. II. Glaciomarine
1188	depositional facies on Labrador Slope and glacial cycles, Marine Geology, 135, 65-96, 1996.
1189	[114] Wang, R., Xiao, W., März, C., Li, Q.: Late Quaternary paleoenvironmental changes revealed by
1190	multi-proxy records from the Chukchi Abyssal Plain, western Arctic Ocean, Global and Planetary
1191	Change, 108, 100–118, 2013.
1192	[115] Winkler, A., Wolf-Welling, T.C.W., Stattegger, K., Thiede, J.: Clay mineral sedimentation in high
1193	northern latitude deep-sea basins since the Middle Miocene (ODP Leg 151, NAAG), International
1194	Journal of Earth Sciences, 91,133–148, 2002.
1195	[116] Winter, B.L., Johnson, C.M., Clark, D.L.: Strontium, neodymium, and lead isotope variations of
1196	authigenic and silicate sediment components from the Late Cenozoic Arctic Ocean: implications for
1197	sediment provenance and the source of trace metals in seawater, Geochimica et Cosmochimica Acta, 61,
1198	4181-4200, 1997.
1199	[117] Xiao, W., Wang, R., Polyak, L., Astakhov, A., Cheng, X.: Stable oxygen and carbon isotopes in
1200	planktonic foraminifera Neogloboquadrina pachyderma in the Arctic Ocean: an overview of published
1201	and new surface-sediment data, Marine Geology, 352, 397-408, 2014.
1202	[118] Xuan, C.and Channell, J.E.T.: Origin of apparent magnetic excursions in deep-sea sediments from
1203	Mendeleev-Alpha Ridge (Arctic Ocean), Geochemistry, Geophysics, Geosystems, 11, Q02003, 2010.
1204	[119] Yurco, L. N., Ortiz, J. D., Polyak, L., Darby, D. A., Crawford, K. A.: Clay mineral cycles identified by
1205	diffuse spectral reflectance in Quaternary sediments from the Northwind Ridge: implications for
1206	glacial-interglacial sedimentation patterns in the Arctic Ocean, Polar Research, 29, 176-197, 2010.
1207	[120] Zou, H.: An X-ray diffraction approach: bulk mineral assemblages as provenance indicator of sediments
1208	from the Arctic Ocean, PhD Thesis, University of Bremen, Bremen, 1-104 pp, 2016.

1	2	1	1
	_	т	т

Mineral	Window(°20,	Range of	Intensity
	CuKa radiation)	D-Spacing(A)	Factor*
Amphibole	10.30-10.70	8.59- 8.27	2.5
Augite	29.70-30.00	3.00-2.98	5
Calcite	29.25-29.60	3.04-3.01	1.65
Chlorite	18.50-19.10	4.79_4.64	4.95
Dolomite	30.80-31.15	2.90-2.87	1.53
K-Feldspar	27.35-27.79	3.26-3.21	4.3
Quartz	26.45-26.95	3.37-3.31	1

1212 *The intensity factors are determined in 1:1 mixtures with quartz by obtaining the ratio of the diagnostic peak intensity of

1213 each mineral with that of quartz, which is assigned a value of 1.00. The detection limit in weight percent of the minerals in

a siliceous or calcareousmatrix can be obtained by multiplying the intensity factor by 0.12 (Cook, 1975).

¹²¹⁵

1210	
1216	Table 2. AMS ¹⁴ C datings in core BN05

1217

-

Sample no.	Depth (cm)	AMS 14C age(14C a BP)	Calibrated age median (cal yr BP)	2-σ range (cal yr BP)
112767	4-6	7810±35	7885	7797-7958
112768	8-10	8180±35	8259	8171-8340
112769	18-20	38600±300	41703	41202-42165
115944	22-24	40800±410	43140	42522-43901

Table3. Loading scores for variables used in the PCA

Tublee: Beauing seere	o ioi vaii			011	
	PC1	PC2	PC3	PC4	PC5
% of Variance	18.94	17.27	15.71	14.78	10.05
Ca/Al	0.18	-0.07	0.62	0.57	0.18
Mn/Al	0.75	-0.18	-0.10	0.03	-0.20
Clay (%)	0.77	-0.44	0.03	-0.19	-0.25
Silt (%)	-0.80	0.17	-0.13	0.07	-0.41
Fine sand(%)	-0.34	0.50	0.02	0.21	0.64
>250 μm (%)	-0.19	0.12	0.26	0.09	0.86
Plankt. Foram. (% >63µm)	0.78	-0.06	-0.06	0.04	-0.34
Smectite (%)	-0.18	0.80	0.05	-0.11	-0.10
Illite (%)	0.17	-0.96	0.04	0.03	-0.17
Kaolinite (%)	-0.17	0.76	0.13	0.07	0.41
Chlorite (%)	-0.01	0.70	-0.42	-0.07	-0.01

Quartz (%)	-0.30	0.18	-0.47	-0.08	-0.04
K-feldspar (%)	-0.03	0.16	-0.02	-0.91	0.07
Plagioclase (%)	-0.15	0.09	-0.78	-0.48	-0.12
Calcite (%)	0.87	-0.05	0.07	0.27	-0.05
Pyroxene (%)	-0.11	-0.18	-0.28	-0.69	-0.27
Dolomite (%)	-0.05	-0.12	0.72	0.56	0.15
Qz/Fsp	-0.12	0.06	0.28	0.66	0.10
Kfsp/Plag	-0.11	0.05	0.89	-0.05	0.11

1219	Scores >0.5	(<-0.5) are	highlighted	in	bold.
------	-------------	-------------	-------------	----	-------

Figure 1. Background map showing the location of core ARC4-BN05, the main Arctic 1225 1226 rivers and the two major surface current systems: Beaufort Gyre (BG) and Transpolar Drift (TPD). Schematic geological map shows the distribution and prevailing 1227 lithology of the main terrains adjacent to the Arctic Ocean (Fagel et al., 2014). 1228 1229

1230

Figure 2. Index map showing the location of core ARC4-BN05 (yellow circle) and 1231 1232 other cores from previous studies mentioned in this paper (red circles). LR, MR, AR, and NR are Lomonosov, Mendeleev, Alpha, and Northwind ridges, respectively; NGS 1233 is Norwegian–Greenland Sea. White lines show maximal Pleistocene limits 1234 reconstructed for Greenland, Laurentide, Eurasian, and East Siberian Ice Sheets (GIS, 1235 LIS, EAIS and ESIS; England et al., 2009; Svendsen et al., 2004; Niessen et al., 2013). 1236 Proposed flow lines for grounded ice sheets and ice shelves (red and white arrows, 1237 respectively) are after Niessen et al. (2013). 1238

Figure 3. Lithostratigraphy and major proxies in core BN05: core photograph with
brown layer indices, lightness, Ca and Mn content (bulk XRF –grey line, ICP-OES –
black line), paleomagnetic inclination, planktic foraminiferal abundance, and AMS¹⁴C
datings. Predominantly dark brown intervals B1-B18 are highlighted in grey; high-Ca,
pink-white layers are marked by purple lines. The main inclination drop is marked by
orange line. See Table S1 for data used.

Figure 4. (a) Down-core grain-size distribution in core ARC4-BN05 (in volume %): 1249 clay ($<4 \mu m$), silt (4-63 μm), sand (63-2000 μm), fine sand (63-250 μm), and coarser 1250 sediment (250-2000 μ m). Occurrence of dropstones > 5mm is shown by circles on the 1251 1252 right.See Fig. 3 for lithostratigraphy explanation, and Tables S1-2 for data used. (b) Granulometric distribution types exemplifying major grain-size modes 1-4. Position 1253 of respective curves in core ARC4-BN05is indicated in the legend (depth in core, cm) 1254 1255 and is shown by arrows in panel a.(c) Examples of dropstones from core ARC4-BN05. 1: 48-54cm, quartz sandstone; 2: same dropstone, thin section in cross polarized light; 1256 3: 56-63.5cm, dolomite dropstone; 4:same dropstone, thin section in cross polarized 1257 light. 1258

1261 Figure 5. Relative weight contents of major clay mineral groups in the clay fraction

1262 (<2 μm), bulk mineral composition and related indices in core ARC4-BN05.S, K, C,

and I indicate smectite, kaolinite, chlorite, and illite, respectively. Qz, Kfsp, Plag, Pyr,

1264 Cal, and Dol are quartz, K-feldspar, plagioclase, pyroxene, calcite, and dolomite,

respectively. See Fig. 3 for lithostratigraphy explanation and Table S1 for data used.

Fig.6. Stratigraphic correlation of core BN05 with PS72/392-5 (Stein et al., 2010a)

based on sediment lightness, magnetic susceptibility, calcite and dolomite content.

See Fig. 3 for other stratigraphic proxies and lithostratigraphy explanation. Vertical

```
magenta bar indicates position of foraminiferal peak in B14-15.
1282
```


Figure 7. (a) Biplots of Principal Component loading scores in PC 1-2 and PC 3-4 space (see Table3 for loading data and Table S3 for correlation between variables). Sedimentary variable groups revealed by the loading distribution are enclosed by ellipses and numbered, with the closest groupings highlighted in grey. (b) Downcore distribution of sedimentary variable groups plotted using combined PC 1-2 and PC 3-4 scores (see Table S4 for score data).

Figure 8. Schematic reconstruction of glacial environments in the western Arctic
Ocean and factors controlling sedimentation at the BN05 site (yellow circle): surface
circulation (red and green arrows), glacioturbidites (orange filled arrow), and relative
ice-sheet size (red and green crosses). See Fig. 1 for modern circulation. (a) High
ESIS inputs: MIS 4, 6, 12, and 14; (b) high LIS inputs: MIS 8 and 10; (c) especially
high LIS inputs: intra-MIS5 and 3.