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Figure S1: Google Earth image putting Madagascar into perspective with regard to oceanic

currents and convergence zones (ITCZ and ZAB, Zaire Aire Boundary). The map of the currents

was obtained from Lindesay, 1998 and Schott and McCreary (2001). The map of the ITCZ and

ZAB was adopted from Gasse (2000). The red star indicates the study location.
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Figure S2: Climate setting. Map of summer precipitation between December 16 and January 15

(the wettest months) in Madagascar. Red star indicates the study area. Source:

http://iridl.Ideo.columbia.edu/ (accessed August 31, 2016)
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Figure S3: Cave locations. Google Earth image showing the location of the two caves Anjohibe

(ANJB) and Anjokipoty (ANJK) Caves and the current extent of vegetation cover in northwestern

Madagascar.
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Figure S4: Comparison between MAT 253 and Gas Bench |l stable isotope results on Stalagmite
MAJ-5, showing similarity in the results. a) Depth series of §'°C and 8'°0. b) Scatterplots of §"°C

and 80.
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Figure S5: Selected X-ray diffraction spectra of the three types of mineralogy identified in
Stalagmite ANJB-2 and MAIJ-5. (a) 100% calcite. (b) 50% calcite-50% aragonite. (c) 100%

aragonite.
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Figure S6: Photographs illustrating the mid-Holocene hiatus. Photographs showing the Type L

layer-bounding surfaces in Stalagmite ANJB-2 (a) and in Stalagmite MAJ-5 (b). Pinching of layers

toward the flank are indicated with arrows. Also, note the white and porous layer of aragonite in

Stalagmite ANB-2 that is capped with a very thin brown layer.
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Figure S7: Stable isotope profile of 8'30 and 8"*C of the late Holocene in Madagascar from
Anjohibe Cave’s stalagmites showing the 8'*C from Cs-dominated to C4-dominated vegetation

(Burns et al., 2016; Voarintsoa et al., in revision). Note that the age scale is in year AD.
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Figure S8: The 8.2 ka event identified in Stalagmite ANJB-2. a) Scanned image of a portion of

Stalagmite ANJB-2 showing the 8.2 ka event and the corresponding trenches for radiometric

dating and X-ray diffraction analyses. b) X-ray diffraction spectra of the stalagmite layers at 195,

200, and 212 mm from the top of the stalagmite.

Page 8 of 15



65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

Voarintsoa et al., Madagascar Holocene manuscript—for Climate of the Past

Supplementary text 1: Possible climatic response of the latitudinal migration of the ITCZ

The ITCZ migrates southward in austral summer and northward in boreal summer in
response to seasonal insolation. Climate simulations have also reported long-term migration of
the ITCZ, the causes of which have been ascribed to changes in insolation and difference in
temperature between the Northern and the Southern Hemisphere (e.g. Chiang and Bitz, 2005;
Broccolli et al., 2006; Braconnot et al., 2007). The climatic responses to the ITCZ dynamics can
vary from region to region and from one time interval to another. Here, we attempt to provide
different conceptualized models to understand the climatic regime in Madagascar during the
early, the middle, and the late Holocene (as proposed in Sect. 5.2. of the manuscript).

Dry conditions in Madagascar could be conceptualized as dry years, such as modeled in
case 1 (Fig. S9). In that model, austral summer months receive less rainfall and austral winter
months could receive no rainfall. This model could be used to conceptualize the climatic
response in Madagascar when the ITCZ moves north, such as during the mid-Holocene.

Wet conditions in Madagascar could be conceptualized as wet years, such as modeled in
case 2 and case 3 (Fig. S9). Case 2 suggests that austral summer months receive rain as well as
austral winter months, thus it suggests less seasonality. Although the amount of rainfall received
during winter months cannot be easily estimated, this model could be used to understand the
climatic response in Madagascar during the early Holocene when the southern hemisphere
winter insolation was relatively greater than the northen Hemisphere winter insolation (Fig. 5a).
The ITCZ was already moved southward due to the globally cold conditions (Figs. 6a, c), and
because of the higher winter insolation in the SH, heating of land would bring additional

precipitation during austral winter. Case 3 suggests that austral summers receive more rainfall
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than normal years, but austral winters stay dry or with little precipitation, thus seasonality must

have been stronger. This scenario could be used to understand the climatic response in

Madagascar during the late Holocene when the southern hemisphere summer insolation was

greater than the northern hemisphere summer insolation (Fig. 5a). Globally cooler conditions

(Figs. 6a, b) already suggest a southward migration of the ITCZ, and the greater SH summer

insolation could have intensified the monsoonal rainfall in northwestern Madagascar during

austral summers.
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Figure S9: Conceptualizing the different possible outcomes of the long-term latitudinal migration
of the ITCZ. a) Highlighting the three possible scenarios of the Holocene. b) Barplots of monthly
rainfall in northwestern Madagascar, using the modern data as a reference to estimating the
region’s paleoclimate during drier and wetter conditions. c) Global rainfall maps from NASA (same
source as Fig. 1 in the manuscript). These maps are modern, but they are only shown here to give

a better perspective of the position of Madagascar when the ITCZ is relatively north or south.
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101  Tables
102 Table S1: ?*°Th dating results for Stalagmite ANJB-2. The error is 2 & error. Dft= distance from the top of the stalagmite.
Bory, /2, d=y o pge (yr) | POThAge (yr) | dPUpea™ | ABEOT
Dft (mm) Sample no. 22U (ppb) Th (ppt) (atomic x10°) | (measured) HTh /U (activity) (uncorrgect:d) (correiteg) (corr:(':ntaéd) BP)**

(corrected )

3 ANJ-B-2-U003 3371 +11 39850 +809 10 0 5.2 +2.0 0.0070 +0.0001 761 7 419 +243 5 +2 355 1243

8 ANJB-2-008 194.6 +0.3 410 8 20 13 3.6 +1.7 0.0026 +0.0004 284 +47 223 164 4 +2 161 +64

25 ANJB-2-025 4646.6 16.6 1594 +32 216 15 3.4 +1.4 0.0045 +0.0001 489 7 479 +10 3 +1 417 +10
47 ANJ-B-2-U047 64 +0 634 +15 31 +12 3.0 +4.3 0.0187 +0.0074 2052 +822 1762  £845 3 +4 1697  £845
53 ANJ-B-2-UO53R 134 +0 2325 +47 20 4 4.6 +2.0 0.0211 +0.0037 2313 +416 1808  £547 5 +2 1743  £547
72 ANJB-2-072 67.8 +0.1 382 8 48 13 8.5 +2.4 0.0163 +0.0008 1778 +93 1615  +147 9 +2 1553  +147
92 ANJ-B-2-U092 78 +0 180 8 92 +40 5.1 +3.5 0.0129 +0.0056 1408 +610 1341 1612 5 +4 1276  £612
105 ANJ-B-2-U105 117 +0 229 19 113 +34 135 29 0.0134 +0.0040 1450 +432 1393  +434 14 +3 1329 +434
112 ANJ-B-2-U112 1322 +2 7456 +150 42 12 8.5 +2.0 0.0145 +0.0005 1576 +50 1413 £125 9 +2 1348  £125
116 AB-1a 130.9 +0.2 530 +14 136.7 £16.7 | 27.0 £3.0 | 0.033539275  +0.00400 3620 +439 3506 +446 | 27.2 £3.0 | 3444 446
118 AB-2a 2569.8 £2.9 5266 +106 | 580.4 £11.9 7.5 +1.6 | 0.072126026  +0.00032 8100 +40 8040 +58 7.6 +1.6 | 7978 +58
120 ANJ-B-2-U120 1710 +4 20753 1418 108 12 9.1 +2.3 0.0796 +0.0004 8955 +48 8605  +252 9 +2 8541 252
120 ANJ-B-2-U120R 2075 +3 13340 1268 197 4 6.3 +1.5 0.0767 +0.0003 8640 +38 8454  +137 6 +2 8389 137
130 ANJB-2-130 30424 +3.8 7448 +149 477 +10 6.2 +1.5 0.0709 +0.0002 7966 +26 7895 57 6 +2 7833 +57
160 ANJB-2-160 2994.8 4.1 2484 +50 1416 +29 4.3 +1.5 0.0712 +0.0002 8021 +30 7997 +35 4 +2 7935 +35
185 ANJ-B-2-U185 3490 5 6040 +122 690 +14 3.6 +1.7 0.0724 +0.0003 8167 +33 8117 +48 4 +2 8053 +48
201 ANJ-B-2-U205 574 +1 1881 +38 374 8 5.7 +1.8 0.0743 +0.0006 8367 +70 8272 97 6 +2 8208 +97
215 ANJ-B-2-U215 3146 +4 5418 +109 713 +15 7.0 +1.5 0.0745 +0.0003 8379 +33 8329 +48 7 +2 8265 +48
251 ANJ-B-2-U251 4246 5 7290 +147 745 +15 6.3 +1.3 0.0776 +0.0002 8750 +27 8700 +44 6 +1 8636 +44
275 ANJ-B-2-U275 6077 9 9132 +184 861 +17 4.5 +1.5 0.0785 +0.0002 8867 +32 8823 +44 5 +2 8759 +44
280 MAJ-B-2-U280 5721 +18 5408 +110 1360 +28 2.4 +1.6 0.0780 +0.0003 8828 +36 8801 +41 2 +2 8737 +41
302 ANJ-B-2-U302 9833 144 1617 +33 8024 +166 5.2 +1.9 0.0800 +0.0004 9045 +50 9041 +50 5 +2 8977 +50
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U decay constants: Ajsg = 1.55125x10™*° (Jaffey et al., 1971) and Ay34 = 2.82206x10° (Cheng et al., 2013). Th decay constant: A3 =
(Chengetal., 2013).

*§7'U = ([234U/238U]amvity —1)x1000. ** 8234U'\mtia| was calculated based on “*°Th age (T), i.e., 6234Umma‘ = 5234Umeasured x el 24T,

Corrected *°Th ages assume the initial 230Th/
equilibrium, with the bulk earth

232

232

***B.P. stands for “Before Present” where the “Present” is defined as the year 1950 A.D.

Th atomic ratio of 4.442.2 x10°. Those are the values for a material at secular
Th/“>"U value of 3.8. The errors are arbitrarily assumed to be 50%.

Table S2: 2°Th dating results for Stalagmite MAJ-5. The error is 2 & error. Dft= distance from the top of the stalagmite.

9.1705x10°®

230 23 234 230 238 230 230 234 20Th Age (yr
Dft (mm) | Sample no. U (ppb) “Th (ppt) (at;:i/c x1gh5) (miasmlj:ed) (aTclli(/ity)U (ur;rcr:);:iect(g/;)) (;r;r/zgcie(g)r ! ?corlrtctte‘zz BP)***
(corrected )

1 MAJ-5-U001 | 2734  +15 | 3044  +63 | 33 +1 | 32  +27 | 00023 +00000 | 246 +5 | 214 +24 | 3 +3 150 +24
10 MAJ-5-U0L0 | 6691  +38 | 22757 +474 | 27 +1 | 31 36 | 00056 +0.0001 | 609 7 | 510 471 3 +4 446 71
22 MAJ-5-U022 | 3292  +4 | 11633 4234 | 31 +1 | 30 +15 | 00067 400001 | 736  +14 | 633  +74 3 +1 569 474
41 MAJ-5-U041 | 1380  +3 | 10604 +213 | 32 +1 | 11 +21 | 00147 +00001 | 1617  +15 | 1393 159 1 +2 1329 159
50 MAJ-5-U0SO | 1224  +4 | 4144 484 | 40 +1 | 29 24 |00082 +00001 | 898 15 | 799 471 3 +2 735 471
60 MAJ-5-U060 | 1578  +3 | 14591 4293 | 31 +1 | 09 26 | 00173 +0.0005 | 1901  +56 | 1631  +199 1 +3 1567  +199
66 MAJ-5-UO66 | 12609  +83 | 38990 4842 | 461  +10 | -46 429 | 00865 +0.0006 | 9912  +81 | 9821  +103 5 +3 9757  +103
80 MAJ-5-U080 | 11684  +16 | 27838 4559 | 598  +12 | 2.6  +12 | 00864 +0.0002 | 9882  +24 | 9813 455 3 +1 9749 455
89 MAJ-5-U089 | 10930  +12 | 30247 4606 | 519  +10 | -12  +13 | 00870 +0.0002 | 9941  +29 | 9860  +64 1 +1 9796 +64

U decay constants: Ajsg = 1.55125x10™*° (Jaffey et al., 1971) and Ay34 = 2.82206x10° (Cheng et al., 2013). Th decay constant: A3 = 9.1705x10°®
(Chengetal., 2013).

*§7'U = ([234U/238U]amvity —1)x1000. ** 8234U'\mtia| was calculated based on “*°Th age (T), i.e., 6234Umma‘ = 5234Umeasured x el 25T,

Corrected *°Th ages assume the initial 230Th/
equilibrium, with the bulk earth

232

232

***B.P. stands for “Before Present” where the “Present” is defined as the year 1950 A.D.

Th atomic ratio of 4.442.2 x10°. Those are the values for a material at secular
Th/“""U value of 3.8. The errors are arbitrarily assumed to be 50%.
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