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Abstract. Reconstructions of summer, winter or annual mean temperatures based on the species composition of bio-indicators

such as pollen, foraminifera or chironomids are routinely used in climate model-proxy data comparison studies. Most recon-

struction algorithms exploit the joint distribution of modern spatial climate and species distribution for the development of the

reconstructions. They rely on the assumption of ‘uniformitarianism’, which implies that environmental variables other than

those reconstructed should not be important, or that their relationship with the reconstructed variable(s) should be the same in5

the past as in the modern spatial calibration dataset.

Here we test the implications of uniformitarianism on such reconstructions in an ideal model world, in which climate and vege-

tation are known at all times. The alternate reality is a climate simulation of last 6000 years with dynamic vegetation. Transient

changes of plant functional types are considered as surrogate pollen counts, and allow to establish, apply and evaluate transfer

functions in the modeled world.10

We find that the transfer function cross-validation r2 is of limited use to identify reconstructible climate variables, as it only

relies on the modern spatial climate/vegetation relationship. However, ordination approaches that assess the amount of fossil

vegetation variance explained by the reconstructions are promising. We furthermore show that correlations between climate

variables in the modern climate/vegetation relationship are systematically extended into the reconstructions. Summer tem-

peratures, the most prominent driving variable for modeled vegetation change in the Northern Hemisphere, are accurately15

reconstructed. However, the amplitude of the winter and mean annual temperature cooling between the mid-Holocene and

present day is overestimated, and similar to the summer trend in magnitude.

This effect occurs, because temporal changes of a dominant climate variable, such as summer temperature, are imprinted on

a less important variable, leading to reconstructions biased towards the dominant variable’s trends. Our results indicate that

reconstructions of multiple climate variables from the same bio-indicator dataset should be treated with caution. Expert knowl-20

edge on the eco-physiological drivers of the proxies, and statistical methods that go beyond the cross-validation on modern

calibration datasets are crucial to avoid misinterpretation.
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1 Introduction

Continental-scale climate reconstructions (Bartlein et al., 2011; Davis et al., 2003; Mauri et al., 2014) are frequently used as

a paleo-data target to evaluate and benchmark climate models (e.g. Harrison et al., 2014; Fischer and Jungclaus, 2011). These

efforts have to rely on the fidelity of the paleo-climate reconstruction and the associated uncertainty estimates.

To arrive at quantitative assessments of past climate changes from pollen assemblages, transfer function algorithms are used to5

establish a link between modern climate and vegetation composition across space. The derived relationships are then applied to

fossil pollen percentages, counted in sediment archives. The main challenge for quantitative interpretations is the fundamental

assumption (“the law of uniformitarianism”, Scott (1963)) in transfer functions. It states, that the same laws govern species,

or vegetation, distribution along climatic and environmental gradients in space, as they did at individual sites through climatic

changes (Juggins, 2013). A presumption for the establishment of ecological transfer functions for climate reconstruction is10

therefore that environmental variables other than those considered in the calibration are not important, or that their relationship

with the reconstructed variable(s) is the same in the past as in the modern spatial calibration dataset (Birks and Seppä, 2005).

These assumptions have been discussed since the early days of quantitative reconstructions based on paleoecological data (see,

e.g. Birks, 2011; Juggins, 2013, and references therein). However, without knowing the past climate evolution, it is difficult to

estimate to what extent this assumption might be violated, and what the potential implications for reconstructing the Holocene15

climate evolution are.

Here, we use a climate model simulation with interactive vegetation as a testbed for pollen transfer functions in the Holocene.

In the model world, the modern spatial climate and its relationship to vegetation is known, along with the Holocene climate

and vegetation evolution.

Our general approach bears some similarities to previous ‘pseudoproxy’ experiments, where climate model simulations were20

used to test calibrations for temperature reconstructions of the last millenia (Mann and Rutherford, 2005; Küttel et al., 2007;

von Storch et al., 2004). However, as these studies target proxy records for climate which are largely without modern spatial

calibrations (e.g. tree rings) they focus on the effect of noise on temporal calibrations. We ignore these proxy imperfections, as

well as age uncertainty, and focus on the assumption of ‘uniformitarianism’, which motivates the use of spatial calibrations to

reconstruct temporal changes.25

Key questions are: (i) To what extent does the assumption of uniformitarianism, and aspects of the estimation processes,

bias reconstructions of the Holocene temperature evolution? (ii) Are there statistical indicators that can inform us on actual

reconstructability of climate variables?

To address these questions within the model world, we need to assume that model climate and vegetation changes are consistent30

with each other, and that modeled plant functional type (PFT) and land cover type changes (desert fraction) can be used as

surrogates for pollen counts in sedimentary archives.
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2 Methods

2.1 Climate model simulations

−6

−4

−2

0

2

4

6

K

a Temperature Difference

−600

−400

−200

0

200

400

600

m
m

b Precipitation Difference

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

sd

c Turnover

0

1

2

3

4

# 
S

pe
ci

es

d Diversity

Figure 1. Temperature (a) and precipitation changes (b), vegetation turnover (c) and vegetation diversity as measured by the Hill’s number

N2 (d) across the 6k-run (Fischer and Jungclaus, 2011).

We use a 6000-year-long transient simulation of the coupled atmosphere-ocean climate model ECHAM5/MPIOM (Jung-

claus et al., 2006) with a dynamic land surface and vegetation scheme provided by the JSBACH module (Raddatz et al., 2007;

Brovkin et al., 2009) to investigate pollen-based climate reconstruction techniques. This simulation is described in (Fischer5

and Jungclaus, 2011) (hereafter 6k-run) and is only forced by orbital changes over the last 6000 years. Environmental and

atmospheric variables are available on a regular 3.75◦× 3.75◦ latitude/longitude grid.

The vegetation module is described in Sitch et al. (2003) and Brovkin et al. (2009). The modeled climate-vegetation inter-

action through the growth, competition and mortality of the four tree, two shrub and two grass PFTs is nontrivial: Within each

grid cell plants compete for fractional cover, given their own net primary productivity, natural mortality as well as disturbance-10

driven mortality in response to climate (fire, heat and cold extremes, growing season length). Given a latitude, soil texture, CO2

concentration, temperature and precipitation, processes changing water balance, photosynthesis, leaf cover and respiration are

simulated on a daily or monthly time step. The turnover of wood, leaves and roots, decomposition, mortality and establishment

is calculated annually, and the resulting vegetation cover is fed into the next year. Table 1 in the supplementary information

lists the PFTs and their bioclimatic temperature limits.15
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The Holocene climate and vegetation evolution of this model simulation have been extensively used and characterized in

paleoclimate model-data comparisons (Fischer and Jungclaus, 2011; Dallmeyer et al., 2011, 2013, 2015; Laepple and Huybers,

2014; Rehfeld and Laepple, 2016). While vegetation biases have been observed against present-day conditions in some areas

(Brovkin et al., 2009; Dallmeyer et al., 2011), the overall patterns are consistent (Brovkin et al., 2009). Climate and vegetation

changes from mid-Holocene to present day are substantial (Fig.1) and differ between the seasons (Fig.3, top row).5

2.2 Reconstruction methods

Quantitative climate reconstruction (Juggins and Birks, 2012; Birks, 2011) based on a multivariate pollen count dataset requires

algorithms that translate past vegetation changes into estimates of past climate changes. Most approaches use three datasets:

A paired calibration set, and one downcore pollen record to be reconstructed. The calibration set combines modern pollen10

and climate data from recent, or modern, conditions taken from surface samples across ecological and climatic gradients. An

example from the real-world would be pollen counts from lake sediment surfaces across Europe, paired with data from meteo-

rological stations near these lakes. Several approaches for quantitative reconstructions based on ecological species counts have

been established (see e.g. Birks, 2011, for a review). Here we focus on two popular techniques: Best Modern Analog methods

(here: BMA, often also called Modern Analogue Technique), and the multivariate calibration method of Weighted Averaging15

(WA).

BMA methods directly match the species composition of fossil assemblages against the modern calibration set. (Overpeck et al.,

1985). To obtain a reconstruction value for a fossil sample,N analog modern samples with the lowest ecological distance (most

commonly estimated using the Squared-Chord-Distance (Overpeck et al., 1985)) are selected. Their modern reference climate

variables are averaged to obtain the past climate estimate. These approaches work well on samples with a low number of taxa,20

but estimates of calibration function errors may be biased low due to autocorrelation in climate and vegetation, as the method

inherently favors nearby sites (Telford and Birks, 2005, 2009). In this study we use BMA with N = 5 and the Squared-Chord

distance.

Multivariate calibrations, on the other hand, are based on the regression of modern vegetation onto estimates of a climate vari-

able at many calibration sites, to establish one global parametric function between them. In WA calibration, climate optima for25

different taxa are derived by performing a weighted average of climate variable estimates at all sites at which a taxon is present.

Weights are derived from the relative abundance of the taxon. The step from past vegetation composition to estimates of past

climate then relies on a second weighting step, in which the climate optima of all taxa present in the fossil sample are averaged,

again weighted by their relative abundance. We employ WA here to illustrate results that are common to reconstructions based

on BMA and WA-related methods, which may therefore depend on properties of the dataset, or the general approach of re-30

constructing climate based on modern spatial climate calibrations. In this study, we use WA with square-root transformed scores
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2.3 Estimates of reconstruction uncertainty

In a real-world situation, the true climate evolution is unknown and the root mean square error of prediction (RMSEP) is esti-

mated in the modern calibration set. In the following we use k-fold cross-validation with k=10 (1/k-th of the samples are used

for verification) but note that even using cross-validation, the RMSEP may be biased low due to autocorrelation in the modern

data (Telford and Birks, 2005, 2009) As we know the true climate in the model world, we can additionally obtain the root mean5

square error of the reconstruction (RMSE) by comparing the reconstructed climate variable to its simulated counterpart.

We employ multivariate constrained ordination methods to test, which climate variables explain vegetation variance. While

Redundancy Analysis (RDA) extends principal component analysis, Canonical Correspondence Analysis (CCA) is the equiv-

alent method for frequency data (Borcard et al., 2011).

We evaluate the similarity between trend and correlation fields using a sign-test, similar to Kendall’s rank correlation, defined10

as a fraction ν(X,Y ) = S(X,Y )
# reconstr. grid cells varying between -1 and +1. A grid cell counts into the sign sum S(X,Y ) as +1 if the

signs in field X and field Y are the same, and as -1 if they are opposite. Summation goes over all grid cells where a reconstruc-

tion was performed. This sign test yields ν = 1 if and only if all grid cells in field X and Y have the same sign, and ν =−1 if

all signs are opposing. ν = 0 suggests, that there are as many grid cells with opposing signs as there are with the same signs,

indicating that there is no underlying similarity between the fields.15

2.4 Calibration and reconstruction workflow

We perform PFT-based calibrations and climate reconstructions at each grid point on land which displays enough diversity and

temporal variations in the simulated vegetation. Therefore, we select all points for the reconstruction tests with an effective

number of species N2 larger than 2 (Hill, 1973), and vegetation turnover larger than 0.5. Turnover is estimated from the length

of the first detrended correspondence analysis axis in standard deviation units (Hill and Gauch, 1980).20

The simulated vegetation history through time at a grid point forms the fossil vegetation dataset. The simulated modern sur-

rounding vegetation and climate fields, averaged over the last 30 years, yield the matrices containing modern pollen and climate

information for the modern training set. We select all surrounding land-points in a radius of 2500km and subsample them such,

that the calibration set size is roughly equal for all sites and not latitude-dependent.

Pollen matrix columns contain the percentages of the eight PFTs (acronyms in Appendix A, details in Suppl. Table 1), and the25

desert fraction as a virtual PFT. Each column in the modern climate matrix corresponds to a climate variable and we choose

the warmest month, coldest month and annual mean temperatures (MTWA, MTCO, MAT) and precipitation (MPWA, MPCO,

MAP) variables.

In many conventional paleoecological studies one or two climate variables would be selected for reconstruction, which are

expected to have influenced vegetation development significantly, and independently (Juggins, 2013; Telford and Birks, 2011).30

As we want to investigate, which variables can be skillfully reconstructed, we perform joint reconstructions of all six climate

variables, both via BMA and WA. We note that jointly reconstructing several climate variables is done in several large-scale

regional reconstructions (e.g. in Mauri et al., 2014; Bartlein et al., 2011; Davis et al., 2003) and come back to this later in the
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discussion.

Fig. 2 illustrates the whole calibration and reconstruction workflow for a BMA reconstruction at an example grid point selected

from the Arctic (120◦E,72◦N). CCA analyses (Fig. 2d) suggest, that summer temperature is the main climate variable driving

vegetation development in the modern vegetation around the site, whereas winter temperatures have little to no impact on the

vegetation changes in the model (shown also in Suppl. Fig. 3). A summer temperature calibration based on BMA can explain5

considerable amounts of variance in the modern vegetation-climate relationship, it also shows a low RMSEP of ∼ 1.15◦ C.

In the model world, we can compare reconstructed and the simulated true past model climate evolution (Fig. 2f) and find that

summer temperatures (MTWA) are faithfully reconstructed, whereas the reconstructions of annual mean (MAT) and winter

temperatures (MTCO) largely fail.
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Figure 2. Exemplary calibration, BMA reconstruction and verification workflow for the grid point site in Siberia (120◦E,70◦N) highlighted

as a red square in (a). Surrounding grid points from which the modern analogs are drawn are shown as black dots, chosen analogs in blue.

CCA analyses show, that MTWA explains most variance in modern vegetation (b), and performs sufficiently well in leave-one-out cross

validation (c). The jointly reconstructed climate variables show considerable shared (black), and rather little independent variance (grey) in

the modern calibration (d). Past vegetation changes, as shown in the percentage PFT diagram (e), appear to be correlated with (f) simulated

and reconstructed climate. Red lines show the simulated ‘true’ past temperatures, black lines the reconstructions. The MTWA reconstruction

explains most fossil vegetation variance in the randomTF significance test (Telford and Birks, 2011).
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3 Results

3.1 Simulated and reconstructed Holocene temperature trends
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Figure 3. Linear trend in the simulated (top row) vs. the reconstructed temperature evolution between 6k and present day based on BMA

(middle row) and WA (bottom row). Saturated red/blue colors indicate that the grid point’s trends are stronger than 1K/kyr.

The simulated mid-late Holocene temperature evolution shows a zonal structure characterized by warming trends around

the Equator and across Asia and cooling trends in the mid-to-high latitudes (Fig. 3 top row). The seasonal insolation forcing

caused by changes of the orbital configuration results in distinct temporal trends for summer and winter temperature, which5

differ in their strength and in some regions also in their signs. In the Arctic regions, the trends in the model simulation are strong

(∼-0.5K/kyr) for summer, and weaker (∼−0.1K/kyr) for winter and the annual mean. The warming trends around the Equator

appear strongest in the coldest month. Similar patterns occur in the mean annual precipitation, with drying in the Northern

and wetting in the Southern Hemisphere. We focus here on temperature and refer the reader with interest in the precipitation

changes to Supplementary Fig. 1.10

We now analyze the winter (MTCO), summer (MTWA) and annual mean (MAT) temperature patterns reconstructed using

BMA and WA (Fig.3). Reconstructed winter trend patterns diverge from the simulated trends. In many regions the reconstructed

trends are higher than ±1K/kyr in magnitude, and thus stronger than anywhere in the simulated model climate. Negative

temperature trends in polar regions are not consistently captured, and an east-to-west warm-to-cold gradient appears for both
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reconstruction techniques WA and BMA.

In contrast, the reconstructed summer trends show broad similarities to the simulated temperature changes. Equatorial warming

and polar cooling are captured by both WA and BMA. Differences exist in the magnitude of the changes, rather than the sign,

except for in the Middle East, where warming is suggested by BMA and WA, and the true simulation trends showed a cooling,

in particular around present-day Turkey.5

Amongst the climate variables, MTWA appears to be most consistent between simulations and reconstructions. This is also

supported by the results of the sign test (described in Sec. 2.3), which yields ν ≈ 0.5 for WA and BMA. MTCO is least

consistent (ν ≈ 0.3). Between WA and BMA, results appear more patchy for BMA than for WA (i.e. sign or magnitude vary less

gradually across space), but this does not imply that either method captures correct degrees of change. This is further underlined

by the temperature standard deviations taken across the trend fields, which are much larger for WA (sd = 1.8K, bottom row in10

Fig. 3) and BMA (sd = 2.9K, middle row) than for the simulation (sd = 1.2K, top row). Thus, for both reconstruction methods

reconstructed trends are spatially more heterogeneous than the simulated trends.

The spatial patterns and magnitudes of the reconstructed trends are very similar across all three seasons (compare panels across

rows in Fig.3). Visually, they show a stronger similarity than the spatial patterns of the simulated seasonal trends (compare

panels of the top row). This is due to the fact that grid cells with large positive or negative trends appear in the same positions15

across the seasons (i.e., row-wise), but not necessarily across methods (i.e., column-wise). The sign test shows slightly larger

correspondences within each row/across seasons for the same method (ν = 0.59) than for the columns/same season across

methods (ν = 0.47). Due to the influence of the strong trends in the same places, this discrepancy is stronger for Pearson

correlations across the fields of Fig. 3 (by method ρ= 0.79, by season (ρ= 0.46). One explanation for this observation could

be that all seasonal reconstructions are biased towards a single specific season.20

3.2 Seasonal bias of temperature reconstructions

To further investigate this finding, we analyze the correlation between the different seasons in the simulations across modern

space and across time and contrast them with the correlation through time between the reconstructed seasonal time series

(Fig. 4). Ideally, the temporal correlation of the reconstructions should equal the temporal correlation of our ‘true’ (model

simulated) climate evolution. Correlations across modern space are calculated over all the grid-points relevant in the calibration25

and reconstruction process, thus for WA these are all grid-boxes in a radius of 2500km whereas for BMA, only the sites picked

as modern analog in the reconstruction are used (see Fig. 2a for an example). For simplicity, we perform the analysis for winter

(MTCO) against summer (MTWA) temperature, but other variable combinations (e.g. temperature against precipitation) would

lead to similar results.

Across modern space MTCO and MTWA are mostly positively correlated (Fig. 4a), as towards the poles temperatures get30

colder in summers as well as in winter. Exceptions are found around Eastern Siberia and equatorial regions in Africa, where

summer and winter temperatures are anti-correlated across space.

The temporal correlations of the WA-reconstructed MTCO and MTWA (Fig. 4b) show a very similar pattern of the correlation

sign, although with stronger amplitudes of the correlation values. Indeed, the sign test yields ν = 0.76, indicating that the large
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majority of the grid cells in Fig. 4a and Fig. 4b share the same sign. In contrast, the ‘true’ temporal MTCO/MTWA correlation

over the late Holocene (Fig. 4e), which should ideally be similar to the reconstructed temporal correlation (Fig. 4b), shows

a different picture (ν = 0.26). This suggests that the modern spatial covariance has been directly propagated to the temporal

covariance of the reconstructions.

The same observation holds for the BMA-based results (Fig. 4d). The modern spatial MTCO/MTWA covariances at the5

sites picked as modern analogs, shown in Fig. 4c, are noisier than the covariances calculated over all grid-boxes, but show a

similar pattern. The seasonal correlation in the BMA-reconstructions again directly follows the modern spatial MTCO/MTWA

correlation (ν = 0.68). In contrast, the similarity to the actual temporal covariance (Fig. 4e) is low, as the sign test underlines

(ν = 0.03).

10
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Figure 4. Correlation of coldest and warmest month temperatures. The correlation patterns across modern calibration space (a) are similar to

the temporal correlation pattern estimated from WA reconstructions (b). The correlations at the sites picked as modern analogs (c) are similar

to those obtained in the final BMA reconstructions (d). In contrast, the ‘true’temporal correlation pattern from the model temperatures differs

considerably from the reconstructed temporal correlation fields. This demonstrates that the correlation in the reconstructions mainly depends

on the modern calibration and not, as one would hope for, from the correlation of the Holocene temperature evolution.
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Figure 5. Performance of the BMA calibration models as evaluated by the correlation between the reconstructed and simulated climate

variables (a-f) at each grid point.

3.3 Reconstruction skill

We showed that the ability to reconstruct Holocene temperature trends strongly depends on the analyzed season and region

(Fig. 3). It is also important to quantify the reconstruction skill for the full Holocene evolution, including millennial variability

and absolute temperature estimates. We analyze two metrics, (i) the temporal Pearson correlation between the ‘true’ past

changes and the climate variable reconstructions (“correlation skill” , Fig. 5), and (ii) the RMSE deviation of the reconstructed5

from the ‘true’ climate.

Consistently high correlation skill values for the BMA reconstruction can be found across the Arctic for MTWA, and in

the Sahel for MAP. Simulated MAT changes are correlated with MTWA changes in the high latitudes, which explains the

relatively weaker but positive correlation there. Winter climate, and summer precipitation reconstructions do not show good

skill anywhere.10

Most regions with high positive correlation skill show comparably low temporal RMSE (Fig. 4 in the Suppl. Information),

whereas many regions with low RMSE do not show high correlation skill. In a real-world situation, the true past climate

evolution is unknown and a root mean square error of prediction (RMSEP) is estimated from the modern calibration set

(cf. Sec. 2.3). A comparison of summer temperature downcore RMSE and modern spatial RMSEP, given in Suppl. Fig. 7,

shows that modern RMSEP is higher than the actual reconstruction error in many places, but there is little resemblance to the15

patterns of the estimated downcore RMSEP. Furthermore, if the calibrations are performed with a smaller radius, the modern

calibration error decreases (results not shown).
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3.4 Testing for the predictability of reconstruction skill

Moderna

MTCO
MTWA
MAT
MPCO
MPWA
MAP

Fossil Reconstructionb Fossil Simulationc

Figure 6. Climate variables explaining most variance in modern vegetation (a), between reconstructed climate and fossil vegetation (b) and

simulated climate and fossil vegetation (c). Variable explaining most variance in the modern world (a) are not necessarily those explaining

vegetation changes in the ‘true’ model past (c).

The inaccuracy of the covariance estimates (Fig. 4b), and the dependency of the reconstruction skill on the analyzed climate

variable (Fig. 5) highlights, that it is important to determine which climate variables can be reconstructed in a given setting -

and what other variables they are colinear with in the modern training set. We can discern two statistical approaches to iden-

tify the driving variable for climate-related vegetation changes: Those relying on the modern calibration set, and those which5

involve the fossil downcore record. In both, higher variance explained should be reflecting a higher environmental relevance

(Juggins and Birks, 2012).

In the following, we compare the results of estimating the driving climate variable with both approaches (Fig. 6a,b), with the

pattern of the ‘true’ climate variable explaining most simulated fossil vegetation change in our model simulation (Fig. 6c). For

the modern spatial approach, we use CCA ordination of modern PFTs and climate to determine the climate variable which ex-10

plains most vegetation variance across the modern calibration space (Fig. 6a). Temperature variables dominate the ordination

results globally, except for the Sahel zone, which is dominated by precipitation-changes. MTWA explains most variance in

arctic Canada and eastern Siberia, whereas MAT appears to dominate in Siberia and Northern Europe.

For the fossil downcore record approach, we identify which BMA-reconstructed climate variable explains most variance in the

fossil vegetation set using constrained ordination (RDA). The results, as can be seen in Fig. 6b, are different and less smooth15

than those obtained for the modern spatial vegetation changes.

Finally, as we have access to the ‘true’ past vegetation and climate changes in the model world, we can assess, which climate

variable explains most simulated fossil vegetation change. The RDA results, shown in Fig. 6c, confirm a strong summer tem-

perature signal above the Arctic circle, and the potential existence of a precipitation signal in the Middle East and the Sahel

zone.20

Contemplating Fig.6a, b, and c we observe that the driving variables, identified by the fossil downcore approach (Fig. 6b) are

closer to the true (Fig. 6c) driving variables than the driving variables estimated from the modern calibration dataset (Fig.6a).

This suggests, that looking at the variance explained by downcore reconstructions may tell us more about what actually drove

vegetation changes, than looking at the variance explained in modern vegetation.
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Furthermore, analyzing the variance explained in the modern calibration dataset can suggest a high importance (by a high

MTCOa MTWAb MATc

MPCOd MPWAe MAPf

0.00

0.25

0.50

0.75

1.00

r2

Figure 7. Spatial patterns of BMA transfer function r2 in the modern calibration set (grid points with a distance of less than 2500km from

the reconstruction site) of the six jointly reconstructed climate variables MTCO (a), MTWA (b), MAT (c), MPCO (d), MPWA (e), MAP (f).

Points with a r2 < 0.5 are crossed out. Transfer function performance appears good, although some variables had little impact on vegetation

changes in the past.

explained variance) for variables that are not necessarily relevant to vegetation development. This is due to the colinearity of

the climate variables (c.f. Fig. 2b). This is demonstrated in Fig. 7, which shows the transfer function r2 for all climate variables.

In large parts of Siberia, MAT explained most variance (Fig. 6a). However, MTWA transfer function r2 (Fig. 7b) is about as

high as that of MAT (Fig. 7c) there, and dominates the rest of the Arctic. MAP appears well reconstructible in the Southern5

Hemisphere, in regions where MTCO also has a high transfer function r2. Seasonal precipitation transfer functions do not per-

form well on inter-regional scales outside Africa. There, they appear to perform better, which is likely due to their colinearity

with MAP (c.f. Fig. 6). Note that the patterns we observe here are highly similar to those identified from the ratio of the first

two axes of the ordination Juggins (2013), as can be seen in Suppl. Fig. 2.

For the potentially more skillfull approach of using the downcore reconstruction to test for reconstruction skill, a formalized test10

(randomTF) has been proposed in Telford and Birks (2011). It relies on the comparison between the fossil variance explained

by the actual reconstruction, and the variance explained by reconstructions based on surrogate modern climate (but using the

same modern and fossil pollen assemblages). Above 50◦N, where temperature changes occur over the course of the 6k-run,

84.7% of the grid cell vegetation changes are identified as most strongly related to MTWA (Table 1). If the randomTF-test has

power, it should indicate a lower p-value for reconstructions of climate variables that were related to vegetation changes. Table15

1 indicates a significant p-value (≤0.1) for MTWA in 68.9% of grid cells. MAT, picked as most relevant in 14% of the grid

cells, appears reconstructible in 23% of the grid cells. MTCO, MAP, MPCO and MPWA – which have no or little relevance

for vegetation development in the region – show up as significant in only 14-16% of the grid cells. Although our test approach
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does not meet the criteria of a formal statistical power assessment, these results suggest, that randomTF may have indicative

power.

Table 1. Outcome of the significance test using randomTF. All 196 grid points above 50◦N are considered, and p-values are estimated for

all climate variables. Actual relevance is obtained by counting the number of times the variable is picked as the most relevant variable in the

RDA of simulated climate and vegetation and dividing by the number of grid cells. Temperature units are in Kelvin, precipitation in mm/year.

significant (p< 0.1) not significant (p> 0.1)

Relevance [%] RMSEP r(rec,sim) No. cells [%] RMSEP r(rec,sim) No. cells [%]

MTCO 1.5 4.16 0.17 13.8 3.31 0.08 86.2

MTWA 84.7 0.92 0.71 68.9 2.00 0.37 31.1

MAT 13.8 2.43 0.56 23.5 2.13 0.26 76.5

MPCO 0.0 180.80 -0.03 9.2 113.63 0.00 90.8

MPWA 0.0 237.44 0.06 16.3 184.9 0.0 83.7

MAP 0.0 150.52 0.21 15.8 123.76 0.04 84.2

3.5 Influence of the modern climate background on the reconstructed climate

Following the principle of uniformitarianism, a reconstruction should not depend on the climate state in which the calibration

set was taken. We test this in a case study, by calibrating once, as throughout the manuscript so far, to the most recent time5

period (the last 30 years of the model run, equivalent to 0-30yrs BP), and once to the first period (5970-6000 yrs BP). We

subsequently perform reconstructions for both calibration periods. Fig. 8 shows exemplary BMA results for a Siberian site.

Averaged across all reconstruction sites, MTWA reconstructions calibrated at 6k are .75K (-3.6,1.7K) warmer than those

based on calibrations at 0k (90% confidence interval). In particular, sites across the Northern Hemisphere are reconstructed with

warmer temperatures. Inspection of the locations and temperatures around the analog sites chosen for the 0k and 6k calibrations10

suggests, that the warm bias may be caused by spatial autocorrelation in the vegetation, rather than climate, in addition to other

local confounding factors. The 6k analog sites tend to lie further northward (in the Northern Hemisphere) than those for the 0k

calibration. However, the 6k analog sites do not systematically cluster northward. Therefore, the northward migration of the

analog sites does not compensate fully for the warmer background climate state, so that the overall reconstructed temperatures

are warmer. This demonstrates that, at least in our experiment, the climatological and ecological similarity of the calibration15

period to the period for reconstruction influences the reconstruction outcome.
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Figure 8. Reconstructions are sensitive to the calibration time period. Warmest month temperature trends for reconstructions based on a

calibration for the last 30 years (0k) and first 30 years (6k) of the model run (A). 6k results are mostly warmer (B). All time series are based

on 300-year running means.

4 Discussion

Using a Holocene climate model simulation as a testbed for pollen based climate reconstructions allowed us to analyze the

reconstruction skill and to understand potential seasonal biases of pollen based climate reconstruction methods.
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4.1 Limitations

The model world we have investigated does certainly not describe actual past climate and vegetation dynamics. However, for

our calibration exercise, we only require vegetation and climate to be consistent, they need not necessarily be representative for

the late Holocene. Furthermore, the methods we have tested are limited by the low number of plant functional types, as large-

scale PFT-based pollen reconstructions use roughly 2-3 times the number of PFTs (as e.g. in Davis et al., 2003; Mauri et al.,5

2014). We have therefore limited our analyses to identify general features of the calibration vs. reconstruction relationship

rather than interpreting the actual numbers of temperature changes or recontruction biases. In our stude, we assumed perfect

proxy recording, and did not add any non-climatic noise. If these were added, tests which rely on the downcore record, such as

randomTF, may become less powerful, and downcore RMSE could become higher.

4.2 Identification of climate variables driving vegetation evolution through time10

Our study shows that in our model world, regardless of the reconstruction technique, the reconstructed climate evolution is

very similar between the variables (Fig. 3). This strong covariance between the variables is determined by the modern spatial

covariance and not, as one would hope, the temporal covariance of local climate (Fig. 4). This finding can be understood in

a simple thought experiment. Let us assume that the (model) vegetation evolution at every grid point is driven by one single

variable. This single variable could be one of the analyzed variables (e.g. summer temperature) or any other variable, such as15

the length of the growing season, cloudiness or soil moisture. All other variables have no direct influence on the vegetation,

themselves, and are merely covarying with the driving variable. In this case, the reconstructed covariability is implicit in the

transfer function and fully determined from the modern spatial relationship regardless of the true past relationship between the

variables similar to what we found (Figs. 3 and 4).

Reconstruction skill will consequently depend on whether we reconstruct the driving variable, or, in case that we reconstruct20

a secondary variable, on the question whether the the relationship with the driving variable is the same across space and in

time. The example of our model-world Arctic shows, that the latter is not always the case. Past vegetation changes there, as

Fig. 6 shows, were predominantly driven by summer temperature and mean annual temperature change, yet the modern transfer

function r2 for MTCO is acceptable in most grid boxes (Fig. 7). Skill for winter temperature reconstructions are, however, low

(Fig. 5a), particularly in regions where the modern spatial covariance between summer and winter temperatures (Fig. 4a,c) is25

negative, whereas the temporal covariance is positive (Fig. 4e).

Therefore, an important question is whether we can determine the variable driving vegetation changes. This would increase

our confidence in the reconstruction. In the simplest case, vegetation patterns across modern space are only determined by

the current climate. In this case, the climate variable maximizing the modern spatial correlation, information accessible in the

real world, would be the driving variable (Fig. 6a). However, the variable explaining most of the modern spatial vegetation30

variance was, in our evaluation, not necessarily the one explaining most of the temporal vegetation evolution (compare Figs. 6a

vs. 6c). Therefore, either other parameters than just the modern climate play a role, or the driving variable was not included

in our set of six variables. In the model world, and likely in reality, both occurs. Evolving parameters such as soil properties
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are partly determining the spatial vegetation distribution, but are constant over time in the model world. On the other hand,

chances to identify the correct driving variable are also small, as, for example, the length of the growing season might have a

stronger influence than summer temperature. What follows from this is that methods only relying on the modern spatial cli-

mate/vegetation relationship are insufficient to identify the driving variables across time. Here, inverse modeling reconstruction

techniques which do not rely on modern spatial calibration sets (Guiot et al., 2009; Yu, 2013) may provide useful additional5

information. In addition to the downcore tests outlined in Sect. 3.4, a priori expert knowledge on regional ecology is helpful to

identify variables of climatic and ecological relevance.

4.3 Seasonal bias on reconstructed trends in non-driving variables

In the Northern Hemisphere extratropics of our model world, summer temperature is the variable driving vegetation change

across the mid-to-late Holocene. The modern spatial correlation between summer, winter and consequently also mean annual10

temperatures is positive. Since the modern spatial information determines the downcore temporal reconstruction for all vari-

ables, the reconstructions of winter/annual mean temperature changes are biased towards the trend in summer temperatures.

What are the implications of such a bias on reconstructions of climate variables which are not primarily influencing vegetation?

Fig. 9 shows the simulated and BMA-reconstructed summer and annual mean temperature changes. Patterns and magnitudes

are similar for WA (not shown). Mid-to-late Holocene summer temperatures are slightly overestimated, but the trend and mag-15

nitude are correct. In contrast, the annual mean cooling has the same magnitude as the reconstructed (and simulated) summer

cooling – it is exaggerated due to the summer bias in the reconstruction.

Such a correlation bias on jointly reconstructed climate variables is hard to detect and prove for real-world data. However, the

above considerations suggest that for non-driving variables physically implausible temperature reconstructions may arise due

to correlations across modern space. Consequently, estimated temperature trends based on proxy data may appear larger than20

in the model world, or may have a different shape. One example is the reconstruction of the annual mean temperature evolution

of the past 11000 years (Marcott et al., 2013). The reconstructed cooling trend in the mid-late Holocene was stronger than

the cooling simulated by climate models, a mismatch potentially related to a seasonal bias of the reconstruction (Meyer et al.,

2015; Liu et al., 2014). Another example is the comparison between pollen-proxy-based and climate model simulated winter

temperature changes between the Last Glacial Maximum and present day, which are stronger in the reconstructions than in the25

model simulations (Braconnot et al., 2012). Given our above results, such findings could potentially be explained as changes

that are overestimated in the proxy data due to confounding effects of third variables, for example summer temperatures.

4.4 Implications and Outlook

While we have focused our study on the seasonality of temperatures, it is likely that similar biases also affect pollen--

assemblage-based reconstructions of other climate variables, such as precipitation. In this light, the result of larger pollen-30

derived than model simulated precipitation changes between the mid-Holocene and present-day (Braconnot et al., 2012) might

be influenced by a reconstruction bias as the linkage between temperature and precipitation (Trenberth, 2005), may differ

across space, time, and timescales (Rehfeld and Laepple, 2016).
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Similarly, modern spatial relationships differing from past temporal relationships will also affect other assemblage-based cli-

mate reconstructions. Examples include planktonic foraminifera counts which are used to reconstruct marine temperature

changes; in this case, the climate variables include water temperatures at different seasons and water depths (Telford et al.,

2013). Similar effects are likely also found for other environmental or climate proxies such as chironomids, diatoms and di-

noflagellates (Telford and Birks, 2011), which all rely on modern spatial calibration approaches. Consequently, it could be5

interesting to study ecological, geographical and climatic effects on reconstruction results in other ecological models (e.g.

FORAMCLIM Lombard et al., 2011).

This study could be extended in several directions. Adding recording noise and age uncertainty would allow a more in-depth

comparison of spatial and temporal errors, and a more representative test of the randomTF-algorithm. Using transient paleo-

climate model experiments with a more complex land surface and biosphere scheme (i.e., with a larger number of PFTs) could10

be particularly useful to test, whether assemblage-based climate reconstruction methods allow for the accurate joint reconstruc-

tion of several climate variables. A first warning about potential biases in model-data comparison of multiple climate variables

can be obtained through the comparison of simulated spatial and temporal covariances. If they are very different, caution is

called for in the interpretation of joint proxy reconstructions of these variables.

5 Conclusions15

Using a Holocene climate model simulation with interactive vegetation as a testbed, we analyzed the skill and potential bi-

ases in pollen-based climate reconstructions. We find that transfer function reconstruction methods pull the spatial covariances

between climate variables through into the downcore temporal reconstructions. As a consequence, temporal changes of a dom-

inant climate variable (for the Northern Hemisphere: often summer temperature) are imprinted on a less important variable

(here: often winter temperature), leading to reconstructions biased towards the dominant variable’s trends. Our analyses sug-20

gest that large-scale reconstructions of multiple climate variables need to be carefully considered, as reconstructions of climate

variables which are not primarily influencing vegetation can be biased. Spatial and temporal vegetation changes are not al-

ways caused by the same physical mechanisms, violating the law of uniformitarianism underpinning transfer-function climate

reconstructions. Therefore, rather than from the modern spatial climate-vegetation relationship, climate variables which actu-

ally drove vegetation variability in the past are likely better identified using expert knowledge on ecology, and with statistical25

analyses involving the fossil vegetation record.

Appendix A: Acronyms

PFT Plant functional type

teT PFT: tropical evergreen trees

tdT PFT: tropical deciduous trees30

eteT PFT: extratropical evergreen trees
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etdT PFT: extratropical deciduous trees

rS PFT: raingreen shrubs

cS PFT: cold shrubs

C3 PFT: C3 grass

C4 PFT: C4 grass5

BMA Best modern analog method (in literature also: Modern Analog approach)

WA(PLS) Weighted averaging (partial least squares)

RDA Redundancy analysis

CCA Canonical correspondence analysis

RMSE(P) Root mean square error (of prediction)10

MAT Mean annual temperature

MTWA Mean temperature warmest month

MTCO Mean temperature coldest month

PANN Mean annual precipitation

MPCO Mean precipitation coldest month15

MPWA Mean precipitation warmest month

Appendix B: Used software

All analyses were carried out in the open source environment R, version 3.2.2. Reconstructions were performed using the

rioja package (v. 0.9-5), paleosig (v. 1.1-3) and the vegan library (v. 2.3-0). The code is available on request.
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Figure 9. Simulated (red) and BMA-reconstructed (black) extratropical mean temperature changes over the 6k-run (BMA). The amplitude of

the summer temperature trends (a) agree well, whereas the amplitude for the simulated mean annual temperature change (b) is overestimated

in the reconstructions.
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