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Response to editor comments

We thank the editor for his comments. As suggested, we have improved the wording of the manuscript, 
following the third reviewer's points. The new version thus features an expanded introduction and 
conclusion and corrections throughout the text. This has substantially improved the readability of the 
manuscript.

 

Summary of changes
• extended introduction

• extended discussion

• augmentation of Fig. 2

• correction of spelling

Response to referee #3, John Williams

Summary

We would like to thank you for your detailed and constructive comments. Following your suggestions 
we have expanded the introduction, discussion and conclusions, modified two figures and corrected 
grammar. 



Point by point response

Reviewer's comments are given in grey. Emphasis in italics was added to highlight main points.

Point 1: Expansion of the introduction

Reviewer's comments: 
This is an important and provocative paper, presenting an interesting and innovative 
analysis that offers a fresh take on a long-standing problem. Specifically, whether the 
paleoclimatic reconstructions that employ transfer functions, modern calibration datasets, 
multivariate fossil assemblages, and space-for-time substitution are heavily biased by 
assumptions of stability in the correlation structure among climatic variables in space and 
time. Prior papers by these authors and others (e.g. Juggins 2013) have argued that shifting 
correlation structures among variables can lead to major and often unrecognized biases.

This paper makes a new contribution by working entirely with a set of modeled climates 
and vegetation (PFTs), for which the actual climate evolution for the Holocene is known. 
Hence, the authors can apply standard transfer function methods to the modeled vegetation 
PFTs and see how well the reconstructed climates compare to the simulated climates. The 
results clearly show that in this modeled context, the PFT-based climate reconstructions are 
really only able to reconstruct one variable (MTWA) well, in the focal region of Siberia.

This paper is timely given the recent reconstructions of Northern Hemisphere mean annual 
temperature by Marcott et al (2013) and the challenge by Liu et al. (2014) that the pollen-
based paleotemperature reconstructions primarily represent summer instead of winter 
temperatures.

I’ve read both the paper and the commentary and found it all fascinating. My overall 
assessment is strongly for publication –this is the kind of paper that will spark debate but I 
think in a net positive direction; it should move the conversation forward. However, the 
paper can be expected to meet resistance from the proxy-based paleoclimatic community, 
who can easily dismiss it along the grounds outlined by the original two reviewers: the 
model is very simple, it contains only 9 PFTs, etc. I personally am not entirely convinced 
by the authors’ response. I personally find the findings more illustrative than definitive, 
given the simplicity of the vegetation model and its PFTs, and think that the paper should 
present its findings as such.

Hence, to really have the impact it deserves, this paper needs to further strengthen its 
introduction discussion. A careful weighing of the paper’s own limitations and caveats will 
go a long way to strengthening the paper’s overall argument and moving the conversation 
forward.

We thank the reviewer for this balanced evaluation and encouraging comments. We have extended the 
introduction, discussion and conclusions to make the limitations, caveats and possibilities of this 
manuscript, and future studies more clear. 



Point 1: Expansion of the introduction

1. Introduction: This should be expanded, to better set relevance and context. Specifically:

a. It should mention the space-for-time assumption and clearly establish the underlying 
assumption that variables correlated in space also correlated in time. Explicitly state that we 
have a good a priori reason to expect this assumption to be violated for temperature, given 
a) the strong correlation of summer and winter temperature in space today and b) the 
known anticorrelation of summer and winter insolation in the NH over the past 10,000 
years due to precessional forcing. (this is mentioned very late in ms., on P15L3-5)

b. Could more fully describe Juggins 2013 – this paper is cited in passing, but its key point 
about confounding variables isn’t really explained.

c. Cite the Marcott et al. and Liu et al. papers in the intro, as a way of signaling the 
importance of this topic in current data-model comparisons and conversations about 
Holocene warmth vs. 21st-century temperature changes. This topic is introduced in 
Discussion, but should be introduced earlier.

We have extended the introduction following the reviewer's suggestions. In the revised manuscript, we 
use a more nuanced treatment of uniformitarianism and the space-for-time substitution is discussed in 
more depth. The model-data discrepancy for Holocene temperatures, and the different trends expected 
for summer and winter temperature due to the insolation changes through the Holocene are now 
mentioned earlier in the manuscript.

Point 2: Discussion of Uniformitarianism

2. Uniformitarianism is appropriately a central theme of this paper. However, there are 
several distinctly different kinds of uniformitarianism. Lyell founded the discipline of 
geology by assuming that processes observable today also operated in the past. Assuming 
uniformitarianism of processes is fine. However, Lyell also assumed that rates were roughly 
uniformitarianism through time, which is false. Gould called these two forms of 
uniformitarianism ‘methodological’ (uniformitarianism applied to processes, true) and 
‘substantive’ (uniformitarianism applied to rates, false) 
(http://philpapers.org/rec/GOUIUN). This paper is dealing with a third kind of 
uniformatiariansm, assuming that covariance structures are uniform through time. This, like 
the ‘substantive’ uniformitarianism, is clearly false.

a. So, I strongly suggest a more nuanced treatment of uniformitarianism that distinguishes 
these concepts.

b. Also, remove quotes around this phrase.

c. Adding and defining a new phrase (‘correlative uniformitarianism’?) can give others 
an easy way of citing the arguments in this paper.



We appreciate the reviewer's remarks and have expanded the introduction section. We specifically now 
only refer to the methodological uniformitarianism and introduce the expression ‘correlative 
uniformitarianism’ to describe the (violated) assumption of covariance structures that are uniform 
through time and equal to the spatial covariance structures.  We hope that the new introduction makes it 
easier to understand the main challenges.

Point 3: Expansion of the discussion

3. In Discussion, strengthen your case by pointing to other papers that have also explored 
the stability of correlation structures and the effect of confounding variables.

a. Salonen et al. 2013 Holocene for demonstratining effect of alternate calib datasets and 
continentality on . TJul reconstructions.

b. Blois et al. 2013: explicitly tested the space-for-time assumption by running generalized 
dissimilarity models on spatial vs. temporal datasets of species turnover. They argued that 
GDMs fitted across space could predict emergent patterns of diversity across space, but 
also found that the modeled relationships between diversity and turnover varied quite a bit 
among climate variables.

c. More clearly set up the issue of assuming stable correlations and the issue of secondary 
variables. Insolation. See P15L3-5.

d. Should acknowledge that Siberia may be an end-member/worst-case region for 
paleoclimatic transfer functions, in which summer light and warmth is really critical. 
Hence, this may be a worst-case system for multivariate transfer functions where one 
variable really dominates (MTWA) and the others are very secondary. In other regions, 
multiple climatic controls on vegetation may be important and disentanglable by transfer 
functions.

We have followed the reviewer's suggestion and have expanded the discussion section. We added a new 
dicussion section ‘Correlative uniformitarianism’ that discuss our findings in the light of the suggested 
references. Further, we extended the discussion of insolation as a latent variable both in the 
Introduction and in the Discussion sections. We agree that the Holocene evolution of vegetation in 
Eastern Russia is primarily dominated by summer length and temperature changes, and in other regions 
other variables dominate (c.f. Fig. 6).

We have largely refrained from discussing other pairs of variables (e.g. temperature/precipitation) for 
simplicity. We have rephrased sentences in the Abstract and Discussion to make it more clear that we 
do not expect summer temperatures to dominate everywhere and added a paragraph in the section 
Limitations that our Arctic Russia case is an end-member concerning the domination of MTWA.



Point 4: Discussion of the role of N2

4. I am not convinced by the N2 analyses presented by the authors. I have two major 
concerns:

a. The paper never establishes what is a meaningful difference in N2. It simply states that 
the N2 in pollen data and the N2 in the modeled PFTs are about the same. However, I 
suspect that for paleoclimatic transfer functions, even a difference of 0.5 in N2 could be 
important, given that this represents in some sense the degrees of freedom available to the 
transfer functions. So if e.g. N2 is ~1.5 for PFTs and ~2.5 for the pollen data, that would 
imply an extra degree of freedom or so in the pollen data and more multivariate power.

b. For any given time or place in the pollen data, N2 might be about 2, but over the entire 
global region, I’d suspect that N2 is >>2. But in the model, Global N2 can never be higher 
than 8, and in the extratropics, can only be 5.

We thank the reviewer for his comments on the effective number of species/plant functional types. 

To our knowledge, there is no literature on meaningful differences in N2. It is therefore difficult to give 
a conclusive statement on meaningful differences in N2. Our goal here was to highlight that the 
difference in N2 of PFTs between 'model world' and 'real world' is smaller than the difference in 
apparent number of pollen taxa or PFTs. The question of meaningful differences in N2 could be 
addressed in further studies, and we have explicitly added them to the paragraphs on future work.

We would expect a reconstruction with higher N2 to be more reliable and also to improve the 
possibility to reconstruct more than one climate variable, however, this does not change the problems 
with spatial vs temporal correlation ('correlative uniformitarianism' as suggested by the reviewer or 
'sick science' (Juggins 2013)). Regarding the potential to simultaneously reconstruct multiple climate 
variables from pollen assemblages, transfer functions (especially BMA) are probably too simple to 
make the inversion of pollen = f(MTWA, MAP asf.) 

Regarding N2, we also notice that reconstructions use PFTs instead of pollen types. Thereby a 
reduction in N2 is implicitly accepted, while at the same time the relation between PFTs and climate is 
potentially getting more stable. 

 For this study, N2 at global scale is not that relevant for a number of reasons:  In the 'real' as well as in 
the 'model' world, all calibration data sets used are on a regional to continental level.

All reconstructions are based on local pollen and are therefore limited by N2 in the fossil (local) data 
set (having a higher N2 in the calibration data set is not changing N2 in the local data set). The N2 
relevant for a reconstruction is ultimately the N2 of the fossil pollen/PFTs. As this study is about 
climate reconstructions based on pollen/PFTs, the N2 at global scale is not directly relevant in this 
study.  Vegetation changes occurring during the 6000 years are not large enough to make, for instance, 
tropical plants relevant as analogs for reconstructions in temperate climates.

In the revised manuscript, we discuss the difficulty of a meaningful difference in N2 in the Limitations 



section and in propose in “Future work” section that the impact of species richness on the 
reconstruction skill should be explored.

Point 5: Expansion on caveats and future work 

5. In Abstract and Conclusions: Add caveats. Note that number of PFTs of study are fewer 
than in modern pollen datasets. But nevertheless, the issues raised here about confounding 
variables are consistent with those from empirical studies of calibration datasets.

a. In Conclusions, add a ‘more work is needed’ sentence with a pointer to a LPJ-GUESS 
study. Well posed ‘future work’ statements can be very effective at moving the field 
forward and spurring future work, either by the authors or by other teams.

Following the suggestions we have re-worded parts of the Abstract, the Discussion, Outlook and the 
Conclusions to make it more clear that we consider this work as an idealized study which could  be 
expanded in several ways. 

Point 6: Corrections

MISCELLANEOUS COMMENTS

Summer Temperature. One takeaway message of this paper by a naïve reader could be that 
summer temperature (MTWA) is the most critical variable, and so pollen-based 
paleoclimatic reconstructions should restrict themselves to MTWA. The abstract itself 
implies that summer temperature is the critical variable. However, the rest of the paper 
shows more complexity and caveats to this inference:

• These are modeled results, and the model may be more sensitive to summer temperature 
than real-world vegetation.

• Figure 4 shows interesting deviations from this, particularly in the tropics and subtropics, 
where MTCO seems to be better reconstructed than MTWA.

• Fig 6 shows that the variables explaining variance in vegetation vary regionally, e.g. MAP 
in the tropics.

• Siberian focus really emphasizes MTWA, as noted above.

I suggest adding nuance to the abstract and adding a section of the Discussion specifically 
focused on the question of whether MTWA is always the best variable for pollen-based 
vegetation reconstructions. That would directly speak to the discussion by Liu et al. and 



Marcott et al.

We have carefully checked the manuscript to ensure that it is most clear that our statements, 
insofar as they concern the reconstructability of individual climate variables, are not 
misleading. Given that these are results based on a model, as noted by the reviewer above, 
vegetation may be more sensitive to summer temperature changes in the Arctic than in the 
real world. We  discuss the regional patterns of driving variables in Fig. 4, and have added a 
paragraph in the Discussion section on future work that could be done to identify 
reconstructible variables. 

Throughout paper, be very careful to not mix up PFTs and species – they are very different. 
For example, when referring to Hill’s N2 for the model simulations, use ‘effective number 
of PFTs’ . ‘Taxa’ also would be a good option.

We have changed the wording following the reviewer's suggestion.

P10L5: A RMSEP of 3C would be mostly unacceptable in real-world Holocene 
paleotemperature reconstructions, given that the Holocene signal of temperature change is 
on the order of 1-2 degrees in many places. Fig. 8 shows a similar trend, on the order of 2C. 
Adjust wording and note that this may be the case where the PFT-based paleoclimatic 
transfer functions are doing much worse than real-world pollen-based transfer functions.

We have removed the “acceptable” statement. What we want to state at this point of the 
manuscript is that the RMSEP is lower for MTWA than MTCO in the model world. It is, 
however, not clear (to us)  if a higher RMSEP is a general feature of PFT-based 
palaeoclimate reconstructions (e.g. Mauri et al.,2011).

P14L28-30: ‘real world’ is vague. Clarify that what you mean is that these results may not 
be applicable to pollen-based paleoclimatic transfer functions, because of their higher 
richness.

We have expanded the “Limitations” section and clarified that we do not expect the 
simulation results to reflect actual vegetation or climate changes through the Holocene. We 
pose the question how high a Hill's number has to be to ensure reconstructability and come 
back to this point in the “future work”  paragraph.

Figure 1: Clarify that these maps are from the model simulations. Fix axis title that says “# 
species” – it should say “# PFTs” or “# effective PFTs”

Corrected.

Figure 2:

This figure packs in a lot of information. It needs more information in axis titles and 
legend.



Fig 2B: Not clear that MTWA explains the most variance in modern vegetation, as claimed 
in Fig. legend.  This is inferred from Fig. 2D. We have made the statement more clear.

Fig 2C: Clarify axes – is this ‘temperature’ MTWA, MTCO, or MAT?  The axis label has 
been corrected to read  “MTWA temperature”.

Figure 2D: Vertical axis? What is this a % of? The axis denotes the proportion of variance 
explained by the different variables. We now spell this out on the vertical axis.

Figure 2E: Define the PFT acronyms in legend.  We have added a reference to the appendix 
where we list the PFT acronyms. For space reasons we prefer not to give the acronyms in 
the figure caption or legend. We noted that we had omitted the surrogate PFT “bare soil” in 
the appendix and have added this to the list as well.

Figure 2G: What is 2G? It’s not mentioned in legend. Vertical axis title? What are the 
dashed vertical lines?  We have added the missing “(2G)”  before “The MTWA 
reconstruction explains most fossil vegetation variance ...” in the legend and added an 
explanation for the vertical lines, which are derived from the randomTF algorithm (Telford 
and Birks, 2011).

Figure 7, exploring R2 – seemed less critical – could delete this figure. We prefer to keep 
Fig. 7 as it illustrates how several transfer functions can have a near-equal transfer function 
R2, to the point where it becomes irrelevant as a predictive diagnostic for transfer function 
performance.



Assessing performance and seasonal bias of pollen-based climate
reconstructions in a perfect model world
Kira Rehfeld1, Mathias Trachsel2, Richard J. Telford2,3, and Thomas Laepple1

1Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, 14473 Potsdam, Germany
2Department of Biology, University of Bergen, Postboks 7803, N-5020 Bergen
3Bjerknes Center for Climate Research, Allégaten 55, N-5007 Bergen, Norway

Correspondence to: K. Rehfeld* (kira.rehfeld@awi.de) and M. Trachsel† (mtrachs@umd.edu)

Abstract. Reconstructions of summer, winter or annual mean temperatures based on the species composition of bio-indicators

such as pollen, foraminifera or chironomids are routinely used in climate model-proxy data comparison studies. Most recon-

struction algorithms exploit the joint distribution of modern spatial climate and species distribution for the development of the

reconstructions. They rely on the assumption of ‘uniformitarianism’, which implies
:::::::::::
space-for-time

::::::::::
substitution

:::
and

:::
the

:::::::
specific

:::::::::
assumption

:
that environmental variables other than those reconstructed should

::
are

:
not be important, or that their relationship5

with the reconstructed variable(s) should be the same in the past as in the modern spatial calibration dataset.

Here we test the implications of this
:::::::::
‘correlative

::::::::::::::::
uniformitarianism’ assumption on climate reconstructions in an ideal model

world, in which climate and vegetation are known at all times. The alternate reality is a climate simulation of the last 6000 years

with dynamic vegetation. Transient changes of plant functional types are considered as surrogate pollen counts, and allow to

establish, apply and evaluate transfer functions in the modeled world.10

We find that in our model experiments the transfer function cross-validation r2 is of limited use to identify reconstructible

climate variables, as it only relies on the modern spatial climate/vegetation relationship. However, ordination approaches that

assess the amount of fossil vegetation variance explained by the reconstructions are promising. We furthermore show that

correlations between climate variables in the modern climate/vegetation relationship are systematically extended into the re-

constructions. Summer temperatures, the most prominent driving variable for modeled vegetation change in the Northern15

Hemisphere, are accurately reconstructed. However, the amplitude of the model winter and mean annual temperature cooling

between the mid-Holocene and present day is overestimated, and similar to the summer trend in magnitude.

This effect occurs , because temporal changes of a dominant climate variable, such as summer temperature
:::::::::::
temperatures

::
in

:::
the

::::::
model’s

::::::
Arctic, are imprinted on a less important variable, leading to reconstructions biased towards the dominant variable’s

trends. Our results,
::::::::
although

:::::
based

::
on

:
a
::::::
model

:::::::::
vegetation

:::
that

::
is

::::::::
inevitably

:::::::
simpler

::::
than

::::::
reality, indicate that reconstructions of20

multiple climate variables from the same
::::
based

:::
on

:::::::
modern

:::::
spatial

:
bio-indicator dataset

:::::::
datasets should be treated with caution.

Expert knowledge on the eco-physiological drivers of the proxies, and statistical methods that go beyond the cross-validation

on modern calibration datasets are crucial to avoid misinterpretation.

*present address: British Antarctic Survey, Cambridge, UK
†present address: Department of Geology, University of Maryland, US
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1 Introduction

Continental-scale climate reconstructions (Bartlein et al., 2011; Davis et al., 2003; Mauri et al., 2014) are frequently used as

a paleo-data target to evaluate and benchmark climate models (e.g. Harrison et al., 2014; Fischer and Jungclaus, 2011). These

efforts have to rely on the fidelity of the paleoclimate reconstruction and the associated uncertainty estimates
::::::::
Currently,

:::::::
climate

::::::
models

:::
and

:::::
proxy

::::
data

:::::::
disagree

::
on

:::
the

::::::
annual

::::
mean

::::::::::
temperature

:::::::
changes

::::
over

:::
the

::::::
course

::
of

::
the

::::::::
Holocene

::::::::::::::::::::::::::::::::
(Liu et al., 2014; Marcott et al., 2013).5

:
It
::::
was

::::::
argued

::::
that

::::::::
seasonal

:::::
biases

::
in
::::::

proxy
:::::
based

:::::::
climate

:::::::::::::
reconstructions

:::::
might

:::
be

:::
the

::::
root

::
of
::::

the
::::::::
observed

:::::::::::
proxy-model

:::::::::
divergence

::::::::::::::
(Liu et al., 2014).

To arrive at quantitative assessments of past climate changes from pollen assemblages, transfer function algorithms are used to

establish a link between modern climate and vegetation composition across space. The derived relationships are then applied to

fossil pollen percentages, counted in sediment archives. The main challenge for quantitative interpretations is the fundamental10

“uniformitarian principle’ (Scott, 1963) in transfer functions . It states, that the same laws govern species, or vegetation ,

distribution along climatic and environmental gradients in space, as they did at individual sites through climatic changes

(Juggins, 2013).A presumption for the establishment of ecological transfer functions for climate reconstruction is therefore
::
A

::::
basic

::::::::::
assumption

:::::::::
underlying

:::::
these

::::::
transfer

::::::::
functions

::
is

:::::::::::::
methodological

:::::::::::::::
uniformitarianism

::::::::::::::::::::::
(Scott, 1963; Gould, 1965),

:::::::
namely

:::
that

:::::::
modern

:::::
spatial

:::::::::::
relationships

::::::::
between

::::::
species,

:::::::::
vegetation

::::
and

::::::::::::
environmental

:::::::::
conditions

:::
can

::
be

:::::::
applied

::
to

::::
past

:::::::::
conditions15

:::::::::::::::::::
(e.g. Birks et al., 2010).

:::
One

:::::::
specific

::::::::::
requirement

::
is that environmental variables other than those considered in the calibration are not important, or that

their relationship with the reconstructed variable(s) is
:::
was

:
the same in the past as

:
it
::
is
:
in the modern spatial calibration dataset

(Birks and Seppä, 2005)
:::::::::::::::::::::::::::::::::::
(Birks and Seppä, 2005; Birks et al., 2010).

:::::::::
Biological

:::::::
proxies

::::::::
generally

::::::::
respond

::
to

::
a
::::::::
multitude

:::
of

:::::::::::
environmental

::::::::
variables

::::
and

::::
thus

::::
the

::::
first

::::
part

::
of

:::
the

::::::::::
assumption

::
is
::::::

rarely
::::
met

:::::::::::::
(Juggins, 2013).

:::::::::
Therefore

:::::::::
constancy

::::
and20

:::::::::
equivalence

:::
of

:::
the

:::::::::
covariance

::
of

:::::::
relevant

:::::::::
parameters

::
in

:::::
space

::::
and

::::
time

::::
have

::
to

::
be

::::::::
assumed

::
to

:::::
allow

:::
the

::::::::::
substitution

::
of

::::::
spatial

:::::::
gradients

:::
(in

::
a

::::::
modern

::::::::::
calibration)

:::
for

::::::::
temporal

:::::::
changes

:::
(in

:::
the

::::
past)

::::::::::::::::::::::::::::
(Blois et al., 2013; Juggins, 2013). This assumptionhas

been discussed since the early days of quantitative reconstructions based on paleoecological data (see, e.g. Birks et al., 2010; Juggins, 2013, and references therein)
:
,

:::::
which

:::
we

:::::
name

::::::::::
‘correlative

::::::::::::::::
uniformitarianism’,

::
is
::::::::
certainly

:::::::
violated

::
in

:::
the

::::
real

::::::
world.

:::
For

::::::::
example

::
in

:::
the

:::::::
modern

:::::::
climate

::::::
summer

::::
and

:::::
winter

:::::::::::
temperatures

:::
are

::::::
highly

::::::::
correlated

::::::
across

:::::
space.

:::
In

:::::::
contrast,

:::
the

:::::
major

::::::
driving

::::::
forces

::::::
behind

:::
the

::::::::
Holocene25

::::::::::
temperature

::::::::
evolution,

::::
local

:::::::
summer

:::
and

::::::
winter

:::::::::
insolation,

::::
have

::::
been

:::::::::::
anticorrelated

::::
over

:::
the

:::
past

::::::
10000

::::
years

::::
due

::
to

::::::::::
precessional

::::::
forcing

::::::::::::::::::::::::::::
(e.g. Laepple and Lohmann, 2009).

:::
The

:::::::
validity

::
of

::::::::
assuming

:::::::::
correlative

:::::::::::::::
uniformitarianism,

:::::::::
specifically

:::
the

:::::
effect

::
of

:::::::::::
confounding

:::::::
variables

:::
on

::::::::::::
reconstructions

:::::
from

::::::::::::
bio-indicators,

:::
was

::::::::::
investigated

:::::
using

::::::::
simulated

:::::::
artificial

::::
data

:::
and

::
it

:::
was

::::::
shown

::::
that

:::
this

:::
can

::::
lead

::
to

:::::::::
misleading

:::::::::::::
reconstructions

:::
and

::
an

::::::::::::::
underestimation

::
of

::::
the

::::::::
prediction

:::::
error

:::::::::::::
(Juggins, 2013). However, without knowing the past climate evolution, it is30

difficult to estimate to what extent it has been violated, and what the potential implications for reconstructing the Holocene

climate evolutionare.

2



Here, we use a
:::::::
Holocene

:
climate model simulation with interactive vegetation as a testbed for pollen transfer function meth-

ods. In the model world, the modern spatial climate and its relationship to vegetation is known, along with the Holocene

climate and vegetation evolution. Our general approach bears some similarities to previous ‘pseudoproxy’ experiments, where

climate model simulations were used to test calibrations for temperature reconstructions of the last millennia (Mann and

Rutherford, 2005; Küttel et al., 2007; von Storch et al., 2004). However, as these studies target proxy records for climate5

which are calibrated temporally against meteorological data (such as tree ring parameters), they largely focus on the effect of

proxy noise on the reconstruction. We ignore these proxy imperfections and age uncertainty, and focus on the implications of

‘uniformitarianism’
::::::::
correlative

:::::::::::::::
uniformitarianism, which is the operational principle

:::
one

:::::::::
operational

::::::::::
assumption behind the use

of spatial calibrations to reconstruct temporal changes.

10

Key questions are: (i) To what extent does
::
the

:::::::::
correlative

:
uniformitarianism, and aspects of the estimation processes, bias

reconstructions of the Holocene temperature evolution? (ii) Are there statistical indicators that can inform us on
:::::
about

:::
the

actual reconstructability of climate variables?

To address these questions within the model world, we need to assume that model climate and vegetation changes are consistent

with each other, and that modeled plant functional type (PFT) and land cover type changes (desert fraction) can be used as15

surrogates for pollen counts in sedimentary archives.

2 Methods

2.1 Climate model simulations

We use a 6000-year-long transient simulation of the coupled atmosphere-ocean climate model ECHAM5/MPIOM (Jungclaus

et al., 2006) with a dynamic land surface and vegetation scheme provided by the JSBACH module (Raddatz et al., 2007;20

Brovkin et al., 2009) to investigate pollen-based climate reconstruction techniques. This simulation is described in (Fischer

and Jungclaus, 2011) (hereafter 6k-run) and is only forced by orbital changes over the last 6000 years. Environmental and

atmospheric variables are available on a regular 3.75◦ × 3.75◦ latitude/longitude grid.

The vegetation module is described in Sitch et al. (2003) and Brovkin et al. (2009). The modeled climate-vegetation interaction

through the growth, competition and mortality of the four tree, two shrub and two grass PFTs is nontrivial: Within each grid cell,25

plants compete for fractional cover, given their own net primary productivity, natural mortality as well as disturbance-driven

mortality in response to climate (fire, heat and cold extremes, growing season length). Given a latitude, soil texture, CO2

concentration, temperature and precipitation, processes changing water balance, photosynthesis, leaf cover and respiration are

simulated on a daily or monthly time step. The turnover of wood, leaves and roots, decomposition, mortality and establishment

is calculated annually, and the resulting vegetation cover is fed into the next year. Table 1 in the supplementary information30

lists the PFTs and their bioclimatic temperature limits.

The Holocene climate and vegetation evolution of this model simulation have been extensively used and characterized in

paleoclimate model-data comparisons (Fischer and Jungclaus, 2011; Dallmeyer et al., 2011, 2013, 2015; Laepple and Huybers,
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Figure 1. Temperature (a) and precipitation changes (b), vegetation turnover (c) and vegetation diversity as measured by the Hill’s number

N2::
of

::::
PFTs

:
(d) between the 6k and 0k BP

::
in

:::
the

::::::::::::::
ECHAM5/MPIOM

:::::
model

::::::::
simulation (Fischer and Jungclaus, 2011).

2014; Rehfeld and Laepple, 2016). While vegetation biases have been observed against present-day conditions in some areas

(Brovkin et al., 2009; Dallmeyer et al., 2011), the overall patterns are consistent (Brovkin et al., 2009). Climate and vegetation

changes from mid-Holocene to present day are substantial (Fig.1) and differ between the seasons (Fig.3, top row). We note that,

although the resolution of the climate model, and thus the model world calibration dataset is coarse, its spatial and seasonal

range is comparable to that of real-world calibration datasets (suppl. Fig. (SFig.) 1
::::::
SFig.1).5

2.2 Reconstruction methods

Quantitative climate reconstruction (Juggins and Birks, 2012; Birks et al., 2010) based on a multivariate pollen count dataset

requires algorithms that translate past vegetation changes into estimates of past climate changes. Most approaches use three

datasets: A paired calibration set, and one downcore pollen record. The calibration set combines modern pollen and climate

data from recent, or modern, conditions taken from surface samples across ecological and climatic gradients. An example10

from the real-world would be pollen counts from lake sediment surfaces across Europe, paired with data from meteorological

stations near these lakes. Several approaches for quantitative reconstructions based on ecological species counts have been

established (see e.g. Birks et al., 2010, for a review). Here we focus on two popular techniques: Best Modern Analog methods

(here: BMA, often also called Modern Analogue Technique), and the multivariate calibration method of Weighted Averaging

(WA).15
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BMA methods directly match the species composition of fossil assemblages against the modern calibration set (Overpeck et al.,

1985). To obtain a reconstruction value for a fossil sample,N analog modern samples with the lowest ecological distance (most

commonly estimated using the Squared-Chord-Distance (Overpeck et al., 1985)) are selected. Their modern reference climate

variables are averaged to obtain the past climate estimate. These approaches are expected to work well on samples with a low

number of taxa. In this study we use BMA with N = 5 and the Squared-Chord distance.5

Multivariate calibrations, on the other hand, are based on the regression of modern vegetation onto estimates of a climate vari-

able at many calibration sites, to establish one global parametric function between them. In WA calibration, climate optima for

different taxa are derived by computing a weighted average of climate variable estimates at all sites at which a taxon is present.

Weights are derived from the relative abundance of the taxon. The step from past vegetation composition to estimates of past

climate then relies on a second weighting step, in which the climate optima of all taxa present in the fossil sample are aver-10

aged, again weighted by their relative abundance. We employ WA here to illustrate results that are common to reconstructions

based on BMA and WA-related methods, which may therefore depend on properties of the dataset, or the general approach

of reconstructing climate based on modern spatial climate calibrations. In this study we use WA with square-root transformed

scores and inverse deshrinking.

15

2.3 Estimates of reconstruction uncertainty

In a real-world situation, the true climate evolution is unknown and a root mean square error of prediction (RMSEP) is esti-

mated in the modern calibration set. In the following we use k-fold cross-validation with k=10 (1/k-th of the samples are used

for verification) but note that even using leave-group-out-cross-validation, the RMSEP may be biased low due to autocorrela-

tion in the modern data (Telford and Birks, 2005, 2009). As we know the true climate in the model world, we can additionally20

obtain the root mean square error of the reconstruction (RMSE) by comparing the reconstructed climate variable to its simu-

lated counterpart.

We employ multivariate constrained ordination methods to test , which climate variables explain vegetation variance. While

Redundancy Analysis (RDA) extends principal component analysis, Canonical Correspondence Analysis (CCA) is the equiv-

alent method for frequency data
:::
and

::::::
allows

:
a
::::::::
unimodal

::::::::::
relationship

::::::::
between

:::
the

::::::
species

:::
and

:::
the

:::::::::::
environment

:
(Borcard et al.,25

2011).

We evaluate the similarity between trend and correlation fields using a sign-test, similar to Kendall’s rank correlation, defined

as a fraction ν(X,Y ) = S(X,Y )
# reconstr. grid cells varying between -1 and +1. A grid cell counts into the sign sum S(X,Y ) as +1 if the

signs in field X and field Y are the same, and as -1 if they are opposite. Summation goes over all grid cells where a reconstruc-

tion was performed. This sign test yields ν = 1 if and only if all grid cells in field X and Y have the same sign, and ν =−1 if30

all signs are opposing. ν = 0 suggests , that there are as many grid cells with opposing signs as there are with the same signs,

indicating that there is no underlying similarity between the fields.
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2.4 Calibration and reconstruction workflow

We perform PFT-based calibrations and climate reconstructions at each grid point on land which displays enough diversity and

temporal variations in the simulated vegetation. Therefore, we select all points for the reconstruction tests with an effective

number of species
:::
taxa

:
N2 larger than 2 (Hill, 1973)3, and vegetation turnover larger than 0.5. Turnover is estimated from the

length of the first detrended correspondence analysis axis in standard deviation units (Hill and Gauch, 1980).5

The simulated vegetation history through time at a grid point forms the fossil vegetation dataset. The simulated modern sur-

rounding vegetation and climate fields, averaged over the last 30 years, yield the matrices containing modern pollen and climate

information for the modern training set. We select all surrounding land-points in a radius of 2500km and subsample them such,

that the calibration set size is roughly equal for all sites and not latitude-dependent.

Pollen matrix columns contain the percentages of the nine PFTs (acronyms in Appendix A, details in Suppl. Table 1), including10

the desert fraction as a virtual PFT. Each column in the modern climate matrix corresponds to a climate variable and we choose

the warmest month, coldest month and annual mean temperatures (MTWA, MTCO, MAT) and precipitation (MPWA, MPCO,

MAP) variables.

We note that large-scale PFT-based pollen reconstructions use roughly 2-3 times the number of PFTs (as e.g. in Davis et al.,

2003; Mauri et al., 2014), and raw pollen spectra contain often more than 10 times the number of taxa. However, the effective15

number of species
::::
PFTs

::
in

:::
the

:::::
fossil

::::::
record, as estimated by Hill’s N2, is much lower than the number of taxa itself, and rare

taxa do not have a large influence on reconstructions using BMA or WA. Our cutoff at N2 = 2 is well within the range ofN2 for

modern pollen spectra (SFig. 2)
:
,
:::::::
although

:::
the

:::
N2::

is
:::::
lower

:::
for

:::::
PFTs

::::
than

:::
for

:::
taxa

:::
by

::::::::::
construction. In general, a low number of

PFTs or taxa may lead to a problem of multiple analogs, where a pollen assemblage is similar to several modern assemblages

that are very different in their climatic setting (ter Braak et al., 1996).20

However, supporting our cutoff choice at N2 = 2, we do not find indications that this is a problem here. The overall high trans-

fer function r2 (Fig. 7) shows , that analogs are not picked at random from the training set. To pinpoint this further,
:
we calculate

the ratio of the standard deviations of the temperatures at the analog sites, and the standard deviation of the temperatures across

the whole training sets
::
set

:
(SFig. 3). The ratios are generally smaller than 0.5, thus illustrating that the analog sites are not

randomly drawn from the training set.25

In many conventional paleoecological studies,
:

one or two climate variables would be selected for reconstruction, which are

expected to have influenced vegetation development significantly, and independently (Juggins, 2013; Telford and Birks, 2011).

As we want to investigate, which variables can be skillfully reconstructed, we perform joint reconstructions of all six climate

variables, both via BMA and WA. We note that jointly reconstructing several climate variables is done in several large-scale

regional reconstructions (e.g. in Mauri et al., 2014; Bartlein et al., 2011; Davis et al., 2003) and come back to this later in the30

discussion.

Fig. 2 illustrates the whole calibration and reconstruction workflow for a BMA reconstruction at an example grid point se-

3The Hill’s number N2 is defined as N2 =
(∑N

i=1 p
2
i

)−1
, as the reciprocal of the weighted mean of the abundances p. If all taxa are equally abundant

and pi = 1/N , N2 is equal to N. If only one taxon is present, and all others are zero, N2 =1.

6



lected from the Arctic (120◦E,72◦N). CCA analyses (Fig. 2d) suggest, that summer temperature is the main climate variable

driving modern vegetation around the site, whereas winter temperatures have little to no impact on the vegetation changes in

the model. A summer temperature calibration based on BMA can explain considerable amounts of variance in the modern

vegetation-climate relationship, it also shows a low RMSEP of ∼ 1.15◦ C. In the model world, we can compare reconstructed

and the simulated true past model climate evolution (Fig. 2f) and find that summer temperatures (MTWA) are faithfully recon-5

structed, whereas the reconstructions of annual mean (MAT) and winter temperatures (MTCO) largely fail.
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Figure 2. Exemplary calibration, BMA reconstruction and verification workflow for the grid point site in Siberia (120◦E,72◦N) highlighted

as a red square in (a). Surrounding grid points from which the modern analogs are drawn are shown as black dots, chosen analogs in blue.

CCA analyses show , that MTWA explains most variance in modern vegetation (b
::
&d) , and performs sufficiently well in leave-one-out cross

validation (c). The jointly reconstructed climate variables show considerable shared (black), and rather little independent variance (grey) in

the modern calibration (d). Past vegetation changes, as shown in the percentage PFT diagram (e), appear to be correlated with (f) simulated

and reconstructed climate.
:::
PFT

:::::::
acronyms

:::
are

::::
listed

::
in
:::
the

::::::::
appendix. Red lines show the simulated ‘true’ past temperatures, black lines the

reconstructions.
::
(g)

:
The MTWA reconstruction explains most fossil vegetation variance in the randomTF significance test,

::::::::
compared

::
to

::
the

::::
other

:::::::::
temperature

::::::::
variables,

:::
and

:::
falls

::::::
outside

:::
the

::::::::
confidence

::::::
interval

::
of

:::
the

:::
test

:::
(red

::::
line).

::::
The

:::::
dashed

:::
line

:::::::::
corresponds

::
to
:::
the

::::::::
maximum

:::::
amount

::
of
:::::::
variance

:
a
:::::
single

::::::
variable

:::
can

::::::
explain (Telford and Birks, 2011).
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3 Results

3.1 Simulated and reconstructed Holocene temperature trends

MTCO

S
im

ul
at

io
n

MTWA MAT

B
M

A
W

A

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

Li
ne

ar
 tr

en
d 

[K
/k

yr
]

Figure 3. Linear trend in the simulated (top row) vs. the reconstructed temperature evolution between 6k and present day based on BMA

(middle row) and WA (bottom row). Saturated red/blue colors indicate that the grid point’s trends are stronger than 1K/kyr.

The simulated mid-late Holocene temperature evolution shows a zonal structure characterized by warming trends around

the Equator and across Asia and cooling trends in the mid-to-high latitudes (Fig. 3 top row). The seasonal insolation forcing

caused by changes of the orbital configuration results in distinct temporal trends for summer and winter temperature, which5

differ in their strength and in some regions also in their signs. In the Arctic regions, the trends in the model simulation are strong

(∼-0.5K/kyr) for summer, and weaker (∼−0.1K/kyr) for winter and the annual mean. The warming trends around the Equator

appear strongest in the coldest month. Similar patterns occur in the mean annual precipitation, with drying in the Northern

and wetting in the Southern Hemisphere. We focus here on temperature and refer the reader with interest in the precipitation

changes to SFig. 4.10

We now analyze the winter (MTCO), summer (MTWA) and annual mean (MAT) temperature patterns reconstructed using

BMA and WA (Fig. 3 middle & bottom rows). Reconstructed winter trend patterns diverge from the simulated trends. In many

regions the reconstructed trends are higher than ±1K/kyr in magnitude, and thus stronger than anywhere in the simulated

model climate. Negative temperature trends in polar regions are not consistently captured, and an east-to-west warm-to-cold
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gradient appears for both reconstruction techniques WA and BMA.

In contrast, the reconstructed summer trends show broad similarities to the simulated temperature changes. Equatorial warming

and polar cooling are captured by both WA and BMA. Differences exist in the magnitude of the changes, rather than the sign,

except for in the Middle East, where warming is suggested by BMA and WA, and the true simulation trends showed a cooling,

in particular around present-day Turkey.5

Amongst the climate variables, MTWA appears to be most consistent between simulations and reconstructions. This is also

supported by the results of the sign test (described in Sec. 2.3), which yields ν ≈ 0.5 for WA and BMA. MTCO is least

consistent (ν ≈ 0.3). Between WA and BMA, results appear more patchy for BMA than for WA (i.e. sign or magnitude vary less

gradually across space), but this does not imply that either method captures correct degrees of change. This is further underlined

by the temperature standard deviations taken across the trend fields, which are much larger for WA (sd = 1.8K, bottom row in10

Fig. 3) and BMA (sd = 2.9K, middle row) than for the simulation (sd = 1.2K, top row). Thus, for both reconstruction methods

reconstructed trends are spatially more heterogeneous than the simulated trends.

The spatial patterns and magnitudes of the reconstructed trends are very similar across all three seasons (compare panels across

rows in Fig.3). Visually, they show a stronger similarity than the spatial patterns of the simulated seasonal trends (compare

panels of the top row). This is due to the fact that grid cells with large positive or negative trends appear in the same positions15

across the seasons (i.e., row-wise), but not necessarily across methods (i.e., column-wise). The sign test shows slightly larger

correspondences within each row/across seasons for the same method (ν = 0.59) than for the columns/same season across

methods (ν = 0.47). Due to the influence of the strong trends in the same places, this discrepancy is stronger for Pearson

correlations across the fields of Fig. 3 (by method ρ= 0.79, by season (ρ= 0.46). One explanation for this observation could

be that all seasonal reconstructions are biased towards a single specific season.20

3.2 Seasonal bias of temperature reconstructions

To further investigate this finding, we analyze the correlation between the different seasons in the simulations across modern

space and across time and contrast them with the correlation through time between the reconstructed seasonal time series

(Fig. 4). Ideally, the temporal correlation of the reconstructions should equal the temporal correlation of our ‘true’ (model sim-

ulated) climate evolution. Correlations across modern space are calculated over all the grid points relevant in the calibration25

and reconstruction process, thus for WA these are all grid boxes in a radius of 2500km whereas for BMA, only the sites picked

as modern analog in the reconstruction are used (see Fig. 2a for an example). For simplicity, we perform the analysis for winter

(MTCO) against summer (MTWA) temperature, but other variable combinations (e.g. temperature against precipitation) would

lead to similar results.

Across modern space MTCO and MTWA are mostly positively correlated (Fig. 4a), as towards the poles temperatures get30

colder in summers as well as in winter. Exceptions are found around Eastern Russia and equatorial regions in Africa, where

summer and winter temperatures are anti-correlated across space.

The temporal correlations of the WA-reconstructed MTCO and MTWA (Fig. 4b) show a very similar pattern of the correlation

sign, although with stronger amplitudes of the correlation values. Indeed, the sign test yields ν = 0.76, indicating that the large
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majority of the grid cells in Fig. 4a and Fig. 4b share the same sign. In contrast, the ‘true’ temporal MTCO/MTWA correlation

over the late Holocene (Fig. 4e), which should ideally be similar to the reconstructed temporal correlation (Fig. 4b), shows

a different picture (ν = 0.26). This suggests that the modern spatial covariance has been directly propagated to the temporal

covariance of the reconstructions. Here, and in Fig. 5, we mask grid points for fossil reconstructions with low transfer function

performance as measured by the cross-validation r2, as we expect them to return less reliable results.5

The same observation holds for the BMA-based results (Fig. 4d). The modern spatial MTCO/MTWA covariances at the sites

picked as modern analogs, shown in Fig. 4c, are noisier than the covariances calculated over all grid boxes, but show a sim-

ilar pattern. The seasonal correlation in the BMA-reconstructions again directly follows the modern spatial MTCO/MTWA

correlation (ν = 0.68). In contrast, the similarity to the actual temporal covariance (Fig. 4e) is low, as the sign test underlines

(ν = 0.03).10

modern spatial correlationc

modern local correlationa

simulated temporal correlatione

reconstructed temporal correlation: BMAb

reconstructed temporal correlation: WAd

−1.0

−0.5

0.0

0.5

1.0

r

Figure 4. Correlation of coldest and warmest month temperatures. The correlation patterns across modern calibration space (a) are similar to

the temporal correlation pattern estimated from WA reconstructions (b). The correlations at the sites picked as modern analogs (c) are similar

to those obtained in the final BMA reconstructions (d). In contrast, the ‘true’ temporal correlation pattern from the model temperatures differs

considerably from the reconstructed temporal correlation fields. This demonstrates that the correlation in the reconstructions mainly depends

on the modern calibration and not, as one would hope for, from the correlation of the Holocene temperature evolution. Crosses in (b) and (d)

indicate gridboxes with a r2 < 0.5 in cross-validation.
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Figure 5. Performance of the BMA calibration models as evaluated by the correlation between the reconstructed and simulated climate

variables (a-f) at each grid point. Crosses mask grid boxes with cross-validation r2 <0.5.

3.3 Reconstruction skill

We showed that the ability to reconstruct Holocene temperature trends in our model world strongly depends on the analyzed

season and region (Fig. 3). It is also important to quantify the reconstruction skill for the full Holocene evolution, including

millennial variability and absolute temperature estimates. We analyze two metrics, (i) the temporal Pearson correlation between

the ‘true’ past changes and the climate variable reconstructions (“correlation skill” , Fig. 5), and (ii) the RMSE deviation of the5

reconstructed from the ‘true’ climate.

Consistently high correlation skill values for the BMA reconstruction can be found across the Arctic for MTWA, and in the

Sahel for MAP. Simulated MAT changes are correlated with MTWA changes in the high latitudes, which explains the relatively

weaker but positive correlation there. Winter precipitation reconstructions do not show good skill anywhere.

Most regions with high positive correlation skill show comparably low temporal RMSE (SFig. 5), whereas many regions with10

low RMSE do not show high correlation skill. In a real-world situation, the true past climate evolution is unknown and a root

mean square error of prediction (RMSEP) is estimated from the modern calibration set (cf. Sec. 2.3). In our model world, the

RMSEP is acceptable and below 3◦C for MTWA and MAT, whereas it is generally high
:::::
higher

:
for winter temperature, in

particular for North America. The low correlation skill for winter temperatures in the Arctic is also reflected by the temporal

RMSE and the modern RMSEP (SFig. 5 & 6). A comparison of summer temperature downcore RMSE and modern spatial15

RMSEP, given in SFig. 7, shows that modern RMSEP is higher than the actual reconstruction error in many places, but there is

little resemblance to the patterns of the estimated downcore RMSEP. If the calibration radius is reduced, the modern calibration

error decreases (results not shown).
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3.4 Testing for the predictability of reconstruction skill

Moderna

MTCO
MTWA
MAT
MPCO
MPWA
MAP

Fossil Reconstructionb Fossil Simulationc

Figure 6. Climate variables explaining most variance in modern vegetation (a), between reconstructed climate and fossil vegetation (b) and

simulated climate and fossil vegetation (c). Variable
::::::
Variables

:
explaining most variance in the modern world (a) are not necessarily those

explaining vegetation changes in the ‘true’ model past (c).

The inaccuracy of the covariance estimates (Fig. 4b), and the dependency of the reconstruction skill on the analyzed climate

variable (Fig. 5) highlights, that it is important to determine which climate variables can be reconstructed in a given setting -

and what other variables they are colinear with in the modern training set. We can discern two statistical approaches to iden-

tify the driving variable for climate-related vegetation changes: Those relying on the modern calibration set, and those which5

involve the fossil downcore record. In both, higher variance explained should be reflecting a higher environmental relevance

(Juggins and Birks, 2012).

In the following, we compare the results of estimating the driving climate variable with both approaches (Fig. 6a,b), with the

pattern of the ‘true’ climate variable explaining most simulated fossil vegetation change in our model simulation (Fig. 6c). The

ordination fields underlying this summary figure are given in the SFigs. 8 to 10. For the modern spatial approach, we use CCA10

ordination of modern PFTs and climate to determine the climate variable which explains most vegetation variance across the

modern calibration space (Fig. 6a). Temperature variables dominate the ordination results globally, except for the Sahel zone,

which is dominated by precipitation-changes. MTWA explains most variance in arctic Canada and eastern Siberia, whereas

MAT appears to dominate in Siberia and Northern Europe.

For the fossil downcore record approach, we identify which BMA-reconstructed climate variable explains most variance in the15

fossil vegetation set using constrained ordination (RDA). The results, as can be seen in Fig. 6b, are different and less smooth

than those obtained for the modern spatial vegetation changes. Note that the patterns we observe here are highly similar to

those identified from the ratio of the first two axes of the ordination (Juggins, 2013) (SFig. 11).

Finally, as we have access to the ‘true’ past vegetation and climate changes in the model world, we can assess, which climate

variable explains most simulated fossil vegetation change. The RDA results, shown in Fig. 6c, confirm a strong summer tem-20

perature signal above the Arctic circle, and the potential existence of a precipitation signal in the Middle East and the Sahel

zone.

Contemplating Fig.6a, b, and c we observe that the driving variables, identified by the fossil downcore approach (Fig. 6b) are

closer to the true (Fig. 6c) driving variables than the driving variables estimated from the modern calibration dataset (Fig.6a).
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This suggests , that looking at the variance explained by downcore reconstructions may tell us more about what actually drove

vegetation changes, than looking at the variance explained in modern vegetation.

Furthermore, analyzing the variance explained in the modern calibration dataset can suggest a high importance (by a high

MTCOa MTWAb MATc

MPCOd MPWAe MAPf
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Figure 7. Spatial patterns of BMA transfer function r2 in the modern calibration set (grid points with a distance of less than 2500km from

the reconstruction site) of the six jointly reconstructed climate variables MTCO (a), MTWA (b), MAT (c), MPCO (d), MPWA (e), MAP (f).

Points with a r2 < 0.5 are crossed out. Transfer function performance appears good, although some variables had little impact on vegetation

changes in the past.

explained variance) for variables that are not necessarily relevant to vegetation development. This is due to the colinearity of

the climate variables (c.f. Fig. 2b). This is demonstrated in Fig. 7, which shows the transfer function r2 for all climate variables.5

In large parts of Siberia, MAT explained most variance (Fig. 6a). However, MTWA transfer function r2 (Fig. 7b) is about as

high as that of MAT (Fig. 7c) there, and dominates the rest of the Arctic. MAP appears well reconstructible in the Southern

Hemisphere, in regions where MTCO also has a high transfer function r2. Seasonal precipitation transfer functions do not per-

form well on inter-regional scales outside Africa. There, they appear to perform better, which is likely due to their colinearity

with MAP (c.f. Fig. 6).10

For the potentially more skillfull
::::::
skillful approach of using the downcore reconstruction to test for reconstruction skill, a

formalized test (randomTF) has been proposed in Telford and Birks (2011). It relies on the comparison between the fossil

variance explained by the actual reconstruction, and the variance explained by reconstructions based on surrogate modern

climate (but using the same modern and fossil pollen assemblages). Above 50◦N, where temperature changes occur over the

course of the 6k-run, 84.7% of the grid cell vegetation changes are identified as most strongly related to MTWA (Table 1). If the15

randomTF-test has power, it should indicate a lower p-value for reconstructions of climate variables that were related to veg-

etation changes. Table 1 indicates a significant p-value (≤0.1) for MTWA in 68.9% of grid cells. MAT, picked as most relevant

in 14% of the grid cells, appears reconstructible in 23% of the grid cells. MTCO, MAP, MPCO and MPWA – which have no

or little relevance for vegetation development in the region – show up as significant in only 14-16% of the grid cells. Although
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our test approach does not meet the criteria of a formal statistical power assessment, these results suggest, that randomTF

may have indicative power.

Table 1. Outcome of the significance test using randomTF. All 196 grid points above 50◦N are considered, and p-values are estimated for

all climate variables. Actual relevance is obtained by counting the number of times the variable is picked as the most relevant variable in the

RDA of simulated climate and vegetation (Fig. 6) and dividing by the number of grid cells.

randomTF: significant (p< 0.1) randomTF: not significant (p> 0.1)

Relevance [%] RMSEP r(rec,sim) No. cells [%] RMSEP r(rec,sim) No. cells [%]

MTCO [◦C] 1.5 4.16 0.17 13.8 3.31 0.08 86.2

MTWA [◦C] 84.7 0.92 0.71 68.9 2.00 0.37 31.1

MAT [◦C] 13.8 2.43 0.56 23.5 2.13 0.26 76.5

MPCO [mm yr−1] 0.0 180.80 -0.03 9.2 113.63 0.00 90.8

MPWA [mm yr−1] 0.0 237.44 0.06 16.3 184.9 0.00 83.7

MAP [mm yr−1] 0.0 150.52 0.21 15.8 123.76 0.04 84.2

3.5 Influence of the modern climate background on the reconstructed climate

Following the principle of uniformitarianism, a
::::::
Ideally,

::
a
:::::::
climate reconstruction should not depend on the climate state in

which the calibration set was taken. We test this in a case study, by comparing the calibration to the most recent time period5

(the last 30 years of the model run, equivalent to 0-30yrs BP) which we use throughout the manuscript, to one for the first pe-

riod (5970-6000 yrs BP) in the simulation. We subsequently perform reconstructions for both calibration periods. Fig. 8 shows

exemplary BMA results for a Siberian site.

Averaged across all reconstruction sites, MTWA reconstructions calibrated at 6k are .75K (-3.6,1.7K, 90% confidence inter-

val) warmer than those based on calibrations at 0k. In particular, sites across the Northern Hemisphere are reconstructed with10

warmer temperatures.
:::::::
Relative

::::::::::
temperature

::::::::
variations

::::::
largely

::::::
match

:::::::
between

:::
the

::::::::::::::
reconstructions. Inspection of the locations

and temperatures around the analog sites chosen for the 0k and 6k calibrations suggests , that the warm bias may be caused by

spatial autocorrelation in the vegetation, rather than climate, in addition to other local confounding factors. The 6k analog sites

tend to lie further northward (in the Northern Hemisphere) than those for the 0k calibration. However, the 6k analog sites do

not systematically cluster northward. Therefore, the northward migration of the analog sites does not compensate fully for the15

warmer background climate state, so that the overall reconstructed temperatures are warmer. This demonstrates that, at least in

our experiment, the climatological and ecological similarity of the calibration period to the period for reconstruction influences

the reconstruction outcome.

The question whether the detected differences in Fig. 8 are significant or not using the calibration RMSEP is not straightfor-

ward. A standard assumption in paleoclimate reconstructions is that errors in time and space are independent (as assumed20
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Figure 8. Reconstructions are sensitive to the calibration time period. Warmest month temperature trends for reconstructions based on a

calibration for the last 30 years (0k) and first 30 years (6k) of the model run (A). 6k results are mostly warmer (B). All time series are based

on 300-year running means.

e.g. in Marcott et al., 2013). This assumption would result in a standard error of 0.13◦C, thus considerably smaller than the

differences we found. In the (unrealistic) extreme case of a complete dependency of errors, the differences would be not sig-

nificant
:::::::
(standard

:::::
error

::::::
3.5◦C). In reality the true uncertainty likely lies between the two extremes assumed here,

:
but a more

detailed analysis of the spatial and temporal covariance structure of the proxy uncertainty is required to provide better error

estimates.5
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4 Discussion

Using a Holocene climate model simulation as a testbed for pollen based climate reconstructions allowed us to analyze the

reconstruction skill and to understand potential seasonal biases of pollen based climate reconstruction methods.

4.1
:::::::::

Correlative
::::::::::::::::
uniformitarianism5

:::::::
Transfer

:::::::
function

::::::::::::
reconstructions

::::
rely

::
on

:::
the

:::::::::::::
exchangeability

::
of

::::::
spatial

:::
and

:::::::
temporal

:::::::::::
relationships

:::::::
between

:::::::
climatic,

::::::::::::
environmental

:::
and

:::::::::
ecological

::::::::
variables;

:::
on

:::
the

::::
the

:::::::::
uniformity

:::
of

::::::::::
correlations

::::::
across

:::::
space

::::
and

::::
time.

::::
We

::::
have

::::::::::::
demonstrated

::::
that

::::::
spatial

:::
and

::::::::
temporal

::::::::::
correlations

:::
are

:::
not

:::::::::
equivalent

::
on

::::::
orbital

:::::::::
timescales

::
in
::::

our
:::::
model

::::::
world

::::::::
Holocene,

::::::
which

:::
has

:::::::::::
implications

:::
for

:::::::
seasonal

::::::::::
temperature

:::::::::::::
reconstructions.

::::
The

::::::::::::
space-for-time

::::::::::
substitution

:::
in

::::::
transfer

::::::::
functions

::::::
hence

::::
leads

:::
to

:::::::
seasonal

::::::
biases

::
in

::
the

::::::::::::::
reconstructions,

::
as

:::
the

:::::::::
assumption

:::
of

:::::::::
correlative

::::::::::::::
uniformitarianism

::
is
::::::::
violated.10

::::
This

:
is
:::::::::
consistent

::::
with

::::::
findings

::
of

::::::::::::::::
Blois et al. (2013),

::::
who

:::::
tested

::
the

::::::::::::
space-for-time

::::::::::
substitution

:::
for

:::
the

::::::::
prediction

::
of

::::::::::
biodiversity

:::::::
changes.

:::::
They

::::::::
observed

:::
that

:::::
while

::::::::::
generalized

:::::::::::
dissimilarity

::::::
models

:::::
fitted

::::::
across

:::::
space

:::::
could

::::::
predict

:::::::::
large-scale

:::::::
patterns

:::
of

:::::::
diversity

:::::
across

::::
time

:::::::
through

:::
the

::::
late

:::::::::
Quaternary,

:::
the

::::::::::
relationship

::::::::
between

:::::::
turnover

:::
and

::::::::::::
environmental

::::::::
variables

:::
was

::::::::
different

::::::
through

:::::
space

:::
and

:::::::
through

:::::
time.

:::::::::::
Furthermore,

::::::::::::
space-for-time

::::::::::
substitution

:::
was

::::
less

::::::::
successful

:::
for

:::
the

:::::::::
Holocene,

:::::
which

::
is

:::::
likely

:::
due

::
to

:::
the

::::::::
relatively

::::::
smaller

::::::::
temporal

::::::
climate

:::::::::
variations

::::::::
compared

::
to

:::
the

::::::
spatial

:::::::::
variations.15

:::::::::::::::::::::::
Salonen et al. (2013) showed

::::
that

:::::::::::::
reconstructions

:::::
using

::::::::
different

:::::::
modern

:::::::::
calibration

::::::::
datasets

:::::::
differed

::
in

:::::
their

::::::
means,

::::
and

::::::::
variations

::::::
around

::::
this

:::::
mean.

::::
The

:::::::::
calibration

:::::::
datasets

::::
had

::::::::
different

::::::::::
temperature

:::::::::::
distributions.

::::
This

::::::
could

::
be

::
a
:::::::::::
consequence

::
of

:
a
::::::::
violation

::
of

:::::::::
correlative

::::::::::::::::
uniformitarianism:

:::
the

::::::::::
relationships

:::::::
between

:::::::
climate

::::::::
variables

:::
and

:::::::::
ecological

:::::::
changes,

::::::
which

:::
are

:::::::::
transferred

::
to

::
the

::::
final

:::::::::::::
reconstruction,

:::
are

::::
likely

::::::::
different

::
for

::::::::::
calibrations

::::::::
extending

::
to

:::::::
different

::::::::
locations

:::
(as

::
in

::::::::::::::::::
Salonen et al. (2013)),

::
or

::
for

::::::::
different

::::
time

::::::
periods

:::
(as

::
in

:::::::
Section

::::
3.5).20

4.2 Limitations

The complexity of the vegetation representation in the model
:
, as well as the simulated climate evolution,

:
are a strong sim-

plification of reality. Therefore, results on the Holocene evolution of specific PFTs, the actual spatial pattern of PFTs, or the

reconstructability of a certain climate variable in a certain region should not be directly translated to the real world
:::::
actual

::::::::::
pollen-based

:::::::
climate

:::::::::::::
reconstructions. On the other hand, conclusions on reconstruction methods and the relation of spatial25

calibration and downcore reconstruction only require a consistent dataset of climate and vegetation parameters in space and

time and do not depend on details of the climate evolution or vegetation response, as long as the dataset is realistic enough

that we can apply the real world
::::::::
PFT-based

:
reconstruction workflow. The major factor shaping our results is that the modern

spatial relationships between climate variables is different from the changes in the relationships over time, which is a robust

feature related to the transient insolation forcing (Laepple and Lohmann, 2009).One might be concerned that the low number30

of simulated plant functional types, or the low spatial resolution of the model,
:
might bias our reconstruction efforts. However,

we showed that the actual information contained in the plant functional types and the spatial climate field is not fundamentally
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different than
::::
from

::::
that in the PFTs (or taxa) and the climate calibration datasets used in real world reconstructions (SFigs. 1

& 2).

::::
Note

:::
that

::
it
::
is

:::::
likely,

:::
but

:::
not

:::::::
proven,

:::
that

::
a

:::::
larger

:::::
Hill’s

:::
N2 ::::::

ensures
:::::
more

:::::::::
meaningful

:::::::::::::
reconstructions.

:::::
What

:::::::::
constitutes

::
a

:::
too

:::
low

:::::::
number,

::
or

::
a

::::::::
significant

:::::::::
difference

::
in

:::
N2,

::
is
::
as

:::
yet

:::::::::
unknown.

Given the design of our study, we have limited our analyses to identifying general features of the calibration vs. reconstruction5

relationship
:
,
:
rather than interpreting the actual numbers of temperature changes or reconstruction biases. Furthermore, we

assumed perfect proxy recording and did not add any non-climatic noise. If these were added, tests which rely on the downcore

record, such as randomTF, may become less powerful, and downcore RMSE could become higher.

:::
Our

:::::
main

:::::
study

:::::
region

:
-
:::

the
::::::::

Northern
:::::::::::
Hemisphere,

:::
and

::::::
Arctic

::::::
Russia

::
in

:::::::::
particular,

::
is

:::::::::::
characterized

::
by

::::
cold

:::::::::::
temperatures

::::
and

:
is
::::::::::

particularly
::::::::
sensitive

::
to

:::
the

::::::
orbital

:::::::
changes

:::
in

:::
the

:::::
model

::::::::::
simulation.

::::::
Hence

:::::::
MTWA

::
is

:::
the

:::::::::::
predominant

::::::
driving

::::::::
variable.10

::::::::::
Multivariate

:::::::
analyses

:::::::
suggest

:::
that

::::
this

::
is

:::
not

:::
the

::::
case

::::::::::
everywhere

:::::::::
(c.f. Fig. 6).

::::::
Given

:::
the

:::::::::
conceptual

::::::
nature

::
of

:::
our

:::::
study

:
-
::::
and

::
the

:::::::::
simplicity

::
of

:::
the

:::::::::
vegetation

::::::
model

:
-
:::
we

::::
have

::::::
limited

:::
our

:::::::::
discussion

::
to
::::

the
:::::::::::
identifiability

::
of

::
a

:::::
single

::::::
driving

::::::::
variable.

::::
This

::::
does

:::
not

::::::
exclude

::::
that

::
in

::::
other

:::::::
regions

:::::::
multiple

:::::::
climatic

::::::
controls

:::
on

:::::::::
vegetation

:::
may

:::
be

::::
more

:::::::::
important.

:::::
Thus,

:::::
other

::::::
regions

::::
may

::
be

:::::
better

:::::
suited

::
to

::::
test

::
the

::::::
ability

::
of

:::::::
transfer

::::::::
functions

::
to

:::::::::
disentangle

:::::::
changes

::
in
::::::::
multiple

::::::
climate

::::::::
variables.

:

4.3 Identification of climate variables driving vegetation evolution through time15

Our study shows that in our model world, regardless of the reconstruction technique, the reconstructed climate evolution is

very similar between the variables (Fig. 3). This strong covariance between the variables is determined by the modern spatial

covariance and not, as one would hope, the temporal covariance of local climate (Fig. 4). This finding can be understood in

a simple thought experiment. Let us assume that the vegetation evolution at every grid point would be driven by one single

variable. This single variable could be one of the analyzed variables (e.g. summer temperature) or any other variable, such as20

the length of the growing season, cloudiness or soil moisture. All other variables have no direct influence on the vegetation,

themselves, and are merely covarying with the driving variable. In this case, the reconstructed covariability is implicit in the

transfer function and fully determined from the modern spatial relationship,
:
regardless of the true past relationship between the

variables
:
,
:::
and

:::
this

::
is
:
similar to what we found (Figs. 3 and 4).

Reconstruction skill will consequently depend on whether we reconstruct the driving variable, or, in
::
the

:
case that we reconstruct25

a secondary variable, on the question whether the the relationship with the driving variable is the same across space and in

time. The example of our model-world Arctic shows , that the latter is not always the case. Past vegetation changes there, as

Fig. 6 shows, were predominantly driven by summer temperature and mean annual temperature change, yet the modern transfer

function r2 for MTCO is acceptable in most grid boxes (Fig. 7). Skill for winter temperature reconstructions are, however, low

(Fig. 5a), particularly in regions where the modern spatial covariance between summer and winter temperatures (Fig. 4a,c) is30

negative, whereas the temporal covariance is positive (Fig. 4e).

Therefore, an important question is whether we can determine the variable driving vegetation changes. This would increase

our confidence in the reconstruction. In the simplest case, vegetation patterns across modern space are only determined by the

current climate. In this case, the climate variable maximizing the modern spatial correlation, information accessible in the real
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world, would be the driving variable (Fig. 6a). However, the variable explaining most of the modern spatial vegetation variance

was, in our evaluation, not necessarily the one explaining most of the temporal vegetation evolution (compare Figs. 6a vs. 6c).

Therefore, either other parameters beyond modern climate play a role, or the driving variable was not included in our set of

six variables. In the model world, and likely in reality, both occurs
::::
occur. Evolving parameters such as soil properties are partly

determining
:::::
partly

:::::::::
determine the spatial vegetation distribution, but are constant over time in the model world. On the other5

hand, chances to identify
:::
the

::::::
chances

:::
of

:::::::::
identifying the correct driving variable are also small, as, for example, the length of the

growing season might have a stronger influence than summer temperature. What follows from this is that methods only relying

:::
that

::::
rely

::::
only on the modern spatial climate/vegetation relationship are insufficient to identify the driving variables across time.

Here, inverse modeling reconstruction techniques which do not rely on modern spatial calibration sets (Guiot et al., 2009;

Yu, 2013) may provide useful additional information. In addition to the downcore tests outlined in Sect. 3.4, a priori expert10

knowledge on regional ecology is helpful to identify variables of climatic and ecological relevance.

4.4 Seasonal bias on reconstructed trends in non-driving variables

In the Northern Hemisphere extratropics of our model world, summer temperature is the variable driving vegetation change

across the mid-to-late Holocene. The modern spatial correlation between summer, winter and consequently also mean annual

temperatures is positive. Since the modern spatial information determines the downcore temporal reconstruction for all vari-15

ables, the reconstructions of winter/annual mean temperature changes are biased towards the trend in summer temperatures.

What are the implications of such a bias on reconstructions of climate variables which are not primarily influencing vegetation?

Fig. 9 shows the simulated and BMA-reconstructed summer and annual mean temperature for the Northern hemisphere extrat-

ropics (all grid boxes north of 50°N). Patterns and magnitudes are highly similar for WA, as well as when only grid boxes with

summer/annual mean temperature as dominant variables are picked (not shown). Mid-to-late Holocene summer temperatures20

are slightly overestimated, but the trend and magnitude are correct. In contrast, the annual mean cooling has the same mag-

nitude as the reconstructed (and simulated) summer cooling – it is exaggerated due to the summer bias in the reconstruction.

Such a correlation bias on jointly reconstructed climate variables is hard to detect and prove for real-world data. However, the

above considerations suggest that for non-driving variables physically implausible temperature reconstructions may arise due

to correlations across modern space. Consequently, estimated temperature trends based on proxy data may appear larger than25

in the model world, or may have a different shape. One example is
::::
This

:::::
could

:::::
affect

:
the reconstruction of the annual mean

temperature evolution of the past 11000 years (Marcott et al., 2013). The reconstructed cooling trend in the mid-late Holocene

was stronger than the cooling simulated by climate models, a mismatch
:
.
::::
This

::::::::
mismatch

::
is
:
potentially related to a seasonal

bias of the reconstruction (Meyer et al., 2015; Liu et al., 2014).
:
,
:::
and

:::::::::
insolation

:::::::
changes

::
as

:::::
latent

:::
and

::::::::::::
unconsidered

::::::::
variables.

:::::::
Seasonal

:::::::::
insolation

::::::
changes

:::
are

:::::
likely

::
to
:::::
have

:::::
direct

::::::
effects

::
on

:::::::::
vegetation

::
by

::::::::
changing

:::
the

::::::
season

::::::
length,

:::
and

::::
thus

:::
the

:::::::
number30

::
of

::::
days

:::
for

::::::
growth,

::::
and

::::::
indirect

::::::
effects

:::
by

:::::::
changing

:::::
local

:::::::::::
temperatures

:::
and

::::
their

::::::::::
seasonality.

Another example is the comparison between pollen-proxy-based and climate model simulated winter temperature changes

between the Last Glacial Maximum and present day, which are stronger in the reconstructions than in the model simulations

(Braconnot et al., 2012).
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::::
Such

:
a
::::::::::
correlation

:::
bias

:::
on

::::::
jointly

:::::::::::
reconstructed

::::::
climate

::::::::
variables

::
is

::::
hard

::
to

:::::
detect

::::
and

:::::
prove

::
for

:::::::::
real-world

:::::
data.

::::::::
However,

:::
the

:::::
above

::::::::::::
considerations

::::::
suggest

::::
that

:::
for

::::::::::
non-driving

::::::::
variables,

::::::::
physically

::::::::::
implausible

::::::::::
temperature

:::::::::::::
reconstructions

::::
may

::::
arise

::::
due

::
to

::::::::::
correlations

:::::
across

:::::::
modern

:::::
space.

::::::::::::
Consequently,

::::::::
estimated

::::::::::
temperature

::::::
trends

:::::
based

:::
on

:::::
proxy

::::
data

::::
may

::::::
appear

:::::
larger

::::
than

::
in

:::
the

::::::
model

::::::
world,

::
or

::::
may

::::
have

:
a
::::::::
different

:::::
shape.

Given our above results, such findings could potentially be explained as changes that are overestimated in the proxy data due5

to confounding effects of third variables, for example summer length or precipitation changes.

4.5 Implications and Outlook

We have focused our analysis on the seasonal evolution of temperatures. However, it is likely that similar biases also af-

fect pollen-assemblage-based reconstructions of other climate variables, such as precipitation. In this light, the result of larger

pollen-derived than model simulated precipitation changes between the mid-Holocene and present-day (Braconnot et al., 2012)10

might be influenced by a reconstruction bias
:
, as the linkage between temperature and precipitation (Trenberth, 2005) , may

differ across space, time, and timescales (Rehfeld and Laepple, 2016).

Similarly,
:::
that

:
modern spatial relationships differing

::::
differ

:
from past temporal relationships might also affect other assemblage-

based climate reconstructions. Examples include planktonic foraminifera counts which are used to reconstruct marine temper-

ature changes; in this case, the climate variables include water temperatures
::::::::::
temperature at different seasons and water depths15

(Telford et al., 2013). Similar effects might also be in place for other environmental or climate proxies such as chironomids,

diatoms and dinoflagellates (Telford and Birks, 2011), which all rely on modern spatial calibration approaches. Consequently, it

would be interesting to study ecological, geographical and climatic effects on reconstruction results in other ecological models

(e.g. FORAMCLIM Lombard et al., 2011)
:::::::::::::::::::::::::::::::::::
(e.g. FORAMCLIM, Lombard et al., 2011). In the vegetation model used, the sim-

ulated PFTs have broad climatic tolerances (Suppl. Table 1). This might exaggerate the seasonal bias problem, as the winter20

sensitivity of the simulated vegetation might too be low. While this would strengthen our general conclusion,
:
that transfer

function diagnostics based on modern calibration data alone are not sufficient to characterize reconstructability, it asks for a

cautious interpretation of the magnitude of the reconstruction bias.

This study could be extended in several directions. Adding proxy noise and age uncertainty would allow a more in-depth

comparison of spatial and temporal errors, and a more representative test of the randomTF-algorithm
:::::
More

::::
work

::
is
:::::::

needed25

::
to

:::::::
quantify

:::
the

::::::
impact

::
of

:::::::::
seasonality

::::
and

::::
other

:::::::::
secondary

::::::::
variables

::
on

::::::::::
temperature

::::::::
estimates

:::::
based

:::
on

::::::::
biomarker

:::::::
proxies,

::::
and

::
to

::::::
develop

::::::::
methods

:::
that

:::::::::::
acknowledge

::::
and

:::::::
account

:::
for

::::::::::
confounding

::::::::
variables

::
in

:::
the

::::::::::::
reconstruction. Repeating this study with

a dynamic vegetation model that simulates a larger number of PFTs (Sitch et al., 2003, e.g. LPJ-GUESS)
:
,
::
or

::::
with

:::::::
models

::
for

::::::
marine

:::::::
ecology

::::::::::::::::::::::::::::::::::::
(e.g. FORAMCLIM, Lombard et al., 2011) could provide more insight. Transient paleoclimate model ex-

periments with such a more complex land surface and biosphere scheme
:::::::
schemes

:
(i.e., with a larger number of PFTs) could30

:::::
would

:
be particularly useful to test , whether assemblage-based climate reconstruction methods allow for the accurate joint

reconstruction of several climate variables.

:::::
Future

:::::
work,

:::::::::
extending

:::
the

:::::::::
conceptual

::::::::
approach

::
in

:::
this

:::::
study,

:::::
could

:::
test

:
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–
::
the

:::::::::::::::
reconstructability

::
of

:::::::
multiple

::::::
climate

::::::::::
parameters

::
in

::
an

:::::::
idealized

:::::::
setting.

::::
This

:::::
could

::
be

::::
done

:::::
using

:::::::
artificial

:::::::::
vegetation

:::
and

:::::::
climate,

::
or

:
a
:::::::
coupled

::::::
climate

::::::
model

::::
with

:
a
:::::::::
vegetation

:::::
model

::
of

::::::
higher

:::::::::
complexity

:::::
(than

::::::::
JSBACH)

::::::
and/or

::::
with

:::::
larger

::::::
climatic

::::::::
changes.

::
It

:::::
could

:::
also

:::::
allow

::::::::
in-depth

::::
tests

:::
for

:::
the

:::::::::::
predictability

::
of

::::::::::::
reconstruction

::::
skill

:::
for

:::
one

:::
or

::::
more

:::::::
climate

:::::::::
parameters

:::::::::::::::::::::::::::::::::::::::
(e.g. using methods described in Juggins, 2013).

:

–
::
the

::::::
impact

:::
of

::::::
species

:::::::
richness

::
on

:::
the

::::::::::::
reconstruction

:::::
error.

::::
This

:::::
could

:::::::
employ

::::::::
vegetation

:::::::
models

::
of

:::::::
different

::::::::::
complexity5

:::
run

:::
for

:::
the

:::::
same

::::::
climate

:::::::
forcing

::::
(e.g.

:::
by

:::::::::
contrasting

::::::::
JSBACH

::::::
results

:::::
with

::::::::::
LPJ-GUESS

:::::::
results),

:::
or

:::::::
random

:::::::
datasets

::::::::::::::::::::::::
(e.g. Telford and Birks, 2011).

:::::
Here,

::
it
::
is
::::::::::
particularly

:::::::::
important

::
to

::::::
exploit

:::
the

::::::::::::
independence

::
of

:::
the

:::::::
modern

:::::::::
validation

:::::::
statistics.

:

–
::::::
Adding

:::::
proxy

:::::
noise

:::
and

::::
age

:::::::::
uncertainty

::::::
would

:::::
allow

:
a
:::::
more

:::::::
in-depth

::::::::::
comparison

::
of

::::::
spatial

:::
and

::::::::
temporal

::::::
errors,

:::
and

::
a

::::
more

::::::::::::
representative

:::
test

::
of

:::
the

::::::::::
randomTF

:::::::::
-algorithm.

:
10

A first estimate of potential biases in model-data comparison of multiple climate variables can be obtained through the com-

parison of simulated spatial and temporal covariances. If they are very different, caution is called for in the interpretation of

joint proxy reconstructions of these variables.

5 Conclusions

Using a Holocene climate model simulation with interactive vegetation as a testbed, we analyzed the skill and potential biases15

in pollen-based climate reconstructions. We find that in our model experiments, transfer function reconstruction methods pull

the spatial covariances between climate variables through into the downcore temporal reconstructions. As a consequence, tem-

poral changes of a dominant climate variable (for the Northern Hemisphere: often summer temperature) are imprinted on a less

important variable (here: often winter temperature), leading to reconstructions biased towards the dominant variable’s trends.

:::::
Given

:::
the

:::::::::
conceptual

::::::
nature

::
of

::::
our

:::::
study,

:::
we

::::::::
consider

:::::
these

::::::
results

::
as

::::::::
primarily

::::::::::
illustrative,

:::
and

:::::
have

::::::
limited

::::::::
ourselves

:::
to20

:::::
testing

:::
the

:::::::::::::::
reconstructability

::
of

::::::::
individual

::::::::::
parameters.

:::::
More

:::::
work

:
is
::::::
needed

::
to
:::::::
develop

::::
and

:::
test

:::::::
methods

:::
for

:::
the

::::::::::::
reconstruction

::
of

:::::::
multiple

::::::
climate

:::::::::
parameters

::::
and

:::
for

:::
the

:::::::::::
predictability

::
of

::::::::::::
reconstruction

::::
skill.

The principle of uniformitarianism
:::
One

::::::::::
assumption underpinning transfer-function climate reconstructions assumes

:
is
:
that

environmental variables other than those considered in the calibration are not important, or that their relationship with the25

reconstructed variable(s) is the same in the past as in the modern spatial calibration dataset. In our model world, we have clearly

shown that this assumption
:::::::
assumed

:::::::::
correlative

::::::::::::::::
uniformitarianism is violated, as the modern spatial relationship between

climate variables, such as winter and summer temperatures,
:

and the past temporal relationship often differs. Translating this

to real world reconstructions would imply that large-scale reconstructions of multiple climate variables need to be carefully

considered, as reconstructions of climate variables which are not primarily influencing vegetation can be biased. It would also30

imply that the driving climate variables cannot be reliably determined by only analyzing the modern spatial climate-vegetation

20



relationship. Therefore, climate variables which actually drove vegetation variability in the past are likely better identified

using expert knowledge on ecology, and with statistical analyses involving the fossil vegetation record.

Appendix A: Acronyms

PFT Plant functional type

teT PFT: tropical evergreen trees5

tdT PFT: tropical deciduous trees

eteT PFT: extratropical evergreen trees

etdT PFT: extratropical deciduous trees

rS PFT: raingreen shrubs

cS PFT: cold shrubs10

C3 PFT: C3 grass

C4 PFT: C4 grass

bS
:::::::
surrogate

:::::
PFT:

::::
bare

:::
soil

BMA Best modern analog method (in literature also: Modern Analog approach)

WA Weighted averaging15

RDA Redundancy analysis

CCA Canonical correspondence analysis

RMSE(P) Root mean square error (of prediction)

MAT Mean annual temperature

MTWA Mean temperature warmest month20

MTCO Mean temperature coldest month

PANN Mean annual precipitation

MPCO Mean precipitation coldest month

MPWA Mean precipitation warmest month

21



Appendix B: Used software

All analyses were carried out in the open source environment R, version 3.2.2. Reconstructions were performed using the

rioja package (v. 0.9-5), paleosig (v. 1.1-3) and the vegan library (v. 2.3-0). The code is available on request.
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Figure 9. Simulated (red) and BMA-reconstructed (black) extratropical mean temperature changes over the 6k-run (BMA). The amplitude of

the summer temperature trends (a) agree well, whereas the amplitude for the simulated mean annual temperature change (b) is overestimated

in the reconstructions.
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