
Reviewer Responses and Manuscript Revisions 

Below are the authors’ responses to the reviewers.  We’ve included our specific manuscript 

revisions as blue bullet points below the responses.  The bullet point page and line 

distinctions refer to the marked-up version of the manuscript, which is also found below.    

 

Reviewer #1 Response 

I find that this article does not belong to the journal of Climate of the Past. Thus, I 

reject the publication. However, I find the idea novel and interesting and I would 

suggest to submit a revised version to a more theoretical journal. 

Here is why it doesn’t belong to Climate of the Past: The idea of using LIM as a 

substitute for otherwise expensive online data assimilation sounds wonderful, and 

would prove to be it if one didn’t need to introduce a parameter a. But as authors 

showed with a being equal to 1, the results of linear online DA are worse than of 

offline DA. Then the question I pose to authors is how to choose an optimal a? What 

would be the criteria for optimal a? 

 

We thank the referee for commenting on this paper. On this first point, we disagree with the 

assessment that this paper does not belong in the journal of Climate of the Past (CP), and 

our reply to that can be found below.  On the need for a tuning parameter (such as a) in the 

usage of ensemble data assimilation methods, it is common due to the affect such 

parameters have on ensemble variance. As in Hamill and Snyder (2001), we present results 

for a range of the blending coefficient (a), but show that there is a general range of blending 

that gives improved validation metrics compared to the offline case.  We do not give an 

absolute determination of an optimal (a) because, as we show in the paper, the choice of 

metric for determining the best value for (a) is subjective.  The use of correlation, the 

coefficient of efficiency, and the continuous ranked probability score (CRPS) target different 

aspects of comparison between the reconstructed and reference data (though CE and 

CRPS are very similar).  The details of the differences in different skill metrics are described 

in Section 3.1.  Altogether, the determination of which metric is best depends on what the 

end user prioritizes.   

• To clarify the goals of this study, we revised the final paragraph in section 3 to reflect 

that we are searching for reconstruction improvements and how we go about judging 

those improvements. (pp 6, lines 18-19) 

 

 

There is yet another manifestation of more theoretical work to be done, mainly in 

Sec. 4.2, where authors find inconsistency between the best model 20CR in terms of 

a scalar skill (CE, r, and CRPS) but worse in terms of spatial reconstruction. They 



propose that it could be due to a short time scale but this could be checked. And 

again, does this mean that α = 0.9 is not optimal for 20CR?  

 

We agree that this result can be more thoroughly discussed.  The 20CR dataset is a 

reanalysis performed using surface pressure observations from 1850 to present (Compo et 

al. 2011).  The observational coverage of the southern oceans, especially during the early 

portion of the record is very low (see Fig. 3 in Woodruff et al. 2010).  This is a large region 

of high variability due to the southern hemisphere storm track.  As Fig. 7 in our paper 

shows, the primary mode of spatial variability in the annually averaged 20CR dataset is 

quite different in character from the other 3 datasets used.  The pattern of variability is 

focused on regions in the southern oceans, which is where we see a lot of the CE skill 

degradation. This coupled with the knowledge that it is a region of high variability with few 

observations leads us to speculate that the features of the 20CR LIM may be influenced by 

artifacts of the 20CR dataset.  Another instrumental reanalysis product spanning 1900 – 

2012 (ERA-20C; Poli et al. 2016) has a similar first EOF and forecast mode to the 20CR.  

The discrepancy between the GMT and spatial performance for the 20CR experiment was 

surprising, but similar results were found in idealized pseudo-proxy experiments (Annan & 

Hargreaves 2012, Wang et al., 2014).  These studies show that spatial averaging can boost 

the signal-to-noise ratio for large-scale indices resulting in higher index skill despite poor 

spatial reconstruction performance.   Here we have a situation that is slightly different.  The 

spatial results for the offline case are decent, but the degradation of spatial skill by the 

20CR LIM reconstruction enhances the skill in the GMT signal.  We interpret this as the 

spatial degradation having a moderating effect on an aspect of the global signal that is 

overestimated in the offline case such as the interannual variance or the warming trend.  

We can provide a breakdown of this idea with plots of calculated spatial trends and 

interannual GMT variance over time.    

• We have altered Section 4.2, paragraph 2-3 (pp 11-12) to reflect this information. 

 

Again, (a=0.9) is the optimal blending when considering CE skill of GMT.  Changing the 

blending parameter will not change the behavior of the forecasts, only how much 

information is used from the forecast.  If a user was inclined to use the 20CR LIM for a 

reconstruction, they could optimize between spatial skill and GMT skill, but the use of 20CR 

LIM forecast information will only reduce spatial skill.  From what we show in the paper, 

there are better options than the 20CR LIM to use for spatial reconstruction performance.   

 

Therefore, what I suggest is to study the methodology in a theoretical framework by 

revising the article and submitting it to a theoretical journal. 

 

Regarding the larger question of relevance to this journal, we believe that there exists well-

established precedent for studies like the current one.  The field of paleoclimate data 

assimilation (PDA) has had a number of recent theoretical advances, many of which were 

published in Climate of the Past (CP).  For example, Crespin et al. (2009) extend the 



ensemble selection DA method to perform online forecasts with an intermediate complexity 

climate model.  However, they make no comparison with its offline predecessor.  Bhend et 

al. (2012) use an idealized pseudo-proxy experiment to test an offline ensemble square root 

filter approach.  In this work, they use a parameter known as covariance localization to 

prevent the collapse of ensemble variance, and they also discuss the extension to a 

coupled model forecast online method as the next step.  Annan and Hargreaves (2012) 

performs an idealized pseudo-proxy experiment with an ensemble selection method to test 

different geographic densities of proxy observations.  They also try a persistence forecast 

method as an online case, but find no benefits to the reconstruction from the persistence 

forecast in all cases.  Matsikaris et al. (2015) perform a direct comparison between online 

and offline methods using the ensemble selection method with a 10-member ensemble 

forecast from a coupled GCM.  They also find no discernible benefits to using the online 

method compared to the offline experiment.  They follow up with a study (Matsikaris et al., 

2016) further investigating why the online forecast method does not show improvements to 

their reconstruction targets.  Thus it is clear that there are numerous papers in CP similar to 

ours; this is why we submitted the paper to CP. We have presented the only study to our 

knowledge that shows a viable online PDA method that can be used for long timescales 

with large ensembles while also documenting improvements over the offline alternative.  

Additionally, we document the performance of the method using real proxy data in real 

reconstructions.  We plan to provide code and sample data along with the revised 

manuscript.  The connection to previous CP literature and our novel results make this study 

both timely and relevant for this journal. 

 

Other major comments: 

LIM is calibrated on model 1 (CCSM4) without any data assimilation over a period 850-1850, on model 

2 (MPI) without any data assimilation over a period 850-1850, on model 3 with data assimilation 

(20CR) over a different period 1850-2012, and on a data set over yet a different time period (1950-

2010 I would assume, though it is not mentioned in the paper). Thus, the models are completely 

different in terms of the time period, use or not of the data, and only being the data. This makes it 

hard to compare and draw conclusions. Instead LIM should be calibrated on a model without DA, on 

the same model with DA, and on observations used in that DA. 

 

That would be a nice framework for a future study, but it is clearly well beyond the scope of 

this paper. In any case, our method has sampled widely different sources for variability on 

which to calibrate the LIMs. During the instrumental period the separation between forced 

and natural variability is unclear.  However, the last millennium simulations are a good 

substitute for a measure of long-term natural variability under weaker forcing regimes.  As 

far as the use or not of observations in the calibration data, we will note that for climate 

models there are no common systems that provide data assimilation for simulations like 

this.  That means a comparison like the one suggested would have to be done using 

systems oriented for reanalysis, which are very different from climate models.  Our results 

show that reanalysis products may have inherent properties making them less useful for our 



application.  Additionally, the observations used for assimilation during the instrumental 

period are not necessarily something that we can use as a LIM forecast model in 

reconstruction.  For example, the 20CR assimilates pressure observations.  Other 

reanalysis products use a suite of different measurements including satellite radiances and 

upper air measurements.  These are not easily useable gridded products and are outside 

the scope of variables we would use in paleoclimate applications. As we said, these are 

topics that can be explored in future research.  

• We changed the text to explicitly define that the BE dataset covers the years 1960-

2014. (pp 6, line 1) 

 

As the prior authors used results of the CCSM4 model, the same model they used for LIM calibration. 

It appears that linear CCSM4 DA provides good results in terms of both scalar skills and spatial 

reconstruction. Is it because there is less inconsistency? How would it change if the prior was from 

another model? 

We did check results using the MPI last millennium simulation as our prior and the NOAA 

merged land-ocean surface temperature analysis (MLOST) as the calibration data for the 

proxy observation models.  The CCSM4 LIM still outperformed the MPI LIM by a similar 

margin in the spatial results (the CCSM4 spatial average CE was +.02 above the MPI 

case).  The GMT skill results show the two models again at a virtual tie.  This suggests that 

the CCSM4 LIM provides forecasts that generate results more consistent with the 

GISTEMP reference we use for validation.  

 

In order to provide a fair comparison authors need to include “expensive” online DA (using a 

nonlinear model instead of LIM). 

As stated in our introduction, the current computational costs of performing coupled model 

forecasts in large ensembles over long time periods make this suggestion impractical. 

Moreover, other studies have explored this possibility (with smaller ensembles forecasting 

on decadal timescales) and shown no benefit over offline DA. This aspect and the 

knowledge that a LIM can be comparable in forecast skill to the coupled models (Newman 

2013) is why we chose to try a LIM for online paleoclimate data assimilation.  We believe 

this is a fair baseline comparison showing the potential of an online method compared to an 

offline method.  Despite the simplicity of this approach, we show improvements in 

reconstruction skill over the offline method, which is the first to our knowledge for any online 

technique. “Expensive” online PDA options likely won’t be feasible with ensembles of the 

size we use here anytime soon. 

 

Minor Comments: 

 

Page 7, Line 18: Why is there a shift in blending coefficient? This is again related to my comment on 

how to choose an optimal a. 

 There is a shift in blending coefficient between CE and CRPS because they are different 

skill metrics.  CE is calculated based on mean squared error properties, while CRPS is 



calculated on accumulated mean absolute error.  Though they are both sensitive to bias, 

phase, trend, and amplitude differences, there are no guarantees that they will give the 

same results.  This is especially apparent for detrended GMT skill of the persistence case 

when (a=1.0). 

• To help illustrate the difference between the CE and CRPS, we’ve included a figure 

in the supplementary information (Fig. S1) comparing the detrended GMT scores for 

the persistence (a=1.0) and MPI (a=0.95) cases. 

 

Page 7, Line 31: Why is there improvement compared to offline DA even though the trend is largely 

underestimated for α = 0.95? 

There is improvement because the trend is not the only consideration of the CRPS/CE skill 

metrics.  Other aspects (phase and amplitude) can still be improving while the trend 

difference is not large enough to decrease the skill measure.   

 

It would be interesting to introduce another metric – bias – in order to check whether the model 

either underestimates or overestimates the observed values. 

The CE metric can be separated to show skill related specifically to bias.  We will consider 

expanding the GMT and spatial breakdown of CE skill between bias and other aspects of 

the reconstruction. 

• We included some discussion of bias, amplitude, and trend controls related to GMT 

skill in section 4.1, paragraph 1 (pp 8), and a more specific discussion related 

changes to the GMT skill in the 20CR LIM reconstruction (pp 11, lines 23-33). 

 

I suggest plotting time series of averaged temperature of different models against 

observations for best a for CE, for best a for r, and for best a for CRPS. 

 

We agree that we should include a figure of the actual reconstructed GMT for selected 

reconstructions.  Thank you for this suggestion. 

• We included a plot of reconstructed GMT against GISTEMP (Fig. 2) for each 

experiment using the best a for CE (considering a > 0) 

 

Reviewer #2 Responses 

We thank reviewer #2 for thorough and helpful comments on the manuscript. 

General Comments: 

The presentation of the work in the paper feels incomplete in several ways. The 

figures show comparisons of metrics of skill, and comparisons of estimated climate 

fields to a benchmark estimate, but no visualization of the reconstructions 

themselves, or comparisons to the actual target (the GISTEMP field and/or GMT time 

series) 



We agree that the paper can be improved by the inclusion of figures detailing reconstructed 

data against the target data of, for example, GISTEMP.  We will use the specific questions 

posed by you and the other reviewer to guide an expansion of the discussion/interpretation 

for these results.   

• We have included the requested figures (GMT comparison (Fig. 2), skill uncertainties 

(Fig. 3), and non-differenced measures of skill against GISTEMP (Fig S2 and S3)).  

We also expanded our discussion of GMT skill (pp. 8, lines 3-7), the North 

Atlantic/Barents Sea skill changes (pp 10-11, lines 31-3), and the 20CR spatial and 

GMT skill behavior (pp 11-12, section 4.2, paragraphs 2-3). 

The authors have also neglected to describe of tabulate the computational expense 

associated with their reconstruction exercises. In addition, I wonder if they plan to 

make code for carrying out any of the reconstructions publicly available 

On our desktop workstation (4-core CPU @ 3.4 GHz), the time required for a single iteration 

for a 151-year reconstruction with 100 ensemble members and using 110 proxies is 

between 1.5 – 2 minutes.  Thus, a full experiment (100 iterations for each of the 12 blending 

coefficients), 1200 100-member reconstructions per experiment, takes around 40 hours.  

However, the iterations themselves can be run in parallel on different nodes of a computing 

cluster.  In comparison, the offline method (no forecasting) takes about 1 minute to 

complete a single iteration.  Therefore, the addition of the LIM approximately doubles the 

computational expense in the worst case, but the total wall-clock time is still quite 

manageable for large experiments.  We have not taken steps to fully optimize the code so 

there are likely ways to lower the overall computational expense.  We plan to archive the 

version of the code that was used in these experiments, but also plan for a public version of 

the code hosted on a platform such as Github.  This repository and documentation will be 

coordinated with other Last Millennium Reanalysis projects. 

• This information has been placed in supplementary information (Section S1). 

Specific Comments: 

The authors would like to note that any suggestion not directly addressed was taken into 

account when revising the text.   

Title: 

• On the reviewer’s suggestion, we’ve altered the title to: “Reconstructing paleoclimate 

fields using online data assimilation with a linear inverse model” 

Abstract: 

LIMs have been shown to have comparable skill to CGCMs in what sense? 

LIMs have been shown to have comparable skill to CGCMs for forecasting surface 

temperature anomalies.  We will be more specific in the text. 

• Revised (pp 1, lines 5-6) 



The last sentence may need to be revised or made more specific, to address the 

meaning of the “dynamical evolution” to which the authors attribute improvements in 

skill. When I think of “dynamics,” I think of the description of the underlying physical 

mechanisms driving changes in time, where the term is used in contrast to a 

“statistical” description. The LIM is purely statistical though, so I think the authors 

mean the term in the sense of using the model forecast as a prior for each 

subsequent timestep. 

By “dynamical evolution”, we imply that the LIM has encoded linear dynamical properties of 

the system that it is calibrated on.  Using a LIM to forecast the next prior imparts those 

linear dynamical constraints on the forecast field.  We will clarify this distinction in the text. 

• Revised (pp 1, line 17) 

 

Introduction: 

It seems the physical consistency issue due to use of EOFs is also a limitation of the 

method presented in this paper though, right? Seems a bit disingenuous to list this 

here as if it’s a limitation the present approach will address 

We understand the reviewer’s point, but EOFs are simply used here as a basis-reduction 

method, which is standard practice in the LIM literature. We make no claims that the EOFs 

have a physical basis in isolation (although others would make that claim). Whether the 

model basis is grid points, spherical harmonics, or EOFs, the goal of representing the 

dynamics remains the same. EOFs happen to be a compact space that, in total, captures 

more variance than other approaches with similar degrees of freedom. 

• We changed section 2.1, paragraph 2 (pp 4) to highlight that the EOFs are used as a 

basis, and to re-state the limits from this choice. 

The authors might expand upon what they mean by “dynamical” at the first use of 

the word here, to make the precise nature of their contribution more immediately 

accessible to a wider audience. 

We will define more clearly what we mean by “dynamics” in the context of the 

reconstruction. 

• Added clarification (pp 2-3, lines 36-1) 

How many modes are retained in this study? (This detail is sufficiently important to 

be moved from the appendix to the main paper). What’s the justification for the 

choice based on e-folding times of a year or greater? Are results sensitive to number 

of retained modes? 

We retain 8 EOFs for use in the LIM and will move this detail into the main text.  In the 

appendix, we say that number of modes covers those with e-folding times (EFT) of 1-year 

or greater meaning that we picked a number of modes that encompasses those EFTs, not 

necessarily restricts the EFTs to 1-year or greater.  For example, the CCSM4 LIM has four 



forecast modes with EFTs above 1-year and three modes around 1-year (EFT of 0.7 and 

0.85 years respectively).  Other LIMs have similar distributions of EFTs. We keep these 

modes because EFTs much lower than 1-year will not have a large impact when we are 

forecasting on annual time scales.  It is worth noting that Newman (2013) keeps 11 EOFs 

for SSTs and 6 EOFs for land temperatures since he is using separate observational 

datasets, but he also states that his results are insensitive to the exact number of EOFs he 

retains.  He also finds that most of the LIM skill on 2-9 year time scale can be reproduced 

with the first three forecast modes.  This gives us confidence that retaining 8 EOFs for all 

our LIMs is a reasonable choice.  We realize the statement in the text on the EOFs can be 

misleading and will amend it to state the reasoning behind our retained modes more clearly. 

• Added the number of modes retained to Section 2.1 (pp 4, lines 16-17) and clarified 

our reasoning for this choice in Appendix B, list-item 4 (pp 16, lines 7-10) 

Data and experimental configuration: 

“For the prior, we used . . .. the CCSM4 last-millennium simulation”: Do the authors 

mean this is the model used for the climatological prior used for the blending used to 

prevent the collapse of the ensemble as described at the end of the previous 

section? If so: I would expect the EOFs of the prior and the CCSM4-based LIM to be 

the same, but different for the other CGCM-based LIMs, thereby perhaps giving the 

CCSM4-based LIM an advantage, or at least somehow controlling the divergence of 

that ensemble differently than for the three other CGCM-based LIMs? 

Yes, we mean that the CCSM4 simulation is used as the static prior.  We also considered 

that the CCSM4 LIM had a slight edge because of the usage of CCSM4 as a prior, but we 

do not believe this to be the case based on further investigation.  We performed the same 

LIM experiments using the MPI last millennium simulation as a prior and the NOAA Merged 

Land-Ocean Surface Temperature analysis (MLOST) to calibrate the proxy observation 

models.  The GMT skill between the CCSM4 and MPI-prior experiments is basically the 

same, but the spatial results show the CCSM4 LIM outperforms the MPI LIM experiment in 

both cases (the CCSM4 spatial average CE was +0.02 above the MPI case when using the 

MPI prior).  

• Added emphasis that the prior choice is referring to the static ensemble used for 

blending (pp 6, lines 6-7) 

The linear observation models for proxy data” should be described in enough detail 

to enable reproducibility. Are the proxy data simply linear in temperature of the 

gridcell containing each proxy location? Or a collection of gridcells representing the 

regional signal of each record referred to in the next sentence? 

The observation models we use are the same as discussed in Hakim et al. (2016).  The 

model is formed by a linear regression against the time series from the nearest grid point in 

the calibration dataset. 

• Added a description of the observation models (pp 6, lines 8-9) 



Also, is there any particular justification for the choice of the GISTEMP product for 

calibrating the proxy models? 

The choice of GISTEMP as the calibration data was an arbitrary choice.  The observational 

dataset used to calibrate the proxy models will influence the reconstruction, but this 

sensitivity is outside the scope of the current study and is discussed in Hakim et al. (2016) 

(see section 4).  

Finally, it’s interesting the authors use several proxy types with known differences in 

their spectral signatures. Is there any difference in the construction of linear 

observation models for the lower versus higher frequency proxies?  

All proxies we use have observations provided at annual resolutions.  There is no difference 

in how we calibrate between them here.  This is a current topic of research given that we 

know that some proxies provide mostly seasonal information (e.g. growing season for tree 

ring widths/densities). 

Optimal in what sense? What is the criterion used to determine the optimum? 

We use optimal in the sense that it can provide some improvements over the offline method 

in our experiments, but we see now how this is a vague usage.  In our results, we use the 

GMT CE skill as the measure to define optimal.  We then investigate the spatial results for 

the blending coefficient that achieved the best CE in all experiments except for the 

persistence forecast experiment.  The persistence forecast did not have a blending 

coefficient showing an improvement over the offline case, so we used the best performing 

blending coefficient for the detrended GMT CE.  

• To clarify the goals of this study, we revised the final paragraph in section 3 to reflect 

that we are searching for reconstruction improvements and how we go about judging 

those improvements. (pp 6, lines 18-19) 

 

Results and Discussion: 

be more specific than writing the CRPS and CE results are “generally consistent.” Do 

you mean the rank of models is the same as measured by both statistics? Line 18-20: 

Similar to preceding comment: it’s imprecise to say there are “slight differences in 

results. . . when comparing CE and CRPS.” These are two different metrics that 

measure different things in the first place. I wonder again if the authors mean to 

make a statement comparing the rank of models as measured by the two different 

metrics? 

Yes, by generally consistent we mean that the rank of the experiments is the same, and the 

behavior of the two metrics across different blending coefficients is similar.  We realize that 

the CRPS and CE are different metrics and should not be expected to be exactly the same. 

We simply want to bring attention to the fact that CE and CRPS are largely giving us the 

same information for the full GMT results.  However, we also show with the detrended GMT 

how the CRPS can give a very different result from CE (persistence experiment for a=1.0) 



where it could be very misleading to a user who cares about interannual variability.  We will 

alter this section to make the language more precise. 

• We altered the discussion of the CRPS metrics to clarify the comparison with CE (pp 

8, lines 13-19), and added a figure to the supplement (Fig. S1) to show the 

divergence in skill for the detrended GMT of the persistence experiment (a=1.0). 

In all figures, the authors show central estimates across ensembles, but no measures 

of uncertainty. Once it has been established in the results that the skill varies with 

the blending coefficient, it might be interesting to show some analysis of estimates 

and uncertainty across ensemble members for fixed “a” (probably at the value that 

optimizes one metric or another). 

We have done some uncertainty quantification, and can indeed include an expansion of this 

information in the main text or additionally in the supplementary information. 

• We included Fig. 3, which shows bootstrap uncertainty estimates for the CE, 

correlation, and GMT trend from the best performing blending coefficient (as 

measured by full GMT CE) for each experiment.   

I would speculate that this underestimation of trend in combination with skillful 

match of phase and amplitude of GMT variability might be interpreted in terms of the 

paleoclimate proxies as high-frequency bandpasses of the climate signal, that do not 

tend to preserve the low-frequency signal. This is a well-known feature of many 

dendrochronologies, for example, although there do exist “standardization” 

methodologies to prepare tree ring time series to preserve the low-frequency signal. 

It would be interesting to know whether the proxy time series used in this study have 

been prepared using methods aiming to preserve low frequency climate variability 

We used proxy records contained in the PAGES 2k Consortium (2013) database with no 

additional processing.  The proxies in this database were selected as being representative 

of annual or warm season temperature variability.   We do not believe it is the proxy data 

controlling the variation in reconstructed trends.  Instead, we think the trend changes are 

related to the LIM forecasts and blending.  This is because the same proxies are used in 

each experiment, and from these same proxy records we find varying trend estimates 

(including overestimates) that provide better skill than the offline case.  The aspect 

controlling the trends is the relative weighting between the prior and proxy information, 

which is determined by the variance (uncertainty) of the two sources.  The uncertainty of the 

proxies is fixed, so that means the weighting is being affected by the LIM forecast and the 

amount of blending between the static and forecast states. We discuss this on page 8 lines 

4-12. 

Subsection 4.1 is missing figures and reporting of the estimated GMT time series 

compared to the target GMT time series. Pp. 9, line 21– seems odd not to show some 

spatial measures of skill against the target, rather than just against the offline case. 

Thank you for this suggestion, we will include figures of the actual temperature 

reconstructions and spatial measures against the GISTEMP target. 



• We added a GMT comparison between the reconstruction experiments and 

GISTEMP (Fig. 2) to the main text, and added the spatial correlation difference maps 

(Fig. S4) as well as the non-differenced spatial CE and correlation maps (Figs. S2 

and S3) to the supplementary information. 

Is there climatic significance to this North Atlantic/Barents Sea area that might 

explain why the LIM forecast- based reconstructions seem to improve skill there 

compared to the offline case? Or can the authors speculate as to why this region has 

low skill in the offline case to begin with to explain the near uniform improvements 

there under forecasting? 

The North Atlantic/Barents Sea region is a region near the sea ice edge that seems to be 

poorly constrained by proxy data alone.  We inspected a grid point northeast of Iceland 

where there are negative CE values to assess the causes of the improvement.  We found 

that the temperature variance of the offline experiment is an order of magnitude larger than 

the variance in GISTEMP at this location.  The CCSM4 LIM reconstruction had 

approximately 30% as much variance in this location as in the offline case.  There was not a 

significant change in correlation or trend between the offline and LIM experiment, so the 

change in temperature variance is the primary factor in CE improvement.  As far as why we 

might expect a LIM to help here, a modeling study used a LIM to assess the predictability of 

the HadCM3 coupled climate model in the North Atlantic (Hawkins and Sutton, 2009), 

suggesting that there is decent predictability in the North Atlantic/Barents Sea region with 

annual lead time (see Fig. 6 in their paper).  The Newman (2013) study also shows 

predictability for this region when using their detrended LIM for 2-5 and 6-9 year lead times. 

Additionally, a preliminary LIM predictability analysis we performed shows some positive 

anomaly correlation skill for this region in all the LIMs we test in this study.   

• We included this as an expanded discussion point in section 4.2, paragraph 1 (pp. 

10-11, lines 31-3) 

“There is a clear distinction between LIMs calibrated on data from the shorter 

instrumental era, and the millennium-scale climate simulation data”– This is an 

interesting point. Remind readers explicitly at this point which are which, so that 

readers can easily reference what you’re talking about in the figures. Also, can you 

describe the distinction you mean clearly and precisely? Looks to me like the 

millennial-scale ones have fewer regions of large-amplitude degradation in CE 

relative to the offline case. 

We will rework the sentence after this (pp. 10, line 4-5) to make this point clearer. 

• Revised with clarification (pp. 11, lines 15-18) 
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Abstract. We examine the skill of a new approach to climate field reconstructions (CFRs) using an online paleoclimate data

assimilation (PDA) method. Several recent studies have foregone climate model forecasts during assimilation due to the com-

putational expense of running coupled global climate models (CGCMs), and the relatively low skill of these forecasts on

longer timescales. Here we greatly diminish the computational cost by employing an empirical forecast model (linear inverse

model; LIM), which has been shown to have comparable skill to CGCMs
:::
for

:::::::::
forecasting

:::::::::::::::
annual-to-decadal

::::::
surface

::::::::::
temperature5

::::::::
anomalies. We reconstruct annual-average 2m air temperature over the instrumental period (1850 - 2000) using proxy records

from the Pages 2k Consortium phase 1 database; proxy system models for estimating proxy observations are calibrated on

GISTEMP surface temperature analyses. We compare results for LIMs calibrated on observational (Berkeley Earth), reanaly-

sis (20th Century Reanalysis), and CMIP5 climate model (CCSM4 and MPI) data relative to a control offline reconstruction

method. Generally, we find that the usage of LIM forecasts for online PDA increases reconstruction agreement with the instru-10

mental record for both spatial fields and global mean temperature (GMT). Specifically, the coefficient of efficiency (CE) skill

metric for detrended GMT increases by an average of 57% over the offline benchmark. LIM experiments display a common

pattern of skill improvement in the spatial fields over northern hemisphere land areas and in the high-latitude North Atlantic –

Barents Sea corridor. Experiments for non-CGCM-calibrated LIMs reveal region-specific reductions in spatial skill compared

to the offline control, likely due to aspects of the LIM calibration process. Overall, the CGCM-calibrated LIMs have the best15

performance when considering both spatial fields and GMT. A comparison with the persistence forecast experiment suggests

that improvements are associated with the dynamical evolution
::::
linear

:::::::::
dynamical

::::::::::
constraints

::
of

:::
the

:::::::
forecast, and not simply

persistence of temperature anomalies.

1 Introduction

Climate field reconstructions (CFRs) aim to provide essential information on climate variability beyond the instrumental record.20

These experiments take noisy and sparse proxies (e.g. tree rings, ice cores, isotope ratio measurements, etc.) and use them to

infer a spatial estimate of relevant climate variables. A common approach to CFR uses a statistical regression model calibrated

on the instrumental record to project as far into the past as data will allow (e.g. Mann et al., 1998, 2009; Smerdon et al., 2011b,

see Smerdon et al., 2011a for a discussion and comparison of methods). This technique provides
::::
These

::::::::::
techniques

::::::
provide

:
a

useful estimate of past spatial patterns (Wahl and Smerdon, 2012), but it also has
:::
also

::::
have

:
inherent limitations. For example,25
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regression-based CFRs assume climate state to be a function of the proxy data, which can lead to an underestimation of past

climate anomaly amplitudes (Smerdon et al., 2011b; Wahl and Smerdon, 2012). Furthermore, because regression methods

produce past spatial fields through combinations of primary variability modes (i.e. empirical orthogonal functions; EOFs), the

resulting field is not guaranteed to be a physically consistent solution.

An alternate method of performing CFRs known as paleoclimate data assimilation (PDA) can circumvent some of the lim-5

itations inherent to regression-based methods. PDA broadly characterizes a set of techniques where observational information

from proxy data can be optimally
:
is
:
combined with dynamical information from climate models. Recently, the ensemble

Kalman filter (EnKF) was adapted for use with time-averaged observations like those used in CFRs (Dirren and Hakim, 2005;

Huntley and Hakim, 2010). Studies using the EnKF method and idealized psuedoproxy experiments have shown that it oper-

ates well under sparse data availability (Bhend et al., 2012), and outperforms modern statistical CFR methods (Steiger et al.,10

2014). More recently, EnKF PDA was tested with real proxy data in the Last Millennium Reanalysis project (LMR; Hakim

et al., 2016), and shows promising skill in reconstructing robust spatial fields in a computationally efficient manner. Due to the

expense of performing coupled global climate model (CGCM) simulations and relatively low forecast skill, the initial EnKF

adaptation for PDA
::::
does

:::
not

:::
use

:
a
:::::::
forecast

::::
and

::::::
instead reconstructs each time period independently using climatological data.

This is known as an “offline” approach. The EnKF method is traditionally accompanied by forward model forecasts to translate15

information between analysis time periods (e.g. reanalysis products of the instrumental era). Dynamical constraints from these

forecasts can increase physical consistency and reconstruction skill given that the model has sufficient predictability on proxy

timescales (e.g. Pendergrass et al., 2012). For CFR applications, predictability on seasonal and longer timescales is required.

Ocean memory can be leveraged for inerannual (e.g. El Niño Southern Oscillation; ENSO) to potentially decadal predictability

(Branstator et al., 2012). However, at this timescale coupled climate models only seem to capture linearly predictable dynamics20

(Newman, 2013).

Online assimilation has been attempted using other PDA techniques. Crespin et al. (2009) used forecasts from an earth

system model of intermediate complexity (EMIC) in conjunction with the ensemble selection PDA method (see Goosse et al.,

2006, 2010) to reconstruct surface temperatures, but did not investigate a comparison with an offline method. Annan and Har-

greaves (2012) performed a psuedoproxy experiment using a weighted ensemble selection method and a persistence forecast25

to reconstruct surface temperatures, but found no benefit compared to their offline experiments. Matsikaris et al. (2015) took a

similar approach to Crespin et al. (2009), but used an ensemble of decadal forecasts from a coarse resolution CGCM instead of

an EMIC. The authors found that the use of CGCM forecasts had skill, but it was not discernibly superior to the offline method.

Possible reasons for the lack of improvement include low skill for regional decadal forecasts of temperature, and issues related

to ocean initialization for each decadal interval.30

These results suggest that neither the simple persistence forecast, nor a small ensemble of decadal CGCM forecasts add

valuable
:::::::::
significant

:
information to CFRs. In order to test the viability of a more traditional EnKF method we require the

ability to perform annual forecasts for longer time spans (the past millennium) and in large ensembles (~100 members). These

requirements rule out the use of a CGCM. Instead, we explore a simple, empirically-based forecast from a linear inverse model

(LIM; Penland and Sardeshmukh, 1995).
:
A

::::
LIM

:::::::
encodes

:::
the

:::::
linear

:::::::::
dynamical

:::::::::
properties

::
of

::
a

::::::
system

:::
and

::::::::
produces

::::::::
forecasts35
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:::
that

:::
are

::::::
subject

::
to
::::

the
:::::::::
constraints

::
of

:::
its

::::::
derived

:::::
linear

:::::::
modes. The forecast skill of LIMs is such that they are currently used

for operational ENSO forecasts (Newman et al., 2009). Moreover, recent studies found
:::::
show LIM skill to be comparable to

the skill
:::
that

:
of CGCMs when performing annual-to-decadal hindcast experiments over the instrumental era (Newman, 2013;

Huddart et al., 2016).

In this work
::::
Here, we propose a computationally efficient “online” data assimilation approach for use in paleoclimate field5

reconstructions. The primary goal is to investigate whether the addition of dynamical constraints with a forecast
:
in

:::
the

::::::
online

:::
case

:
can increase reconstruction skill relative to the offline EnKF method,

::::::
which

:::
has

:::
no

:::::::::
forecasting. We perform a series of

reconstruction experiments using annual forecasts from a cost-efficient LIM. Global average and spatial results of the online

reconstructions
::::::::::::
reconstructions

::::
from

:::
the

::::::
online

::::::::::
experiments

:
are compared to

:::::
results

::::
from

:
both a persistence forecast method

and the offline method of Hakim et al. (2016). In Sect.
::::::
Section 2 we discuss the basics of the EnKF method and define the use10

of LIM forecasts in reconstruction experiments. Section 3 details the datasets used and the general experimental configuration.

Section 4 discusses and compares results between the online and offline reconstructions, followed by conclusions in Sect.

::::::
Section 5.

2 Online PDA

The Last Millennium Reanalysis (LMR) framework (Hakim et al., 2016) provides a setting to run many computationally15

efficient realizations of an offline climate reconstruction. Here we begin with it as the basis for our implementation and inves-

tigation of online PDA. Central to the LMR framework is the use of the ensemble Kalman filter (EnKF; Kalnay, 2003),
::::::
which

:::::::
assumes

:::::::
gaussian

:::::::::
distributed

:::::
errors. The EnKF update equation (Eq. 1) describes the calculation of a posterior (analysis) state

vector xa through the optimal update to a prior (background) state vector xb using proxy information,

xa = xb + K[y−H(xb)]. (1)20

The innovation, [y−H(xb)], characterizes new information content as a difference between proxy observations in vector y and

observations estimated from the prior by H(xb) (hereafter denoted as ye). H() is a potentially non-linear operator that maps

the prior state into observation space. The Kalman gain matrix K, defined by Eq. (2), spreads information into the analysis

weighted by prior covariance and the observational error covariance matrix R

K = cov (xb,ye)[cov (ye,ye) + R]−1 (2)25

where cov (a,b) represents a covariance expectation. The LMR framework uses a variant of the EnKF update, known as an

ensemble square root filter (EnSRF; Whitaker and Hamill (2002)). This process updates the ensemble mean and perturbations

from the mean separately allowing for the serial assimilation of proxy data, and simplification of the update calculations.

Typical implementations of the EnKF method include a forward model forecast between analysis times. As stated earlier,

the computational expense and low skill of CGCM forecasts prompted the use of the offline method where each year is30
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reconstructed independently without forecasting. Here, instead of using static prior (xb) at the beginning of each reconstruction

year, the current year’s posterior analysis is forecast forward by one year with a LIM defined by

xf
b = G1xa. (3)

The term G1 is a mapping term calculated from the calibration of a LIM that maps the current state to a forecasted state 1-year

later. Details of the EnKF reconstruction algorithm can be found in Appendix A. The formulation of the LIM used here is5

described in the following section.

2.1 Linear inverse model formulation

The linear inverse model (LIM; e.g. Penland and Sardeshmukh, 1995) used in this study closely follows the implementation

described in Newman (2013). The basic equation describes a linearized dynamical system

dx
dt

= Lx + ξ (4)10

as the tendency of an anomaly state vector x, given by a linear dynamical operator L, which is linearized about a mean state,

plus random white noise, ξ. The dynamical operator L is assumed to be constant in time. After integrating (Eq. 4) in time, the

solution is a mapping of x at time t (in years) to a state at time t + 1

x(t + 1) = G1x(t) +σ(t) (5)

where G1 is equivalent to eL. As in Newman (2013), we choose to empirically estimate G1 rather than L due to sampling15

deficiencies of a few highly damped eigenmodes of L on an annual timescale.
::::
Each

::::
LIM

::
is
::::::::::

constructed
:::::
using

:::
an

::::
EOF

:::::
basis

:::::::
retaining

:::
the

::::::
leading

::
8
::::::
modes

::
of

:::::::::
variability. See Appendix B for a summary of the

:::::
details

:::::::::
associated

::::
with

:::
the

:
G1 calculation.

While the simplicity of a LIM makes it well suited for the current application, it also has issues to be considered. First,

LIM forecasts are performed in EOF space based on patterns
::::
using

:::
an

::::
EOF

:::::
basis derived from the calibration data. As such,

the LIM makes an assumption of stationarity for the EOFs and encoded dynamics over the entire reconstruction time period.20

Furthermore, the process of converting data into EOF space truncates spatial anomaly information and reduces ensemble

variance. The next section discusses how we handle variance reductions when using a LIM in the LMR framework
:::
The

:::::
EOF

::::
basis

::
is

::::
used

::
to

::::::::
maximize

:::
the

:::::::
variance

::::::::
captured

::
by

:::
the

::::::
fewest

::::::
degrees

:::
of

:::::::
freedom.

::::::::
Although

:::
the

::::::::
dominant

::::::
modes

::
of

:::::::::
variability

:::
can

::::::
change

::
in

::::
time

::::::
during

:::
the

::::::::::::
reconstruction

::::::
period,

:::
the

::::::
space

:::::::
spanned

::
by

:::
the

:::::::::
variability

:::::::
cannot.

::::
This

:::::
means

::::
that

:::::::::
variability

:::
that

::::
falls

::::::
outside

:::
the

:::::
span

::
of

:::
the

:::::
EOFs

::::
will

:::
not

::
be

::::::::
resolved.

::
A
::::::
second

:::::
issue

::
is

::::
that

:::
the

:::::
LIMs

::::
tend

::
to

::
be

:::::::
damped

:::::::
(modes

::
of

::
L25

:::::
decay

::
in

:::::
time),

:::::
which

:::::::
reduces

:::
the

::::::::
ensemble

::::::::
variance;

:::
we

:::::::
elaborate

:::
on

:::
this

:::::
issue

::
in

:::
the

::::
next

::::::
section.
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2.2 Ensemble calibration

In any ensemble forecast setting, a basic assumption is made that the sample of ensemble members gives a good approximation

to the statistics of the full system (Murphy, 1988). Sampling error often results in too-small variance, which can cause “filter

divergence” where observational information is underweighted relative to the forecast prior and the ensemble variance collapses

toward zero. The online PDA technique presented here is especially vulnerable to filter divergence because all eigenmodes of5

G1 are damped (negative real eigenvalues). Moreover, the conversion of the analysis (xa) into EOF space at each timestep

removes any spatial information that does not project upon the retained modes of a given LIM. Consequently, LIM forecasts

lose ensemble variance in time.

There are a variety of well-tested methods available to address information loss in the forecast ensemble. Here we use an

adaptation of the hybrid ensemble Kalman filter–3D variational scheme (Hamill and Snyder, 2000) to prevent filter divergence10

and to facilitate comparison with the offline PDA technique. This technique handles the loss of ensemble variance in the

forecast ensemble (xf
b) by blending it with a static source (xs

b), which is the same climatological prior that would be
:
is
:

used

independently for each year in the offline method. As a result, the update equations use a blended prior state x̂f
b (Eq. 6) and a

blended Kalman gain term K̂ (Eq. 7):

x̂f
b = axf

b + (1− a)xs
b (6)15

K̂ =
(a)cov (x̂f

b, ŷf
e) + (1− a)cov (xs

b,ys
e)

(a)cov (ŷf
e, ŷf

e) + (1− a)cov (ys
e,ys

e) + R
. (7)

Appendix A provides details on how this is incorporated into the reconstruction algorithm.

In these hybrid DA equations, the parameter a controls the relative weighting between static and forecast information

sources. When a = 0.0, reconstructions are identical to the offline case wherein the prior x̂f
b is reset to the static prior for

every year with no blending. For the opposite case,
:::::
When

:
a = 1.0, only forecast information is used with no contribution from20

static information.

3 Data and experimental configuration

The relative forecast skill of a LIM is dependent on the data used to empirically derive the mapping term G1. For this reason,

we explore LIMs calibrated on four different data sets. CGCM calibration data are used from two last-millennium climate

simulations in the Coupled Model Intercomparison Project phase 5 (CMIP5; Taylor et al., 2012): the Community Climate25

System Model v4 (CCSM4; Landrum et al., 2013) and the Max Planck Insitute Earth System Model paleo-mode (MPI). These

simulations cover a 1000 year pre-industrial (850–1850 C.E.) time period including volcanic forcing events (aerosols and

greenhouse gases), solar variability, and human-related land cover changes. The 20th Century Reanalysis (20CR; Compo et al.,

2011), a DA synthesis of observations and a weather forecast model, provides over 150 years of reanalysis data spanning the

instrumental record (1850–2012). Finally, we use the Berekely Earth surface temperature dataset (BE; Rohde et al., 2013)30
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as an
::
for

:
observational calibration. BE provides a 60-year sample

::::::
65-year

::::::
sample

:::::::::::
(1960–2014)

:
with nearly complete global

coverage. The different LIM calibration datasets used here span linear modes of predictability derived from model space to

that of observations.

The basic configuration we use for all experiments, including the offline control, involves a choice of data to sample as

the prior
::::
static

:::::
prior

::::::::
ensemble, an instrumental data source to calibrate proxy observation models, and a proxy record dataset.5

For the
::::
static

:
prior, we use annually-averaged 2m air temperature anomalies from the CCSM4 last-millennium simulation.

The linear observation models for proxy data are calibrated against the NASA Goddard Institute for Space Studies surface

temperature analysis dataset (GISTEMP; Hansen et al., 2010)
::
by

::::::
linearly

:::::::::
regressing

:::
the

:::::
proxy

:::::::::
timeseries

::::::
against

:::
the

:::::::
nearest

:::
grid

:::::
point

::
in

::
the

:::::::::
calibration

::::
data

:::::::::::::::::::::::::::::
(for details, see Hakim et al., 2016). All experiments use annually-resolved proxy records from

the PAGES 2k Consortium (2013) database. These proxies have been ascertained to covary regionally with temperature and10

include: tree rings, ice cores, corals, sediment cores, and speleothems. Only proxies with a minimum of 10 years overlapping

with the observation model calibration data, and a minimum calibration-fit correlation of 0.2 are used. It should be noted that

the correlation threshold is not strictly necessary, but Hakim et al. (2016) found that this threshold did not quantitatively affect

the reconstruction results. Here, the reduction in proxies to those with more information helps reduce computational costs,

allowing a larger number of reconstruction experiments.15

We reconstruct annual-mean 2m air temperature anomalies for the period of 1850–2000 C.E. as in Hakim et al. (2016).

Using the four LIM calibrations, we search the parameter space of 0≤ a≤ 1 for an optimal
:
a weighting between static and

forecast information sources in our hybrid PDA framework
:::
that

::::::::
improves

:::
the

::::::::::::
reconstruction

:::::::::
compared

::
to

:::
the

::::::
offline

:::::::
method.

:::
We

:::::
judge

::::::::::::
improvements

::
by

::::::
means

::
of

:::
our

:::::::
chosen

::::
skill

::::::
metrics

::::
(CE,

::::::::::
correlation,

::::
and

::::::
CRPS)

:::
for

::::
both

:::::
GMT

:::
and

::::::
spatial

:::::
fields.

Additionally, we perform a persistence experiment for comparison against LIM-based performance where the posterior for20

year n
:
t
:
is used as the prior for year n + 1

:::
t + 1. The persistence forecast uses the same hybrid PDA blending scheme as the LIM

forecast experiments to mitigate the effects of reductions in ensemble variance from the assimilation process. We account for

the sensitivity to the proxy data used in a CFR through random resampling of available proxy data and the static prior ensemble.

In a single realization
:
A

:::::
single

:::::::::
realization

::::
uses a random sample of 75% of the usable proxy records, and a 100 member sample

of anomaly states from the priorsource, are selected. A total of 100 realizations are performed for each LIM calibration and25

blending coefficient. In order to make the realizations consistent between the experiments using different blending coefficients,

we ensure the same sequences of random samples are taken by seeding the random number generator for each a-value. In total,

this gives 104 reconstructions of the climate state for each experiment. These reconstructions are then averaged to give the final

analysis.
::
See

:::::::
Section

:::
S1

::
in

:::
the

:::::::::::::
supplementary

::::::::::
information

:::
for

:
a
:::::
brief

:::::::::
discussion

::
of

:::
the

::::::::::::
computational

:::::
costs

:::::::::
associated

::::
with

::::
these

:::::::::::
experiments.30

3.1 Skill metrics

The primary skill metrics
:::
used

:
are correlation and the coefficient of efficiency (CE; Eq. 8,9; Nash and Sutcliffe, 1970). Correla-

tion gives an overall sense of signal timing (phase), while CE is a stricter metric that is sensitive to signal timing, amplitude, and

6



bias. Using these metrics, we compare the reconstructed ensemble-mean1 values x against GISTEMP verification
::::::::
validation

values v . The value τ represents the number of verification
::::::::
validation times available (in this case representing the period

:::::::::
GISTEMP

:::::::
timespan

:
of 1880 - 2000), an overbar (e.g. v̄) denotes a temporal average, while σx and σv are the standard devia-

tions of the respective time series. Skill scores are compared for the reconstructed global mean temperature (GMT) and spatial

grid points.5

corr =
1
τ

τ∑
t=1

(xt − x̄)(vt − v̄ )
σxσv

(8)

CE = 1 −
∑τ

t=1(vt − xt )2∑τ
t=1(vt − v̄ )2 (9)

We also use the continuous ranked probability score (CRPS; Gneiting and Raftery, 2007) as a comparison against CE skill

metrics.

CRPS =
τ∑

t=1

 1
K

K∑
i

∣∣∣x (i)
t − vt

∣∣∣− 1
2K 2

K∑
i

K∑
j

∣∣∣x (i)
t − x (j)

t

∣∣∣
 (10)10

The CRPS is considered to be a ‘proper’ scoring technique which prevents manipulations of the data from overestimating the

reconstruction skill; the measure reflects the mean absolute error and narrowness of the ensemble distribution. We use the

CRPS as defined in Tipton et al. (2016) to calculate the CRPS of the reconstructed GMT for each realization (Eq. 10) where

x (i)
t denotes a single member of a K -member ensemble. We take the score as the average CRPS over all realizations and use

a Kolmogorov-Smirnov test on the resulting distribution to determine whether it is significantly different than the offline case15

with 95% confidence.
::
As

:::::::
defined

:::::
here,

:::::
lower

:::::
values

:::
of

:::::
CRPS

:::::::
indicate

:::::
better

:::::::::::
performance

::::
with

::
a

:::::::
limiting

::::
case

::
of

:::::
CRPS

::
=
::
0

::::
being

::
a
::::::
perfect

::::::::
ensemble

::
fit

:::
(no

:::::
error

:::
and

:::
no

::::::::
ensemble

::::::
spread).

:

4 Results and discussion

4.1 Verification
:::::::::
Validation of global mean temperature

Figure 1 displays global mean 2m air temperature (GMT) results verified
:::::::
validated against GISTEMP for all tested values of20

the blending parameter a. Every case except for the persistence forecast method yield
:::::
yields CE values greater than the offline

case. Correlations are higher than the offline benchmark for all experiments, including the persistence forecast. Best skill is

achieved between the a-values of 0.7 to 0.9 with a steep drop in verification
::::::::
validation skill as a approaches unity (a pure

LIM forecast)
:::
due

::
to

::::
filter

::::::::::
divergence

:::
(the

:::::::::
ensemble

:::::::
variance

::::::::
decreases

:::::
with

::::
time,

:::::::::
decreasing

:::
the

:::::::
weight

::
on

:::
the

:::::::
proxies,

:::
so

:::
that

:::
the

:::::::::::
reconstructed

:::::
states

:::::::
diverge

::::
from

:::::::
reality). The CCSM4 and 20CR LIM display the best overall CE performance with25

a 9% improvement over the offline method. These two experiments also display a 2% increase in correlation and have slightly

1Ensemble mean represents the average taken over all ensemble members and all realizations.
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smaller correlation than the persistence forecast experiment (Table 1). Correlations for the
:::::
Figure

::
2

:::::
shows

:::
the

::::::::::::
reconstructed

::::
GMT

:::::
from

::::
each

::::::::::
experiment

::
at

:::
the

:::
best

::::::::
blending

:::::::::
coefficient

::::
(with

:::::::
respect

::
to

::::
CE)

::::::::
compared

::
to

:::::::::
GISTEMP

::::
and

:::
the

:::::
offline

:::::
case.

::
As

:::::::::
evidenced

::
by

:::
the

::::
high

::::
skill

::::::
scores,

:::
the

:::::::::::::
reconstructions

::::::
capture

:::
the

:::::::::
variability

::
in

:::
the

:::::
global

::::::::::
temperature

::::::
signal

::
of

:::::::::
GISTEMP

::::
quite

::::
well.

:::::::::
Compared

::
to
:::

the
::::::

offline
::::::::::
experiment,

:::
the

::::::::::
forecasting

::::::::::
experiments

::::
tend

::
to

:::::::
decrease

:::
the

:::::::::
amplitude

::
of

:::
the

::::::::::
interannual

:::::::::
variability,

:::::
which

::
is
::
at
:::::
times

:::::::
largely

:::::::::::
overestimated

:::
by

:::
the

::::::
offline

::::::::::
experiment,

::::
and

::::
they

::::
tend

::
to

:::::::
change

:::
the

::::::
overall

::::::::
warming5

:::::
trend.

:::::
There

::
is

::
no

:::::::
apparent

:::::::::
systematic

::::
bias

::
in

:::
the

:::::::::::
reconstructed

::::::
GMTs,

:::
so

::::
skill

:::::::
changes

::
for

:::
the

::::::::
different

::::::::::
experiments

:::
are

:::::
likely

::::::::
controlled

:::
by

:::::
these

:::
two

:::::::
factors.

::::::
Figure

:
3
:::::::
displays

:::
the

:::::::::
bootstrap

:::::::
estimate

::
of

:::::
95%

:::::::::
confidence

::::::
bounds

:::
for

::::::::::::
reconstructed

:::::
GMT

:::
CE,

::::::::::
correlation,

:::
and

::::::
trends

::
at

:::
the

::::
same

::::::::
blending

:::::::::
coefficients

:::
as

::::::
chosen

::
in

::::::
Figure

::
2.

:::
For

:::::
these

:::::::
blending

:::::::
choices,

:::
the

:::
CE

::::::
scores

::
for

:::
all

::::
LIM

:::::::::::
experiments

:::::
show

:::::::::
significant

::::::::
increases

::::::::
compared

:::
to

:::
the

:::::
offline

::::
CE,

:::::
while

:::
the

:::::::::::
persistence, 20CR, CCSM4, and

MPI experiments are significantly different (with
::::
show

:::::::::
significant

::::::::
increases

::
in
::::::::::

correlation.
:::::::::::
Additionally,

::::::::::::
reconstructed

:::::
GMT10

:::::
trends

:::
fall

::::::
within

:::
the 95% confidence ) than the offline reference based on bootstrap results for skill metric error bounds. The

CE changes for all LIM experiments are also significant
::::::
interval

::
of

:::
the

:::::::::
GISTEMP

:::::
trend,

::::::
except

:::
for

:::
the

:::::::::
persistence

:::::
case.

::::
The

::::
LIM

::::::::::
experiments

:::::
show

:::::
trends

:::::
much

:::::
closer

:::
to

:::
the

:::::
mean

::::::::
estimated

:::::::::
GISTEMP

:::::
trend

::::
than

:::
the

:::::
offline

::::
case. CRPS values for the

GMT results
:::::
across

::::::::
blending

:::::::::
coefficients

:
(Fig. 4) are generally consistent with those for the CE skill metric .2

:::::
show

::::::
similar

:::
skill

::::::::
behavior

::
as

:::
the

:::
CE

::::::
metric

::::::
(albeit

:::::::
mirrored

::
in
:::

the
:::::::

vertical2
:
).
:
Specifically, GMT verification

::::::::
validation with CRPS shows15

that all LIM forecasting experiments outperform the offline method, with the CCSM4 and 20CR LIMs
::::
again

:
having the best

performace (18% better than the offline case). All LIM experiments’ best CRPS scores are
:::
also

:
significantly better than the

offline case with 95% confidence. There
::
By

::::
and

:::::
large,

:::::
CRPS

::
is
::::::
giving

:::::
nearly

:::::::::
equivalent

::::::::::
information

::
as

:::
CE

:::::
about

:::
the

::::
skill

:::
of

::
the

::::::
GMT

::::::::::::
reconstruction.

::::::::
However,

:::
as

:::::
CRPS

::
is
::
a
:::::::
different

::::::
metric,

:::::
there

:
are slight differences in results for the MPI and BE

LIM cases when comparing CE and CRPS: the blending coefficient achieving the best score shifts to the next highest a-value20

in both cases, and the BE LIM outperforms the MPI LIM when considering CRPS (Table 1).

Both the CE and CRPS measures for different blending coefficients are affected by the degree of fit to the warming trend in

the GISTEMP reference. The trends for all experiments are shown in Fig. 5. The trend of the offline case (a = 0) is 0.62 K/100

yrs, about 0.07 K/100 yrs above the GISTEMP trend
:::
and

::::
near

:::
the

::::
edge

::
of

:::
the

:::::::::
GISTEMP

:::::
trend

::::
95%

:::::::::
confidence

::::::
interval

:::::::
(Figure

::
3). However, for the MPI and CCSM4 LIM experiments, as well as the persistence forecast experiment, the reconstructed25

trend increases as the blending parameter a increases. This increase in trend away from the GISTEMP trend for the MPI and

CCSM4 experiments is reflected in the lowered CE (Fig. 1) and CRPS (Fig. 4) for the a-values from approximately 0.0 to

0.6. The reconstructed trend from the two CGCM-based LIM experiments begins to decrease around a = 0.6 where CE also

shows a significant increase towards maximum values. The persistence forecast trend has the largest disagreement, increasing

to approximately 0.72 K/100 yrs for a = 0.9, which results in the CE and CRPS never surpassing the offline benchmark in this30

case. The 20CR LIM only increases the reconstructed trend slightly over the GISTEMP trend for middle a-values. The BE

experiment has a decreasing trend for increasing a, and drops to a very low trend of 0.38 K/100 yrs when a = 0.9. Interestingly,

though the trends for the MPI, CCSM4, and 20CR experiments are below that of the GISTEMP trend for a = 0.95, their skill

2Note that best results for CRPS occur at minimum values instead of the maximum.
2
:::
Best

::::
results

:::
for

::::
CRPS

::::
occur

:
at
:::::::
minimum

::::
values

:::::
instead

::
of

::
the

::::::::
maximum.
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still outperforms the offline case in all three metrics. Despite the mismatch in the overall trend, these online forecasting methods

still produce better matches of phase and amplitude of GMT variability for the reconstructed anomalies compared to the offline

case.

The trend results also illustrate the relative amount of proxy data utilization between these different experiments. Given

that every experiment uses the same prescribed list of seeds to generate proxy record samples, the differences in reconstructed5

trend can only arise from differences in weighting of the proxies or the LIM forecasts. Since LIMs are calibrated on detrended

data and their forecast modes are damped, the forecast contribution to
:
a long-term trends

:::::
global

:::::
mean

:::::
trend

:
is likely small;

these trends are
:::
the

::::
trend

::
is
:
instead governed by utilization of proxy information. For the EnKF PDA method, the weighting

of information is controlled by the prior ensemble variance and proxy error variance. The proxy error variance is fixed for all

experiments we perform, so the changes in the reconstructed trend are a result of how the LIM forecasts affect the ensemble10

variance. In all forecast experiments, skill and the reconstructed trends drop off severely as a approaches 1.0. When using only

forecast information (a = 1.0), the ensemble variance collapses due to the damped properties of the LIMs, which results in filter

divergence. The BE LIM case reaches its maximum CRPS and CE values at smaller a and also has the lowest reconstructed

trends of the LIM experiments. This suggests the BE forecast produces less ensemble variance than the other LIMs, possibly

due to forecast mode damping or poor projection of the posterior analysis into the LIM EOF space. The eigenvalues of the15

BE LIM’s leading two forecast modes have e-folding times of 5.4 and 1.5 years, respectively. This is in the same range of the

leading forecast modes of the CGCM-calibrated LIMs (e.g. 3.7 and 1.2 year e-folding times for the MPI LIM). Consequently,

a poor projection of the analysis ensemble onto the forecast modes of the BE LIM is likely the cause of the reduced ensemble

variance. The persistence forecast displays an interesting disparity between the skill metrics; overall, it performs the best

in correlation, but the worst in CE and CRPS. Having the largest reconstructed trend suggests that the persistence case has20

the highest weighting of proxy data. With a persistence forecast there is no damping of reconstructed spatial anomalies or

truncation of the ensemble variance from projection into EOF space. The resulting higher proxy weighting may explain why

the persistence case correlation is better than the other forecasting methods. The linear observation models used to estimate

observations in each case are based on a calibration against GISTEMP. Proxies that have
:
,
::
so

::::::
proxies

::::
with

:
a better calibration fit

(higher correlation) with GISTEMP have less error variance, and therefore, have more influence on the posterior analysis. The25

persistence case allows more information from the influential (well-correlated) proxies into the analysis because the ensemble

::::
prior variance is larger. However, from the CE and CRPS values, which are sensitive to more than just signal phase matching,

it is clear the general trend mismatch degrades the quality of the persistence forecast reconstruction compared to the offline

benchmark.

Removing the linear trend from each case allows for an examination of how well the reconstructions capture variability30

not associated with the warming trend (i.e. interannual and decadal variability; evident in Fig. 6). Generally, the performance

increases for the detrended data over the offline case are much larger than for the full time series. Compared to verification

::::::::
validation

:
with the full time series, the correlation of the detrended offline case drops from 0.9 to 0.67, and the CE drops

from 0.77 to 0.29 (Table 2). With respect to CE, all experiments (including the persistence method) improve upon the offline

benchmark. The 20CR LIM achieves the best improvement over the offline case (72% increase), while the persistence case35
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shows the least improvement (35% increase). Except in the BE LIM experiment, detrended correlation metrics again increase

slightly over the offline case. The BE LIM hovers around the benchmark correlation for 0.0< a< 0.7 and then drops below

it. A CE improvement with no change in correlation implies that the BE LIM improves the detrended anomaly amplitudes and

bias, but does not improve the signal timing compared to the offline case.

The CE and correlation skill metrics of the offline experiment both decrease when calculated on the detrended GMT. In5

contrast, the CRPS improves by 7% (minimizing from 12.5 to 11.6). CRPS rewards reduction in mean absolute error, and

‘narrowness’ of the forecast ensemble, whereas CE and correlation depend more on variance properties of the reconstructed

time series. In removing the linear warming trend, we remove a large degree of the time series’ variance and subsequently lose

the associated skill in CE and correlation. In the case of CRPS, the linear trend is only a source of mean error when it does

not closely match the reference trend. Since
:::::
When

:
we remove the trend, while not affecting the ensemble spread, the

:::
the mean10

errors decrease
:::
(the

::::::::
ensemble

::::::
spread

::
is
::::::::::
unaffected)

:
and the CRPS metric improves. Figure 7 shows CRPS for all blending

coefficients with detrended data. The behavior is quite similar to the full GMT CRPS, but
:::
and as the detrended CE reflects,

even the persistence forecast shows improvement over the offline method. An aspect that stands out with detrended CRPS is

that the persistence forecast achieves the best value when a = 1.0. A cursory examination of the detrended GMT timeseries

of the persistence case compared to the detrended GISTEMP GMT timeseries (not shown
::
see

::::::::::
supplement;

::::::
Figure

:::
S1) reveals15

that it captures
:::::
some decadal variability over the instrumental record, but virtually none of the interannual variability; i.e., the

a = 1.0 persistence reconstruction gives a smoothed representation of the GMT. This again highlights a difference between the

two metrics of CE and CRPS. The CRPS metric, which generalizes to the mean absolute error of the ensemble summed over

time, does not penalize the smoothed GMT signal approximately bisecting the interannual signal for a = 1.0. The CE metric,

which sums the squared errors of the ensemble mean and then normalizes by the climatological variance, does penalize this20

behavior.

4.2 Verification
:::::::::
Validation of spatial fields

Here we examine
:::::::
compare

:
the skill of the spatial fields against

::::
with the offline case using correlation and CE; CRPS is omitted

because the full spatial field ensembles are too large to store. The offline caseshows positive skill over most of the globe except

in
:::
For

::::
ease

::
of

:::::::::::
visualization,

:::
we

::::::
provide

:::
CE

:::::::::
difference

::::
maps

::
to

::::::::
highlight

:::::::
changes

::::::
relative

::
to

:::
the

::::::
offline

::::
case,

:::
but

:::
full

::::::
spatial

::::
skill25

::::
maps

:::
can

:::
be

:::::
found

::
in

::
the

:::::::::::::
supplementary

:::::::
material

:::::::
(Figures

::
S2

:::
and

::::
S3).

::::
Over

:::
the

::::::
globe,

:::
skill

::
is

::::::
mostly

:::::::
positive,

:::
but

::::
there

:::
are

:
a
::::
few

::::::
regions

::::
with

::::::
highly

:::::::
negative

::::
skill

:::::::::
departures

::::
such

::
as

:
the Southern Hemisphere oceans and in the high-latitude North Atlantic

to Barents Sea corridor (Fig. 8).
:
In

:::
the

:::::::::::
high-latitude

:::::::
Atlantic

::::::
region,

:::
the

::::::::
proximity

::
to

:::
the

:::
sea

:::
ice

::::
edge

:::::
seems

::
to

:::::::::
negatively

:::::
affect

::
the

::::::
ability

::
to

::::::::
constrain

:::
the

:::::::::::
temperature

::::
field

:::::
when

:::::
using

::::
only

:::::::
proxies. All LIM-forecasting cases show improvements to CE

, most notably in the same North Atlantic to Barents Sea area, and across northern Europe into Asia; there are also smaller30

skill increases across western North America. The
:::::
Studies

:::
of

::::
LIM

:::::::::::
predictability

:::::
have

:::::
shown

::::
the

:::::
North

::::::::::::::
Atlantic/Barents

:::
sea

:::::
region

:::
can

:::::
have

:::::::
forecast

::::
skill

::
on

::::::
annual

:::
and

::::::
longer

:::::::::
timescales

::::::::::::::::::::::::::::::::::::::::
(e.g. Hawkins and Sutton, 2009; Newman, 2013).

::::
This

::::
may

:::
be

:::
one

::::::
reason

:::
why

::::
skill

::::::::
increases

:::
are

:::::::
common

::
in

::::
this

:::
area

:::
for

:::
all

::::
LIM

::::::::::
experiments.

:::
An

:::::::::
inspection

::
of

::::
grid

::::
point

::::::::::
temperature

::::::
values

:::::::
northeast

::
of
:::::::
Iceland

::::
(see

::::::::::
supplement;

::::::
Figure

:::
S5)

:::::
shows

::::
that

:::
the

:::::::::::
reconstructed

::::::::::
temperature

:::::::
variance

::
is

::::::
largely

::::::::::::
overestimated

::
in

10



::
the

::::::
offline

:::::
case,

:::
and

::::
that

::::
there

::
is

:
a
:::::
slight

:::::
trend

::
in

:::
the

::::::::::::
reconstruction

:::
that

::
is
:::
not

:::::::
present

::
in

:::::::::
GISTEMP

::::
data.

::::
The

:::
CE

:::::::
increase

:::
for

::
the

:
CCSM4

::::
LIM

:::::::::
experiment

::::::::::
(increasing

::::
from

::::
-7.2

::
to

::::
-1.7)

::::::
relates

::
to

:
a
:::::::::::

temperature
:::::::
variance

::::::::
reduction

::
by

:::::::::::::
approximately

::::
70%

::::::::
compared

::
to

:::
the

:::::
offline

:::::
case.

:::
The

::::::::
CCSM4, MPI, and BE LIMs generally show large CE increases in the high-latitude southern

ocean. In contrast, the reconstruction with the 20CR LIM does not improve the southern ocean at all and has large deficiencies

over many ocean areas. The persistence case generally shows decreases in CE across large areas of the globe. Of the global5

mean CE for each grid, the CCSM4 LIM gives the best performance, increasing the global mean CE by 0.09, followed by

the MPI LIM with an improvement of 0.06. The 20CR and persistence cases show decreases in average spatial skill across

the grid, with the 20CR being worst with a global mean CE change of −0.18. The BE LIM, while showing improvements

over North Hemisphere land areas, has compensating decreases in ocean skill
::::
skill

::::
over

:::
the

:::::
ocean that make the global mean

CE nearly equivalent to the offline case. All global mean CE values, except in the BE LIM case, are significantly different (at10

95% confidence) from the offline case when comparing grid point skill distributions using a Student’s t-test. Changes in spatial

correlation (not shown
:::
see

::::::::::
supplement;

::::::
Figure

:::
S4) are generally small in regions where the CE increased suggesting that

:::
CE

::::::::
increases,

:::::
which

::::::::
suggests improvements are not related to signal phasing; however.

::::::::
However, some of the large decreases in

CE for the 20CR, BE, and persistence experiments do coincide with areas of correlation decreases.

In the spatial results, there is a clear distinction between LIMs calibrated on data from the shorter instrumental era
::::::
(20CR15

:::
and

::::
BE), and the millennium-scale climate simulation data

:::::::
(CCSM4

:::
and

:::::
MPI). Compared to the offline spatial skill, large areas

of
:::
CE skill degradation are apparent for both the 20CR and BE LIM reconstructions.

:::
The

:::::
20CR

:::::
LIM

:::
CE

::::
skill

:::::::::::
degredations

::
are

:::::
large

::
in

:::::::::
amplitude

:::::::::::
(∆CE<−1)

:::
and

::::::
mostly

::::
over

::::::
ocean

:::::::
regions. It is surprising that the 20CR LIM has the worst spatial

skill given that it has the best GMT timeseries CE skill. The leading EOF for each LIM calibration reveals a difference in spatial

structure that forms part of the forecast basis (Fig.
::::::::
However,

:::::::
previous

::::
CFR

::::::
studies

:::::
show

::::::
similar

:::::
results

::::::::::::::::::::::::::::::::::::::::::::::
(Annan and Hargreaves, 2012; Wang et al., 2014) where20

::
the

::::::
spatial

::::::::
averaging

::::
over

::
a

:::::
poorly

:::::::::::
reconstructed

::::
field

::::
can

::::
boost

:::
the

:::::::::::::
signal-to-noise

::::
ratio

::
for

:::::::::
large-scale

:::::::
indices

::::::
enough

::
to

:::::
result

::
in

::::::
positive

:::::
index

:::::
skill.

:::
The

::::::::
situation

::
is

::::::::
somewhat

::::::::
different

::
in

:::
this

:::::
study.

:::
In

:::
the

:::::
offline

:::::
case,

:::::
spatial

::::
skill

::
is
:::::::::
reasonably

::::::::
positive,

:::
but

::::
when

::::::
adding

:::::
20CR

::::
LIM

:::::::::
forecasts,

::
the

::::::
spatial

:::
CE

::::
skill

::::::::
decreases

::::
and

::
the

:::::
GMT

:::
CE

::::
skill

:::::::::
increases.

:
A
:::::::
possible

::::::::::::
interpretation

::
for

::::
this

:::::::
behavior

::
is

::::
that

:::
the

::::::::::
degradation

::
in

:::::
spatial

::::
field

:::::::
fidelity

::
is

:::::::::::
compensating

:::
for

::::::
aspects

:::
of

:::
the

:::::
GMT

:::
that

:::
are

::::::::::::
overestimated

::
in

::::
other

:::::::::::
experiments.

::::
For

::::::::
example,

:::
the

::::::
offline

:::::::::::
reconstructed

:::::
GMT

::::::::::::
overestimates

::::::::::
interannual

::::::::
variability

::::::
during

::::::
certain

:::::
time25

::::::
periods

:::::
when

::::::::
compared

:::
to

:::::::::
GISTEMP,

:::
but

::::
the

:::::
usage

::
of

:::::
LIM

:::::::
forecasts

::::::::
mitigates

::::
this

::::::
effect.

:::::::::
Compared

::
to

:::
the

:::::::
CCSM4

:::::
LIM

:::::::::
experiment,

::::
the

:::::::::::
reconstructed

:::::
GMT

:::
for

:::
the

:::::
20CR

:::::
LIM

:::::::::
experiment

:::::::
reduces

:::
the

::::
sum

::
of

:::
the

:::::::
squared

:::::
error

:::::::::
(numerator

:::::
term

::
in

:::
CE)

:::
by

::::::::::::
approximately

::::
5%.

:::
The

::::
bias

::::::::
accounts

:::
for

::::
only

:::::
about

:::
1%

:::
of

:::
the

::::
total

::::
sum

:::::::
squared

::::
error

:::::
term,

:::::
which

::::::
leaves

:::
the

:::::
trend

:::
and

:::::::
anomaly

:::::::::
amplitude

:::::::::
agreement

::
as

:::::::
primary

::::::::
candidates

:::
for

:::
the

:::::
error

::::::::
reduction.

:::
As

:::::
shown

::::::
earlier,

:::
the

::::::
20CR

::::
GMT

::::::
trends

::::
tend

::
to

::::
track

:::::
lower

::::
than

:::
the

::::
two

::::::
CGCM

::::
LIM

:::::::::::
experiments

:::
and

:::::
closer

::
to
:::
the

:::::::::
GISTEMP

:::::
trend

:::::::
(Figure

::
5).

::::
The

:::::
trend

::::::::
reduction

::
in

:::
the30

:::::
20CR

:::::::::
experiment

:::::::
appears

::
to

::
be

::::::
caused

:::
by

::::
large

:::::
areas

::
of

:::::::
negative

::::::
trends

::
in

:::
the

::::::::
Southern

::::::::::
Hemisphere

::::
(see

::::::::::
supplement;

::::::
Figure

:::
S6).

:

:::
The

::::::
reason

::::::
behind

:::
the

:::::
poor

:::::
spatial

:::::::::::
performance

:::
of

:::
the

:::::
20CR

::::
LIM

:::::::
appears

::
to
:::

be
::::::
linked

::
to

::
its

:::::
EOF

:::::
basis

::::::
(Figure

:
9). The

leading EOF of the 20CR experiment lacks the ENSO/PDO-like pattern of the other LIMs and instead focuses on vari-

ability structures rooted in the southern oceanwhere relatively .
::::
This

::
is
::

a
::::::
region

::
of

::::
high

:::::::::
variability

::::
due

::
to

:::
its

::::::::
proximity

:::
to35
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::
the

::::::
storm

:::::
track,

:::
but

:::::
there

:::
are

::::
also

:
fewer pressure observations are available for assimilation ; many of the

::
by

:::
the

::::::
20CR

:::::::::::::::::::::::::::::::
(see Figure 3 in Woodruff et al., 2011),

:::::::::
especially

::::::
during

:::
the

:::::
early

::::::
portion

::
of

:::
the

:::::::
record.

:::::
Many

::
of

:::
the

:
large decreases in CE

are
::::::
located in these same regions. The BE LIM displays a leading mode more similar to the CGCM-based LIMs, but still has

skill problems over large ocean areas. One reason the skill of the
:
,
:::::
which

:::::
leads

::
us

::
to

::::::::
speculate

:::
that

:::
the

:::::::
features

::
of

:::
the

:::::
20CR

::::
LIM

:::
may

:::
be

:::::::::
influenced

::
by

:::::::
artifacts

::
in

:::
the

:::::
20CR

:::::::
dataset.

:::::::
Another

:::::::::::
consideration

:::
for

:::
the

:::::
lower

:::::::::::
performance

::
of

::::
both

:
instrumental era5

LIMs may be different is that they are based on shorter records that coincide with variability related to anthropogenic forcing.

:::
The

:::
BE

:::::
LIM

:::::::
displays

:
a
:::::::

primary
:::::
EOF

:::::
more

::::::
similar

::
to

:::
the

::::::::::::
CGCM-based

:::::
LIMs,

::::
but

:::
still

:::
has

:::::
skill

::::::::
problems

::::
over

::::
large

::::::
ocean

:::::
areas. Separating the global warming trend from the LIM by means of linear detrending is bound to leave residual signals

that affect LIM forecast modes. A LIM based on a shorter record may not have enough of a sample to properly characterize

representative modes of variability over a longer time span. While the BE LIM is based on only 60
::
65

:
years of data, it produces10

much less spatial skill degradation than the 150 years of 20CR data. This suggests there may be inconsistencies in variability

caused by observational coverage and the data
::::::::::
confounding

::::::
factors

::::::::::
influencing

:::
the

::::
skill

::
in

:::
the

:::::
20CR

:::::::::
experiment

::::::::
between

:::
the

:::::
length

:::
of

::::::
record,

:::::
linear

::::::::::
detrending,

:::
and

:::
the

:
assimilation method used in creating

:
to

:::::
create

:
the 20CR dataset

:::
data.

5 Conclusions

We have outlined and tested a new method for performing online paleoclimate data assimilation (PDA) for climate field recon-15

structions (CFRs) using linear inverse models (LIMs). We tested four different LIMs empirically derived from surface temper-

ature data from the following data sets: Berkeley Earth (BE), the 20th Century Reanalysis (20CR), and two last-millennium

climate simulations (CCSM4 and MPI) from the Coupled Model Intercomparison Project phase 5 (CMIP5). We also performed

a persistence forecast experiment for comparison. In general, we find that LIM-enabled online assimilation improves upon the

offline results for both the global average and spatial field of 2m air temperature.20

With respect to GMT verification,
:::::::
Broadly

:::::::
speaking,

:::
the

:
LIM experiments show large improvements

::::
good

:::::
ability

::
to

:::::::::
reconstruct

::::
many

:::::::
aspects

::
of

:::
the

:::::::::
GISTEMP

:::::
GMT

::::
data

::::::::
including

::::::::::
interannual

:::
and

::::
low

:::::::
freqency

:::::::::
variability.

::::
The

::::::
largest

::::
skill

::::::::::::
improvements

::::
occur

:
for skill metrics calculated on the detrended GMT,

::::::
which

:::::::
suggests

:::
the

::::
LIM

::::::::
forecasts

:::
are

::::::
adding

::::::
useful

::::::::::
information

::
at

:::::::::
interannual

:::::::::
timescales. The coefficient of efficiency (CE) values

::
for

:::::::::
detrended

::::::
metrics

:
show an average increase around 57%,

while correlations increase around 4%. The continuous ranked probability score (CRPS) metrics increase by an average of 15%25

across all LIM experiments. Skill metrics tend to maximize for blending coefficients with a higher weighting of flow-dependent

::
on

::::
LIM

:
forecast information (0.7< a< 0.95). Spatial skill reveals that the addition of LIM forecasting provides spatial infor-

mation in regions where the offline method performs poorly— including North Hemisphere land areas, and the North Atlantic

to Barents Sea corridor.
:::::
Large

::::
skill

::::::::::::
improvements

::::
seen

::
in

:::
the

:::::
North

:::::::
Atlantic

:::::::
through

::::::
Barents

::::
Sea

:::::
region

:::
are

::::::::
primarily

::
a
:::::
result

::
of

:::::
better

::::::::::
constraining

:::
the

::::::::::
temperature

:::::::
variance

::
at

:::::
these

::::::::
locations. The two LIMs calibrated on instrumental era data (20CR and30

BE) display large regions over the ocean where the skill degrades compared to the offline case. Even with the large areas of

improvement, the 20CR LIM decreases the area-weighted average CE (−0.18), and the BE LIM area-weighted average breaks

even. In contrast, the two CGCM-based LIM experiments show area-weighted average CE increases of 0.09 (CCSM4) and
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0.06 (MPI), respectively. When considering both GMT and spatial skill results, the CGCM-based LIMs have the best overall

performance with the CCSM4 LIM slightly outperforming the MPI LIM. The persistence forecast fails to improve the more

stringent GMT skill metrics (CE and CRPS) as well as general spatial skill, but does well in GMT timeseries correlation.

Subsequently, this suggests that the improvements of online reconstructions when using a LIM are due to forecast information

and not simply the addition of temporal persistence.5

Though we are reconstructing instrumental era surface temperatures, it is an interesting result that CGCM-calibrated LIMs

based on last millennium (850-1850) simulations have the best overall performance. This could mean that having long-running

samples of variability that do not contend with major sources of variability related to
::::::::
influences

:::::
from anthropogenic forcing are

beneficial for reconstruction purposes. The LIMs used in these experiments were all calibrated on data with the least-squares

linear fit trend removed. In order for LIMs based on observational data sources to achieve similar results, it may be necessary10

to employ a more sophisticated method of filtering out the global warming signal. However, one benefit of using CGCM-based

LIMs is that it enables forecasts for a much larger set of climate-related quantities than are available from observations alone.

In this work, we have shown that we can improve both GMT and spatial field skill over the offline EnKF PDA method

through the inclusion of a simple forecast model. A previous comparison of offline and online PDA using a CGCM as a

forecast model found no discernible difference in reconstruction skill (Matsikaris et al., 2015), and earlier studies of the EnKF15

PDA method forewent the usage of forward models citing insufficient model skill to justify the expense (Bhend et al., 2012;

Steiger et al., 2014). Our results show that an online method can increase reconstruction fidelity, and more importantly that it

can be done using an empirical forecasting method that is nearly as computationally efficient as the offline approach. As such,

this method provides a useful foundation for further investigation of incorporating dynamical constraints of a forecast model

into climate field reconstructions.20

Appendix A: Online assimilation algorithm

This section details the data assimilation equations used to perform paleoclimate field reconstructions, and the algorithm steps

for a single realization of an online climate reconstruction.

A1 Ensemble square root filter (EnSRF)

The EnSRF approach (Whitaker and Hamill, 2002) uses an ensemble sampling approach to solve the Kalman filter equations25

by separating the ensemble mean (z̄b) and ensemble perturbations about that mean (z′b = zb − z̄b). Note that zb represents an

augmented state vector, zb =

xb

ye

, combining the prior state (xb) and the estimated observations (ye). The EnSRF method

allows for the serial assimilation of proxy observations using the equations

13



z̄a = z̄b + K[yi − ȳei ] (A1)

z′a = z′b + K̃y′ei (A2)

for each proxy i = 1, ...,p. The mean state z̄b is an m× 1 column vector, the ensemble perturbations z′b is an m× n matrix, the

mean estimated observation for proxy i , ȳei , is a scalar value, and perturbations about the mean estimated observation y′ei is a

1× n row vector. Note that when observations are serially assimilated, the Kalman gain (Eq. 2) is simplified
::::::::
simplifies to5

K =
cov (z′b,y′ei )
var (y′ei ) +σ2

i
(A3)

where σ2
i is the observational error for proxy yi and the denominator is now a scalar value . The perturbation update equation

K̃ is given by

K̃ =

[
1 +

√
σ2

i

var (y′ei ) +σ2
i

]−1

K (A4)

Finally, to adapt the hybrid assimilation scheme into the EnSRF method, we incorporate the data source blending as shown10

in Eq. (7). At this point, the blended state (ẑf
b) contains both flow dependent and static (climatological) information. After

incorporation, the Kalman gain (Eq. A3) becomes

K̂ =
(a)cov (ẑf ′

b , ŷf ′
ei ) + (1− a)cov (zs′

b ,ys′
ei )

(a)var (ŷf ′
ei ) + (1− a)var (ys′

ei ) +σ2
i

, (A5)

the perturbation Kalman gain (Eq. A4) becomes

˜̂K =

[
1 +

√
σ2

i

(a)var (ŷf ′
ei ) + (1− a)ys′

ei +σ2
i

]−1

K, (A6)15

and the mean and perturbation updates from Eq. (A1) and Eq. (A2) become

z̄a = ¯̂zf
b + K̂[yi − ¯̂yf

ei ] (A7)

z′a = ẑf ′
b + ˜̂Kŷf ′

ei . (A8)

A2 Assimilation algorithm

1. Choose a static ensemble prior (xs
b) of n members, and group of p proxies (y) to assimilate.20
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2. Calibrate observation models for each proxy record by applying a univariate linear fit against co-located instrumental

data.

3. Create an estimated observation ensemble (ys
e) for each proxy record using their corresponding observation model and

augment the prior ensemble to form the static state ensemble, zs
b =

xs
b

ys
e

. This an (m + p)× n state vector that will be

updated during assimilation.5

4. For each reconstruction year:

(a) If not the first reconstruction year, then reset zs
b back to the original static prior and form a blended prior (ẑf

b) using

Eq. (6).

(b) For each proxy yi from y = [y1,y2, ...,yp]:

i. If the current proxy has no observations for the current year, then skip to the next proxy10

ii. Else, select the matching estimated observations (ŷf
ei , ys

ei ) corresponding to the current proxy yi from the

augmented states (ẑf
b, zs

b).

iii. Calculate the mean and perturbation of the estimated observations and augmented state vectors for use in the

serial ensemble square root filter method.

iv. Use the perturbations of ẑf
b, zs

b, ŷf
ei , ys

ei to form a blended Kalman gain terms as shown in Eq. (A5) and Eq.15

(A6).

v. Update the mean and perturbations of ẑf
b and zs

b by using the blended gain matrices from the previous step
::::
step

::
iv in Eq. (A7) and Eq. (A8).

vi. Reassemble za and zs
a by adding the ensemble mean back into the perturbations. These will be used for the

next proxy assimilated as ẑf
b and zs

b.20

(c) After all proxies have been assimilated, extract the climate field xa from the augmented analysis state za.

(d) Perform a LIM forecast on xa using Eq. (3) resulting in xf
b.

(e) Recalculate the estimated observations yf
e from xf

b and augment the state to form zf
b.

(f)
:::::
Return

::
to
::::

step
:::::
4.(a).

5. After all years complete, we have our reconstruction of climate states xa from all years.25

Appendix B: LIM calibration

The following steps are performed to empirically derive a LIM from a given data source. The steps detail how we find the

mapping term G1 shown in Eq. (5).
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1. If the calibration data contains seasonal signals (e.g., monthly data), then they are removed by smoothing data with a

1-year running mean.

2. The data is converted into anomaly format by removing the climatolical mean for each individual month.

3. The resulting anomaly is detrended. This removes a large degree of the skill found by Newman (2013) when using

instrumental data, but we are focused on forecasting modes of interannual variability, not the secular warming trend.5

4. The detrended anomaly data is projected into EOF space where the leading 8 modes of variability are retained. The

number of modes retained encompasses those with e-folding times (decorrelation time scales) near 1-year or greater

based on analysis of G1 (as calulated in the following step) in these experiments. The near-1-year threshold was chosen

because forecast modes with e-folding times much less than 1-year have a small impact on annual forecasts due to the

relatively quick signal decay.10

5. Finally, we determine G1 based on the lag-covariance statistics of the calibration data. Specifically, we solve C(1) =

G1C(0) is solved for G1 C(1) =
〈
x(t + 1)x(t)T

〉
.
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Figure 1. Comparison of global mean 2m air temperature coefficient of efficiency (CE; left) and correlation (right) metrics for different

blending coefficients. The colored lines represent the different LIM calibration experiments using data from the Community Climate System

Model v4 (CCSM4), NOAA 20th Century Reanalysis v2 (20CR), Max Plank Institute Earth System Model (MPI), Berkeley Earth Surface

Temperatures (BE); or the persistence forecast case (Persist). The offline benchmark is depicted as the horizontal dashed black line.
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Figure 2.
:::::::::::
Reconstructed

:::::
global

::::
mean

:::
2m

::
air

:::::::::
temperature

::::::::
compared

::
to

::::::::
GISTEMP

::::
(solid

:::::
black)

:::
and

:::
the

:::::
offline

:::::::::
experiment

:::::
(dotted

:::::
black)

:::
for

:::
each

:::::
online

:::::::::
experiment.

::::
The

::::
GMT

::::::
plotted

::
for

::::
each

:::::::::
forecasting

::::::::
experiment

::
is
::::
from

:::
the

:::::::
blending

::::::::
coefficient

:::
that

:::::::
achieves

::
the

::::::
highest

:::::
GMT

::
CE

::::
skill

:::::::
(CCSM4:

:::::::
a = 0.9,

::::
MPI:

::::::
a = 0.9,

:::::
20CR:

::::::
a = 0.9,

:::
BE:

:::::::
a = 0.7)

:::::
except

::
for

:::
the

:::::::::
persistence

:::
case

:::::
where

::::::
a = 0.9

:::
was

::::
used.

::::
The

::
top

::::
row

::::
shows

:::
the

::::
three

:::::::::
forecasting

:::::::::
experiments

:::
with

:::
the

::::::
highest

::::
GMT

:::
CE

:::::
score,

::::
while

:::
the

:::::
bottom

::::
row

::::
shows

:::
the

::::
other

:::
two

::::::::::
experiments.

21



0.72

0.74

0.76

0.78

0.80

0.82

0.84

CE

0.895

0.900

0.905

0.910

0.915

0.920

0.925

0.930

0.935
Correlation

0.45

0.50

0.55

0.60

0.65

0.70

0.75
Trend (K 100 yr−1)

Offline
CCSM4
MPI
20CR
BE
Persist
GISTEMP

Figure 3.
:::::::
Bootstrap

:::::::::
uncertainty

:::::::
estimates

::::
(95%

:::::::::
confidence

::::::
interval)

:::
for

:::
CE

:::::
scores

::::
(left),

::::::::
correlation

::::::::
(middle),

:::
and

::::
GMT

:::::
trends

:::::
(right).

::::
The

::::::
blending

::::::::
coefficient

::::
that

::::::
achieves

:::
the

::::::
highest

::::
GMT

:::
CE

::::
skill

:
is
:::::
shown

:::
for

::::
each

::::::::
experiment

::::::::
(CCSM4:

::::::
a = 0.9,

::::
MPI:

::::::
a = 0.9,

::::::
20CR:

::::::
a = 0.9,

:::
BE:

::::::
a = 0.7)

:::::
except

:::
for

::
the

:::::::::
persistence

:::
case

:::::
where

::::::
a = 0.9

:::
was

::::
used.
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Figure 4. Comparison of global mean 2m air temperature continuous ranked probability score (CRPS) for different blending coefficients.

The colored lines represent the different forecasting experiments, while the offline benchmark is depicted as the horizontal dashed black line.

Starred points indicate a statistically significant (95% confidence) difference between the offline benchmark and online experiment.
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Figure 5. Calculated trends from a least squares fit against the reconstructed global mean 2m air temperature (1880 - 2000). Colored lines

depict the calculated trends for each LIM experiment across a range of blending coefficients, while the black lines represent the benchmark

trends calculated from the offline reconstruction (dashed) and GISTEMP data (solid).
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Figure 6. Same as in Figure 1 but with the linear trend removed from the
::::::::
Comparison

:::
of

:::::::
detrended

:
global mean 2m air temperature data

before calculation of skill
::
CE

::::
(left)

:::
and

::::::::
correlation

:::::
(right)

:
metrics

:::::
across

::::::
different

:::::::
blending

:::::::::
coefficients

::
for

::
all

:::::::::
experiments.

:::
The

::::::
colored

::::
lines

:::::::
represent

::
the

:::::::
different

::::::::
forecasting

::::::::::
experiments,

::::
while

:::
the

:::::
offline

:::::::::
benchmark

:
is
:::::::
depicted

::
as

::
the

::::::::
horizontal

::::::
dashed

::::
black

::::
line.
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Figure 7. Comparison of detrended global mean 2m air temperature continuous ranked probability score (CRPS) for different blending

coefficients. The colored lines represent the different forecasting experiments, while the offline benchmark is depicted as the horizontal

dashed black line. Starred points indicate statistical significance (95% confidence) between the offline benchmark and online experiment.
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Figure 8. Spatial maps displaying the difference in coefficient of efficiency (CE) from the offline case. Difference maps are displayed for each

forecasting experiment using the blending coefficient that achieves the highest full GMT CE skill
:::::::
(CCSM4:

::::::
a = 0.9,

::::
MPI:

::::::
a = 0.9,

::::::
20CR:

::::::
a = 0.9,

:::
BE:

::::::
a = 0.7) except for the persistence case where a = 0.9 was used. (See Table 1 for the list of corresponding blending coefficients.)

The reference CE of the offline case is shown in the upper left, and uses the same color scale as the difference maps. Area-weighted global

average differences are given in the title of each panel. All global mean differences except in the BE LIM case are significantly different than

the offline benchmark with 95% confidence.
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Figure 9. Leading empirical orthogonal function (EOF) from the basis for each LIM calibration. The total fraction of the variance explained

is given in the title of each panel. All EOFs have been multiplied by their corresponding singular value.
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Table 1. Best value of the coefficient of efficiency (CE), correlation (r), and continuous ranked probability score (CRPS) verification

:::::::
validation

:
metrics for global mean 2m air temperature. For each experiment, best values are given with the corresponding blending co-

efficients (a) that achieved it and the percentage change compared to the offline case. A (*) indicates which experiment achieved the best

performance in a given metric. Offline verification
:::::::
validation metrics are given for reference.

Full GMT Max CE %∆CE CE a-value Max r %∆r r a-value Min CRPS %∆CRPS CRPS a-value

Offline 0.77 0.90 12.5

Persist 0.77 0 0.0 *0.93 3 0.9 12.5 0 0.0

BE 0.82 7 0.7 0.91 1 0.8 10.7 -14 0.8

CCSM4 *0.84 9 0.9 0.92 2 0.8 *10.2 -18 0.9

20CR *0.84 9 0.9 0.92 2 0.9 *10.2 -18 0.9

MPI 0.83 8 0.9 0.91 1 0.8 10.8 -14 0.95
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Table 2. Best value of the CE, correlation, and CRPS verification
:::::::
validation

:
metrics for detrended global mean 2m air temperature. For each

experiment, best values are given with the corresponding blending coefficients (a) that achieved it and the percentage change compared to

the offline case. A (*) indicates which experiment achieved the best performance in a given metric. Offline verification
:::::::
validation

:
metrics are

given for reference.

Detrended GMT Max CE %∆CE CE a-value Max r %∆r r a-value Min CRPS %∆CRPS CRPS a-value

Offline 0.29 0.67 11.6

Persist 0.39 35 0.9 *0.74 11 0.9 10.1 -13 1.0

BE 0.43 48 0.8 0.67 0 0.1 10.0 -14 0.9

CCSM4 0.46 59 0.9 0.70 5 0.7 9.8 -16 0.9

20CR *0.50 72 0.9 0.71 6 0.9 *9.6 -17 0.9

MPI 0.43 48 0.9 0.69 3 0.7 10.1 -13 0.95
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