Reviewer Responses and Manuscript Revisions

Below are the authors’ responses to the reviewers. We’ve included our specific manuscript
revisions as blue bullet points below the responses. The bullet point page and line
distinctions refer to the marked-up version of the manuscript, which is also found below.

Reviewer #1 Response

| find that this article does not belong to the journal of Climate of the Past. Thus, |
reject the publication. However, | find the idea novel and interesting and | would
suggest to submit a revised version to a more theoretical journal.

Here is why it doesn’t belong to Climate of the Past: The idea of using LIM as a
substitute for otherwise expensive online data assimilation sounds wonderful, and
would prove to be it if one didn’t need to introduce a parameter a. But as authors
showed with a being equal to 1, the results of linear online DA are worse than of
offline DA. Then the question | pose to authors is how to choose an optimal a? What
would be the criteria for optimal a?

We thank the referee for commenting on this paper. On this first point, we disagree with the
assessment that this paper does not belong in the journal of Climate of the Past (CP), and
our reply to that can be found below. On the need for a tuning parameter (such as a) in the
usage of ensemble data assimilation methods, it is common due to the affect such
parameters have on ensemble variance. As in Hamill and Snyder (2001), we present results
for a range of the blending coefficient (a), but show that there is a general range of blending
that gives improved validation metrics compared to the offline case. We do not give an
absolute determination of an optimal (a) because, as we show in the paper, the choice of
metric for determining the best value for (a) is subjective. The use of correlation, the
coefficient of efficiency, and the continuous ranked probability score (CRPS) target different
aspects of comparison between the reconstructed and reference data (though CE and
CRPS are very similar). The details of the differences in different skill metrics are described
in Section 3.1. Altogether, the determination of which metric is best depends on what the
end user prioritizes.
e Tocclarify the goals of this study, we revised the final paragraph in section 3 to reflect
that we are searching for reconstruction improvements and how we go about judging
those improvements. (pp 6, lines 18-19)

There is yet another manifestation of more theoretical work to be done, mainly in
Sec. 4.2, where authors find inconsistency between the best model 20CR in terms of
a scalar skill (CE, r, and CRPS) but worse in terms of spatial reconstruction. They



propose that it could be due to a short time scale but this could be checked. And
again, does this mean that a = 0.9 is not optimal for 20CR?

We agree that this result can be more thoroughly discussed. The 20CR dataset is a
reanalysis performed using surface pressure observations from 1850 to present (Compo et
al. 2011). The observational coverage of the southern oceans, especially during the early
portion of the record is very low (see Fig. 3 in Woodruff et al. 2010). This is a large region
of high variability due to the southern hemisphere storm track. As Fig. 7 in our paper
shows, the primary mode of spatial variability in the annually averaged 20CR dataset is
quite different in character from the other 3 datasets used. The pattern of variability is
focused on regions in the southern oceans, which is where we see a lot of the CE skKill
degradation. This coupled with the knowledge that it is a region of high variability with few
observations leads us to speculate that the features of the 20CR LIM may be influenced by
artifacts of the 20CR dataset. Another instrumental reanalysis product spanning 1900 —
2012 (ERA-20C; Poli et al. 2016) has a similar first EOF and forecast mode to the 20CR.
The discrepancy between the GMT and spatial performance for the 20CR experiment was
surprising, but similar results were found in idealized pseudo-proxy experiments (Annan &
Hargreaves 2012, Wang et al., 2014). These studies show that spatial averaging can boost
the signal-to-noise ratio for large-scale indices resulting in higher index skill despite poor
spatial reconstruction performance. Here we have a situation that is slightly different. The
spatial results for the offline case are decent, but the degradation of spatial skill by the
20CR LIM reconstruction enhances the skill in the GMT signal. We interpret this as the
spatial degradation having a moderating effect on an aspect of the global signal that is
overestimated in the offline case such as the interannual variance or the warming trend.
We can provide a breakdown of this idea with plots of calculated spatial trends and
interannual GMT variance over time.

e We have altered Section 4.2, paragraph 2-3 (pp 11-12) to reflect this information.

Again, (a=0.9) is the optimal blending when considering CE skill of GMT. Changing the
blending parameter will not change the behavior of the forecasts, only how much
information is used from the forecast. If a user was inclined to use the 20CR LIM for a
reconstruction, they could optimize between spatial skill and GMT skill, but the use of 20CR
LIM forecast information will only reduce spatial skill. From what we show in the paper,
there are better options than the 20CR LIM to use for spatial reconstruction performance.

Therefore, what | suggest is to study the methodology in a theoretical framework by
revising the article and submitting it to a theoretical journal.

Regarding the larger question of relevance to this journal, we believe that there exists well-
established precedent for studies like the current one. The field of paleoclimate data
assimilation (PDA) has had a number of recent theoretical advances, many of which were
published in Climate of the Past (CP). For example, Crespin et al. (2009) extend the



ensemble selection DA method to perform online forecasts with an intermediate complexity
climate model. However, they make no comparison with its offline predecessor. Bhend et
al. (2012) use an idealized pseudo-proxy experiment to test an offline ensemble square root
filter approach. In this work, they use a parameter known as covariance localization to
prevent the collapse of ensemble variance, and they also discuss the extension to a
coupled model forecast online method as the next step. Annan and Hargreaves (2012)
performs an idealized pseudo-proxy experiment with an ensemble selection method to test
different geographic densities of proxy observations. They also try a persistence forecast
method as an online case, but find no benefits to the reconstruction from the persistence
forecast in all cases. Matsikaris et al. (2015) perform a direct comparison between online
and offline methods using the ensemble selection method with a 10-member ensemble
forecast from a coupled GCM. They also find no discernible benefits to using the online
method compared to the offline experiment. They follow up with a study (Matsikaris et al.,
2016) further investigating why the online forecast method does not show improvements to
their reconstruction targets. Thus it is clear that there are numerous papers in CP similar to
ours; this is why we submitted the paper to CP. We have presented the only study to our
knowledge that shows a viable online PDA method that can be used for long timescales
with large ensembles while also documenting improvements over the offline alternative.
Additionally, we document the performance of the method using real proxy data in real
reconstructions. We plan to provide code and sample data along with the revised
manuscript. The connection to previous CP literature and our novel results make this study
both timely and relevant for this journal.

Other major comments:

LIM is calibrated on model 1 (CCSM4) without any data assimilation over a period 850-1850, on model
2 (MPI) without any data assimilation over a period 850-1850, on model 3 with data assimilation
(20CR) over a different period 1850-2012, and on a data set over yet a different time period (1950-
2010 | would assume, though it is not mentioned in the paper). Thus, the models are completely
different in terms of the time period, use or not of the data, and only being the data. This makes it
hard to compare and draw conclusions. Instead LIM should be calibrated on a model without DA, on
the same model with DA, and on observations used in that DA.

That would be a nice framework for a future study, but it is clearly well beyond the scope of
this paper. In any case, our method has sampled widely different sources for variability on
which to calibrate the LIMs. During the instrumental period the separation between forced
and natural variability is unclear. However, the last millennium simulations are a good
substitute for a measure of long-term natural variability under weaker forcing regimes. As
far as the use or not of observations in the calibration data, we will note that for climate
models there are no common systems that provide data assimilation for simulations like
this. That means a comparison like the one suggested would have to be done using
systems oriented for reanalysis, which are very different from climate models. Our results
show that reanalysis products may have inherent properties making them less useful for our



application. Additionally, the observations used for assimilation during the instrumental
period are not necessarily something that we can use as a LIM forecast model in
reconstruction. For example, the 20CR assimilates pressure observations. Other
reanalysis products use a suite of different measurements including satellite radiances and
upper air measurements. These are not easily useable gridded products and are outside
the scope of variables we would use in paleoclimate applications. As we said, these are
topics that can be explored in future research.

e We changed the text to explicitly define that the BE dataset covers the years 1960-

2014. (pp 6, line 1)

As the prior authors used results of the CCSM4 model, the same model they used for LIM calibration.
It appears that linear CCSM4 DA provides good results in terms of both scalar skills and spatial
reconstruction. Is it because there is less inconsistency? How would it change if the prior was from
another model?

We did check results using the MPI last millennium simulation as our prior and the NOAA
merged land-ocean surface temperature analysis (MLOST) as the calibration data for the
proxy observation models. The CCSM4 LIM still outperformed the MPI LIM by a similar
margin in the spatial results (the CCSM4 spatial average CE was +.02 above the MPI
case). The GMT skill results show the two models again at a virtual tie. This suggests that
the CCSM4 LIM provides forecasts that generate results more consistent with the
GISTEMP reference we use for validation.

In order to provide a fair comparison authors need to include “expensive” online DA (using a
nonlinear model instead of LIM).

As stated in our introduction, the current computational costs of performing coupled model
forecasts in large ensembles over long time periods make this suggestion impractical.
Moreover, other studies have explored this possibility (with smaller ensembles forecasting
on decadal timescales) and shown no benefit over offline DA. This aspect and the
knowledge that a LIM can be comparable in forecast skill to the coupled models (Newman
2013) is why we chose to try a LIM for online paleoclimate data assimilation. We believe
this is a fair baseline comparison showing the potential of an online method compared to an
offline method. Despite the simplicity of this approach, we show improvements in
reconstruction skill over the offline method, which is the first to our knowledge for any online
technique. “Expensive” online PDA options likely won’t be feasible with ensembles of the
size we use here anytime soon.

Minor Comments:

Page 7, Line 18: Why is there a shift in blending coefficient? This is again related to my comment on
how to choose an optimal a.

There is a shift in blending coefficient between CE and CRPS because they are different
skill metrics. CE is calculated based on mean squared error properties, while CRPS is



calculated on accumulated mean absolute error. Though they are both sensitive to bias,
phase, trend, and amplitude differences, there are no guarantees that they will give the
same results. This is especially apparent for detrended GMT skill of the persistence case
when (a=1.0).
e To help illustrate the difference between the CE and CRPS, we’ve included a figure
in the supplementary information (Fig. S1) comparing the detrended GMT scores for
the persistence (a=1.0) and MPI (a=0.95) cases.

Page 7, Line 31: Why is there improvement compared to offline DA even though the trend is largely
underestimated for a = 0.95?

There is improvement because the trend is not the only consideration of the CRPS/CE skill
metrics. Other aspects (phase and amplitude) can still be improving while the trend
difference is not large enough to decrease the skill measure.

It would be interesting to introduce another metric — bias — in order to check whether the model
either underestimates or overestimates the observed values.
The CE metric can be separated to show skill related specifically to bias. We will consider
expanding the GMT and spatial breakdown of CE skill between bias and other aspects of
the reconstruction.
e We included some discussion of bias, amplitude, and trend controls related to GMT
skill in section 4.1, paragraph 1 (pp 8), and a more specific discussion related
changes to the GMT skill in the 20CR LIM reconstruction (pp 11, lines 23-33).

| suggest plotting time series of averaged temperature of different models against
observations for best a for CE, for best a for r, and for best a for CRPS.

We agree that we should include a figure of the actual reconstructed GMT for selected
reconstructions. Thank you for this suggestion.
e We included a plot of reconstructed GMT against GISTEMP (Fig. 2) for each
experiment using the best a for CE (considering a > 0)

Reviewer #2 Responses

We thank reviewer #2 for thorough and helpful comments on the manuscript.

General Comments:

The presentation of the work in the paper feels incomplete in several ways. The
figures show comparisons of metrics of skill, and comparisons of estimated climate
fields to a benchmark estimate, but no visualization of the reconstructions
themselves, or comparisons to the actual target (the GISTEMP field and/or GMT time
series)



We agree that the paper can be improved by the inclusion of figures detailing reconstructed
data against the target data of, for example, GISTEMP. We will use the specific questions

posed by you and the other reviewer to guide an expansion of the discussion/interpretation
for these results.

e We have included the requested figures (GMT comparison (Fig. 2), skill uncertainties
(Fig. 3), and non-differenced measures of skill against GISTEMP (Fig S2 and S3)).
We also expanded our discussion of GMT skill (pp. 8, lines 3-7), the North
Atlantic/Barents Sea skill changes (pp 10-11, lines 31-3), and the 20CR spatial and
GMT skill behavior (pp 11-12, section 4.2, paragraphs 2-3).

The authors have also neglected to describe of tabulate the computational expense
associated with their reconstruction exercises. In addition, | wonder if they plan to
make code for carrying out any of the reconstructions publicly available

On our desktop workstation (4-core CPU @ 3.4 GHz), the time required for a single iteration
for a 151-year reconstruction with 100 ensemble members and using 110 proxies is
between 1.5 — 2 minutes. Thus, a full experiment (100 iterations for each of the 12 blending
coefficients), 1200 100-member reconstructions per experiment, takes around 40 hours.
However, the iterations themselves can be run in parallel on different nodes of a computing
cluster. In comparison, the offline method (no forecasting) takes about 1 minute to
complete a single iteration. Therefore, the addition of the LIM approximately doubles the
computational expense in the worst case, but the total wall-clock time is still quite
manageable for large experiments. We have not taken steps to fully optimize the code so
there are likely ways to lower the overall computational expense. We plan to archive the
version of the code that was used in these experiments, but also plan for a public version of
the code hosted on a platform such as Github. This repository and documentation will be
coordinated with other Last Millennium Reanalysis projects.

e This information has been placed in supplementary information (Section S1).

Specific Comments:

The authors would like to note that any suggestion not directly addressed was taken into
account when revising the text.

Title:

e On the reviewer’s suggestion, we’ve altered the title to: “Reconstructing paleoclimate
fields using online data assimilation with a linear inverse model”

Abstract:
LIMs have been shown to have comparable skill to CGCMs in what sense?

LIMs have been shown to have comparable skill to CGCMs for forecasting surface
temperature anomalies. We will be more specific in the text.

e Revised (pp 1, lines 5-6)



The last sentence may need to be revised or made more specific, to address the
meaning of the “dynamical evolution” to which the authors attribute improvements in
skill. When I think of “dynamics,” | think of the description of the underlying physical
mechanisms driving changes in time, where the term is used in contrast to a
“statistical” description. The LIM is purely statistical though, so I think the authors
mean the term in the sense of using the model forecast as a prior for each
subsequent timestep.

By “dynamical evolution”, we imply that the LIM has encoded linear dynamical properties of
the system that it is calibrated on. Using a LIM to forecast the next prior imparts those
linear dynamical constraints on the forecast field. We will clarify this distinction in the text.

e Revised (pp 1, line 17)

Introduction:

It seems the physical consistency issue due to use of EOFs is also a limitation of the
method presented in this paper though, right? Seems a bit disingenuous to list this
here as if it’s a limitation the present approach will address

We understand the reviewer’s point, but EOFs are simply used here as a basis-reduction
method, which is standard practice in the LIM literature. We make no claims that the EOFs
have a physical basis in isolation (although others would make that claim). Whether the
model basis is grid points, spherical harmonics, or EOFs, the goal of representing the
dynamics remains the same. EOFs happen to be a compact space that, in total, captures
more variance than other approaches with similar degrees of freedom.

e We changed section 2.1, paragraph 2 (pp 4) to highlight that the EOFs are used as a
basis, and to re-state the limits from this choice.

The authors might expand upon what they mean by “dynamical” at the first use of
the word here, to make the precise nature of their contribution more immediately
accessible to a wider audience.

We will define more clearly what we mean by “dynamics” in the context of the
reconstruction.

e Added clarification (pp 2-3, lines 36-1)

How many modes are retained in this study? (This detail is sufficiently important to
be moved from the appendix to the main paper). What’s the justification for the
choice based on e-folding times of a year or greater? Are results sensitive to number
of retained modes?

We retain 8 EOFs for use in the LIM and will move this detail into the main text. In the

appendix, we say that number of modes covers those with e-folding times (EFT) of 1-year
or greater meaning that we picked a number of modes that encompasses those EFTs, not
necessarily restricts the EFTs to 1-year or greater. For example, the CCSM4 LIM has four



forecast modes with EFTs above 1-year and three modes around 1-year (EFT of 0.7 and
0.85 years respectively). Other LIMs have similar distributions of EFTs. We keep these
modes because EFTs much lower than 1-year will not have a large impact when we are
forecasting on annual time scales. It is worth noting that Newman (2013) keeps 11 EOFs
for SSTs and 6 EOFs for land temperatures since he is using separate observational
datasets, but he also states that his results are insensitive to the exact number of EOFs he
retains. He also finds that most of the LIM skill on 2-9 year time scale can be reproduced
with the first three forecast modes. This gives us confidence that retaining 8 EOFs for all
our LIMs is a reasonable choice. We realize the statement in the text on the EOFs can be
misleading and will amend it to state the reasoning behind our retained modes more clearly.

e Added the number of modes retained to Section 2.1 (pp 4, lines 16-17) and clarified
our reasoning for this choice in Appendix B, list-item 4 (pp 16, lines 7-10)

Data and experimental configuration:

“For the prior, we used . . .. the CCSM4 |last-millennium simulation”: Do the authors
mean this is the model used for the climatological prior used for the blending used to
prevent the collapse of the ensemble as described at the end of the previous
section? If so: | would expect the EOFs of the prior and the CCSM4-based LIM to be
the same, but different for the other CGCM-based LIMs, thereby perhaps giving the
CCSM4-based LIM an advantage, or at least somehow controlling the divergence of
that ensemble differently than for the three other CGCM-based LIMs?

Yes, we mean that the CCSM4 simulation is used as the static prior. We also considered
that the CCSM4 LIM had a slight edge because of the usage of CCSM4 as a prior, but we
do not believe this to be the case based on further investigation. We performed the same
LIM experiments using the MPI last millennium simulation as a prior and the NOAA Merged
Land-Ocean Surface Temperature analysis (MLOST) to calibrate the proxy observation
models. The GMT skill between the CCSM4 and MPI-prior experiments is basically the
same, but the spatial results show the CCSM4 LIM outperforms the MPI LIM experiment in
both cases (the CCSM4 spatial average CE was +0.02 above the MPI case when using the
MPI prior).

e Added emphasis that the prior choice is referring to the static ensemble used for
blending (pp 6, lines 6-7)

The linear observation models for proxy data” should be described in enough detail
to enable reproducibility. Are the proxy data simply linear in temperature of the
gridcell containing each proxy location? Or a collection of gridcells representing the
regional signal of each record referred to in the next sentence?

The observation models we use are the same as discussed in Hakim et al. (2016). The
model is formed by a linear regression against the time series from the nearest grid point in
the calibration dataset.

e Added a description of the observation models (pp 6, lines 8-9)



Also, is there any particular justification for the choice of the GISTEMP product for
calibrating the proxy models?

The choice of GISTEMP as the calibration data was an arbitrary choice. The observational
dataset used to calibrate the proxy models will influence the reconstruction, but this
sensitivity is outside the scope of the current study and is discussed in Hakim et al. (2016)
(see section 4).

Finally, it’s interesting the authors use several proxy types with known differences in
their spectral signatures. Is there any difference in the construction of linear
observation models for the lower versus higher frequency proxies?

All proxies we use have observations provided at annual resolutions. There is no difference
in how we calibrate between them here. This is a current topic of research given that we
know that some proxies provide mostly seasonal information (e.g. growing season for tree
ring widths/densities).

Optimal in what sense? What is the criterion used to determine the optimum?

We use optimal in the sense that it can provide some improvements over the offline method
in our experiments, but we see now how this is a vague usage. In our results, we use the
GMT CE skill as the measure to define optimal. We then investigate the spatial results for
the blending coefficient that achieved the best CE in all experiments except for the
persistence forecast experiment. The persistence forecast did not have a blending
coefficient showing an improvement over the offline case, so we used the best performing
blending coefficient for the detrended GMT CE.

e To clarify the goals of this study, we revised the final paragraph in section 3 to reflect
that we are searching for reconstruction improvements and how we go about judging
those improvements. (pp 6, lines 18-19)

Results and Discussion:

be more specific than writing the CRPS and CE results are “generally consistent.” Do
you mean the rank of models is the same as measured by both statistics? Line 18-20:
Similar to preceding comment: it’s imprecise to say there are “slight differences in
results. . . when comparing CE and CRPS.” These are two different metrics that
measure different things in the first place. | wonder again if the authors mean to
make a statement comparing the rank of models as measured by the two different
metrics?

Yes, by generally consistent we mean that the rank of the experiments is the same, and the
behavior of the two metrics across different blending coefficients is similar. We realize that
the CRPS and CE are different metrics and should not be expected to be exactly the same.
We simply want to bring attention to the fact that CE and CRPS are largely giving us the
same information for the full GMT results. However, we also show with the detrended GMT
how the CRPS can give a very different result from CE (persistence experiment for a=1.0)



where it could be very misleading to a user who cares about interannual variability. We will
alter this section to make the language more precise.

e We altered the discussion of the CRPS metrics to clarify the comparison with CE (pp
8, lines 13-19), and added a figure to the supplement (Fig. S1) to show the
divergence in skill for the detrended GMT of the persistence experiment (a=1.0).

In all figures, the authors show central estimates across ensembles, but no measures
of uncertainty. Once it has been established in the results that the skill varies with
the blending coefficient, it might be interesting to show some analysis of estimates
and uncertainty across ensemble members for fixed “a” (probably at the value that
optimizes one metric or another).

We have done some uncertainty quantification, and can indeed include an expansion of this
information in the main text or additionally in the supplementary information.

e We included Fig. 3, which shows bootstrap uncertainty estimates for the CE,
correlation, and GMT trend from the best performing blending coefficient (as
measured by full GMT CE) for each experiment.

| would speculate that this underestimation of trend in combination with skillful
match of phase and amplitude of GMT variability might be interpreted in terms of the
paleoclimate proxies as high-frequency bandpasses of the climate signal, that do not
tend to preserve the low-frequency signal. This is a well-known feature of many
dendrochronologies, for example, although there do exist “standardization”
methodologies to prepare tree ring time series to preserve the low-frequency signal.
It would be interesting to know whether the proxy time series used in this study have
been prepared using methods aiming to preserve low frequency climate variability

We used proxy records contained in the PAGES 2k Consortium (2013) database with no
additional processing. The proxies in this database were selected as being representative
of annual or warm season temperature variability. We do not believe it is the proxy data
controlling the variation in reconstructed trends. Instead, we think the trend changes are
related to the LIM forecasts and blending. This is because the same proxies are used in
each experiment, and from these same proxy records we find varying trend estimates
(including overestimates) that provide better skill than the offline case. The aspect
controlling the trends is the relative weighting between the prior and proxy information,
which is determined by the variance (uncertainty) of the two sources. The uncertainty of the
proxies is fixed, so that means the weighting is being affected by the LIM forecast and the
amount of blending between the static and forecast states. We discuss this on page 8 lines
4-12.

Subsection 4.1 is missing figures and reporting of the estimated GMT time series
compared to the target GMT time series. Pp. 9, line 21- seems odd not to show some
spatial measures of skill against the target, rather than just against the offline case.

Thank you for this suggestion, we will include figures of the actual temperature
reconstructions and spatial measures against the GISTEMP target.



e We added a GMT comparison between the reconstruction experiments and
GISTEMP (Fig. 2) to the main text, and added the spatial correlation difference maps
(Fig. S4) as well as the non-differenced spatial CE and correlation maps (Figs. S2
and S3) to the supplementary information.

Is there climatic significance to this North Atlantic/Barents Sea area that might
explain why the LIM forecast- based reconstructions seem to improve skill there
compared to the offline case? Or can the authors speculate as to why this region has
low skill in the offline case to begin with to explain the near uniform improvements
there under forecasting?

The North Atlantic/Barents Sea region is a region near the sea ice edge that seems to be
poorly constrained by proxy data alone. We inspected a grid point northeast of Iceland
where there are negative CE values to assess the causes of the improvement. We found
that the temperature variance of the offline experiment is an order of magnitude larger than
the variance in GISTEMP at this location. The CCSM4 LIM reconstruction had
approximately 30% as much variance in this location as in the offline case. There was not a
significant change in correlation or trend between the offline and LIM experiment, so the
change in temperature variance is the primary factor in CE improvement. As far as why we
might expect a LIM to help here, a modeling study used a LIM to assess the predictability of
the HadCM3 coupled climate model in the North Atlantic (Hawkins and Sutton, 2009),
suggesting that there is decent predictability in the North Atlantic/Barents Sea region with
annual lead time (see Fig. 6 in their paper). The Newman (2013) study also shows
predictability for this region when using their detrended LIM for 2-5 and 6-9 year lead times.
Additionally, a preliminary LIM predictability analysis we performed shows some positive
anomaly correlation skill for this region in all the LIMs we test in this study.

e We included this as an expanded discussion point in section 4.2, paragraph 1 (pp.
10-11, lines 31-3)

“There is a clear distinction between LIMs calibrated on data from the shorter
instrumental era, and the millennium-scale climate simulation data”- This is an
interesting point. Remind readers explicitly at this point which are which, so that
readers can easily reference what you’re talking about in the figures. Also, can you
describe the distinction you mean clearly and precisely? Looks to me like the
millennial-scale ones have fewer regions of large-amplitude degradation in CE
relative to the offline case.

We will rework the sentence after this (pp. 10, line 4-5) to make this point clearer.

e Revised with clarification (pp. 11, lines 15-18)
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Abstract. We examine the skill of a new approach to climate field reconstructions (CFRs) using an online paleoclimate data
assimilation (PDA) method. Several recent studies have foregone climate model forecasts during assimilation due to the com-
putational expense of running coupled global climate models (CGCMs), and the relatively low skill of these forecasts on
longer timescales. Here we greatly diminish the computational cost by employing an empirical forecast model (linear inverse
model; LIM), which has been shown to have comparable skill to CGCMs for forecasting annual-to-decadal surface temperature
anomalies. We reconstruct annual-average 2m air temperature over the instrumental period (1850 - 2000) using proxy records
from the Pages 2k Consortium phase 1 database; proxy system-models for estimating proxy observations are calibrated on
GISTEMP surface temperature analyses. We compare results for LIMs calibrated on observational (Berkeley Earth), reanaly-
sis (20th Century Reanalysis), and CMIP5 climate model (CCSM4 and MPI) data relative to a control offline reconstruction
method. Generally, we find that the usage of LIM forecasts for online PDA increases reconstruction agreement with the instru-
mental record for both spatial fields and global mean temperature (GMT). Specifically, the coefficient of efficiency (CE) skill
metric for detrended GMT increases by an average of 57% over the offline benchmark. LIM experiments display a common
pattern of skill improvement in the spatial fields over northern hemisphere land areas and in the high-latitude North Atlantic —
Barents Sea corridor. Experiments for non-CGCM-calibrated LIMs reveal region-specific reductions in spatial skill compared
to the offline control, likely due to aspects of the LIM calibration process. Overall, the CGCM-calibrated LIMs have the best
performance when considering both spatial fields and GMT. A comparison with the persistence forecast experiment suggests

that improvements are associated with the dynamical-evolutionlinear dynamical constraints of the forecast, and not simply

persistence of temperature anomalies.

1 Introduction

Climate field reconstructions (CFRs) aim to provide essential information on climate variability beyond the instrumental record.
These experiments take noisy and sparse proxies (e.g. tree rings, ice cores, isotope ratio measurements, etc.) and use them to
infer a spatial estimate of relevant climate variables. A common approach to CFR uses a statistical regression model calibrated
on the instrumental record to project as far into the past as data will allow (e.g. Mann et al., 1998, 2009; Smerdon et al., 2011b,

see Smerdon et al., 2011a for a discussion and comparison of methods). This-technique-provides-These techniques provide a
useful estimate of past spatial patterns (Wahl and Smerdon, 2012), but it-alse-has-also have inherent limitations. For example,
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regression-based CFRs assume climate state to be a function of the proxy data, which can lead to an underestimation of past
climate anomaly amplitudes (Smerdon et al., 2011b; Wahl and Smerdon, 2012). Furthermore, because regression methods
produce past spatial fields through combinations of primary variability modes (i.e. empirical orthogonal functions; EOFs), the
resulting field is not guaranteed to be a physically consistent solution.

An alternate method of performing CFRs known as paleoclimate data assimilation (PDA) can circumvent some of the lim-
itations inherent to regression-based methods. PDA broadly characterizes a set of techniques where observational information
from proxy data ean—be-eptimaly—is combined with dynamical information from climate models. Recently, the ensemble
Kalman filter (EnKF) was adapted for use with time-averaged observations like those used in CFRs (Dirren and Hakim, 2005;
Huntley and Hakim, 2010). Studies using the EnKF method and idealized psuedoproxy experiments have shown that it oper-
ates well under sparse data availability (Bhend et al., 2012), and outperforms modern statistical CFR methods (Steiger et al.,
2014). More recently, EnKF PDA was tested with real proxy data in the Last Millennium Reanalysis project (LMR; Hakim
et al., 2016), and shows promising skill in reconstructing robust spatial fields in a computationally efficient manner. Due to the
expense of performing coupled global climate model (CGCM) simulations and relatively low forecast skill, the initial EnKF
adaptation for PDA does not use a forecast and instead reconstructs each time period independently using climatological data.
This is known as an “offline” approach. The EnKF method is traditionally accompanied by forward model forecasts to translate
information between analysis time periods (e.g. reanalysis products of the instrumental era). Dynamical constraints from these
forecasts can increase physical consistency and reconstruction skill given that the model has sufficient predictability on proxy
timescales (e.g. Pendergrass et al., 2012). For CFR applications, predictability on seasonal and longer timescales is required.
Ocean memory can be leveraged for inerannual (e.g. El Nifio Southern Oscillation; ENSO) to potentially decadal predictability
(Branstator et al., 2012). However, at this timescale coupled climate models only seem to capture linearly predictable dynamics
(Newman, 2013).

Online assimilation has been attempted using other PDA techniques. Crespin et al. (2009) used forecasts from an earth
system model of intermediate complexity (EMIC) in conjunction with the ensemble selection PDA method (see Goosse et al.,
2006, 2010) to reconstruct surface temperatures, but did not investigate a comparison with an offline method. Annan and Har-
greaves (2012) performed a psuedoproxy experiment using a weighted ensemble selection method and a persistence forecast
to reconstruct surface temperatures, but found no benefit compared to their offline experiments. Matsikaris et al. (2015) took a
similar approach to Crespin et al. (2009), but used an ensemble of decadal forecasts from a coarse resolution CGCM instead of
an EMIC. The authors found that the use of CGCM forecasts had skill, but it was not discernibly superior to the offline method.
Possible reasons for the lack of improvement include low skill for regional decadal forecasts of temperature, and issues related
to ocean initialization for each decadal interval.

These results suggest that neither the simple persistence forecast, nor a small ensemble of decadal CGCM forecasts add
valuable-significant information to CFRs. In order to test the viability of a more traditional EnKF method we require the
ability to perform annual forecasts for longer time spans (the past millennium) and in large ensembles (~100 members). These

requirements rule out the use of a CGCM. Instead, we explore a simple, empirically-based forecast from a linear inverse model

(LIM; Penland and Sardeshmukh, 1995). A LIM encodes the linear dynamical properties of a system and produces forecasts
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that are subject to the constraints of its derived linear modes. The forecast skill of LIMs is such that they are currently used
for operational ENSO forecasts (Newman et al., 2009). Moreover, recent studies found-show LIM skill to be comparable to
the-skilt-that of CGCMs when performing annual-to-decadal hindcast experiments over the instrumental era (Newman, 2013;
Huddart et al., 2016).

In-this-workHere, we propose a computationally efficient “online” data assimilation approach for use in paleoclimate field
reconstructions. The primary goal is to investigate whether the addition of dynamical constraints with a forecast in the online
case can increase reconstruction skill relative to the offline EnKF method, which has no forecasting. We perform a series of
reconstruction experiments using annual forecasts from a cost-efficient LIM. Global average and spatial results-ef-the-online
reconstruetions-reconstructions from the online experiments are compared to results from both a persistence forecast method
and the offline method of Hakim et al. (2016). In Seet-Section 2 we discuss the basics of the EnKF method and define the use
of LIM forecasts in reconstruction experiments. Section 3 details the datasets used and the general experimental configuration.
Section 4 discusses and compares results between the online and offline reconstructions, followed by conclusions in Seet:

Section 5.

2  Online PDA

The Last Millennium Reanalysis (LMR) framework (Hakim et al., 2016) provides a setting to run many computationally
efficient realizations of an offline climate reconstruction. Here we begin with it as the basis for our implementation and inves-
tigation of online PDA. Central to the LMR framework is the use of the ensemble Kalman filter (EnKF; Kalnay, 2003), which
assumes gaussian distributed errors. The EnKF update equation (Eq. 1) describes the calculation of a posterior (analysis) state

vector X, through the optimal update to a prior (background) state vector X using proxy information,

Xa = Xp + K[y — H(Xp)]. (D

The innovation, [y — H(Xp)], characterizes new information content as a difference between proxy observations in vector y and
observations estimated from the prior by #(Xp) (hereafter denoted as y¢). () is a potentially non-linear operator that maps
the prior state into observation space. The Kalman gain matrix K, defined by Eq. (2), spreads information into the analysis

weighted by prior covariance and the observational error covariance matrix R

K = COV(Xp.Ye)[COV(YerYe) + RI @

where cov(a, b) represents a covariance expectation. The LMR framework uses a variant of the EnKF update, known as an

ensemble square root filter (EnSRF; Whitaker and Hamill (2002)). This process updates the ensemble mean and perturbations

from the mean separately allowing for the serial assimilation of proxy data, and simplification of the update calculations.
Typical implementations of the EnKF method include a ferward-model forecast between analysis times. As stated earlier,

the computational expense and low skill of CGCM forecasts prompted the use of the offline method where each year is
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reconstructed independently without forecasting. Here, instead of using static prior (X;) at the beginning of each reconstruction

year, the current year’s posterior analysis is forecast forward by one year with a LIM defined by

xL = GyXa. 3)

The term G+ is a mapping term calculated from the calibration of a LIM that maps the current state to a forecasted state 1-year
later. Details of the EnKF reconstruction algorithm can be found in Appendix A. The formulation of the LIM used here is

described in the following section.
2.1 Linear inverse model formulation

The linear inverse model (LIM; e.g. Penland and Sardeshmukh, 1995) used in this study closely follows the implementation

described in Newman (2013). The basic equation describes a linearized dynamical system

%:Lx+§ S

as the tendency of an anomaly state vector X, given by a linear-dynamical operator L, which is linearized about a mean state,
plus random white noise, . The dynamical operator L is assumed to be constant in time. After integrating (Eq. 4) in time, the

solution is a mapping of X at time f (in years) to a state at time { + 1

x(t+1)=Gx(t) + o(t) 5

where Gy is equivalent to e-. As in Newman (2013), we choose to empirically estimate Gy rather than L due to sampling
deficiencies of a few highly damped eigenmodes of L on an annual timescale. Each LIM is constructed using an EOF basis
retaining the leading 8 modes of variability. See Appendix B for a summary of the details associated with the Gy calculation.

While the simplicity of a LIM makes it well suited for the current application, it also has issues to be considered. First,
LIM forecasts are performed in-EOF-space-based-on-patterns-using an EOF basis derived from the calibration data. As-sueh;

he ANM—m a 2 MBEHeR—O OR A ha FOKE nd-an
- Y .

basis is used to maximize the variance captured by the fewest degrees of freedom. Although the dominant modes of variability.
can change in time during the reconstruction period, the space spanned by the variability cannot. This means that variability
that falls outside the span of the EOFs will not be resolved. A second issue is that the LIMs tend to be damped (modes of L.
decay in time), which reduces the ensemble variance; we elaborate on this issue in the next section.
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2.2 Ensemble calibration

In any ensemble forecast setting, a basic assumption is made-that the sample of ensemble members gives a good approximation
to the statistics of the full system (Murphy, 1988). Sampling error often results in too-small variance, which can cause “filter
divergence” where observational information is underweighted relative to the forecast prior and the ensemble variance collapses
toward zero. The online PDA technique presented here is especially vulnerable to filter divergence because all eigenmodes of
G, are damped (negative real eigenvalues). Moreover, the conversion of the analysis (Xa) into EOF space at each timestep
removes any spatial information that does not project upon the retained modes of a given LIM. Consequently, LIM forecasts
lose ensemble variance in time.

There are a variety of well-tested methods available to address information loss in the forecast ensemble. Here we use an
adaptation of the hybrid ensemble Kalman filter—3D variational scheme (Hamill and Snyder, 2000) to prevent filter divergence
and to facilitate comparison with the offline PDA technique. This technique handles the loss of ensemble variance in the
forecast ensemble (xg) by blending it with a static source (x7), which is the same climatological prior that swould-be-is used
independently for each year in the offline method. As a result, the update equations use a blended prior state )"(lf, (Eq. 6) and a

blended Kalman gain term K (Eq. 7):

%) = ax)+(1— a)xg (6)
(a)cov(XL,¥L) + (1 — a)cov (xS, ys)
(a)cov (Y5, L) + (1 — a)cov(ys,ys) + R

~
]

(7

Appendix A provides details on how this is incorporated into the reconstruction algorithm.

In these hybrid DA equations, the parameter a controls the relative weighting between static and forecast information
sources. When a = 0.0, reconstructions are identical to the offline case wherein the prior )“(Z is reset to the static prior for
every year with no blending. Fer-the-oppesite-ease;-When a= 1.0, only forecast information is used with no contribution from

static information.

3 Data and experimental configuration

The relative forecast skill of a LIM is dependent on the data used to empirically derive the mapping term Gy. For this reason,
we explore LIMs calibrated on four different data sets. CGCM calibration data are used from two last-millennium climate
simulations in the Coupled Model Intercomparison Project phase 5 (CMIP5; Taylor et al., 2012): the Community Climate
System Model v4 (CCSM4; Landrum et al., 2013) and the Max Planck Insitute Earth System Model paleo-mode (MPI). These
simulations cover a 1000 year pre-industrial (850—1850 C.E.) time period including volcanic forcing events (aerosols and
greenhouse gases), solar variability, and human-related land cover changes. The 20th Century Reanalysis (20CR; Compo et al.,
2011), a DA synthesis of observations and a weather forecast model, provides over 150 years of reanalysis data spanning the

instrumental record (1850-2012). Finally, we use the Berekely Earth surface temperature dataset (BE; Rohde et al., 2013)
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as-an-for observational calibration. BE provides a 60-yearsample-65-year sample (1960-2014) with nearly complete global
coverage. The different LIM calibration datasets used here span linear modes of predictability derived from model space to

that of observations.

The basic configuration we use for all experiments, including the offline control, involves a choice of data to sample as
the prierstatic prior ensemble, an instrumental data source to calibrate proxy observation models, and a proxy record dataset.
For the static prior, we use annually-averaged 2m air temperature anomalies from the CCSM4 last-millennium simulation.

The linear-observation models for proxy data are calibrated against the NASA Goddard Institute for Space Studies surface

temperature analysis dataset (GISTEMP; Hansen et al., 2010) by linearly regressing the proxy timeseries against the nearest
rid point in the calibration data (for details, see Hakim et al., 2016). All experiments use annually-resolved proxy records from

the PAGES 2k Consortium (2013) database. These proxies have been ascertained to covary regionally with temperature and
include: tree rings, ice cores, corals, sediment cores, and speleothems. Only proxies with a minimum of 10 years overlapping
with the observation model calibration data, and a minimum calibration-fit correlation of 0.2 are used. It should be noted that
the correlation threshold is not strictly necessary, but Hakim et al. (2016) found that this threshold did not quantitatively affect
the reconstruction results. Here, the reduction in proxies to those with more information helps reduce computational costs,
allowing a larger number of reconstruction experiments.

We reconstruct annual-mean 2m air temperature anomalies for the period of 1850-2000 C.E. as in Hakim et al. (2016).

Using the four LIM calibrations, we search the parameter space of 0 < g < 1 for an-eptimal-a weighting between static and

forecast information sources in-our-hybrid PDA-framewerkthat improves the reconstruction compared to the offline method.
We judge improvements by means of our chosen skill metrics (CE, correlation, and CRPS) for both GMT and spatial fields.

Additionally, we perform a persistence experiment for comparison against LIM-based performance where the posterior for
year - is used as the prior for year A+t + 1. The persistence forecast uses the same hybrid PDA blending scheme as the LIM
forecast experiments to mitigate the effects of reductions in ensemble variance from the assimilation process. We account for
the sensitivity to the proxy data used in a CFR through random resampling of available proxy data and the static prior ensemble.
In-asinglerealization-A single realization uses a random sample of 75% of the usable proxy records, and a 100 member sample
of anomaly states from the priorseuree;-are-seleeted. A total of 100 realizations are performed for each LIM calibration and
blending coefficient. In order to make the realizations consistent between the experiments using different blending coefficients,
we ensure the same sequences of random samples are taken by seeding the random number generator for each a-value. In total,

this gives 10* reconstructions of the climate state for each experiment. These reconstructions are then averaged to give the final

analysis. See Section S1 in the supplementary information for a brief discussion of the computational costs associated with
these experiments.

3.1 SKkill metrics

The primary skill metrics used are correlation and the coefficient of efficiency (CE; Eq. 8,9; Nash and Sutcliffe, 1970). Correla-

tion gives an overall sense of signal timing (phase), while CE is a stricter metric that is sensitive to signal timing, amplitude, and
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bias. Using these metrics, we compare the reconstructed ensemble-mean' values x against GISTEMP verifieation-validation
values v. The value 7 represents the number of verification-validation times available (in this case representing the period
GISTEMP timespan of 1880 - 2000), an overbar (e.g. V) denotes a temporal average, while o, and o, are the standard devia-

tions of the respective time series. Skill scores are compared for the reconstructed global mean temperature (GMT) and spatial

grid points.
corr = 12 (Xt —X) (v — V) )
T4 OxOy
2
CE -1 - Ll x) ©)

Z,_ Vi — )2
We also use the continuous ranked probability score (CRPS; Gneiting and Raftery, 2007) as a comparison against CE skill

metrics.

T K K K
1 . 1 v
crPs =3[ 2 :’xt(’)—v,‘——ZKZE S :’xt(’)—x,(’)’ (10)
=1 i i

The CRPS is considered to be a ‘proper’ scoring technique which prevents manipulations of the data from overestimating the
reconstruction skill; the measure reflects the mean absolute error and narrowness of the ensemble distribution. We use the
CRPS as defined in Tipton et al. (2016) to calculate the CRPS of the reconstructed GMT for each realization (Eq. 10) where
Xt(i) denotes a single member of a K-member ensemble. We take the score as the average CRPS over all realizations and use

a Kolmogorov-Smirnov test on the resulting distribution to determine whether it is significantly different than the offline case

with 95% confidence. As defined here, lower values of CRPS indicate better performance with a limiting case of CRPS = 0
being a perfect ensemble fit (no error and no ensemble spread).

4 Results and discussion
4.1 Verifieation-Validation of global mean temperature

Figure 1 displays global mean 2m air temperature (GMT) results verified-validated against GISTEMP for all tested values of
the blending parameter a. Every case except for the persistence forecast method yield-yields CE values greater than the offline
case. Correlations are higher than the offline benchmark for all experiments, including the persistence forecast. Best skill is
achieved between the a-values of 0.7 to 0.9 with a steep drop in verifieation-validation skill as & approaches unity (a pure
LIM forecast) due to filter divergence (the ensemble variance decreases with time, decreasing the weight on the proxies, so
that the reconstructed states diverge from reality). The CCSM4 and 20CR LIM display the best overall CE performance with

a 9% improvement over the offline method. These two experiments also display a 2% increase in correlation and have slightly

'Ensemble mean represents the average taken over all ensemble members and all realizations.
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smaller correlation than the persistence forecast experiment (Table 1). Correlations—for-the-Figure 2 shows the reconstructed

GMT from each experiment at the best blending coefficient (with respect to CE) compared to GISTEMP and the offline case.
As evidenced by the high skill scores, the reconstructions capture the variability in the global temperature signal of GISTEMP
quite well. Compared to the offline experiment, the forecasting experiments tend to decrease the amplitude of the interannual
variability, which is at times largely overestimated by the offline experiment, and they tend to change the overall warming
trend. There is no apparent systematic bias in the reconstructed GMTSs, so skill changes for the different experiments are likely.
controlled by these two factors. Figure 3 displays the bootstrap estimate of 95% confidence bounds for reconstructed GMT
CE, correlation, and trends at the same blending coefficients as chosen in Figure 2. For these blending choices, the CE scores
for all LIM experiments show significant increases compared to the offline CE, while the persistence, 20CR, CCSM4, and
MPI experiments ﬁ%mm@m
trends fall within the 95% confidence
CE-changesfor-al-LiM-experiments-are-also-signifieantinterval of the GISTEMP trend, except for the persistence case. The
LIM experiments show trends much closer to the mean estimated GISTEMP trend than the offline case. CRPS values for-the

GMT-results-across blending coefficients (Fig. 4) are-generally-consistent-with-thesefor-the-CE-skill-metrie-* show similar
skill behavior as the CE metric (albeit mirrored in the Verticalz)QVSpeciﬁcally, GMT wvertfieation-validation with CRPS shows

that all LIM ferecasting-experiments outperform the offline method, with the CCSM4 and 20CR LIMs again having the best
performace (18% better than the offline case). All LIM experiments’ best CRPS scores are also significantly better than the

offline case with 95% confidence. There-By and large, CRPS is giving nearly equivalent information as CE about the skill of

the GMT reconstruction. However, as CRPS is a different metric, there are slight differences in results for the MPI and BE

LIM cases when comparing CE and CRPS: the blending coefficient achieving the best score shifts to the next highest a-value
in both cases, and the BE LIM outperforms the MPI LIM when considering CRPS (Table 1).

Both the CE and CRPS measures for different blending coefficients are affected by the degree of fit to the warming trend in
the GISTEMP reference. The trends for all experiments are shown in Fig. 5. The trend of the offline case (a = 0) is 0.62 K/100
yrs, about 0.07 K/100 yrs above the GISTEMP trend and near the edge of the GISTEMP trend 95% confidence interval (Figure
3). However, for the MPI and CCSM4 LIM experiments, as well as the persistence forecast experiment, the reconstructed
trend increases as the blending parameter a increases. This increase in trend away from the GISTEMP trend for the MPI and
CCSM4 experiments is reflected in the lowered CE (Fig. 1) and CRPS (Fig. 4) for the a-values from approximately 0.0 to
0.6. The reconstructed trend from the two CGCM-based LIM experiments begins to decrease around a = 0.6 where CE also
shows a significant increase towards maximum values. The persistence forecast trend has the largest disagreement, increasing
to approximately 0.72 K/100 yrs for a = 0.9, which results in the CE and CRPS never surpassing the offline benchmark in this
case. The 20CR LIM only increases the reconstructed trend slightly over the GISTEMP trend for middle a-values. The BE
experiment has a decreasing trend for increasing a, and drops to a very low trend of 0.38 K/100 yrs when a = 0.9. Interestingly,

though the trends for the MPI, CCSM4, and 20CR experiments are below that of the GISTEMP trend for a = 0.95, their skill

2

*Best results for CRPS occur at minimum values instead of the maximum,
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still outperforms the offline case in all three metrics. Despite the mismatch in the overall trend, these online forecasting methods
still produce better matches of phase and amplitude of GMT variability for the reconstructed anomalies compared to the offline
case.

The trend results also illustrate the relative amount of proxy data utilization between these different experiments. Given
that every experiment uses the same prescribed list of seeds to generate proxy record samples, the differences in reconstructed
trend can only arise from differences in weighting of the proxies or the LIM forecasts. Since LIMs are calibrated on detrended
data and their forecast modes are damped, the forecast contribution to a long-term trends-global mean trend is likely small;
these-trends-are-the trend is instead governed by utilization of proxy information. For the EnKF PDA method, the weighting
of information is controlled by the prior ensemble variance and proxy error variance. The proxy error variance is fixed for all
experiments we perform, so the changes in the reconstructed trend are a result of how the LIM forecasts affect the ensemble
variance. In all forecast experiments, skill and the reconstructed trends drop off severely as a approaches 1.0. When using only
forecast information (& = 1.0), the ensemble variance collapses due to the damped properties of the LIMs, which results in filter
divergence. The BE LIM case reaches its maximum CRPS and CE values at smaller a and also has the lowest reconstructed
trends of the LIM experiments. This suggests the BE forecast produces less ensemble variance than the other LIMs, possibly
due to forecast mode damping or poor projection of the posterior analysis into the LIM EOF space. The eigenvalues of the
BE LIM’s leading two forecast modes have e-folding times of 5.4 and 1.5 years, respectively. This is in the same range of the
leading forecast modes of the CGCM-calibrated LIMs (e.g. 3.7 and 1.2 year e-folding times for the MPI LIM). Consequently,
a poor projection of the analysis ensemble onto the forecast modes of the BE LIM is likely the cause of the reduced ensemble
variance. The persistence forecast displays an interesting disparity between the skill metrics; overall, it performs the best
in correlation, but the worst in CE and CRPS. Having the largest reconstructed trend suggests that the persistence case has
the highest weighting of proxy data. With a persistence forecast there is no damping of reconstructed spatial anomalies or
truncation of the ensemble variance from projection into EOF space. The resulting higher proxy weighting may explain why
the persistence case correlation is better than the other forecasting methods. The linear observation models ased-to-estimate
observations-in each case are based on a calibration against GISTEMP-Prexies-thathave-, so proxies with a better calibration fit
(higher correlation) with GISTEMP have less error variance, and therefore, have more influence on the posterior analysis. The
persistence case allows more information from the influential (well-correlated) proxies into the analysis because the ensemble
prior variance is larger. However, from the CE and CRPS values, which are sensitive to more than just signal phase matching,
it is clear the general trend mismatch degrades the quality of the persistence fereeastreconstruction compared to the offline
benchmark.

Removing the linear trend from each case allows for an examination of how well the reconstructions capture variability
not associated with the warming trend (i.e. interannual and decadal variability; evident in Fig. 6). Generally, the performance
increases for the detrended data over the offline case are much larger than for the full time series. Compared to verification
validation with the full time series, the correlation of the detrended offline case drops from 0.9 to 0.67, and the CE drops
from 0.77 to 0.29 (Table 2). With respect to CE, all experiments (including the persistence method) improve upon the offline

benchmark. The 20CR LIM achieves the best improvement over the offline case (72% increase), while the persistence case
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shows the least improvement (35% increase). Except in the BE LIM experiment, detrended correlation metrics again increase
slightly over the offline case. The BE LIM hovers around the benchmark correlation for 0.0 < a < 0.7 and then drops below
it. A CE improvement with no change in correlation implies that the BE LIM improves the detrended anomaly amplitudes and
bias, but does not improve the signal timing compared to the offline case.

The CE and correlation skill metrics of the offline experiment both decrease when calculated on the detrended GMT. In
contrast, the CRPS improves by 7% (minimizing from 12.5 to 11.6). CRPS rewards reduction in mean absolute error, and
‘narrowness’ of the forecast ensemble, whereas CE and correlation depend more on variance properties of the reconstructed
time series. In removing the linear warming trend, we remove a large degree of the time series’ variance and subsequently lose
the associated skill in CE and correlation. In the case of CRPS, the linear trend is only a source of mean error when it does
not closely match the reference trend. Since-When we remove the trend, while-not-affecting-the-ensemble-spread;-the-the mean
errors decrease (the ensemble spread is unaffected) and the CRPS metric improves. Figure 7 shows CRPS for all blending
coefficients with detrended data. The behavior is quite similar to the full GMT CRPS, but-and as the detrended CE reflects,
even the persistence forecast shows improvement over the offline method. An aspect that stands out with detrended CRPS is
that the persistence forecast achieves the best value when a=1.0. A cursory examination of the detrended GMT timeseries
of the persistence case compared to the detrended GISTEMP GMT timeseries (rot-shownsee supplement; Figure S1) reveals

that it captures some decadal variability over the instrumental record, but virtaally-none of the interannual variability; i.e., the

a = 1.0 persistence reconstruction gives a smoothed representation of the GMT. This again highlights a difference between the
two metrics of CE and CRPS. The CRPS metric, which generalizes to the mean absolute error of the ensemble summed over
time, does not penalize the smoothed GMT signal approximately bisecting the interannual signal for a = 1.0. The CE metric,
which sums the squared errors of the ensemble mean and then normalizes by the climatological variance, does penalize this

behavior.
4.2 Verifieation-Validation of spatial fields

Here we examine-compare the skill of the spatial fields against-with the offline case using correlation and CE; CRPS is omitted

because the full spatial field ensembles are too large to store.

i#r-For ease of visualization, we provide CE difference maps to highlight changes relative to the offline case, but full spatial skill

maps can be found in the supplementary material (Figures S2 and S3). Over the globe, skill is mostly positive, but there are a few

regions with highly negative skill departures such as the Southern Hemisphere oceans and in-the high-latitude North Atlantic

to Barents Sea corridor (Fig. 8). In the high-latitude Atlantic region. the proximity to the sea ice edge seems to negatively affect
the ability to constrain the temperature field when using only proxies. All LIM-forecasting cases show improvements to CE
mostnotably-in the same North Atlantic to Barents Sea area, and across northern Europe into Asia; there are also smaller
skill increases across western North America. Fhe-Studies of LIM predictability have shown the North Atlantic/Barents sea
region can have forecast skill on annual and longer timescales (e.g. Hawkins and Sutton, 2009; Newman, 2013). This may be
one reason why skill increases are common in this area for all LIM experiments. An inspection of grid point temperature values
northeast of Iceland (see supplement; Figure S5) shows that the reconstructed temperature variance is largely overestimated in
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the offline case, and that there is a slight trend in the reconstruction that is not present in GISTEMP data. The CE increase for

the CCSM4 LIM experiment (increasing from -7.2 to -1.7) relates to a temperature variance reduction by approximately 70%
compared to the offline case. The CCSM4, MPI, and BE LIMs generally show large CE increases in the high-latitude southern

ocean. In contrast, the reconstruction with the 20CR LIM does not improve the southern ocean at all and has large deficiencies
over many ocean areas. The persistence case generally shows decreases in CE across large areas of the globe. Of the global
mean CE for each grid, the CCSM4 LIM gives the best performance, increasing the global mean CE by 0.09, followed by
the MPI LIM with an improvement of 0.06. The 20CR and persistence cases show decreases in average spatial skill across
the grid, with the 20CR being worst with a global mean CE change of —0.18. The BE LIM, while showing improvements
over North Hemisphere land areas, has compensating decreases in ecean-skill-skill over the ocean that make the global mean
CE nearly equivalent to the offline case. All global mean CE values, except in the BE LIM case, are significantly different (at
95% confidence) from the offline case when comparing grid point skill distributions using a Student’s t-test. Changes in spatial
correlation (rot-shewnsee supplement; Figure S4) are generally small in regions where the-CE-inereased-suggesting-that CE
increases, which suggests improvements are not related to signal phasing;-hewever, However, some of the large decreases in
CE for the 20CR, BE, and persistence experiments do coincide with areas of correlation decreases.

In the spatial results, there is a clear distinction between LIMs calibrated on data from the shorter instrumental era (20CR
and BE), and the millennium-scale climate simulation data (CCSM4 and MPI). Compared to the offline spatial skill, large areas
of CE skill degradation are apparent for both the 20CR and BE LIM reconstructions. The 20CR LIM CE skill degredations

are large in amplitude (ACE< —1) and mostly over ocean regions. It is surprising that the 20CR LIM has the worst spatial
skill given that it has the best GMT timeseries CE skill. Theleading EOF-foreach-EiM-ealibrationreveals-a-differencein-spatiat

structure-thatformspartof-the forecastbasis(Fig-However, previous CFR studies show similar results (Annan and Hargreaves, 2012; Wan

the spatial averaging over a poorly reconstructed field can boost the signal-to-noise ratio for large-scale indices enough to result
in positive index skill. The situation is somewhat different in this study. In the offline case, spatial skill is reasonably positive,
but when adding 20CR LIM forecasts, the spatial CE skill decreases and the GMT CE skill increases. A possible interpretation
for this behavior is that the degradation in spatial field fidelity is compensating for aspects of the GMT that are overestimated
in_other experiments. For example, the offline reconstructed GMT overestimates interannual variability during certain time
periods when compared to GISTEMP, but the usage of LIM forecasts mitigates this effect. Compared to the CCSM4 LIM
experiment, the reconstructed GMT for the 20CR LIM experiment reduces the sum of the squared error (numerator term in
CE) by approximately 5%. The bias accounts for only about 1% of the total sum squared error term, which leaves the trend
and anomaly amplitude agreement as primary candidates for the error reduction. As shown earlier, the 20CR GMT trends tend
to track lower than the two CGCM LIM experiments and closer to the GISTEMP trend (Figure 5). The trend reduction in the
20CR experiment appears to be caused by large areas of negative trends in the Southern Hemisphere (see supplement; Figure
S6)..

The reason behind the poor spatial performance of the 20CR LIM appears to be linked to its EQF basis (Figure 9). The
leading EOF of the 20CR experiment lacks the ENSO/PDO-like pattern of the other LIMs and instead focuses on vari-

ability structures reoted-in the southern oceanwhere—relatively—. This is a region of high variability due to its proximity to
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the storm track, but there are also fewer pressure observations are-available for assimilation ;—many—ef-the-by the 20CR
see Figure 3 in Woodruff et al., 2011), especially during the early ortion of the record. Many of the large decreases in CE

are located in these same regions-

skill problems-everlarge ecean-areas-Onereason-theskill-efthe, which leads us to speculate that the features of the 20CR LIM
may be influenced by artifacts in the 20CR dataset. Another consideration for the lower performance of both instrumental era
LIMs may-be-different-is that they are based on shorter records that coincide with variability related to anthropogenic forcing.

The BE LIM displays a prim: EOF more similar to the CGCM-based LIMs, but still has skill problems over large ocean

areas. Separating the global warming trend from the LIM by means of linear detrending is bound to leave residual signals

that affect LIM forecast modes. A LIM based on a shorter record may not have enough of a sample to properly characterize
representative modes of variability over a longer time span. While the BE LIM is based on enly-66-65 years of data, it produces
much less spatial skill degradation than the 150 years of 20CR data. This suggests there may be inconsistencies-in-variability

caused-by-observational-coverage-and-the-data-confounding factors influencing the skill in the 20CR experiment between the
length of record, linear detrending, and the assimilation method used in-ereating-to create the 20CR datasetdata.

5 Conclusions

We have outlined and tested a new method for performing online paleoclimate data assimilation (PDA) for climate field recon-
structions (CFRs) using linear inverse models (LIMs). We tested four different LIMs empirically derived from surface temper-
ature data from the following data sets: Berkeley Earth (BE), the 20th Century Reanalysis (20CR), and two last-millennium
climate simulations (CCSM4 and MPI) from the Coupled Model Intercomparison Project phase 5 (CMIP5). We also performed
a persistence forecast experiment for comparison. In general, we find that LIM-enabled online assimilation improves upon the

offline results for both the global average and spatial field of 2m air temperature.

Withrespeetto-GMTvertfication;Broadly speaking, the LIM experiments show targe tmprovements-good ability to reconstruct
many aspects of the GISTEMP GMT data including interannual and low fregency variability. The largest skill improvements
occur for skill metrics calculated on the detrended GMT, which suggests the LIM forecasts are adding useful information at

interannual timescales. The coefficient of efficiency (CE) valuesfor detrended metrics show an average increase around 57%,
while correlations increase around 4%. The continuous ranked probability score (CRPS) metrics increase by an average of 15%
across all LIM experiments. Skill metrics tend to maximize for blending coefficients with a higher weighting efflow-dependent
on LIM forecast information (0.7 < g < 0.95). Spatial skill reveals that the addition of LIM forecasting provides spatial infor-
mation in regions where the offline method performs poorly— including North Hemisphere land areas, and the North Atlantic
to Barents Sea corridor. Large skill improvements seen in the North Atlantic through Barents Sea region are primarily a result
of better constraining the temperature variance at these locations. The two LIMs calibrated on instrumental era data (20CR and
BE) display large regions over the ocean where the skill degrades compared to the offline case. Even with the large areas of
improvement, the 20CR LIM decreases the area-weighted average CE (—0.18), and the BE LIM area-weighted average breaks
even. In contrast, the two CGCM-based LIM experiments show area-weighted average CE increases of 0.09 (CCSM4) and
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0.06 (MPI), respectively. When considering both GMT and spatial skill results, the CGCM-based LIMs have the best overall
performance with the CCSM4 LIM slightly outperforming the MPI LIM. The persistence forecast fails to improve the more
stringent GMT skill metrics (CE and CRPS) as well as general spatial skill, but does well in GMT timeseries correlation.
Subsequently, this suggests that the improvements of online reconstructions when using a LIM are due to forecast information
and not simply the addition of temporal persistence.

Though we are reconstructing instrumental era surface temperatures, it is an interesting result that CGCM-calibrated LIMs
based on last millennium (850-1850) simulations have the best overall performance. This could mean that having long-running
samples of variability that do not contend with majorseurees-of-variability related-to-influences from anthropogenic forcing are
beneficial for reconstruction purposes. The LIMs used in these experiments were all calibrated on data with the least-squares
linear fit trend removed. In order for LIMs based on observational data sources to achieve similar results, it may be necessary
to employ a more sophisticated method of filtering out the global warming signal. However, one benefit of using CGCM-based
LIMs is that it enables forecasts for a much larger set of climate-related quantities than are available from observations alone.

In this work, we have shown that we can improve both GMT and spatial field skill over the offline EnKF PDA method
through the inclusion of a simple forecast model. A previous comparison of offline and online PDA using a CGCM as a
forecast model found no discernible difference in reconstruction skill (Matsikaris et al., 2015), and earlier studies of the EnKF
PDA method forewent the usage of forward models citing insufficient model skill to justify the expense (Bhend et al., 2012;
Steiger et al., 2014). Our results show that an online method can increase reconstruction fidelity, and more importantly that it
can be done using an empirical forecasting method that is nearly as computationally efficient as the offline approach. As such,
this method provides a useful foundation for further investigation of incorporating dynamical constraints of a forecast model

into climate field reconstructions.

Appendix A: Online assimilation algorithm

This section details the data assimilation equations used to perform paleoclimate field reconstructions, and the algorithm steps

for a single realization of an online climate reconstruction.
Al Ensemble square root filter (EnSRF)

The EnSRF approach (Whitaker and Hamill, 2002) uses an ensemble sampling approach to solve the Kalman filter equations
by separating the ensemble mean (Zp) and ensemble perturbations about that mean (z}, = z, — Z). Note that z, represents an

Xb . . . .
augmented state vector, z, = , combining the prior state (Xp) and the estimated observations (Y¢). The EnSRF method

Ye
allows for the serial assimilation of proxy observations using the equations
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2, =2, +K[y; — Veil (AD)
2, =z, +Ky/, (A2)

for each proxy i =1,..., p. The mean state Z, is an m x 1 column vector, the ensemble perturbations z} is an m x n matrix, the
mean estimated observation for proxy /, ¥e;, is a scalar value, and perturbations about the mean estimated observation yZ; is a

1 x nrow vector. Note that when observations are serially assimilated, the Kalman gain (Eq. 2) is-simplified-simplifies to

K= M (A3)
var(y’;) +o?

i
where o2 is the observational error for proxy y; and the denominator is now a scalar value . The perturbation update equation

K is given by

—1
2

K= — i | K (Ad)
var(y,;) +o;

Finally, to adapt the hybrid assimilation scheme into the EnSRF method, we incorporate the data source blending as shown
in Eq. (7). At this point, the blended state (22) contains both flow dependent and static {elimatologicab)-information. After

incorporation, the Kalman gain (Eq. A3) becomes

(a)cov(2].§%) + (1 — a)cov(zf . yS)

K= A5

(a)var(y) + (1 — a)var(ys) + o (&)
the perturbation Kalman gain (Eq. A4) becomes

—1
R \/ i K (A6)
K= |1+ — ,
(a)var(yl) + (1 — a)ys; + o2

and the mean and perturbation updates from Eq. (A1) and Eq. (A2) become
2,=2,+Kly; — Vi, (A7)
z, = 2] + Ky~ (A8)

A2 Assimilation algorithm

1. Choose a static ensemble prior (X3) of n members, and group of p proxies (y) to assimilate.
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2. Calibrate observation models for each proxy record by applying a univariate linear fit against co-located instrumental

data.

3. Create an estimated observation ensemble (y$) for each proxy record using their corresponding observation model and
S
Xp

augment the prior ensemble to form the static state ensemble, 2} =
Yo

. This an (m+ p) x n state vector that will be

updated during assimilation.

4. For each reconstruction year:

(a) If not the first reconstruction year, then reset zj back to the original static prior and form a blended prior (2{)) using
Eq. (6).
(b) For each proxy y; fromy =[y1, s, ..., Yol
i. If the current proxy has no observations for the current year, then skip to the next proxy
ii. Else, select the matching estimated observations (92,-, y$;) corresponding to the current proxy y; from the
augmented states (2], z§).
iii. Calculate the mean and perturbation of the estimated observations and augmented state vectors for use in the

serial ensemble square root filter method.

iv. Use the perturbations of 2[,, z;, 92,-, y3; to form a blended Kalman gain terms-as shown in Eq. (A5) and Eq.
(A6).

v. Update the mean and perturbations of 22 and z{ by using the blended gain matrices from the-previeus-step-step_
iv in Eq. (A7) and Eq. (A8).

vi. Reassemble z, and z$ by adding the ensemble mean back into the perturbations. These will be used for the

next proxy assimilated as 2} and z§.
(c) After all proxies have been assimilated, extract the climate field X, from the augmented analysis state z.
(d) Perform a LIM forecast on X, using Eq. (3) resulting in XZ.

(e) Recalculate the estimated observations yfe from XZ and augment the state to form z[,.

() Return to step 4.(a).

Appendix B: LIM calibration

The following steps are performed to empirically derive a LIM from a given data source. The steps detail how we find the

mapping term Gy shown in Eq. (5).
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1. If the calibration data contains seasonal signals (e.g., monthly data), then they are removed by smoothing data with a

1-year running mean.
2. The data is converted into anomaly format by removing the climatolical mean for each individual month.

3. The resulting anomaly is detrended. This removes a large degree of the skill found by Newman (2013) when using

instrumental data, but we are focused on forecasting modes of interannual variability, not the secular warming trend.

4. The detrended anomaly data is projected into EOF space where the leading 8 modes of variability are retained. The
number of modes retained encompasses those with e-folding times (decorrelation time scales) near 1-year or greater
based on analysis of Gy (as calulated in the following step) in these experiments. The near-1-year threshold was chosen
because forecast modes with e-folding times much less than 1-year have a small impact on annual forecasts due to the

relatively quick signal decay.

5. Finally, we determine G¢ based on the lag-covariance statistics of the calibration data. Specifically, we solve C(1) =

G1C(0) is solved for Gy C(1) = (x(t+1)x(t)").
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Figure 1. Comparison of global mean 2m air temperature coefficient of efficiency (CE; left) and correlation (right) metrics for different
blending coefficients. The colored lines represent the different LIM calibration experiments using data from the Community Climate System
Model v4 (CCSM4), NOAA 20th Century Reanalysis v2 (20CR), Max Plank Institute Earth System Model (MPI), Berkeley Earth Surface

Temperatures (BE); or the persistence forecast case (Persist). The offline benchmark is depicted as the horizontal dashed black line.
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Figure 2. Reconstructed global mean 2m air temperature compared to GISTEMP (solid black) and the offline experiment (dotted black) for

each online experiment. The GMT plotted for each forecasting experiment is from the blending coefficient that achieves the highest GMT

CE skill (CCSM4: a=0.9, MPI: a=0.9, 20CR: a=0.9, BE: a=0.7
shows the three forecasting experiments with the highest GMT CE score, while the bottom row shows the other two experiments.

except for the persistence case where a = 0.9 was used. The top row
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Figure 3. Bootstrap uncertainty estimates (95% confidence interval) for CE scores (left), correlation (middle), and GMT trends (right). The
blending coefficient that achieves the highest GMT CE skill is shown for each experiment (CCSM4: a= 0.9, MPI: a=0.9, 20CR: a=0.9,

BE: a=0.7) except for the persistence case where a = 0.9 was used.
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Figure 4. Comparison of global mean 2m air temperature continuous ranked probability score (CRPS) for different blending coefficients.
The colored lines represent the different forecasting experiments, while the offline benchmark is depicted as the horizontal dashed black line.

Starred points indicate a statistically significant (95% confidence) difference between the offline benchmark and online experiment.
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Figure 5. Calculated trends from a least squares fit against the reconstructed global mean 2m air temperature (1880 - 2000). Colored lines
depict the calculated trends for each LIM experiment across a range of blending coefficients, while the black lines represent the benchmark

trends calculated from the offline reconstruction (dashed) and GISTEMP data (solid).
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Figure 6. Same-as-inFiguret-but-with-the linear-trend-remevedfrom-the-Comparison of detrended global mean 2m air temperature data
before-catentation-of skitk-CE (left) and correlation (right) metrics across different blending coefficients for all experiments. The colored lines
represent the different forecasting experiments, while the offline benchmark is depicted as the horizontal dashed black line.
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Figure 7. Comparison of detrended global mean 2m air temperature continuous ranked probability score (CRPS) for different blending
coefficients. The colored lines represent the different forecasting experiments, while the offline benchmark is depicted as the horizontal

dashed black line. Starred points indicate statistical significance (95% confidence) between the offline benchmark and online experiment.
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Figure 8. Spatial maps displaying the difference in coefficient of efficiency (CE) from the offline case. Difference maps are displayed for each
forecasting experiment using the blending coefficient that achieves the highest full GMT CE skill (CCSM4: a=0.9, MPI: a=0.9, 20CR:
a=0.9, BE: a=0.7) except for the persistence case where a = 0.9 was used.

The reference CE of the offline case is shown in the upper left, and uses the same color scale as the difference maps. Area-weighted global

average differences are given in the title of each panel. All global mean differences except in the BE LIM case are significantly different than

the offline benchmark with 95% confidence.
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Figure 9. Leading empirical orthogonal function (EOF) from the basis for each LIM calibration. The total fraction of the variance explained

is given in the title of each panel. All EOFs have been multiplied by their corresponding singular value.
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Table 1. Best value of the coefficient of efficiency (CE), correlation (r), and continuous ranked probability score (CRPS) verifieation
validation metrics for global mean 2m air temperature. For each experiment, best values are given with the corresponding blending co-
efficients (&) that achieved it and the percentage change compared to the offline case. A (*) indicates which experiment achieved the best

performance in a given metric. Offline verifieation-validation metrics are given for reference.

Ful GMT MaxCE %ACE CEa-value Maxr %Ar ra-value Min CRPS %ACRPS CRPS a-value

Offline 0.77 0.90 12.5
Persist 0.77 0 0.0 *0.93 3 0.9 12.5 0 0.0
BE 0.82 7 0.7 0.91 1 0.8 10.7 -14 0.8
CCSM4 *0.84 9 0.9 0.92 2 0.8 *10.2 -18 0.9
20CR *0.84 9 0.9 0.92 2 0.9 *10.2 -18 0.9
MPI 0.83 8 0.9 0.91 1 0.8 10.8 -14 0.95
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Table 2. Best value of the CE, correlation, and CRPS verifieation-validation metrics for detrended global mean 2m air temperature. For each
experiment, best values are given with the corresponding blending coefficients (&) that achieved it and the percentage change compared to
the offline case. A (*) indicates which experiment achieved the best performance in a given metric. Offline verifieation-validation metrics are

given for reference.

Detrended GMT MaxCE %ACE CE a-value Maxr %Ar ra-value Min CRPS %ACRPS CRPS a-value

Offline 0.29 0.67 11.6
Persist 0.39 35 0.9 *0.74 11 0.9 10.1 -13 1.0
BE 0.43 48 0.8 0.67 0 0.1 10.0 -14 0.9
CCSM4 0.46 59 0.9 0.70 5 0.7 9.8 -16 0.9
20CR *0.50 72 0.9 0.71 6 0.9 *9.6 -17 0.9
MPI 0.43 48 0.9 0.69 3 0.7 10.1 -13 0.95
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