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Abstract 26 

Data assimilation (DA) has been successfully applied in the field of paleoclimatology 27 

to reconstruct past climate. However, data reconstructed from proxies have been 28 

assimilated, as opposed to the actual proxy values. This banned to fully utilize the 29 

information recorded in the proxies. 30 

This study examined the feasibility of proxy DA for paleoclimate reconstruction. 31 

Isotopic proxies (δ18O in ice cores, corals, and tree-ring cellulose) were assimilated into 32 

models: an isotope enabled general circulation model (GCM) and forward proxy models, 33 

using offline data assimilation.  34 

First, we examined the feasibility using an observation system simulation experiment 35 

(OSSE). The analysis showed a significant improvement compared with the first guess in 36 

the reproducibility of isotope ratios in the proxies, as well as the temperature and 37 

precipitation fields, when only the isotopic information was assimilated. The 38 

reconstruction skill for temperature and precipitation was especially high at low latitudes. 39 

This is due to the fact that isotopic proxies are strongly influenced by temperature and/or 40 

precipitation at low latitudes, which, in turn, are modulated by the El Niño-Southern 41 

Oscillation (ENSO) on interannual timescales.  42 

Subsequently, the proxy DA was conducted with real proxy data. The reconstruction 43 

skill was decreased compared to the OSSE. In particular, the decrease was significant 44 

over the Indian Ocean, eastern Pacific, and the Atlantic Ocean where the reproducibility 45 

of the proxy model was lower. By changing the experimental design in a stepwise manner, 46 

the decreased skill was suggested to be attributable to the misrepresentation of the 47 

atmospheric and proxy models and/or the quality of the observations. Although there 48 

remains a lot to improve proxy DA, the result adequately showed that proxy DA is 49 

feasible enough to reconstruct past climate. 50 

  51 
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1. Introduction 52 

Knowledge of past conditions is crucial for understanding long-term climate 53 

variability. Historically, two approaches have been used to reconstruct paleoclimate; one 54 

based on the empirical evidence contained in proxy data, and the other based on 55 

simulation with physically-based climate models. Recently, an alternative approach 56 

combining proxy data and climate simulations using a data assimilation (DA) technique 57 

has emerged. DA has long been used for forecasting weather and is a well-established 58 

method. However, the DA algorithms used for weather forecasts cannot be directly 59 

applied to paleoclimate due to the different temporal resolution, spatial extent, and type 60 

of information contained within observation data (Widmann et al., 2010). The temporal 61 

resolution and spatial distribution of proxy data are significantly lower (seasonal at best) 62 

and sparser than the present-day observations used for weather forecasts, and the 63 

information we can get does not measure the direct states of climate (e.g., temperature, 64 

wind, pressure, etc.), but represents proxies of those states (e.g., tree-ring width, isotopic 65 

composition in ice sheets, etc.). Thus, DA applied to paleoclimate is only loosely linked 66 

to the methods used in the more mature field of weather forecasting, and it has been 67 

developed almost independently from them. 68 

Several DA methods have been proposed for paleoclimate reconstruction (von Storch 69 
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et al., 2000; van der Schrier et al., 2005; Dirren and Hakim, 2005; Goosse et al., 2006; 70 

Bhend et al., 2012; Dubinkina and Goosse, 2013; Steiger et al., 2014), and paleoclimate 71 

studies using DA have successfully determined the mechanisms behind climate changes 72 

(Crespin et al., 2009; Goosse et al., 2010; 2012; Mathiot et al., 2013). In previous studies, 73 

the variables used for assimilation have been data reconstructed from proxies (e.g., 74 

surface air temperature) because observation operators or forward models for proxies 75 

have not been readily available. Hereafter, the DA method that assimilates reconstructed 76 

data from proxies is referred to as reconstructed DA. Recently, proxy modelers have 77 

developed and evaluated several forward models (e.g., Dee et al., 2015 and references 78 

therein). Thanks to that, currently a few studies have started attempting to assimilate 79 

proxy data directly (Acevedo et al., 2016; Dee et al., 2016). 80 

The main advantage of proxy DA over reconstructed DA is the richness of information 81 

used for assimilation. In previous studies, only a single reconstructed field was 82 

assimilated. However, proxies are influenced by multiple variables. Hence, the 83 

assimilation of a single variable does not use the full information recorded in the proxies.  84 

The reconstruction method itself also limits the amount of information. The most 85 

commonly-used climate reconstruction is an empirical and statistical method that relies 86 

on the relationships between climate variables and proxies observed in present-day 87 
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observations. These relationships are then applied to the past climate proxies to 88 

reconstruct climate prior to the instrumental period. Most of the studies using this 89 

approach assume that the relationship is linear. However, this assumption imposes 90 

considerable limitations in which specific climate proxies can be used, and proxies that 91 

do not satisfy the assumption have generally been omitted (e.g., PAGES 2k Consortium, 92 

2013). Because information on paleoclimate is scarce, it is desirable to use as much 93 

information as possible. 94 

Furthermore, the reconstruction method also limits the quality of information 95 

provided. The method also assumes stationarity of the relationship between the climate 96 

and the proxies. However, this assumption has been shown to be invalid for some cases 97 

(e.g., Schmidt et al. 2007; LeGrande and Schmidt, 2009). In the case of reconstructed DA, 98 

the assimilation of such questionable reconstructed data would provide unrealistic results. 99 

In the case of proxy DA; however, the skill of the assimilation is expected to be unchanged, 100 

provided the model can correctly simulate the non-stationarity. 101 

The concept of proxy data assimilation is not new, and has been proposed in previous 102 

studies (Hughes and Ammann, 2009; Evans et al., 2013; Yoshimura et al., 2014; Dee et 103 

al., 2015). Yoshimura et al. (2014) demonstrated that the assimilation of the stable water 104 

isotope ratios of vapor improves the analysis for current weather forecasting. They 105 
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performed an observation system simulation experiment (OSSE) assuming that isotopic 106 

observations from satellites were available every six hours. Because the isotope ratio of 107 

water is one of the most frequently used climate proxies, this represents a significant first 108 

step toward improving the performance of proxy data assimilation in terms of identifying 109 

suitable variables for assimilation. However, it is not yet clear whether it is feasible to 110 

constrain climate only using isotopic proxies whose temporal resolution and spatial 111 

coverage are much longer and sparser than those of the specific study.  112 

This study examined the feasibility of isotopic proxy DA for the paleoclimate 113 

reconstruction on the interannual timescale. Because the study represents one of the first 114 

attempts to assimilate isotopic variables on this timescale, we adopted the framework of 115 

an OSSE, as in previous climate data assimilations (Annan and Hargreaves, 2012; Bhend 116 

et al., 2012; Steiger et al., 2014; Acevedo et al., 2016b; Dee et al., 2016). After the 117 

evaluation of proxy DA in the idealized way, we conducted the study with “real” proxy 118 

DA. We investigated which factors decreased or increased the skill of the proxy DA. As 119 

a measure of skill, we report the correlation coefficient throughout the manuscript. 120 

In this study, we used only oxygen isotopes (18O) as proxies. The isotope ratio is 121 

expressed in delta notation (δ18O) relative to Vienna Standard Mean Ocean Water 122 

(VSMOW) throughout the manuscript. If the original data were expressed in delta 123 
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notation relative to Vienna Pee Dee Belemnite (VPDB), they were converted to the 124 

VSMOW scale. 125 

This paper is structured as follows. In the following section, the data assimilation 126 

algorithm, models, data, and experimental design are presented. Section 3 shows the 127 

results of the idealized experiment. Section 4 gives the results of the real proxy DA. The 128 

Discussion is presented in Section 5. Finally, we present our conclusions in Section 6. 129 

 130 

2. Materials and methods 131 

2.1. Data assimilation algorithm 132 

We used a variant of ensemble Kalman filter (EnKF, see Houtekamer and Zhang, 2016, 133 

and references therein); sequential ensemble square root filter (EnSRF; Whitaker and 134 

Hamill, 2002). EnSRF updates the ensemble mean and the anomalies from the ensemble 135 

mean separately, and processes observations serially one at a time if the observations have 136 

independent errors.  137 

To assimilate time-averaged data, slight modification was made for the method 138 

following Bhend et al. (2012) and Steiger et al. (2014). In the modified EnSRF, the 139 

analysis procedure is not cycled to the simulation (Bhend et al., 2012); thus, the 140 

background ensembles can be constructed from existing climate model simulations 141 
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(Huntley and Hakim, 2010; Steiger et al., 2014). As such, we can assimilate data with any 142 

temporal resolution coarser than the model outputs. In this study, we focused on annual 143 

DA.  144 

There are two ways to construct the background ensemble in the approach mentioned 145 

above (hereafter offline DA); one using ensemble runs as in weather forecasts (Bhend et 146 

al., 2012; Acevedo et al., 2016) and the other using a single run (Steiger et al., 2014; Dee 147 

et al., 2016). The latter uses the same background ensemble for every analysis step. To 148 

reduce computational cost, we chose the latter way, where the ensemble members are 149 

individual years. This simplification was valid because the interannual variability in a 150 

single run was inherently indistinguishable from the variability in the annual mean within 151 

the ensemble of simulations in which the initial conditions were perturbed, at least for 152 

atmospheric variables. Thus, the background ensembles were the same for all the 153 

reconstruction years and did not contain any year-specific boundary conditions and 154 

forcing information; hence, the background error covariance was constant over time. 155 

Therefore, this study did not consider non-stationarity between the proxies and climate. 156 

Despite the limitations of the algorithm used in this study, it should be noted that the 157 

proxy DA could address non-stationarity if one uses temporally varying background 158 

ensemble. We return to this point in Section 5. 159 
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To control spurious long-distance correlations due to sampling errors, a localization 160 

function proposed by Gaspari and Cohn (1999) with a scale of 12,000 km was used. The 161 

detailed procedure used for the algorithm is described in Steiger et al. (2014). 162 

 163 

 164 

2.2. Models 165 

Isotope ratios recorded in ice cores, corals, and tree-ring cellulose were assimilated. 166 

To assimilate these variables, forward models for the variables are required. We used the 167 

forward model developed by Liu et al. (2013; 2014) for corals, and Roden et al. (2000) 168 

for tree-ring cellulose. We assumed that the isotopic composition of ice cores was the 169 

same as that of precipitation at the time of deposition. Note that, in reality, the isotope 170 

ratio recorded in ice cores is not always equal to that in precipitation due to post-171 

depositional processes (e.g., Schotterer et al., 2004). Because detailed models that 172 

explicitly simulate the impact of all the processes involved in determining the value of 173 

the ratio are not yet available, we used the isotope ratio in precipitation for that in ice 174 

cores to avoid adding unnecessary noise. 175 

The isotopic composition in precipitation was simulated using an atmospheric general 176 

circulation model (GCM) into which the isotopic composition of vapor, cloud water, and 177 
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cloud ice are incorporated as prognostic variables. The model explicitly simulates the 178 

isotopic composition with all the details of the fractionation processes combined with 179 

atmospheric dynamics and thermodynamics, and hydrological cycles. Hence, the model 180 

simulates the isotopic composition consistent with the modeled climate. Although many 181 

such models have been developed previously (Joussaume et al., 1984, Jouzel et al., 1987; 182 

Hoffmann et al., 1998; Noone and Simmonds, 2002; Schmidt et al., 2005; Lee et al., 2007; 183 

Yoshimura et al., 2008; Risi et al., 2010; Werner et al., 2011), we used a newly-developed 184 

model (Okazaki et al., in prep.) based on the atmospheric component of MIROC5 185 

(Watanabe et al. 2010). The spatial resolution was set to T42 (approximately 280 km) 186 

with 40 vertical layers. 187 

The variability in δ18O recorded in coral skeleton aragonite (δ18Ocoral) depends on the 188 

calcification temperature and local δ18O in sea water (δ18Osw) at the time of growth 189 

(Epstein and Mayeda, 1953). Previous studies have modeled δ18Ocoral as the linear 190 

combination of sea surface temperature (SST) and δ18Osw (e.g., Julliet-Leclerc and 191 

Schmidt, 2001; Brown et al., 2006; Thompson et al., 2011), as follows:  192 

δ18𝑂𝑐𝑜𝑟𝑎𝑙 = 𝛿18𝑂𝑠𝑤 + 𝑎𝑆𝑆𝑇 (1) 193 

where a is a constant which represents the slope between δ18Ocoral and SST. In this study, 194 

the constant was uniformly set to -0.22‰/°C for all the corals, following Thompson et al. 195 
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(2011), and we used a model developed by Liu et al. (2013; 2014) to predict δ18Osw. The 196 

model is an isotopic mass balance model that considers evaporation, precipitation, and 197 

mixing with deeper ocean water. The coral model uses the monthly output of the isotope-198 

enabled GCM as its input, except for the isotope ratio of deeper ocean water, which was 199 

obtained from observation-based gridded data compiled by LeGrande and Schmidt et al. 200 

(2006). After the model calculates the monthly δ18Ocoral, it is arithmetically averaged to 201 

provide the annual δ18Ocoral. 202 

The isotope ratio in tree-ring cellulose (δ18Otree) was calculated using a model 203 

developed by Roden et al. (2000). In this model, δ18Otree is determined by the isotopic 204 

composition of the source water used by trees for photosynthesis, and evaporative 205 

enrichment on leaves via transpiration. In this study, the value of the isotopic composition 206 

in the source water was arbitrarily assumed to be the moving average, traced three-months 207 

backward, of the isotopic composition in precipitation at the site. Again, the model used 208 

the monthly output of the isotope-enabled GCM as its input. After performing the tree-209 

ring model calculation, the monthly output was weighted using climatological net primary 210 

production (NPP) to calculate the annual average. The NPP data were obtained from the 211 

US National Aeronautics and Space Administration (NASA) Earth Observation website 212 

(http://neo.sci.gsfc.nasa.gov).  213 
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Because the isotopic compositions of the proxies were simulated using the output of 214 

the isotope-enabled GCM, their horizontal resolution was the same as that of the GCM.  215 

 216 

2.3. Experimental design 217 

2.3.1. Control experiment 218 

The first experiment served as a control (CTRL) experiment, and used the framework 219 

of an OSSE. In the experiment, the “simulation” and the “truth” (nature run) were 220 

simulated by the same models, with the same forcing, but with different initial conditions. 221 

Because the proxy models were driven by the output of the GCM, the modeled proxies 222 

were consistent with the modeled climate from the GCM. Thus, here we describe the 223 

experimental design for the GCM. The GCM was driven by observed SST and sea-ice 224 

data (HadISST; Rayner et al., 2003), and historical anthropogenic (carbon dioxide, 225 

methane, and ozone) and natural (total solar irradiance) forcing factors. The simulation 226 

covered the period of 1871–2007 (137 years).  227 

Although the simulation period included recent times covered by observational data, 228 

we assumed that the only variable that could be obtained was the annual mean of δ18O in 229 

the proxies. We based this assumption on the fact that we wished to perform the DA for a 230 

period in which no direct measurements were available, and there were only climate 231 

proxies covering the period. Therefore, the temporal resolutions of the “observations” and 232 
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“simulations” were also annual, considering the typical temporal resolution of the proxies.  233 

Observations were generated by adding Gaussian noise to the truth. The spatial 234 

distribution of the observations mimicked that of the proxies. The spatial distributions of 235 

each proxy for various periods are mapped in Figure 1. As can be seen from the figure, 236 

the distributions and the number of proxies varied with time. However, for the sake of 237 

simplicity, the distributions of the proxies were assumed to be constant over time in the 238 

CTRL experiment (Figure 1 a). The size of the observation errors will be discussed in 239 

Section 2.4. 240 

The state vector consisted of five variables; surface air temperature and amount of 241 

precipitation, as well as the isotopic composition in precipitation, coral, and tree-ring 242 

cellulose. The first three variables were obtained from the isotope-enabled GCM, and the 243 

other two variables were obtained from the proxy models driven by the output of the 244 

GCM. 245 

 246 

2.3.2. Real proxy data assimilation 247 

The second (REAL) experiment assimilated proxy data sampled in the real world. To 248 

mimic realistic conditions, SST and sea-ice concentration data to be used as model forcing 249 

were modified from observational to modeled data. In reality, there were no direct 250 
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observations available for the target period of the proxy DA. Therefore, to reliably 251 

evaluate the feasibility of proxy DA, the first estimate should be constructed using 252 

modeled SST, as opposed to observed SST. We used SST data from the historical run of 253 

the Coupled Model Intercomparison Project Phase 5 (CMIP5; Taylor et al., 2007) from 254 

the atmosphere-ocean coupled version of MIROC5 (Watanabe et al., 2010) obtained from 255 

the CMIP5 data server (https://pcmdi.llnl.gov/search/cmip5/). 256 

Because the experiment was not an OSSE, nature run was not necessary. 257 

 258 

2.3.3. Sensitivity experiments 259 

Four sensitivity experiments were conducted to test the robustness of the results of 260 

the proxy DA. In the first sensitivity experiment (CGCM), the simulation run was 261 

constructed from the simulation forced by the modeled SST and sea ice as in the REAL 262 

experiment. The other settings for the simulation run were the same as those in the CTRL 263 

experiment. The nature run was the same as that of the CTRL experiment. Thus, this 264 

experiment investigated how the reconstruction skill of the results was decreased by using 265 

the simulated SST compared to the CTRL. 266 

In the second sensitivity experiment (VOBS), the experimental design was the same 267 

as that in the CGCM, except for the number of proxies that were assimilated. In the 268 
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CGCM experiment, the distribution and number of proxies were set to be constant over 269 

time, as in the CTRL experiment. In the VOBS experiment, the distribution and number 270 

of proxies varied with time. Thus, this experiment investigated how the reconstruction 271 

skill was decreased by changing the number of proxies compared to the CGCM.  272 

In the third sensitivity experiment (T2-Assim), reconstructed surface temperature (Tr) 273 

was assimilated. The purpose of the experiment was to compare the skill of the 274 

reconstructed DA with that of the proxy DA. The experimental design was the same as 275 

that in the CTRL experiment, except for the variables that were assimilated. The 276 

reconstructed temperature was generated with a linear regression model of Tr = 𝑎 +277 

𝑏×𝛿18𝑂 where a and b are coefficients and δ18𝑂 is the observed isotope ratio. The 278 

coefficients are calibrated with the observed isotope ratio and the true temperature in the 279 

CTRL for the period of 1871 to 1950 (80 years). If the correlation between the isotope 280 

ratio and the temperature during the calibration period was not statistically significant (p 281 

< 0.10), the data was discarded following Mann et al. (2008). This screening process 282 

reduced the available data from 94 to 81 grid points.  283 

The final sensitivity (M08) experiment was used to examine the sensitivity to the 284 

observation network. The experimental design was the same as for the CTRL, except for 285 

the spatial distribution of the proxy. The proxy network used in the experiment was the 286 
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same as that of Mann et al. (2008). We assumed that isotopic information was available 287 

for all the sites, even when this was not the case. For example, even if only tree-ring width 288 

data were available at some of the sites in Mann et al. (2008), in this experiment we 289 

assumed that isotopic data recorded in tree-ring cellulose were available at the site. The 290 

number of grids containing observations were 94 and 250 for the CTRL experiment and 291 

M08 respectively. The T2-Assim and the M08 were compared with CTRL. 292 

The experimental designs are summarized in Table 1. 293 

 294 

2.4. Observation data 295 

We used paleoclimate data archived at the National Oceanic and Atmospheric 296 

Administration (NOAA; https://www.ncdc.noaa.gov/data-access/paleoclimatology-data) 297 

and data used in the PAGES 2k Consortium (2013). Additionally, 22 tree-ring cellulose 298 

and 7 ice core data sets were collected separately from published papers. We only used 299 

oxygen isotopic data (18O) whose temporal resolution was higher than annual; proxies 300 

whose resolution was lower than annual were excluded. The full list of proxies used in 301 

this study is given in the Appendix. Following Crespin et al. (2009) and Goosse et al. 302 

(2010), all proxy records were first normalized, and then averaged onto a T42 grid box to 303 

eliminate model bias and produce a regional grid box composite. To compare the results 304 
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from each experiment effectively, the assimilated variables were all normalized in both 305 

the simulation and nature runs, and in the observations in all the experiments. 306 

Errors were added to the truth in a normalized manner to provide the observation for 307 

all the experiment other than REAL. The normalized error was uniformly set to 0.50 for 308 

all the proxies. This was based on the measurement error of δ18O in ice cores being 309 

reported to range from 0.05 to 0.2‰ (e.g., Rhodes et al., 2012; Takeuchi et al., 2014), and 310 

the corresponding normalized error (measurement error divided by standard deviation of 311 

proxy) then ranges from 0.03 to 0.1, with an average of 0.06. Similarly, the measurement 312 

error of δ18O in coral ranges from 0.03 to 0.11‰ (e.g., Asami et al., 2004; Goodkin et al., 313 

2008), and the corresponding normalized error ranges from 0.24 to 1.1, with an average 314 

of 0.53. The measurement error of δ18O in tree-ring cellulose ranges from 0.1 to 0.3‰ 315 

(e.g., Managave et al, 2011; Young et al, 2015), and the corresponding normalized error 316 

ranges from 0.08 to 0.55, with an average of 0.28. In practice, due to the error of 317 

representativeness and that in observation operator, it is common to increase the 318 

observation errors to ensure that the analysis functions effectively (Yoshimura et al., 319 

2014). Furthermore, the measurement errors were not always available; therefore, a 320 

uniform value of 0.5 was used for all the proxies. The corresponding signal-to-noise ratio 321 

(SNR) is 2.0. The errors are assumed to be independent for all the experiments. 322 
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 323 

3. Results from the OSSE 324 

The time series of the first estimation, the analysis, and the real values for δ18O in 325 

corals are compared as an example in Figure 2 at a location where observational data were 326 

available (1°N, 157°W). Because the first estimate was the same for all reconstruction 327 

years, it is drawn as horizontal lines. After the assimilation, the analysis agreed well with 328 

the real values (R = 0.96, p < 0.001). This confirmed that the assimilation performed well. 329 

We then examined how accurately the other variables were reconstructed by assimilating 330 

isotopic information. Figure 2 also shows the time series of surface air temperature and 331 

precipitation for the same site. There was a clear agreement between the analysis and the 332 

truth for both variables (R = 0.92 and 0.88 respectively for temperature and precipitation). 333 

This indicated that temperature and precipitation were effectively reconstructed by 334 

assimilating isotopic variables at this site. This was because the isotope ratio in corals has 335 

a signature not only from temperature as given in Eq. 1, but also precipitation (Liu et al., 336 

2013); the correlation with δ18Ocoral was -0.88 (p <0.001) for both temperature and 337 

precipitation, respectively. This example shows that the isotopic proxy records more than 338 

one variable. 339 

Figure 3 maps the correlation coefficients between the analysis and the truth for the 340 



19 

 

isotope ratio, temperature, and precipitation for 1970–1999. Because the first estimate 341 

was constant over time, the temporal correlation between the first estimate and the real 342 

value was zero everywhere. Thus, a positive correlation indicated that the DA improved 343 

the simulation.  344 

The correlation for δ18O in precipitation were high at the observation sites, regardless 345 

of the proxy type. This was because δ18O in both corals and trees is affected by the isotopic 346 

composition in precipitated water derived from sea water or soil water. The correlation 347 

for δ18O in tree-ring cellulose were also high at the observation sites. On the other hand, 348 

the high correlation for δ18O in corals were not limited around the observation sites but 349 

were generally high at low- to mid-latitudes. Similarly, the correlation was high at low- 350 

to mid-latitudes for surface temperature. The correlation was also statistically significant 351 

(p < 0.05) around the observation sites in high latitude. In contrast, closely correlated 352 

areas were restricted to low-latitude for precipitation. 353 

How can the spatial distribution of the correlation pattern be explained; i.e., what do 354 

the proxies represent? To investigate this question, empirical orthogonal function (EOF) 355 

analysis was conducted for the simulated δ18O in precipitation, corals, and tree-ring 356 

cellulose. Only grids that contained observations were included in the analysis. The 357 

variables were centered around their means before the analysis. The data covered the 358 
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period 1871–2007. The EOF patterns and temporal correlations between surface 359 

temperature and the characteristic evolution of EOF, or the principal components (PCs) 360 

of the first mode of each proxy are shown in Figure 4.  361 

The first mode of δ18O in ice core explains 14.3% of the total variance ant it is the 362 

only significant mode according to the Rule of Thumb (North et al., 1982) (the first and 363 

the second mode were indistinguishable). The maximum loadings were in Greenland and 364 

Antarctica where temperature increase has been observed for the past hundred years (e.g. 365 

Hartmann et al., 2013). Indeed, the PC1 shows the significant trend and is correlated with 366 

global mean surface temperature (R=0.44, p < 0.001). Therefore, it is legitimate to regard 367 

ice core data as a proxy of global temperature as revealed from observation (Schneider 368 

and Noone, 2007). 369 

The first modes of δ18O in corals, and tree-ring cellulose represent ENSO. The 370 

explained variance of the first modes of δ18O in corals, and tree-ring cellulose was 44.2, 371 

and 19.0%, respectively. The maximum loadings occurred in the central Pacific for corals, 372 

and Tibet for tree-ring cellulose. The temporal correlation between the PC1s and NINO3 373 

index were 0.95, and 0.37 for corals and tree-ring cellulose, respectively. Because the 374 

isotopic composition in corals is influenced by sea temperature, it is expected that the 375 

δ18O in corals from the central Pacific records the ENSO signature. Interestingly, the 376 
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analysis revealed that the δ18O in tree-ring cellulose was also influenced by ENSO; hence, 377 

this proxy contributes to the reconstruction of temperature and precipitation over the 378 

tropical Pacific. Indeed, many previous studies have reported the link between δ18O in 379 

tree-ring cellulose and ENSO (Sano et al. 2012; Xu et al. 2011; 2013; 2015). Xu et al. 380 

(2011) inferred the link is caused by the association between ENSO and Indian monsoon 381 

rainfall (e.g. Rasmusson and Carpenter, 1983). The positive phase of ENSO results in a 382 

decrease in summer monsoon rainfall in India, which leads to dry conditions in summer. 383 

The decrease in precipitation leads to isotopically-enriched precipitation, and the dry 384 

conditions enhance the enrichment of water in leaves. Correspondingly, the δ18O in tree-385 

ring cellulose becomes heavier than normal in the positive phase of ENSO. Due to the 386 

relationships between the coral and tree-ring cellulose data and ENSO, the correlation 387 

coefficient between the analysis and the truth for the NINO3 index was as high as 0.95 (p 388 

< 0.001). 389 

Although EOF analysis did not reveal any other significant correlation between PCs 390 

and climate indices, climate indices for the North Atlantic Oscillation and Southern 391 

Annular Mode calculated using the reconstructed data were significantly correlated with 392 

the truth (0.59 and 0.46, respectively).  393 

 394 
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4. Real proxy data assimilation 395 

Based on the results of the idealized experiment described in the previous section, we 396 

performed a “real” proxy DA, in which sampled and measured data in the real world were 397 

assimilated.  398 

The temporal correlation between the analysis and observations for temperature and 399 

precipitation are shown in Figure 5 (d, h). The observations were obtained from 400 

HadCRUT3 (Brohan et al., 2006) for temperature, and GHCN-Monthly Version 3 401 

(Peterson and Vose, 1997) for precipitation.  402 

Although the real proxy DA had reasonable skill, it was inferior relative to the CTRL 403 

experiment. We investigated the cause of the decreased skill using the outputs of the 404 

sensitivity experiments. The design of the experiments was changed in a stepwise fashion 405 

to more realistic conditions of proxy data assimilation from the idealized conditions. The 406 

correlations between the analysis and the truth, or the observation, for the experiments 407 

are shown in Figure 5. The truths for the CGCM and VOBS experiments were the same 408 

as those for the CTRL experiment. The global mean correlation coefficients for 409 

temperature, precipitation, and NINO3 in the experiments are summarized in Figure 6. 410 

Note that the correlation was averaged in the same domain for all the experiments to take 411 

into account the differences in representativeness. 412 
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In the CGCM experiment, the temporal correlations between the analysis and the truth 413 

were similar to those in the CTRL experiment for both temperature and precipitation 414 

(Figure 5 b, f). This indicates that ENSO and its impacts were well represented in the 415 

modeled SST used to construct the “simulation”. Watanabe et al. (2010) reported similar 416 

modeled SST and observational values for the amplitude of ENSO measured by the 417 

NINO3 index, and the spatial patterns of the temperature and precipitation fields 418 

regressed on the NINO3 time series (see Figures 13 and 14 in their report).  419 

Because the number of proxies for assimilation differed from that in the CGCM 420 

experiment, it was not straightforward to compare the results of the REAL experiment 421 

with those of the CGCM experiment. To enable an effective comparison of the results, 422 

the same number of proxies were assimilated in the VOBS experiment as in the REAL 423 

experiment and the same settings were used as in the CGCM experiment for the other 424 

variables. Consequently, the performance of the assimilation of the VOBS experiment 425 

was similar to that of the CGCM experiment for 1970–1999.  426 

When the REAL and VOBS experiments were compared, the correlation coefficients 427 

for temperature were significantly decreased over the Indian Ocean, eastern Pacific, and 428 

Atlantic Ocean. These areas corresponded to areas of low reproducibility in the coral 429 

model (Liu et al, 2014). The effects of sea current and river flow in these areas, which 430 
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were not included in the coral model, were deemed to be considerable. Although we 431 

cannot attribute all the decreased skill to the coral model, the reproducibility of δ18O in 432 

corals in these areas requires improvement to enhance the performance of the assimilation.  433 

 434 

5. Discussion 435 

5.1. Comparison with the reconstructed temperature assimilation 436 

Hughes and Ammann (2009) recommended assimilating measured proxy data, as 437 

opposed to reconstructed data derived from the proxy data. This subsection compares the 438 

results from the CTRL and T2-Assim experiments.  439 

Figure 7 shows the spatial distribution of the correlation coefficients for temperature 440 

and precipitation between the truth and the analysis for each experiment. As a whole, the 441 

reconstruction skill was slightly degraded in T2-Assim compared with CTRL with the 442 

global mean correlation coefficients for temperature (precipitation) of 0.50 (0.30), 0.45 443 

(0.23), for CTRL and T2-Assim, respectively. On the other hand, the skill of proxy DA 444 

was not always better than that of T2-Assim (e.g. temperature in tropical Atlantic Ocean). 445 

Those pros and cons can be explained by the difference in the observation error and the 446 

structure of Kalman gain. Figure 8 shows the SNR of the Tr ranging from 0.22 to 1.6 with 447 

the average of 0.65. Accordingly, the observation error is larger than that of CTRL 448 
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everywhere, and this resulted in the reduction of the reconstruction skill. On the other 449 

hand, the better skill in T2-Assim should be owing to the difference in Kalman gain. The 450 

Kalman gain determines analysis increments by spreading the information in observations 451 

through the covariance between the prior and the prior-estimated observations. We found 452 

that the correlations between the prior (temperature) and the prior-estimated observation 453 

(temperature and δ18O for T2-Assim and CTRL, respectively) were consistently higher in 454 

T2-Assim than in CTRL (not shown) as Dee et al. (2016) showed. Thus, the information 455 

in the observations were more effectively spread to the analysis in T2-Assim, and this 456 

resulted in the improved skill. Note that the screening process hardly hampered the 457 

reconstruction skill, because even if the reconstructed temperature was fully used (i.e. not 458 

screened), the skill was almost the same as T2-Assim.  459 

Conducting similar experiments, Dee et al. (2016) also concluded that the 460 

reconstruction skill was almost the same among proxy DA and reconstructed DA if the 461 

relation between the reconstructed variable and the proxy is linear. As isotope-enabled 462 

GCMs (Schmidt et al. 2007; LeGrande and Schmidt. 2009) and observations and models 463 

for tree-rings width (D’Arrigo et al. 2008; Evans et al. 2014; Dee et al., 2016) have 464 

demonstrated, however, the relations between the proxies and climate are non-linear and 465 

non-stationary as well. Thus, it is difficult to expect that the skill of reconstructed DA will 466 
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be the same as that of proxy DA if we have the well-defined forward proxy models 467 

(Hughes and Ammann, 2009). Although the current models are far from perfect as 468 

implicated in Sect. 4.2, the assimilation of proxy data will offer a useful tool for the 469 

reconstruction of paleoclimate, in which the relationship between the proxies and climate 470 

constructed with the present-day conditions does not apply. 471 

 472 

5.2. Sensitivity to the distribution of the proxies 473 

The skill of the proxy DA was relatively low over Eurasia and North America, even 474 

in the idealized experiment. It was unclear whether this was because of limitations in the 475 

proxy data assimilation or the scant distribution of the proxies. This subsection 476 

investigates the reasons for the relatively low reproducibility in these areas by comparing 477 

the results of the CTRL and M08 experiments, focusing on North America. The number 478 

of grids for which proxy data were available over North America was 11 and 126 for the 479 

CTRL and M08, respectively. 480 

The results for North America are shown in Figure 9. The figure shows the temporal 481 

correlation coefficients between the analysis and the truth for surface air temperature and 482 

precipitation. The correlation coefficients were calculated for 1970–1999. The skill was 483 

high in the area in which the proxies were densely distributed for both variables. The 484 
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values of the coefficients averaged over the United States (30–50°N, 80–120°W) were 485 

0.69 and 0.58 for temperature and precipitation, respectively. Compared to the 486 

coefficients of 0.23 and 0.21, respectively, in the CTRL experiment, the skill was 487 

enhanced for both variables. This implies that the performance of the reconstruction was 488 

strongly dependent on the distribution of the proxy data. Taking into consideration that 489 

proxy DA can assimilate not only proxy data but also reconstructed data, proxy DA can 490 

take advantage of the use of increasingly large amounts of data. Although it is beyond the 491 

scope of this study, the combined use of these data is expected to improve the performance 492 

of proxy DA. 493 

 494 

6. Conclusion and summary 495 

The feasibility of using proxy DA for paleoclimate reconstruction was examined in 496 

both idealized and real conditions experiments. The idealized (CTRL) experiment had 497 

high skill at low latitudes due to the dependency of coral data on temperature and 498 

precipitation in these regions, and the correlation between ENSO and δ18O in corals in 499 

Pacific and tree-ring cellulose in Tibet. Encouraged by the results, real proxy DA was 500 

performed, where the simulation run was constructed from the simulation forced by the 501 

modeled SST, and the real (observed) proxy data were assimilated into the simulation 502 
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(REAL experiment). The skill of the reconstruction decreased compared to CTRL. 503 

To investigate the reason for the relatively low skill in REAL compared to CTRL, we 504 

performed additional experiments; CGCM and VOBS. The imperfect SST used to drive 505 

the CGCM experiment resulted in a slight reduction of the skill compared to the CTRL 506 

experiment with perfect SST. This was because ENSO, which is the most important mode 507 

for the reconstruction, was well represented in the modeled SST. The result is encouraging 508 

because to apply the DA system to reconstruct ages where no instrumental observation is 509 

available, we must rely on SST simulated by coupled GCM. Similarly, assimilating the 510 

unfixed number of the observation only slightly decreased the reconstruction skill as 511 

shown in the comparison between CGCM and VOBS.  512 

From the suite of experiments, more than half of the difference between CTRL and 513 

REAL remained unexplained. This remaining difference can have a lot of origins: e.g. 514 

errors in the isotope incorporated atmospheric GCM, the proxy models, the proxy data 515 

and so on. The errors in the models include such as model biases and missing or overly 516 

simplified model components. For instance, the coral model does not take into account 517 

the impact of ocean current or river runoff in this study. Furthermore, post-depositional 518 

processes for simulating isotope ratio in ice core were not included at all. Those processes 519 

should be included to enable more efficient utilization of all the data. The errors in proxy 520 
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data include such as misrepresentation of the targeted temporal and/or spatial scales. It is 521 

also possible that the data were highly distorted by non-climatic factors. Thus, a thorough 522 

quality control, similar to the procedures used in weather forecasting, should be 523 

conducted before assimilation (e.g. Appendix B of Compo et al., 2011). At this stage, it 524 

is difficult to show the relative contributions of each factor to the degraded skill in REAL, 525 

it is necessary to estimate the impact of structural errors in models as done in Dee et al. 526 

(2016).  527 

Although the skill of proxy DA is dependent on the reproducibility of the models and 528 

the number and quality of the observations, the results suggest that it is feasible to 529 

constrain climate using only proxies. Especially, ENSO and ENSO-related variations in 530 

temperature and precipitation should be reliably reconstructed even with the current 531 

proxy DA system and proxy network used in this study because the correlation coefficient 532 

between the analysis and the observations was as high as 0.83 in the REAL experiment. 533 

Although the reconstruction of ENSO is dependent on data from corals, and the time span 534 

covered by corals is relatively short (a few hundred years), ENSO can still be reliably 535 

reconstructed due to its global impact, as was demonstrated in the relationship between 536 

isotopes in tree-ring cellulose from Tibet. 537 

Moreover, we expect that the reproducibility will increase as more proxy data become 538 
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available because it was heavily dependent on the spatial distribution. Given that proxy 539 

DA can assimilate both proxy data and data reconstructed from proxy, and that the 540 

reconstruction skill in reconstructed DA is partly superior to proxy DA, the combined use 541 

of the two types of data is beneficial for the performance. In that case, care must be taken 542 

not to assimilate dependent information (e.g. proxy data and reconstructed data from the 543 

same proxy).  544 

The DA algorithm used in this study did not consider non-stationarity among proxies 545 

and climate variables because the Kalman gain was constant over time. To address non-546 

stationarity, the Kalman gain for a specific reconstruction year should be constructed for 547 

several tens of years before and after that year. Nevertheless, EnKF can only capture 548 

linear relationships between observations and the modeled state. The use of other 549 

algorithms, such as particle filter (e.g. van Leeuwen, 2009), or four-dimensional 550 

variational assimilation (e.g. Rabier et al., 2000), should be investigated in future studies 551 

for scenarios where non-linearity is not negligible. Thus, it is important in future studies 552 

to investigate non-stationarity and non-linearity among proxies and climate variables to 553 

identify suitable algorithms for proxy DA. 554 

 555 

7. Acknowledgements 556 



31 

 

The first author was supported by the Japan Society for the Promotion of Science (JSPS) 557 

via a Grant-in-Aid for JSPS Fellows. This study was supported by the Japan Society for 558 

the Promotion of Science Grants 15H01729, 26289160, and 23226012, the SOUSEI 559 

Program, the ArCS project of MEXT, Project S-12 of the Japanese Ministry of the 560 

Environment, and the CREST program of the Japan Science and Technology Agency. 561 

  562 



32 

 

8. References 563 

Acevedo, W., Reich, S., and Cubasch, U., Towards the assimilation of tree-ring-width 564 

records using ensemble Kalman filtering techniques, Clim. Dyn., 46, 1909-1920, 565 

2016a. 566 

Acevedo, W., Fallah, B., Reich, W., and Cubasch, U., Assimilation of pseudo-tree-ring-567 

width observations into an atmospheric general circulation model, Clim. Past 568 

Discuss., 2016. 569 

Annan, J. D. and Hargreaves, J. C., Identification of climatic state with limited proxy data, 570 

Clim. Past, 8, 1141-1151, 2012. 571 

Asami, R., Yamada, T., Iryu, Y., Meyer, C. P., Quinn, T. M., and Paulay, G., Carbon and 572 

oxygen isotopic composition of a Guam coral and their relationships to 573 

environmental variables in the western Pacific, Palaeogeogr Palaeocl, 212, 15, 1-22, 574 

2004. 575 

Bhend. J., Franke, J., Folini, D., Wild, M., and Brönnimann, S., An ensemble-based 576 

approach to climate reconstructions, Clim. Past, 8, 963-976, 2012. 577 

Brohan, P., Kennedy, J. J., Harris, I., Tett, S. F. B., and Jones, P. D., Uncertainty estimates 578 

in regional and global observed temperature changes: A new data asset from 1850, 579 

J. Geophys. Res. 111, D12106, 2006. 580 

Brown, J., Simmonds, I., and Noone, D., Modeling δ18O in tropical precipitation and the 581 

surface ocean for present-day climate, J. Geophys. Res., 111, D05105, 2006. 582 

Compo, G. P., Whitaker, J. S., Sardeshmukh, P. D., Matsui, N., Allan, R. J., Yin, X., 583 

Gleason, B. E, Jr., Vose, R. S., Rutledge, G., Bessemoulin, P., Brönnimann, S., 584 

Brunet, M., Crouthamel, R. I., Grnt, A. N., Groisman, P. Y., Jones, P. D., Kruk, M. 585 

C., Kruger, A. C., Marshall, G. J., Maugeri, M., Mok, H. Y., Nordli, Ø., Ross, T. F., 586 

Trigo, R. M., Wang, X. L., Woodruff, S. D., and Worley, S. J., The twentieth Century 587 

Reanalysis Project, Q. J. Roy. Meteor. Soc., 137, 1-28, 2011. 588 

Crespin, E., Goosse, H., Fichefet, T., and Mann, M., The 15th century Arctic warming in 589 

coupled model simulations with data assimilation, Clim. Past, 5, 389-401, 2009. 590 

D’Arrigo, R., Wilson, R., Liepert, B., and Cherubini, P., On the ‘Divergence Problem’ in 591 

Northern Forests: A review of the the tree-ring evidence and possible causes, Global 592 

Planet. Change, 60, 289-305, 2008. 593 

Dee, S., Emile-Geay, J., Evans, M., Allam, A., Steig, E., and Thompson, D., PRYSM: An 594 

open-source framework for PRoxY System Modeling, with applications to oxygen-595 

isotope systems, Journal of Advances in Modeling Earth Systems, 7, 1220-1247, 596 

2015. 597 



33 

 

Dee, S., Steiger, N. J., Emile-Geay, J., and Hakim, G. J., On the utility of proxy system 598 

models for estimating climate states over the common era, Journal of Advances in 599 

Modeling Earth Systems, 8, 1164-1179, 2016. 600 

Dirren, S. and Hakim, C., Toward the assimilation of time-averaged observations, 601 

Geophys. Res. Lett., 32, L04804, 2005. 602 

Dubinkina, S. and Goosse, H., An assessment of particle filtering methods and nudging 603 

for climate state reconstructions, Clim. Past, 9, 1141-1152, 2013. 604 

Epstein, S., and Mayeda, T., Variation of O18 content of waters from natural sources, 605 

Geochimica Cosmochim. Ac., 4, 213-224, 1953. 606 

Evans, M. N., Tolwinski-Ward, S. E., Thompson, D. M., and Anchukaitis, K. J., 607 

Applications of proxy system modeling in high resolution paleoclimatology, 608 

Quaternary Sci. Rev., 76, 16-28, 2013. 609 

Evans, M. N., Smerdon, J. E., Kaplan, A., Tolwinski-Ward, S. E., and González-Rouco, 610 

J. F., Climate field reconstruction uncertainty arising from multivariate and 611 

nonlinear properties of predictors, Goephys. Res. Lett., 41, 612 

doi:10.1002/2014GL062063, 2014. 613 

Gaspari, G., and Cohn, S., Construction of correlation functions in two and three 614 

dimensions, Q. J. Roy. Meteor. Soc., 125, 723-757, 1999. 615 

Goodkin, N. F., Hughen, K. A., Curry, W. B., Doney, S. C., and Ostermann, D. R., Sea 616 

surface temperature and salinity variability at Bermuda during the end of the Little 617 

Ice Age, Paleoceanography, 23, PA3203, 2008. 618 

Goosse, H., Renssen, H., Timmermann, A., Bradley, R., and Mann, M., Using 619 

paleoclimate proxy-data to select optimal realisations in an ensemble of simulations 620 

of the climate of the past millennium, Clim. Dyn., 27, 165-184, 2006. 621 

Goosse, H., Crespin, E., de Montety, A., Mann, M., Renssen, H., and Timmermann, A., 622 

Reconstructing surface temperature changes over the past 600 years using climate 623 

model simulations with data assimilation, J. Geophys. Res., 115, D09108, 2010. 624 

Goosse, H., Crespin, E., Dubinkina, S., Loutre, M., Mann, M., Renssen, H., Sallaz-Damaz, 625 

Y., Shindell, D., The role of forcing and internal dynamics in explaining the 626 

“Medieval Climate Anomaly”, Clim. Dyn., 39, 2847-2866, 2012. 627 

Hartmann, D. L., Klein Tank, A. M. G., Rusticucci, M., Alexander, L. V., Brönnimann, S., 628 

Charabi, F., Dentener, F. J., Dlugokencky, E. J., Easterling, D. R., Kaplan, A., Soden, 629 

B. J., Thorne, P. W., Wild, M., and Zhai, P. M., Observations: Atmosphere and 630 

Surface. In: Climate Change 2013: The physical science basis. Contribution of 631 

Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on 632 

Climate Change, Cambridge University Press, Cambridge, United Kingdom and 633 



34 

 

New York, NY, USA, 2013. 634 

Hoffmann, G., Werner, M., Heimann, M., Water isotope module of the ECHAM 635 

atmospheric general circulation model: A study on timescales from days to several 636 

years, J. Geophys. Res., 103, D1427, 16871-16896, 1998. 637 

Houtekamer, P. L., and Zhang, F., Review of the ensemble Kalman filter for atmospheric 638 

data assimilation, Mon. Weather Rev., 144, 4489-4532, 2016. 639 

Hughes, M., and Ammann, C., The future of the past -an earth system framework for high 640 

resolution paleoclimatology: editorial essay, Climatic Change, 94, 247-259, 2009. 641 

Huntley, H., and Hakim, G., Assimilation of time-average observations in a quasi-642 

geostrophic atmospheric jet model, Clim. Dyn., 35, 995-1009, 2010. 643 

Joussaume, S., Sadourny, R., and Jouzel, J., A general circulation model of water isotope 644 

cycles in the atmosphere, Nature, 311, 24-29, 1984 645 

Jouzel, J., Russell, G. L., Suozzo, R. J., Koster, R. D., White, J. W. C., and Broecker, W. 646 

S., Simulations of the HDO and H2
18O Atmospheric cycles using the NASA GISS 647 

General Circulation Model: The seasonal cycle for present-day conditions, J. 648 

Geophys. Res., 92, D12, 14739-14760, 1987. 649 

Julliet-Leclerc, A., and Schmidt, G., A calibration of the oxygen isotope 650 

paleothermometer of coral aragonite from Porites, Geophys. Res. Let., 28, 21, 4135-651 

413, 2001. 652 

Lee, J.-E., Fung, I., DePaolo, D., and Henning, C., Analysis of the global distribution of 653 

water isotopes using the NCAR atmospheric general circulation model, J. Geophys, 654 

Res., 112, D16306, 2007. 655 

LeGrande, A., and Schmidt, G., Global gridded data set of the oxygen isotopic 656 

composition in seawater, Geophys. Res. Lett., 33, L12604, 2006. 657 

LeGrande, A., and Schmidt, G., Sources of Holocene variability of oxygen isotopes in 658 

paleoclimate archives, Clim. Past, 441-455, 2009. 659 

Liu, G., Kojima, K., Yoshimura, K., Okai, T, Suzuki, A., Oki, T., Siringan, F., Yoneda, M., 660 

and Kawahata, H., A model-based test of accuracy of seawater oxygen isotope ratio 661 

record derived from a coral dual proxy method at southeastern Luzon Island, the 662 

Philippines, J. Geophys. Res-Biogeo., 118, 853-859, 2013. 663 

Liu, G., Kojima, K., Yoshimura, K., and Oka, A., Proxy interpretation of coral-recorded 664 

seawater 18O using 1-D model forced by isotope-incorporated GCM in tropical 665 

oceanic regions, 119, doi: 10.1002/2014JD021583, 2014. 666 

Managave, S. R., Sheshshayee, M. S., Ramesh, R., Borgaonkar, H. P., Shad, S. K., 667 

Bhattacharyya, A., Response of cellulose oxygen isotope values of teak trees in 668 

differing monsoon environments to monsoon rainfall, Dendrochronologia, 29, 89-669 



35 

 

97, 2011. 670 

Mann, M., Rutherford, S., Wahl, E., and Ammann, C., Robustness of proxy-based climate 671 

field reconstruction methods, 112, D12109, 2007. 672 

Mann, M., Zhang, Z., Hughes, M., Bradley, R., Miller, S., Rutherford, S., Ni, F., Proxy-673 

based reconstructions of hemispheric and global surface temperature variations over 674 

the past two millennia, P. Natl. Acad. Sci. USA., 105, 13252-13257, 2008. 675 

Mathiot, P., Goosse, H., Crosta, X., Stenni, B., Braida, M., Renssen, H., Van Meerbeeck, 676 

C. J., Masson-Delmotte, V., Mairesse, A., and Dubinkina, S., Using data assimilation 677 

to investigate the causes of Southern Hemisphere high latitude cooling from 10 to 8 678 

ka BP, Clim. Past, 9, 887-901, 2013. 679 

Noone, D. and Simoonds, I., Associations between δ18O of water and climate parameters 680 

in a simulation of atmospheric circulation for 1979-95, J. Climate, 15, 3150-3169, 681 

2002. 682 

North, G., Bell, T. L., and Cahalan, R. F., Sampling errors in the estimation of empirical 683 

orthogonal functions, Mon. Weather Rev., 110, 699-706, 1982. 684 

Okazaki, A., and Yoshimura, K., Development of stable water isotope incorporated 685 

atmosphere-land coupled model MIROC5, in prep. 686 

PAGES 2k Consortium, Continental-scale temperature variability during the past wto 687 

millennia, Nat. Geosci., 6, 339-346, 2013. 688 

Peterson, T. C., and Vose, R. S., An overview of the global historical climatology network 689 

temperature database, B. Am. Meteorol. Soc., 78, 2837-2849, 1997. 690 

Rabier, F., Järvinen, H., Klinker, E., Mahfouf, J.-F. and Simmons, A. The ECMWF 691 

operational implementation of four-dimensional variational assimilation. I: 692 

Experimental results with simplified physics. Q.J.R. Meteorol. Soc., 126: 1143–693 

1170, 2000. 694 

Rasmusson, E. M., and Capenter, T. H., The relationship between eastern Equatorial 695 

Pacific sea surface temperatures and rainfall over India and Sri Lanka, Mon. Weather 696 

Rev., 111, 517-528, 1983. 697 

Rayner, N. A., Parker, D. E., Horton, E. B., Folland, C. K., Alexander, L. V., Rowell, D. 698 

P., Kent, E. C., Kaplan, A., Global analyses of sea surface temperature, sea ice, and 699 

night marine air temperature since the late nineteenth century, J. Geophys, Res., 108, 700 

D144407, 2003. 701 

Rhodes, R. H., Bertler, N. A. N., Baker, J. A., Steen-Larsen, H. C., Sneed, S. B., 702 

Morgenstern, U., and Johnsen, S. J., Little Ice Age climate and oceanic conditions 703 

of the Ross Sea, Antarctica from a coastal ice core record, Clim. Past, 8, 1223-1238, 704 

2012. 705 



36 

 

Risi, C., Bony, S., Vimeux, F., and Jouzel, J., Water-stable isotopes in the LMDZ4 general 706 

circulation model: Model evaluation for present-day and past climates and 707 

applications to climatic interpretations of tropical isotopic records, J. Geophys. Res., 708 

115, D12118, 2010. 709 

Roden, J., Lin, G., and Ehleringer, J., A mechanistic model for interpretation of hydrogen 710 

and oxygen isotope ratios in tree-ring cellulose, Geochim. Cosmochim. Ac., 64, 21-711 

35, 2000. 712 

Sano, M., Xu, C., and Nakatsuka, T., A 300-year Vietnam hydroclimate and ENSO 713 

variability record reconstructed from tree ring δ18O, J. Geophys. Res. 117, D12115, 714 

2012. 715 

Schmidt, G., Hoffmann, G., Shindell, D., and Hu, Y., Modeling atmospheric stable 716 

isotopes and the potential for constraining cloud processes and staratosphere-717 

troposphere water exchange, J. Geophys. Res., 110, D21314, 2005. 718 

Schmidt, G., LeGrande, A., and Hoffmann, G., Water isotope expressions of intrinsic and 719 

forced variability in coupled ocean-atmosphere model, J. Geophys. Res., 112, 720 

D10103, 2007. 721 

Schneider, D. P. and Noone, D. C., Spatial covariance of water isotope records in a global 722 

netweok of ice cores spanning twentieth-century climate change, J. Geophys. Res., 723 

112, D18105, 2007. 724 

Schotterer, U., Stichler, W., Ginot, P., The influence of post-depositional effects on ice 725 

core studies: Examples from the Alps, Andes, and Altai, in Earth Paleoenvironments: 726 

Records Preserved in Mid- and Low-Latitude Glaciers, pp.39-59, Kluwer Acad, 727 

Dordrecht, The Netherlands, 2004 728 

Steiger, N., Hakim, G., Steig, E., Battisti, D., and Roe, G., Assimilation of Time-Averaged 729 

Pseudoproxies for Climate Reconstruction, 27, 426-441, 2014. 730 

Taylor, K. E., Stouffer, R. J., Meehl, G., An overview of CMIP5 and the experiment 731 

design, B. Am. Meteor. Soc., 93, 485-498, 2007. 732 

Takeuchi, N., Fujita, K., Aizen, V. B., Narama, C., Yokoyama, Y., Okamoto, S., Naoki, 733 

K., and Kobota, J., The disappearance of glaciers in the Tien Shan Mountains in 734 

Central Asia at the end of Pleistocene, Quaternary Sci. Rev., 103, 26-33, 2014. 735 

Thomposon, D. M., Ault, T. R., Evans, M. N., Cole, J. E., and Emile-Geay, J., Comparison 736 

of observed and simulated tropical climate trends using a forward model of coral 737 

d18O, Geophys. Res. Let., 38, L14706, 2011. 738 

van der Schrier, G. and Barkmeijer, J., Bjerknes’ hypothesis on the coldness during 739 

AD1790-1820 revisited, Clim. Dyn., 25, 537-553, 2005. 740 

van Leeuwen, P. J., Particle filtering in geophysical systems, Mon. Weather Rev., 137, 741 



37 

 

4089-4114, 2009. 742 

von Storch, H., Cubasch, U., Gonzalez-Rouco, J. F., Jones, J. M., Voss, R., Widmann, M., 743 

and Zorita, E., Combining paleoclimatic eviedence and GCMs by means of data 744 

assimilation though upscaling and nudging (DATUN), Proc. 11th Symposium on 745 

Global Climate Change Studies, AMS Long Beach, CA, 2000. 746 

Watanabe, M., Suzuki, T., O’ishi, R., Komuro, Y., Watanabe, S., Emori, S., Takemura, T., 747 

Chikira, M., Ogura, T., Sekiguchi, M., Takata, K., Yamazaki, D., Yokohota, T., 748 

Nozawa, T., Hasumi, H., Tatebe, H., and Kimoto, M., Improved climate simulation 749 

by MIROC5: Mean States, Variability, and Climate Sensitivity, 23, 6312-6335, 2010. 750 

Werner, M., Langebroek, P., Carlsen, T., Herold, M., and Lohmann, G., Stable water 751 

isotopes in the ECHAM5 general circulation model: Toward high-resolution isotope 752 

modeling on a global scale, J. Geophys. Res., 116, D15109, 2011. 753 

Whitaker, J. S., and Hamill, T. M., Ensemble data assimilation without perturbed 754 

observations, Mon. Weather Rev., 130, 1913-1924, 2002. 755 

Widmann, M., Goosse, H., van der Schrier, G., Schnur, R., and Barkmeijer, J., Using data 756 

assimilation to study extratropical Northern Hemisphere climate over the last 757 

millennium, Clim. Past, 6, 627-644, 2010. 758 

Xu, C., Sano, M., and Nakatsuka, T., Tree ring cellulose δ18O of Fokienia hodginsii in 759 

northern Laos: A promising proxy to reconstruct ENSO?, J. Goephys. Res. 116, 760 

D245109, 2011. 761 

Xu, C., Zheng, H., Nakatsuka, T., and Sano, M., Oxygen isotope signatures preserved in 762 

tree ring cellulose as a proxy for April-September precipitation in Fujian, the 763 

subtropical region of southeast China, J. Geophys. Res-Atmos., 118, 12805-12815, 764 

2013. 765 

Xu, C., Pumijumnong, N., Nakatsuka, T., Sano, M., Li, Z., A tree-ring cellulose δ18O-766 

based July-October precipitation reconstruction since AD 1828, northwest Thailand, 767 

J. Hydrol., 529, 422-441, 2015. 768 

Yoshimura, K., Kanamitsu, M., Noone, D., and Oki, T., Historical isotope simulation 769 

using Reanalysis atmospheric data, J. Geophys, Res., 113, D19108, 2008. 770 

Yoshimura, K., Miyoshi, T., and Kanamitsu, M., Observation system simulation 771 

experiments using water vapor isotope information, J. Goephys, Res., 119, 7842-772 

7862, 2014. 773 

Young, G. H. F., Loader, N. J., McCarroll, D., Bale, R. J., Demmler, J. C., Miles, D., 774 

Nayling, N., Rinne, K. T., Robertson, I., Watts, C., and Whitney, M., Oxygen stable 775 

isotope ratios from British oak tree-rings provide a strong and consistent record of 776 

past changes in summer rainfall, Clim. Dyn., 45, 3609-3622, 2015. 777 



38 

 

 778 

  779 



39 

 

Tables 780 

Table 1. Experimental designs. The observation network used in the CTRL experiment is 781 

denoted as Orig. 782 

 
SST data to drive 

simulation run 

SST data to 

drive truth run 
Assimilated variable 

Observation 

network 
Missing data 

CTRL HadISST HadISST Simulated δ18O Orig w/o missing 

CGCM Modeled SST HadISST Simulated δ18O Orig w/o missing 

VOBS Modeled SST HadISST Simulated δ18O Orig w/ missing 

REAL Modeled SST - Observed δ18O Orig w/ missing 

T2-Assim HadISST HadISST 
Reconstructed T2 

from simulated δ18O 
Orig w/o missing 

M08 HadISST HadISST Simulated δ18O M08 w/o missing 
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Figures 785 

 786 

Figure 1 787 

Spatial distribution of proxies (δ18O in ice cores, corals, and tree-ring cellulose, denoted 788 

by blue, pink, and green, respectively). (a) Proxies spanning at least one year during 789 

1871–2000 are mapped (b) The number of proxies is depicted as a function of time. (c–790 
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h) The spatial distributions of the proxies are mapped for (c) 1871, (d) 1900, (e) 1930, (f) 791 

1960, (g) 1990, and (h) 2007. 792 
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 794 

Figure 2 795 

Annual mean δ18O in corals at a location where observational data were available (1°N, 796 

157°W) for (a) background and (b) analysis. The black line indicates the truth, gray lines 797 

indicate ensemble members, and green line indicates the ensemble mean. 798 
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 800 

Figure 3 801 

Temporal correlation between the analysis and the truth. The green dot represents the 802 

location of the proxy sampling site. The hatched area indicates where the correlation is 803 

not statistically significant (p > 0.05). 804 
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 806 

Figure 4 807 

First mode of EOF and the correlation between PC1 and temperature for (a and d) ice 808 

cores, (b and e) corals, and (c and f) tree-ring cellulose. 809 
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 811 

Figure 5 812 

Temporal correlation between the analysis and the truth for (a–d) temperature and (e–h) 813 

precipitation, for each experiment. The green dot represents the location of the proxy 814 

sampling site. The hatched area indicates where the correlation is not statistically 815 

significant (p > 0.05). 816 
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 818 

Figure 6 819 

Temporal correlation between the analysis and the truth for each experiment for 1970–820 

1999. The values for temperature and precipitation are the global mean of the temporal 821 

correlations.  822 
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 824 

Figure 7 825 

Temporal correlations between the analysis and the truth for (a, c) temperature and (b, d) 826 

precipitation, for (a, b) CTRL and (b, d) T2-Assim. The green dot represents the location 827 

of the proxy sampling site. The hatched area means that the correlation is not statistically 828 

significant (p > 0.05). 829 
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 831 

Figure 8 832 

Signal to noise ratio (SNR) of the reconstructed temperature from the observation used 833 

in CTRL.  834 
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 836 

Figure 9 837 

Temporal correlations in North America between the analysis and the truth for (a, b) 838 

temperature, and (c, d) precipitation, for experiments using different proxy networks. The 839 

green dot represents the location of the proxy sampling site. The hatched area indicates 840 

where the correlation is not statistically significant (p > 0.05). 841 
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