1	
2	
3	
4	Development and evaluation of a system of proxy data assimilation for
5	paleoclimate reconstruction
6	
7	
8	By
9	
10	Atsushi Okazaki ¹ and Kei Yoshimura ²
11	
12	¹ RIKEN Advanced Institute for Computational Science, Japan
13	² Institute of Industrial Science, The University of Tokyo, Japan
14	
15	
16	
17	
18	
19	Submitted to Climate of the Past
20	Submitted in November, 2016
21	Revised in February, 2017
22	
23	Corresponding author: Atsushi Okazaki, RIKEN Advanced Institute for Computational
24	Science, 7-1-26 Minatojima-minami-machi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
25	(atsushi.okazaki@riken.jp)

Abstract

Data assimilation (DA) has been successfully applied in the field of paleoclimatology to reconstruct past climate. However, data reconstructed from proxies have been assimilated, as opposed to the actual proxy values. This banned to fully utilize the information recorded in the proxies.

This study examined the feasibility of proxy DA for paleoclimate reconstruction. Isotopic proxies (δ^{18} O in ice cores, corals, and tree-ring cellulose) were assimilated into models: an isotope enabled general circulation model (GCM) and forward proxy models, using offline data assimilation.

35First, we examined the feasibility using an observation system simulation experiment (OSSE). The analysis showed a significant improvement compared with the first guess in 36 the reproducibility of isotope ratios in the proxies, as well as the temperature and 37 precipitation fields, when only the isotopic information was assimilated. The 3839 reconstruction skill for temperature and precipitation was especially high at low latitudes. This is due to the fact that isotopic proxies are strongly influenced by temperature and/or 40 precipitation at low latitudes, which, in turn, are modulated by the El Niño-Southern 41 42Oscillation (ENSO) on interannual timescales.

Subsequently, the proxy DA was conducted with real proxy data. The reconstruction 43skill was decreased compared to the OSSE. In particular, the decrease was significant 4445over the Indian Ocean, eastern Pacific, and the Atlantic Ocean where the reproducibility of the proxy model was lower. By changing the experimental design in a stepwise manner, 46 the decreased skill was suggested to be attributable to the misrepresentation of the 47atmospheric and proxy models and/or the quality of the observations. Although there 48remains a lot to improve proxy DA, the result adequately showed that proxy DA is 4950feasible enough to reconstruct past climate.

51

52 **1.** Introduction

Knowledge of past conditions is crucial for understanding long-term climate 53variability. Historically, two approaches have been used to reconstruct paleoclimate; one 5455based on the empirical evidence contained in proxy data, and the other based on simulation with physically-based climate models. Recently, an alternative approach 56combining proxy data and climate simulations using a data assimilation (DA) technique 57has emerged. DA has long been used for forecasting weather and is a well-established 58method. However, the DA algorithms used for weather forecasts cannot be directly 5960 applied to paleoclimate due to the different temporal resolution, spatial extent, and type of information contained within observation data (Widmann et al., 2010). The temporal 61resolution and spatial distribution of proxy data are significantly lower (seasonal at best) 62 63 and sparser than the present-day observations used for weather forecasts, and the information we can get does not measure the direct states of climate (e.g., temperature, 64 wind, pressure, etc.), but represents proxies of those states (e.g., tree-ring width, isotopic 65 composition in ice sheets, etc.). Thus, DA applied to paleoclimate is only loosely linked 66 to the methods used in the more mature field of weather forecasting, and it has been 67 68 developed almost independently from them.

69

Several DA methods have been proposed for paleoclimate reconstruction (von Storch

70	et al., 2000; van der Schrier et al., 2005; Dirren and Hakim, 2005; Goosse et al., 2006;
71	Bhend et al., 2012; Dubinkina and Goosse, 2013; Steiger et al., 2014), and paleoclimate
72	studies using DA have successfully determined the mechanisms behind climate changes
73	(Crespin et al., 2009; Goosse et al., 2010; 2012; Mathiot et al., 2013). In previous studies,
74	the variables used for assimilation have been data reconstructed from proxies (e.g.,
75	surface air temperature) because observation operators or forward models for proxies
76	have not been readily available. Hereafter, the DA method that assimilates reconstructed
77	data from proxies is referred to as reconstructed DA. Recently, proxy modelers have
78	developed and evaluated several forward models (e.g., Dee et al., 2015 and references
79	therein). Thanks to that, currently a few studies have started attempting to assimilate
80	proxy data directly (Acevedo et al., 2016; Dee et al., 2016).
81	The main advantage of proxy DA over reconstructed DA is the richness of information
82	used for assimilation. In previous studies, only a single reconstructed field was
83	assimilated. However, proxies are influenced by multiple variables. Hence, the
84	assimilation of a single variable does not use the full information recorded in the proxies.
85	The reconstruction method itself also limits the amount of information. The most
86	commonly-used climate reconstruction is an empirical and statistical method that relies
87	on the relationships between climate variables and proxies observed in present-day

88	observations. These relationships are then applied to the past climate proxies to
89	reconstruct climate prior to the instrumental period. Most of the studies using this
90	approach assume that the relationship is linear. However, this assumption imposes
91	considerable limitations in which specific climate proxies can be used, and proxies that
92	do not satisfy the assumption have generally been omitted (e.g., PAGES 2k Consortium,
93	2013). Because information on paleoclimate is scarce, it is desirable to use as much
94	information as possible.
95	Furthermore, the reconstruction method also limits the quality of information
96	provided. The method also assumes stationarity of the relationship between the climate
97	and the proxies. However, this assumption has been shown to be invalid for some cases
98	(e.g., Schmidt et al. 2007; LeGrande and Schmidt, 2009). In the case of reconstructed DA,
99	the assimilation of such questionable reconstructed data would provide unrealistic results.
100	In the case of proxy DA; however, the skill of the assimilation is expected to be unchanged,
101	provided the model can correctly simulate the non-stationarity.
102	The concept of proxy data assimilation is not new, and has been proposed in previous
103	studies (Hughes and Ammann, 2009; Evans et al., 2013; Yoshimura et al., 2014; Dee et
104	al., 2015). Yoshimura et al. (2014) demonstrated that the assimilation of the stable water
105	isotope ratios of vapor improves the analysis for current weather forecasting. They

106	performed an observation system simulation experiment (OSSE) assuming that isotopic
107	observations from satellites were available every six hours. Because the isotope ratio of
108	water is one of the most frequently used climate proxies, this represents a significant first
109	step toward improving the performance of proxy data assimilation in terms of identifying
110	suitable variables for assimilation. However, it is not yet clear whether it is feasible to
111	constrain climate only using isotopic proxies whose temporal resolution and spatial
112	coverage are much longer and sparser than those of the specific study.
113	This study examined the feasibility of isotopic proxy DA for the paleoclimate
114	reconstruction on the interannual timescale. Because the study represents one of the first
115	attempts to assimilate isotopic variables on this timescale, we adopted the framework of
116	an OSSE, as in previous climate data assimilations (Annan and Hargreaves, 2012; Bhend
117	et al., 2012; Steiger et al., 2014; Acevedo et al., 2016b; Dee et al., 2016). After the
118	evaluation of proxy DA in the idealized way, we conducted the study with "real" proxy
119	DA. We investigated which factors decreased or increased the skill of the proxy DA. As
120	a measure of skill, we report the correlation coefficient throughout the manuscript.
121	In this study, we used only oxygen isotopes (¹⁸ O) as proxies. The isotope ratio is
122	expressed in delta notation (δ^{18} O) relative to Vienna Standard Mean Ocean Water
123	(VSMOW) throughout the manuscript. If the original data were expressed in delta

124	notation relative to	Vienna Pe	ee Dee	Belemnite (VPDB),	they	were	converted	to	the
125	VSMOW scale.									

126	This paper is structured as follows. In the following section, the data assimilation
127	algorithm, models, data, and experimental design are presented. Section 3 shows the
128	results of the idealized experiment. Section 4 gives the results of the real proxy DA. The
129	Discussion is presented in Section 5. Finally, we present our conclusions in Section 6.

130

131 **2.** Materials and methods

132 **2.1. Data assimilation algorithm**

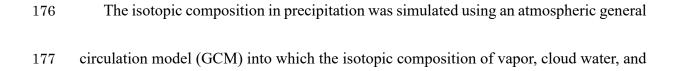
We used a variant of ensemble Kalman filter (EnKF, see Houtekamer and Zhang, 2016, and references therein); sequential ensemble square root filter (EnSRF; Whitaker and Hamill, 2002). EnSRF updates the ensemble mean and the anomalies from the ensemble mean separately, and processes observations serially one at a time if the observations have independent errors.

To assimilate time-averaged data, slight modification was made for the method following Bhend et al. (2012) and Steiger et al. (2014). In the modified EnSRF, the analysis procedure is not cycled to the simulation (Bhend et al., 2012); thus, the background ensembles can be constructed from existing climate model simulations (Huntley and Hakim, 2010; Steiger et al., 2014). As such, we can assimilate data with any
temporal resolution coarser than the model outputs. In this study, we focused on annual
DA.

145There are two ways to construct the background ensemble in the approach mentioned above (hereafter offline DA); one using ensemble runs as in weather forecasts (Bhend et 146 147al., 2012; Acevedo et al., 2016) and the other using a single run (Steiger et al., 2014; Dee et al., 2016). The latter uses the same background ensemble for every analysis step. To 148reduce computational cost, we chose the latter way, where the ensemble members are 149 150individual years. This simplification was valid because the interannual variability in a single run was inherently indistinguishable from the variability in the annual mean within 151the ensemble of simulations in which the initial conditions were perturbed, at least for 152atmospheric variables. Thus, the background ensembles were the same for all the 153reconstruction years and did not contain any year-specific boundary conditions and 154forcing information; hence, the background error covariance was constant over time. 155Therefore, this study did not consider non-stationarity between the proxies and climate. 156Despite the limitations of the algorithm used in this study, it should be noted that the 157158proxy DA could address non-stationarity if one uses temporally varying background ensemble. We return to this point in Section 5. 159

160	To control spurious long-distance correlations due to sampling errors, a localization
161	function proposed by Gaspari and Cohn (1999) with a scale of 12,000 km was used. The
162	detailed procedure used for the algorithm is described in Steiger et al. (2014).
163	
164	
165	2.2. Models
166	Isotope ratios recorded in ice cores, corals, and tree-ring cellulose were assimilated.
167	To assimilate these variables, forward models for the variables are required. We used the

168forward model developed by Liu et al. (2013; 2014) for corals, and Roden et al. (2000)


for tree-ring cellulose. We assumed that the isotopic composition of ice cores was the 169

same as that of precipitation at the time of deposition. Note that, in reality, the isotope 170ratio recorded in ice cores is not always equal to that in precipitation due to post-171depositional processes (e.g., Schotterer et al., 2004). Because detailed models that 172

173explicitly simulate the impact of all the processes involved in determining the value of

the ratio are not yet available, we used the isotope ratio in precipitation for that in ice 174

cores to avoid adding unnecessary noise. 175

cloud ice are incorporated as prognostic variables. The model explicitly simulates the 178isotopic composition with all the details of the fractionation processes combined with 179atmospheric dynamics and thermodynamics, and hydrological cycles. Hence, the model 180simulates the isotopic composition consistent with the modeled climate. Although many 181 such models have been developed previously (Joussaume et al., 1984, Jouzel et al., 1987; 182Hoffmann et al., 1998; Noone and Simmonds, 2002; Schmidt et al., 2005; Lee et al., 2007; 183Yoshimura et al., 2008; Risi et al., 2010; Werner et al., 2011), we used a newly-developed 184 model (Okazaki et al., in prep.) based on the atmospheric component of MIROC5 185(Watanabe et al. 2010). The spatial resolution was set to T42 (approximately 280 km) 186 with 40 vertical layers. 187

188 The variability in δ^{18} O recorded in coral skeleton aragonite (δ^{18} O_{coral}) depends on the 189 calcification temperature and local δ^{18} O in sea water (δ^{18} O_{sw}) at the time of growth 190 (Epstein and Mayeda, 1953). Previous studies have modeled δ^{18} O_{coral} as the linear 191 combination of sea surface temperature (SST) and δ^{18} O_{sw} (e.g., Julliet-Leclerc and 192 Schmidt, 2001; Brown et al., 2006; Thompson et al., 2011), as follows:

193
$$\delta^{18}O_{coral} = \delta^{18}O_{sw} + aSST$$
 (1)

194 where *a* is a constant which represents the slope between $\delta^{18}O_{\text{coral}}$ and SST. In this study, 195 the constant was uniformly set to -0.22‰/°C for all the corals, following Thompson et al.

(2011), and we used a model developed by Liu et al. (2013; 2014) to predict $\delta^{18}O_{sw}$. The 196 model is an isotopic mass balance model that considers evaporation, precipitation, and 197 mixing with deeper ocean water. The coral model uses the monthly output of the isotope-198199enabled GCM as its input, except for the isotope ratio of deeper ocean water, which was obtained from observation-based gridded data compiled by LeGrande and Schmidt et al. 200 (2006). After the model calculates the monthly $\delta^{18}O_{coral}$, it is arithmetically averaged to 201provide the annual $\delta^{18}O_{coral}$. 202The isotope ratio in tree-ring cellulose ($\delta^{18}O_{tree}$) was calculated using a model 203developed by Roden et al. (2000). In this model, $\delta^{18}O_{tree}$ is determined by the isotopic 204composition of the source water used by trees for photosynthesis, and evaporative 205enrichment on leaves via transpiration. In this study, the value of the isotopic composition 206 207in the source water was arbitrarily assumed to be the moving average, traced three-months backward, of the isotopic composition in precipitation at the site. Again, the model used 208209 the monthly output of the isotope-enabled GCM as its input. After performing the treering model calculation, the monthly output was weighted using climatological net primary 210production (NPP) to calculate the annual average. The NPP data were obtained from the 211212US National Aeronautics and Space Administration (NASA) Earth Observation website (http://neo.sci.gsfc.nasa.gov). 213

Because the isotopic compositions of the proxies were simulated using the output of the isotope-enabled GCM, their horizontal resolution was the same as that of the GCM.

- 217 **2.3.** Experimental design
- 218 **2.3.1.** Control experiment

219The first experiment served as a control (CTRL) experiment, and used the framework 220of an OSSE. In the experiment, the "simulation" and the "truth" (nature run) were simulated by the same models, with the same forcing, but with different initial conditions. 221222Because the proxy models were driven by the output of the GCM, the modeled proxies 223were consistent with the modeled climate from the GCM. Thus, here we describe the experimental design for the GCM. The GCM was driven by observed SST and sea-ice 224data (HadISST; Rayner et al., 2003), and historical anthropogenic (carbon dioxide, 225methane, and ozone) and natural (total solar irradiance) forcing factors. The simulation 226covered the period of 1871–2007 (137 years). 227

Although the simulation period included recent times covered by observational data,

229 we assumed that the only variable that could be obtained was the annual mean of δ^{18} O in

- 230 the proxies. We based this assumption on the fact that we wished to perform the DA for a
- 231 period in which no direct measurements were available, and there were only climate
- 232 proxies covering the period. Therefore, the temporal resolutions of the "observations" and

233	"simulations" were also annual, considering the typical temporal resolution of the proxies.
234	Observations were generated by adding Gaussian noise to the truth. The spatial
235	distribution of the observations mimicked that of the proxies. The spatial distributions of
236	each proxy for various periods are mapped in Figure 1. As can be seen from the figure,
237	the distributions and the number of proxies varied with time. However, for the sake of
238	simplicity, the distributions of the proxies were assumed to be constant over time in the
239	CTRL experiment (Figure 1 a). The size of the observation errors will be discussed in
240	Section 2.4.
241	The state vector consisted of five variables; surface air temperature and amount of
242	precipitation, as well as the isotopic composition in precipitation, coral, and tree-ring
243	cellulose. The first three variables were obtained from the isotope-enabled GCM, and the
	······································
244	other two variables were obtained from the proxy models driven by the output of the
244 245	
	other two variables were obtained from the proxy models driven by the output of the

The second (REAL) experiment assimilated proxy data sampled in the real world. To 248

Real proxy data assimilation

2.3.2.

247

249

were modified from observational to modeled data. In reality, there were no direct 250

mimic realistic conditions, SST and sea-ice concentration data to be used as model forcing

251	observations available for the target period of the proxy DA. Therefore, to reliably
252	evaluate the feasibility of proxy DA, the first estimate should be constructed using
253	modeled SST, as opposed to observed SST. We used SST data from the historical run of
254	the Coupled Model Intercomparison Project Phase 5 (CMIP5; Taylor et al., 2007) from
255	the atmosphere-ocean coupled version of MIROC5 (Watanabe et al., 2010) obtained from
256	the CMIP5 data server (https://pcmdi.llnl.gov/search/cmip5/).
257	Because the experiment was not an OSSE, nature run was not necessary.
258	
259	2.3.3. Sensitivity experiments
260	Four sensitivity experiments were conducted to test the robustness of the results of
261	the proxy DA. In the first sensitivity experiment (CGCM), the simulation run was
262	constructed from the simulation forced by the modeled SST and sea ice as in the REAL
263	experiment. The other settings for the simulation run were the same as those in the CTRL
264	experiment. The nature run was the same as that of the CTRL experiment. Thus, this
265	experiment investigated how the reconstruction skill of the results was decreased by using
266	the simulated SST compared to the CTRL.
267	In the second sensitivity experiment (VOBS), the experimental design was the same
268	as that in the CGCM, except for the number of proxies that were assimilated. In the

269	CGCM experiment, the distribution and number of proxies were set to be constant over
270	time, as in the CTRL experiment. In the VOBS experiment, the distribution and number
271	of proxies varied with time. Thus, this experiment investigated how the reconstruction
272	skill was decreased by changing the number of proxies compared to the CGCM.
273	In the third sensitivity experiment (T2-Assim), reconstructed surface temperature (T_r)
274	was assimilated. The purpose of the experiment was to compare the skill of the
275	reconstructed DA with that of the proxy DA. The experimental design was the same as
276	that in the CTRL experiment, except for the variables that were assimilated. The
277	reconstructed temperature was generated with a linear regression model of $T_r = a +$
278	$b \times \delta^{18}O$ where a and b are coefficients and $\delta^{18}O$ is the observed isotope ratio. The
279	coefficients are calibrated with the observed isotope ratio and the true temperature in the
280	CTRL for the period of 1871 to 1950 (80 years). If the correlation between the isotope
281	ratio and the temperature during the calibration period was not statistically significant (p
282	< 0.10), the data was discarded following Mann et al. (2008). This screening process
283	reduced the available data from 94 to 81 grid points.
284	The final sensitivity (M08) experiment was used to examine the sensitivity to the

the spatial distribution of the proxy. The proxy network used in the experiment was the

285

observation network. The experimental design was the same as for the CTRL, except for

287	same as that of Mann et al. (2008). We assumed that isotopic information was available
288	for all the sites, even when this was not the case. For example, even if only tree-ring width
289	data were available at some of the sites in Mann et al. (2008), in this experiment we
290	assumed that isotopic data recorded in tree-ring cellulose were available at the site. The
291	number of grids containing observations were 94 and 250 for the CTRL experiment and
292	M08 respectively. The T2-Assim and the M08 were compared with CTRL.

293 The experimental designs are summarized in Table 1.

294

295 **2.4. Observation data**

We used paleoclimate data archived at the National Oceanic and Atmospheric 296Administration (NOAA; https://www.ncdc.noaa.gov/data-access/paleoclimatology-data) 297 and data used in the PAGES 2k Consortium (2013). Additionally, 22 tree-ring cellulose 298and 7 ice core data sets were collected separately from published papers. We only used 299oxygen isotopic data (¹⁸O) whose temporal resolution was higher than annual; proxies 300 whose resolution was lower than annual were excluded. The full list of proxies used in 301 this study is given in the Appendix. Following Crespin et al. (2009) and Goosse et al. 302 303 (2010), all proxy records were first normalized, and then averaged onto a T42 grid box to eliminate model bias and produce a regional grid box composite. To compare the results 304

305	from each experiment effectively, the assimilated variables were all normalized in both
306	the simulation and nature runs, and in the observations in all the experiments.

307	Errors were added to the truth in a normalized manner to provide the observation for
308	all the experiment other than REAL. The normalized error was uniformly set to 0.50 for
309	all the proxies. This was based on the measurement error of $\delta^{18} O$ in ice cores being
310	reported to range from 0.05 to 0.2‰ (e.g., Rhodes et al., 2012; Takeuchi et al., 2014), and
311	the corresponding normalized error (measurement error divided by standard deviation of
312	proxy) then ranges from 0.03 to 0.1, with an average of 0.06. Similarly, the measurement
313	error of δ^{18} O in coral ranges from 0.03 to 0.11‰ (e.g., Asami et al., 2004; Goodkin et al.,
314	2008), and the corresponding normalized error ranges from 0.24 to 1.1, with an average
315	of 0.53. The measurement error of δ^{18} O in tree-ring cellulose ranges from 0.1 to 0.3‰
316	(e.g., Managave et al, 2011; Young et al, 2015), and the corresponding normalized error
317	ranges from 0.08 to 0.55, with an average of 0.28. In practice, due to the error of
318	representativeness and that in observation operator, it is common to increase the
319	observation errors to ensure that the analysis functions effectively (Yoshimura et al.,
320	2014). Furthermore, the measurement errors were not always available; therefore, a
321	uniform value of 0.5 was used for all the proxies. The corresponding signal-to-noise ratio
322	(SNR) is 2.0. The errors are assumed to be independent for all the experiments.

323

324 **3. F**

Results from the OSSE

The time series of the first estimation, the analysis, and the real values for δ^{18} O in 325326 corals are compared as an example in Figure 2 at a location where observational data were available (1°N, 157°W). Because the first estimate was the same for all reconstruction 327 years, it is drawn as horizontal lines. After the assimilation, the analysis agreed well with 328 the real values (R = 0.96, p < 0.001). This confirmed that the assimilation performed well. 329We then examined how accurately the other variables were reconstructed by assimilating 330 331isotopic information. Figure 2 also shows the time series of surface air temperature and precipitation for the same site. There was a clear agreement between the analysis and the 332truth for both variables (R = 0.92 and 0.88 respectively for temperature and precipitation). 333 334 This indicated that temperature and precipitation were effectively reconstructed by assimilating isotopic variables at this site. This was because the isotope ratio in corals has 335a signature not only from temperature as given in Eq. 1, but also precipitation (Liu et al., 336 2013); the correlation with $\delta^{18}O_{coral}$ was -0.88 (p < 0.001) for both temperature and 337 precipitation, respectively. This example shows that the isotopic proxy records more than 338 339 one variable.

340 Figure 3 maps the correlation coefficients between the analysis and the truth for the

isotope ratio, temperature, and precipitation for 1970–1999. Because the first estimate
was constant over time, the temporal correlation between the first estimate and the real
value was zero everywhere. Thus, a positive correlation indicated that the DA improved
the simulation.

The correlation for δ^{18} O in precipitation were high at the observation sites, regardless 345of the proxy type. This was because δ^{18} O in both corals and trees is affected by the isotopic 346 composition in precipitated water derived from sea water or soil water. The correlation 347for δ^{18} O in tree-ring cellulose were also high at the observation sites. On the other hand, 348 the high correlation for δ^{18} O in corals were not limited around the observation sites but 349were generally high at low- to mid-latitudes. Similarly, the correlation was high at low-350to mid-latitudes for surface temperature. The correlation was also statistically significant 351(p < 0.05) around the observation sites in high latitude. In contrast, closely correlated 352areas were restricted to low-latitude for precipitation. 353

How can the spatial distribution of the correlation pattern be explained; i.e., what do the proxies represent? To investigate this question, empirical orthogonal function (EOF) analysis was conducted for the simulated δ^{18} O in precipitation, corals, and tree-ring cellulose. Only grids that contained observations were included in the analysis. The variables were centered around their means before the analysis. The data covered the

period 1871-2007. The EOF patterns and temporal correlations between surface 359 temperature and the characteristic evolution of EOF, or the principal components (PCs) 360 of the first mode of each proxy are shown in Figure 4. 361The first mode of δ^{18} O in ice core explains 14.3% of the total variance ant it is the 362 only significant mode according to the Rule of Thumb (North et al., 1982) (the first and 363 the second mode were indistinguishable). The maximum loadings were in Greenland and 364 Antarctica where temperature increase has been observed for the past hundred years (e.g. 365Hartmann et al., 2013). Indeed, the PC1 shows the significant trend and is correlated with 366 367 global mean surface temperature (R=0.44, p < 0.001). Therefore, it is legitimate to regard ice core data as a proxy of global temperature as revealed from observation (Schneider 368and Noone, 2007). 369 The first modes of δ^{18} O in corals, and tree-ring cellulose represent ENSO. The 370

and Tibet for tree-ring cellulose. The temporal correlation between the PC1s and NINO3 index were 0.95, and 0.37 for corals and tree-ring cellulose, respectively. Because the isotopic composition in corals is influenced by sea temperature, it is expected that the $\delta^{18}O$ in corals from the central Pacific records the ENSO signature. Interestingly, the

377	analysis revealed that the δ^{18} O in tree-ring cellulose was also influenced by ENSO; hence,
378	this proxy contributes to the reconstruction of temperature and precipitation over the
379	tropical Pacific. Indeed, many previous studies have reported the link between $\delta^{18}O$ in
380	tree-ring cellulose and ENSO (Sano et al. 2012; Xu et al. 2011; 2013; 2015). Xu et al.
381	(2011) inferred the link is caused by the association between ENSO and Indian monsoon
382	rainfall (e.g. Rasmusson and Carpenter, 1983). The positive phase of ENSO results in a
383	decrease in summer monsoon rainfall in India, which leads to dry conditions in summer.
384	The decrease in precipitation leads to isotopically-enriched precipitation, and the dry
385	conditions enhance the enrichment of water in leaves. Correspondingly, the $\delta^{18}O$ in tree-
386	ring cellulose becomes heavier than normal in the positive phase of ENSO. Due to the
387	relationships between the coral and tree-ring cellulose data and ENSO, the correlation
388	coefficient between the analysis and the truth for the NINO3 index was as high as $0.95 (p$
389	< 0.001).
390	Although EOF analysis did not reveal any other significant correlation between PCs

and climate indices, climate indices for the North Atlantic Oscillation and Southern
Annular Mode calculated using the reconstructed data were significantly correlated with
the truth (0.59 and 0.46, respectively).

395 4. Real proxy data assimilation

Based on the results of the idealized experiment described in the previous section, we performed a "real" proxy DA, in which sampled and measured data in the real world were assimilated.

The temporal correlation between the analysis and observations for temperature and precipitation are shown in Figure 5 (d, h). The observations were obtained from HadCRUT3 (Brohan et al., 2006) for temperature, and GHCN-Monthly Version 3 (Peterson and Vose, 1997) for precipitation.

403 Although the real proxy DA had reasonable skill, it was inferior relative to the CTRL experiment. We investigated the cause of the decreased skill using the outputs of the 404 sensitivity experiments. The design of the experiments was changed in a stepwise fashion 405 406 to more realistic conditions of proxy data assimilation from the idealized conditions. The correlations between the analysis and the truth, or the observation, for the experiments 407are shown in Figure 5. The truths for the CGCM and VOBS experiments were the same 408 as those for the CTRL experiment. The global mean correlation coefficients for 409 temperature, precipitation, and NINO3 in the experiments are summarized in Figure 6. 410 411 Note that the correlation was averaged in the same domain for all the experiments to take into account the differences in representativeness. 412

413	In the CGCM experiment, the temporal correlations between the analysis and the truth
414	were similar to those in the CTRL experiment for both temperature and precipitation
415	(Figure 5 b, f). This indicates that ENSO and its impacts were well represented in the
416	modeled SST used to construct the "simulation". Watanabe et al. (2010) reported similar
417	modeled SST and observational values for the amplitude of ENSO measured by the
418	NINO3 index, and the spatial patterns of the temperature and precipitation fields
419	regressed on the NINO3 time series (see Figures 13 and 14 in their report).
420	Because the number of proxies for assimilation differed from that in the CGCM
421	experiment, it was not straightforward to compare the results of the REAL experiment
422	with those of the CGCM experiment. To enable an effective comparison of the results,
423	the same number of proxies were assimilated in the VOBS experiment as in the REAL
424	experiment and the same settings were used as in the CGCM experiment for the other
425	variables. Consequently, the performance of the assimilation of the VOBS experiment
426	was similar to that of the CGCM experiment for 1970–1999.
427	When the REAL and VOBS experiments were compared, the correlation coefficients
428	for temperature were significantly decreased over the Indian Ocean, eastern Pacific, and
429	Atlantic Ocean. These areas corresponded to areas of low reproducibility in the coral
430	model (Liu et al, 2014). The effects of sea current and river flow in these areas, which

431	were not included in the coral model, were deemed to be considerable. Although we
432	cannot attribute all the decreased skill to the coral model, the reproducibility of $\delta^{18} O$ in
433	corals in these areas requires improvement to enhance the performance of the assimilation.
434	
435	5. Discussion
436	5.1. Comparison with the reconstructed temperature assimilation
437	Hughes and Ammann (2009) recommended assimilating measured proxy data, as
438	opposed to reconstructed data derived from the proxy data. This subsection compares the
439	results from the CTRL and T2-Assim experiments.
440	Figure 7 shows the spatial distribution of the correlation coefficients for temperature
441	and precipitation between the truth and the analysis for each experiment. As a whole, the
442	reconstruction skill was slightly degraded in T2-Assim compared with CTRL with the
443	global mean correlation coefficients for temperature (precipitation) of 0.50 (0.30), 0.45
444	(0.23), for CTRL and T2-Assim, respectively. On the other hand, the skill of proxy DA
445	was not always better than that of T2-Assim (e.g. temperature in tropical Atlantic Ocean).
446	Those pros and cons can be explained by the difference in the observation error and the
447	structure of Kalman gain. Figure 8 shows the SNR of the T_r ranging from 0.22 to 1.6 with
448	the average of 0.65. Accordingly, the observation error is larger than that of CTRL

449	everywhere, and this resulted in the reduction of the reconstruction skill. On the other
450	hand, the better skill in T2-Assim should be owing to the difference in Kalman gain. The
451	Kalman gain determines analysis increments by spreading the information in observations
452	through the covariance between the prior and the prior-estimated observations. We found
453	that the correlations between the prior (temperature) and the prior-estimated observation
454	(temperature and δ^{18} O for T2-Assim and CTRL, respectively) were consistently high in
455	T2-Assim than in CTRL (not shown) as Dee et al. (2016) showed. Thus, the information
456	in the observations were more effectively spread to the analysis in T2-Assim, and this
457	resulted in the improved skill. Note that the screening process hardly hampered the
458	reconstruction skill, because even if the reconstructed temperature was fully used (i.e. not
458 459	reconstruction skill, because even if the reconstructed temperature was fully used (i.e. not screened), the skills were almost the same as T2-Assim.
459	screened), the skills were almost the same as T2-Assim.
459 460	screened), the skills were almost the same as T2-Assim. Conducting similar experiments, Dee et al. (2016) also concluded that the
459 460 461	screened), the skills were almost the same as T2-Assim. Conducting similar experiments, Dee et al. (2016) also concluded that the reconstruction skills were almost the same among proxy DA and reconstructed DA if the
459 460 461 462	screened), the skills were almost the same as T2-Assim. Conducting similar experiments, Dee et al. (2016) also concluded that the reconstruction skills were almost the same among proxy DA and reconstructed DA if the relation between the reconstructed variable and the proxy is linear. As isotope-enabled
459 460 461 462 463	screened), the skills were almost the same as T2-Assim. Conducting similar experiments, Dee et al. (2016) also concluded that the reconstruction skills were almost the same among proxy DA and reconstructed DA if the relation between the reconstructed variable and the proxy is linear. As isotope-enabled GCMs (Schmidt et al. 2007; LeGrande and Schmidt. 2009) and observations and models

467	be the same as that of proxy DA if we have the well-defined forward proxy models
468	(Hughes and Ammann, 2009). Although the current models are far from perfect as
469	implicated in Sect. 4.2, the assimilation of proxy data will offer a useful tool for the
470	reconstruction of paleoclimate, in which the relationship between the proxies and climate
471	constructed with the present-day conditions does not apply.

472

473 **5.2.** Sensitivity to the distribution of the proxies

The skill of the proxy DA was relatively low over Eurasia and North America, even in the idealized experiment. It was unclear whether this was because of limitations in the proxy data assimilation or the scant distribution of the proxies. This subsection investigates the reasons for the relatively low reproducibility in these areas by comparing the results of the CTRL and M08 experiments, focusing on North America. The number of grids for which proxy data were available over North America was 11 and 126 for the CTRL and M08, respectively.

The results for North America are shown in Figure 9. The figure shows the temporal correlation coefficients between the analysis and the truth for surface air temperature and precipitation. The correlation coefficients were calculated for 1970–1999. The skill was high in the area in which the proxies were densely distributed for both variables. The

485	values of the coefficients averaged over the United States (30-50°N, 80-120°W) were
486	0.69 and 0.53 for temperature and precipitation, respectively. Compared to the
487	coefficients of 0.23 and 0.26, respectively, in the CTRL experiment, the skill was
488	enhanced for both variables. This implies that the performance of the reconstruction was
489	strongly dependent on the distribution of the proxy data. Taking into consideration that
490	proxy DA can assimilate not only proxy data but also reconstructed data, proxy DA can
491	take advantage of the use of increasingly large amounts of data. Although it is beyond the
492	scope of this study, the combined use of these data is expected to improve the performance
493	of proxy DA.

494

Conclusion and summary 495 6.

The feasibility of using proxy DA for paleoclimate reconstruction was examined in 496 both idealized and real conditions experiments. The idealized (CTRL) experiment had 497high skill at low latitudes due to the dependency of coral data on temperature and 498 precipitation in these regions, and the correlation between ENSO and $\delta^{18}O$ in corals in 499 Pacific and tree-ring cellulose in Tibet. Encouraged by the results, real proxy DA was 500501performed, where the simulation run was constructed from the simulation forced by the modeled SST, and the real (observed) proxy data were assimilated into the simulation 502

503 (REAL experiment). The skill of the reconstruction decreased compared to CTRL.

504	To investigate the reason for the relatively low skill in REAL compared to CTRL, we
505	performed additional experiments; CGCM and VOBS. The imperfect SST used to drive
506	the CGCM experiment resulted in a slight reduction of the skill compared to the CTRL
507	experiment with perfect SST. This was because ENSO, which is the most important mode
508	for the reconstruction, was well represented in the modeled SST. The result is encouraging
509	because to apply the DA system to reconstruct ages where no instrumental observation is
510	available, we must rely on SST simulated by coupled GCM. Similarly, assimilating the
511	unfixed number of the observation only slightly decreased the reconstruction skill as
512	shown in the comparison between CGCM and VOBS.
513	From the suite of experiments, more than half of the difference between CTRL and
514	REAL remained unexplained. This remained difference can have a lot of origins: e.g.
515	errors in the isotope incorporated atmospheric GCM, the proxy models, the proxy data
516	and so on. The errors in the models include such as model biases and too simplified or
517	totally lacked model components. For instance, the coral model does not take into account
518	the impact of ocean current or river runoff in this study. Furthermore, post-depositional
519	processes for simulating isotope ratio in ice core were not included at all. Those processes
520	should be included to enable more efficient utilization of all the data. The errors in proxy

521	data include such as misrepresentation of the targeted temporal and/or spatial scales. It is
522	also possible that the data were highly distorted by non-climatic factors. Thus, a thorough
523	quality control, similar to the procedures used in weather forecasting, should be
524	conducted before assimilation (e.g. Appendix B of Compo et al., 2011). At this stage, it
525	is difficult to show the relative contributions of each factor to the degraded skill in REAL,
526	it is necessary to estimate the impact of structural errors in models as done in Dee et al.
527	(2016).
528	Although the skill of proxy DA is dependent on the reproducibility of the models and
529	the number and quality of the observations, the results suggest that it is feasible to
530	constrain climate using only proxies. Especially, ENSO and ENSO-related variations in
531	temperature and precipitation should be reliably reconstructed even with the current
532	proxy DA system and proxy network used in this study because the correlation coefficient
533	between the analysis and the observations was as high as 0.83 in the REAL experiment.
534	Although the reconstruction of ENSO is dependent on data from corals, and the time span
535	covered by corals is relatively short (a few hundred years), ENSO can still be reliably
536	reconstructed due to its global impact, as was demonstrated in the relationship between
537	isotopes in tree-ring cellulose from Tibet.
538	Moreover, we expect that the reproducibility will increase as more proxy data become

539	available because it was heavily dependent on the spatial distribution. Given that proxy
540	DA can assimilate both proxy data and data reconstructed from proxy, and that the
541	reconstruction skill in reconstructed DA is partly superior to proxy DA, the combined use
542	of the two types of data is beneficial for the performance. In that case, care must be taken
543	not to assimilate dependent information (e.g. proxy data and reconstructed data from the
544	same proxy).
545	The DA algorithm used in this study did not consider non-stationarity among proxies
546	and climate variables because the Kalman gain was constant over time. To address non-
547	stationarity, the Kalman gain for a specific reconstruction year should be constructed for
548	several tens of years before and after that year. Nevertheless, EnKF can only capture
549	linear relationships between observations and the modeled state. The use of other
550	algorithms, such as particle filter (e.g. van Leeuwen, 2009), or four-dimensional
551	variational assimilation (e.g. Rabier et al., 2000), should be investigated in future studies
552	for scenarios where non-linearity is not negligible. Thus, it is important in future studies
553	to investigate non-stationarity and non-linearity among proxies and climate variables to
554	identify suitable algorithms for proxy DA.
555	

7. Acknowledgements

557 The first author was supported by the Japan Society for the Promotion of Science (JSPS) 558 via a Grant-in-Aid for JSPS Fellows. This study was supported by the Japan Society for 559 the Promotion of Science Grants 15H01729, 26289160, and 23226012, the SOUSEI 560 Program, the ArCS project of MEXT, Project S-12 of the Japanese Ministry of the 561 Environment, and the CREST program of the Japan Science and Technology Agency. 562

563 **8. References**

- Acevedo, W., Reich, S., and Cubasch, U., Towards the assimilation of tree-ring-width
 records using ensemble Kalman filtering techniques, Clim. Dyn., 46, 1909-1920,
 2016a.
- Acevedo, W., Fallah, B., Reich, W., and Cubasch, U., Assimilation of pseudo-tree-ringwidth observations into an atmospheric general circulation model, Clim. Past
 Discuss., 2016.
- Annan, J. D. and Hargreaves, J. C., Identification of climatic state with limited proxy data,
 Clim. Past, 8, 1141-1151, 2012.
- Asami, R., Yamada, T., Iryu, Y., Meyer, C. P., Quinn, T. M., and Paulay, G., Carbon and
 oxygen isotopic composition of a Guam coral and their relationships to
 environmental variables in the western Pacific, Palaeogeogr Palaeocl, 212, 15, 1-22,
 2004.
- 576 Bhend. J., Franke, J., Folini, D., Wild, M., and Brönnimann, S., An ensemble-based 577 approach to climate reconstructions, Clim. Past, 8, 963-976, 2012.
- Brohan, P., Kennedy, J. J., Harris, I., Tett, S. F. B., and Jones, P. D., Uncertainty estimates
 in regional and global observed temperature changes: A new data asset from 1850,
 J. Geophys. Res. 111, D12106, 2006.
- 581 Brown, J., Simmonds, I., and Noone, D., Modeling δ^{18} O in tropical precipitation and the 582 surface ocean for present-day climate, J. Geophys. Res., 111, D05105, 2006.

583 Compo, G. P., Whitaker, J. S., Sardeshmukh, P. D., Matsui, N., Allan, R. J., Yin, X.,

- Gleason, B. E, Jr., Vose, R. S., Rutledge, G., Bessemoulin, P., Brönnimann, S.,
 Brunet, M., Crouthamel, R. I., Grnt, A. N., Groisman, P. Y., Jones, P. D., Kruk, M.
 C., Kruger, A. C., Marshall, G. J., Maugeri, M., Mok, H. Y., Nordli, Ø., Ross, T. F.,
 Trigo, R. M., Wang, X. L., Woodruff, S. D., and Worley, S. J., The twentieth Century
 Reanalysis Project, Q. J. Roy. Meteor. Soc., 137, 1-28, 2011.
- Crespin, E., Goosse, H., Fichefet, T., and Mann, M., The 15th century Arctic warming in
 coupled model simulations with data assimilation, Clim. Past, 5, 389-401, 2009.
- D'Arrigo, R., Wilson, R., Liepert, B., and Cherubini, P., On the 'Divergence Problem' in
 Northern Forests: A review of the the tree-ring evidence and possible causes, Global
 Planet. Change, 60, 289-305, 2008.
- Dee, S., Emile-Geay, J., Evans, M., Allam, A., Steig, E., and Thompson, D., PRYSM: An
 open-source framework for PRoxY System Modeling, with applications to oxygenisotope systems, Journal of Advances in Modeling Earth Systems, 7, 1220-1247,
 2015.

- Dee, S., Steiger, N. J., Emile-Geay, J., and Hakim, G. J., On the utility of proxy system
 models for estimating climate states over the common era, Journal of Advances in
 Modeling Earth Systems, 8, 1164-1179, 2016.
- Dirren, S. and Hakim, C., Toward the assimilation of time-averaged observations,
 Geophys. Res. Lett., 32, L04804, 2005.
- Dubinkina, S. and Goosse, H., An assessment of particle filtering methods and nudging
 for climate state reconstructions, Clim. Past, 9, 1141-1152, 2013.
- Epstein, S., and Mayeda, T., Variation of O¹⁸ content of waters from natural sources,
 Geochimica Cosmochim. Ac., 4, 213-224, 1953.
- Evans, M. N., Tolwinski-Ward, S. E., Thompson, D. M., and Anchukaitis, K. J.,
 Applications of proxy system modeling in high resolution paleoclimatology,
 Quaternary Sci. Rev., 76, 16-28, 2013.
- Evans, M. N., Smerdon, J. E., Kaplan, A., Tolwinski-Ward, S. E., and González-Rouco,
 J. F., Climate field reconstruction uncertainty arising from multivariate and
 nonlinear properties of predictors, Goephys. Res. Lett., 41,
 doi:10.1002/2014GL062063, 2014.
- Gaspari, G., and Cohn, S., Construction of correlation functions in two and three
 dimensions, Q. J. Roy. Meteor. Soc., 125, 723-757, 1999.
- Goodkin, N. F., Hughen, K. A., Curry, W. B., Doney, S. C., and Ostermann, D. R., Sea
 surface temperature and salinity variability at Bermuda during the end of the Little
 Ice Age, Paleoceanography, 23, PA3203, 2008.
- Goosse, H., Renssen, H., Timmermann, A., Bradley, R., and Mann, M., Using
 paleoclimate proxy-data to select optimal realisations in an ensemble of simulations
 of the climate of the past millennium, Clim. Dyn., 27, 165-184, 2006.
- Goosse, H., Crespin, E., de Montety, A., Mann, M., Renssen, H., and Timmermann, A.,
 Reconstructing surface temperature changes over the past 600 years using climate
 model simulations with data assimilation, J. Geophys. Res., 115, D09108, 2010.
- Goosse, H., Crespin, E., Dubinkina, S., Loutre, M., Mann, M., Renssen, H., Sallaz-Damaz,
 Y., Shindell, D., The role of forcing and internal dynamics in explaining the
 "Medieval Climate Anomaly", Clim. Dyn., 39, 2847-2866, 2012.
- Hartmann, D. L., Klein Tank, A. M. G., Rusticucci, M., Alexander, L. V., Brönnimann, S.,
 Charabi, F., Dentener, F. J., Dlugokencky, E. J., Easterling, D. R., Kaplan, A., Soden,
 B. J., Thorne, P. W., Wild, M., and Zhai, P. M., Observations: Atmosphere and
 Surface. In: Climate Change 2013: The physical science basis. Contribution of
 Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on
 Climate Change, Cambridge University Press, Cambridge, United Kingdom and

634 New York, NY, USA, 2013.

- Hoffmann, G., Werner, M., Heimann, M., Water isotope module of the ECHAM
 atmospheric general circulation model: A study on timescales from days to several
 years, J. Geophys. Res., 103, D1427, 16871-16896, 1998.
- Houtekamer, P. L., and Zhang, F., Review of the ensemble Kalman filter for atmospheric
 data assimilation, Mon. Weather Rev., 144, 4489-4532, 2016.
- Hughes, M., and Ammann, C., The future of the past -an earth system framework for high
 resolution paleoclimatology: editorial essay, Climatic Change, 94, 247-259, 2009.
- Huntley, H., and Hakim, G., Assimilation of time-average observations in a quasigeostrophic atmospheric jet model, Clim. Dyn., 35, 995-1009, 2010.
- Joussaume, S., Sadourny, R., and Jouzel, J., A general circulation model of water isotope
 cycles in the atmosphere, Nature, 311, 24-29, 1984
- Jouzel, J., Russell, G. L., Suozzo, R. J., Koster, R. D., White, J. W. C., and Broecker, W.
 S., Simulations of the HDO and H₂¹⁸O Atmospheric cycles using the NASA GISS
 General Circulation Model: The seasonal cycle for present-day conditions, J.
 Geophys. Res., 92, D12, 14739-14760, 1987.
- Julliet-Leclerc, A., and Schmidt, G., A calibration of the oxygen isotope
 paleothermometer of coral aragonite from Porites, Geophys. Res. Let., 28, 21, 4135413, 2001.
- Lee, J.-E., Fung, I., DePaolo, D., and Henning, C., Analysis of the global distribution of
 water isotopes using the NCAR atmospheric general circulation model, J. Geophys,
 Res., 112, D16306, 2007.
- LeGrande, A., and Schmidt, G., Global gridded data set of the oxygen isotopic
 composition in seawater, Geophys. Res. Lett., 33, L12604, 2006.
- LeGrande, A., and Schmidt, G., Sources of Holocene variability of oxygen isotopes in
 paleoclimate archives, Clim. Past, 441-455, 2009.
- Liu, G., Kojima, K., Yoshimura, K., Okai, T, Suzuki, A., Oki, T., Siringan, F., Yoneda, M.,
 and Kawahata, H., A model-based test of accuracy of seawater oxygen isotope ratio
 record derived from a coral dual proxy method at southeastern Luzon Island, the
 Philippines, J. Geophys. Res-Biogeo., 118, 853-859, 2013.
- Liu, G., Kojima, K., Yoshimura, K., and Oka, A., Proxy interpretation of coral-recorded
 seawater ¹⁸O using 1-D model forced by isotope-incorporated GCM in tropical
 oceanic regions, 119, doi: 10.1002/2014JD021583, 2014.

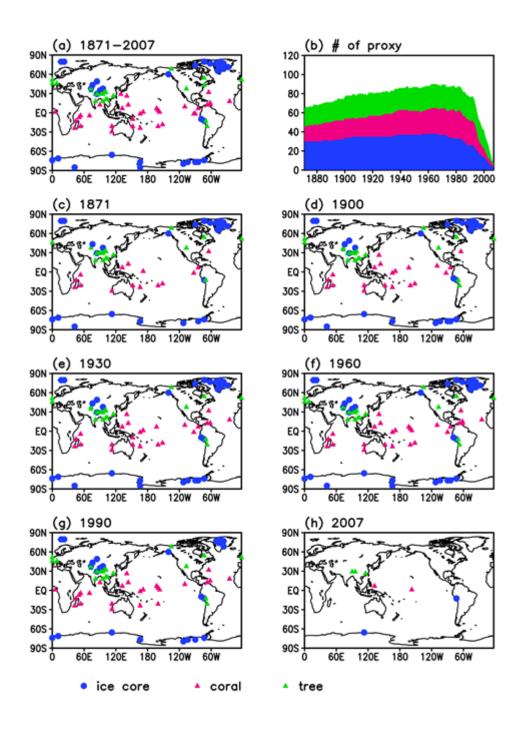
Managave, S. R., Sheshshayee, M. S., Ramesh, R., Borgaonkar, H. P., Shad, S. K., Bhattacharyya, A., Response of cellulose oxygen isotope values of teak trees in differing monsoon environments to monsoon rainfall, Dendrochronologia, 29, 89-

670 **97**, 2011.

- Mann, M., Rutherford, S., Wahl, E., and Ammann, C., Robustness of proxy-based climate
 field reconstruction methods, 112, D12109, 2007.
- Mann, M., Zhang, Z., Hughes, M., Bradley, R., Miller, S., Rutherford, S., Ni, F., Proxybased reconstructions of hemispheric and global surface temperature variations over
 the past two millennia, P. Natl. Acad. Sci. USA., 105, 13252-13257, 2008.
- Mathiot, P., Goosse, H., Crosta, X., Stenni, B., Braida, M., Renssen, H., Van Meerbeeck,
 C. J., Masson-Delmotte, V., Mairesse, A., and Dubinkina, S., Using data assimilation
 to investigate the causes of Southern Hemisphere high latitude cooling from 10 to 8
 ka BP, Clim. Past, 9, 887-901, 2013.
- 680Noone, D. and Simoonds, I., Associations between δ^{18} O of water and climate parameters681in a simulation of atmospheric circulation for 1979-95, J. Climate, 15, 3150-3169,6822002.
- North, G., Bell, T. L., and Cahalan, R. F., Sampling errors in the estimation of empirical
 orthogonal functions, Mon. Weather Rev., 110, 699-706, 1982.
- 685 Okazaki, A., and Yoshimura, K., Development of stable water isotope incorporated686 atmosphere-land coupled model MIROC5, in prep.
- PAGES 2k Consortium, Continental-scale temperature variability during the past wto
 millennia, Nat. Geosci., 6, 339-346, 2013.
- Peterson, T. C., and Vose, R. S., An overview of the global historical climatology network
 temperature database, B. Am. Meteorol. Soc., 78, 2837-2849, 1997.
- Rabier, F., Järvinen, H., Klinker, E., Mahfouf, J.-F. and Simmons, A. The ECMWF
 operational implementation of four-dimensional variational assimilation. I:
 Experimental results with simplified physics. Q.J.R. Meteorol. Soc., 126: 1143–
 1170, 2000.
- Rasmusson, E. M., and Capenter, T. H., The relationship between eastern Equatorial
 Pacific sea surface temperatures and rainfall over India and Sri Lanka, Mon. Weather
 Rev., 111, 517-528, 1983.
- Rayner, N. A., Parker, D. E., Horton, E. B., Folland, C. K., Alexander, L. V., Rowell, D.
 P., Kent, E. C., Kaplan, A., Global analyses of sea surface temperature, sea ice, and
 night marine air temperature since the late nineteenth century, J. Geophys, Res., 108,
 D144407, 2003.
- Rhodes, R. H., Bertler, N. A. N., Baker, J. A., Steen-Larsen, H. C., Sneed, S. B.,
 Morgenstern, U., and Johnsen, S. J., Little Ice Age climate and oceanic conditions
 of the Ross Sea, Antarctica from a coastal ice core record, Clim. Past, 8, 1223-1238,
 2012.

- Risi, C., Bony, S., Vimeux, F., and Jouzel, J., Water-stable isotopes in the LMDZ4 general
 circulation model: Model evaluation for present-day and past climates and
 applications to climatic interpretations of tropical isotopic records, J. Geophys. Res.,
 115, D12118, 2010.
- Roden, J., Lin, G., and Ehleringer, J., A mechanistic model for interpretation of hydrogen
 and oxygen isotope ratios in tree-ring cellulose, Geochim. Cosmochim. Ac., 64, 2135, 2000.
- 713Sano, M., Xu, C., and Nakatsuka, T., A 300-year Vietnam hydroclimate and ENSO714variability record reconstructed from tree ring δ^{18} O, J. Geophys. Res. 117, D12115,7152012.
- Schmidt, G., Hoffmann, G., Shindell, D., and Hu, Y., Modeling atmospheric stable
 isotopes and the potential for constraining cloud processes and staratospheretroposphere water exchange, J. Geophys. Res., 110, D21314, 2005.
- Schmidt, G., LeGrande, A., and Hoffmann, G., Water isotope expressions of intrinsic and
 forced variability in coupled ocean-atmosphere model, J. Geophys. Res., 112,
 D10103, 2007.
- Schneider, D. P. and Noone, D. C., Spatial covariance of water isotope records in a global
 netweok of ice cores spanning twentieth-century climate change, J. Geophys. Res.,
 112, D18105, 2007.
- Schotterer, U., Stichler, W., Ginot, P., The influence of post-depositional effects on ice
 core studies: Examples from the Alps, Andes, and Altai, in Earth Paleoenvironments:
 Records Preserved in Mid- and Low-Latitude Glaciers, pp.39-59, Kluwer Acad,
 Dordrecht, The Netherlands, 2004
- Steiger, N., Hakim, G., Steig, E., Battisti, D., and Roe, G., Assimilation of Time-Averaged
 Pseudoproxies for Climate Reconstruction, 27, 426-441, 2014.
- Taylor, K. E., Stouffer, R. J., Meehl, G., An overview of CMIP5 and the experiment
 design, B. Am. Meteor. Soc., 93, 485-498, 2007.
- Takeuchi, N., Fujita, K., Aizen, V. B., Narama, C., Yokoyama, Y., Okamoto, S., Naoki,
 K., and Kobota, J., The disappearance of glaciers in the Tien Shan Mountains in
 Central Asia at the end of Pleistocene, Quaternary Sci. Rev., 103, 26-33, 2014.
- Thomposon, D. M., Ault, T. R., Evans, M. N., Cole, J. E., and Emile-Geay, J., Comparison
 of observed and simulated tropical climate trends using a forward model of coral
 d¹⁸O, Geophys. Res. Let., 38, L14706, 2011.
- van der Schrier, G. and Barkmeijer, J., Bjerknes' hypothesis on the coldness during
 AD1790-1820 revisited, Clim. Dyn., 25, 537-553, 2005.
- van Leeuwen, P. J., Particle filtering in geophysical systems, Mon. Weather Rev., 137,

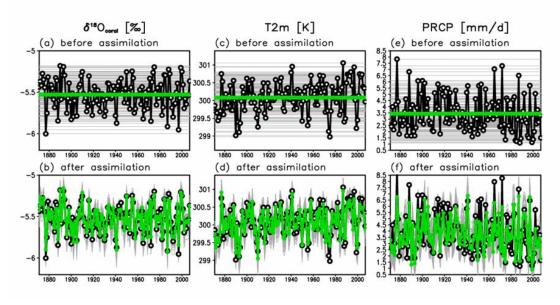
7424089-4114, 2009.


- von Storch, H., Cubasch, U., Gonzalez-Rouco, J. F., Jones, J. M., Voss, R., Widmann, M.,
 and Zorita, E., Combining paleoclimatic evidence and GCMs by means of data
 assimilation though upscaling and nudging (DATUN), Proc. 11th Symposium on
 Global Climate Change Studies, AMS Long Beach, CA, 2000.
- Watanabe, M., Suzuki, T., O'ishi, R., Komuro, Y., Watanabe, S., Emori, S., Takemura, T.,
 Chikira, M., Ogura, T., Sekiguchi, M., Takata, K., Yamazaki, D., Yokohota, T.,
 Nozawa, T., Hasumi, H., Tatebe, H., and Kimoto, M., Improved climate simulation
 by MIROC5: Mean States, Variability, and Climate Sensitivity, 23, 6312-6335, 2010.
- Werner, M., Langebroek, P., Carlsen, T., Herold, M., and Lohmann, G., Stable water
 isotopes in the ECHAM5 general circulation model: Toward high-resolution isotope
 modeling on a global scale, J. Geophys. Res., 116, D15109, 2011.
- Whitaker, J. S., and Hamill, T. M., Ensemble data assimilation without perturbed
 observations, Mon. Weather Rev., 130, 1913-1924, 2002.
- Widmann, M., Goosse, H., van der Schrier, G., Schnur, R., and Barkmeijer, J., Using data
 assimilation to study extratropical Northern Hemisphere climate over the last
 millennium, Clim. Past, 6, 627-644, 2010.
- Xu, C., Sano, M., and Nakatsuka, T., Tree ring cellulose δ¹⁸O of Fokienia hodginsii in
 northern Laos: A promising proxy to reconstruct ENSO?, J. Goephys. Res. 116,
 D245109, 2011.
- Xu, C., Zheng, H., Nakatsuka, T., and Sano, M., Oxygen isotope signatures preserved in
 tree ring cellulose as a proxy for April-September precipitation in Fujian, the
 subtropical region of southeast China, J. Geophys. Res-Atmos., 118, 12805-12815,
 2013.
- Xu, C., Pumijumnong, N., Nakatsuka, T., Sano, M., Li, Z., A tree-ring cellulose δ¹⁸O based July-October precipitation reconstruction since AD 1828, northwest Thailand,
 J. Hydrol., 529, 422-441, 2015.
- Yoshimura, K., Kanamitsu, M., Noone, D., and Oki, T., Historical isotope simulation
 using Reanalysis atmospheric data, J. Geophys, Res., 113, D19108, 2008.
- Yoshimura, K., Miyoshi, T., and Kanamitsu, M., Observation system simulation
 experiments using water vapor isotope information, J. Goephys, Res., 119, 7842773 7862, 2014.
- Young, G. H. F., Loader, N. J., McCarroll, D., Bale, R. J., Demmler, J. C., Miles, D.,
 Nayling, N., Rinne, K. T., Robertson, I., Watts, C., and Whitney, M., Oxygen stable
 isotope ratios from British oak tree-rings provide a strong and consistent record of
 past changes in summer rainfall, Clim. Dyn., 45, 3609-3622, 2015.

Tables

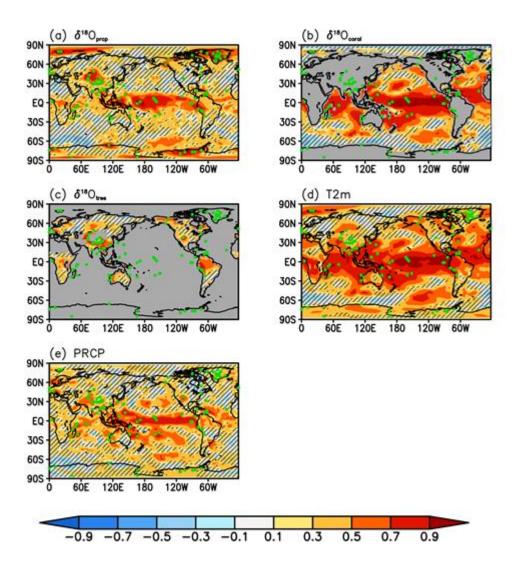
Table 1. Experimental designs. The observation network used in the CTRL experiment is

		SST data to	Assimilated variable	Observation network	Missing data
		drive truth run			
CTRL	HadISST	HadISST	Simulated $\delta^{18}O$	Orig	w/o missing
CGCM	Modeled SST	HadISST	Simulated $\delta^{18}O$	Orig	w/o missing
VOBS	Modeled SST	HadISST	Simulated $\delta^{18}O$	Orig	w/ missing
REAL	Modeled SST	-	Observed $\delta^{18}O$	Orig	w/ missing
T2-Assim	HadISST	HadISST	Reconstructed T2 from simulated $\delta^{18}O$	Orig	w/o missing
M08	HadISST	HadISST	Simulated $\delta^{18}O$	M08	w/o missing


Figures

787 Figure 1

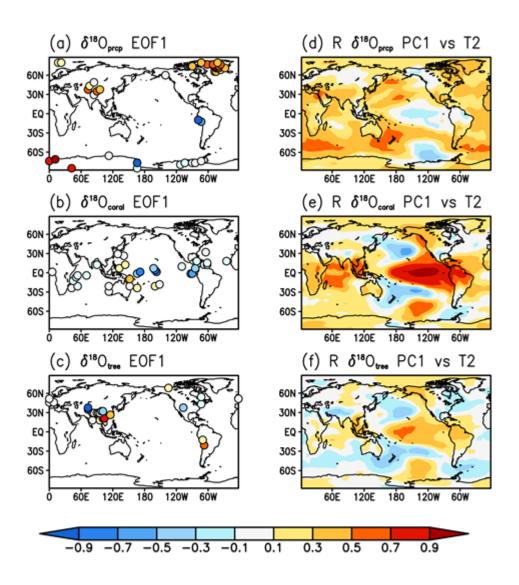
Spatial distribution of proxies (δ^{18} O in ice cores, corals, and tree-ring cellulose, denoted by blue, pink, and green, respectively). (a) Proxies spanning at least one year during 1871–2000 are mapped (b) The number of proxies is depicted as a function of time. (c–


- h) The spatial distributions of the proxies are mapped for (c) 1871, (d) 1900, (e) 1930, (f)
- 792 1960, (g) 1990, and (h) 2007.

795 **Figure 2**

Annual mean δ^{18} O in corals at a location where observational data were available (1°N, 157°W) for (a) background and (b) analysis. The black line indicates the truth, gray lines indicate ensemble members, and green line indicates the ensemble mean.

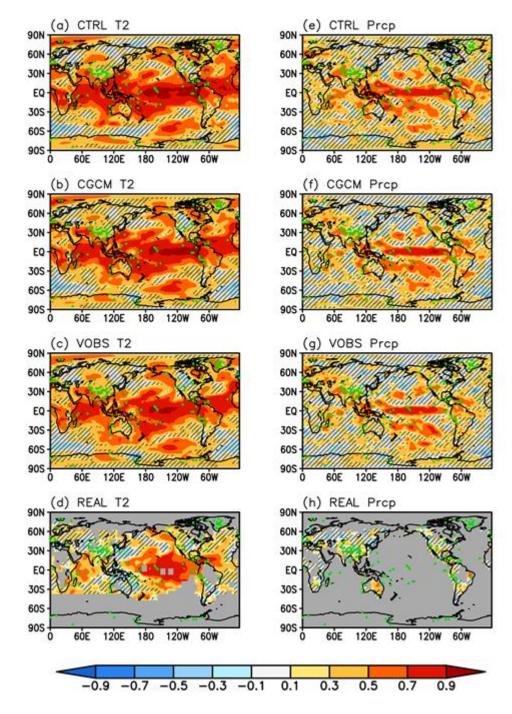
801 Figure 3


802 Temporal correlation between the analysis and the truth. The green dot represents the

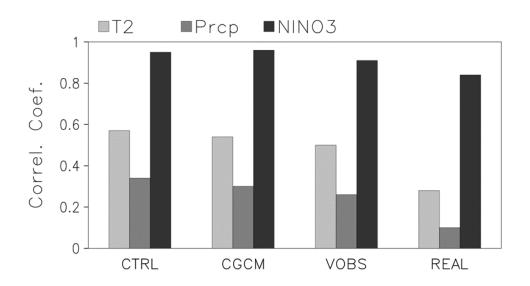
804 not statistically significant (p > 0.05).

805

803


location of the proxy sampling site. The hatched area indicates where the correlation is

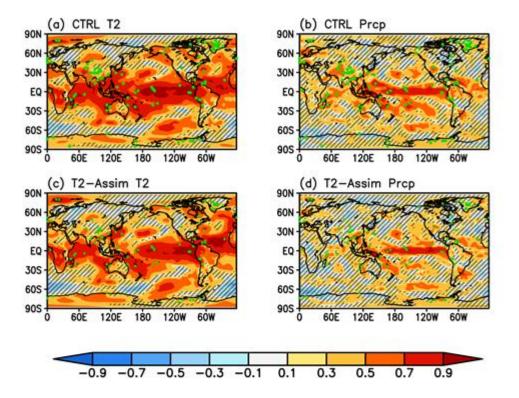
807 Figure 4


808 First mode of EOF and the correlation between PC1 and temperature for (a and d) ice

809 cores, (b and e) corals, and (c and f) tree-ring cellulose.

- 811
- 812 **Figure 5**

813 Temporal correlation between the analysis and the truth for (a–d) temperature and (e–h) 814 precipitation, for each experiment. The green dot represents the location of the proxy 815 sampling site. The hatched area indicates where the correlation is not statistically 816 significant (p > 0.05).



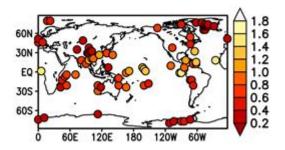
819 Figure 6

820 Temporal correlation between the analysis and the truth for each experiment for 1970–

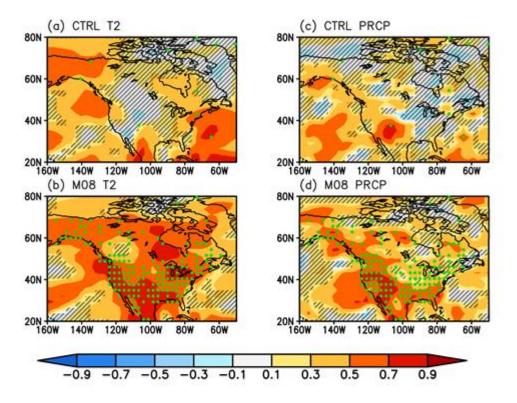
821 1999. The values for temperature and precipitation are the global mean of the temporal

822 correlations.

824


825 Figure 7

826 Temporal correlations between the analysis and the truth for (a, c) temperature and (b, d)


827 precipitation, for (a, b) CTRL and (b, d) T2-Assim. The green dot represents the location

828 of the proxy sampling site. The hatched area means that the correlation is not statistically

829 significant (p > 0.05).

- 832 Figure 8
- 833 Signal to noise ratio (SNR) of the reconstructed temperature from the observation used
- in CTRL.

836

837 Figure 9

838 Temporal correlations in North America between the analysis and the truth for (a-d)

- 839 temperature, and (e-h) precipitation, for experiments using different proxy networks. The
- 840 green dot represents the location of the proxy sampling site. The hatched area indicates
- 841 where the correlation is not statistically significant (p > 0.05).