1 Spring temperature variability over Turkey since 1800 CE reconstructed

2 from a broad network of tree-ring data

3

4 Nesibe Köse^{(1),*}, H. Tuncay Güner⁽¹⁾, Grant L. Harley⁽²⁾, Joel Guiot⁽³⁾

- ⁵
 ⁽¹⁾Istanbul University, Faculty of Forestry, Forest Botany Department 34473 Bahçeköy-Istanbul,
 7 Turkey
- 8 ⁽²⁾University of Southern Mississippi, Department of Geography and Geology, 118 College
- 9 Drive Box 5051, Hattiesburg, Mississippi, 39406, USA
- 10 ⁽³⁾ Aix-Marseille Université, CNRS, IRD, CEREGE UM34, ECCOREV, 13545 Aix-en-
- 11 Provence, France

12

13

- 15
- 16
- 17 *Corresponding author. Fax: +90 212 226 11 13
- 18 E-mail address: nesibe@istanbul.edu.tr
- 19

20 Abstract

The 20th century was marked by significant decreases in spring temperature ranges and increased 21 nighttime temperatures throughout Turkey. The meteorological observational period in Turkey, 22 23 which starts ca. 1929 CE, is too short for understanding long-term climatic variability. Hence, the historical context of this gradual warming trend in spring temperatures is unclear. Here we 24 use a network of 23 tree-ring chronologies to provide a high-resolution spring (March-April) 25 temperature reconstruction over Turkey during the period 1800–2002. The reconstruction model 26 accounted for 67% (Adj. $R^2 = 0.64$, $p \le 0.0001$) of the instrumental temperature variance over the 27 full calibration period (1930–2002). During the pre-instrumental period (1800-1929) we captured 28 more cold events (n = 23) than warm (n = 13), and extreme cold and warm events were typically 29 of short duration (1–2 years). Compared to coeval reconstructions of precipitation in the region, 30 31 our results are similar with durations of extreme wet and dry events. The reconstruction is punctuated by a temperature increase during the 20th century; yet extreme cold and warm events 32 during the 19th century seem to eclipse conditions during the 20th century. During the 19th 33 34 century, annual temperature ranges are more volatile and characterized by more short-term fluctuations compared to the 20th century. During the period 1900–2002, our reconstruction 35 36 shows a gradual warming trend, which includes the period during which diurnal temperature ranges decreased as a result of increased urbanization in Turkey. 37

38

KEYWORDS: Dendroclimatology, Climate reconstruction, *Pinus nigra*, Principle component
analysis, Spring temperature.

41 1 Introduction

Significant decreases in spring diurnal temperature ranges (DTR) occurred throughout Turkey 43 from 1929 to 1999 (Turkes & Sumer 2004). This decrease in spring DTRs was characterized by 44 day-time temperatures that remained relatively constant while a significant increase in night-time 45 46 temperatures were recorded over western Turkey and were concentrated around urbanized and rapidly-urbanizing cities. The historical context of this gradual warming trend in spring 47 temperatures is unclear as the high-quality meteorological records in Turkey, which start in 48 49 1929, are relatively short for understanding long-term climatic variability. 50 Tree rings have shown to provide useful information about the past climate of Turkey and were 51 used intensively during the last decade to reconstruct precipitation in the Aegean (, Griggs et al. 52 2007), Black Sea (Akkemik et al. 2005, 2008; Martin-Benitto et al. 2016), Mediterranean regions 53 (Touchan et al. 2005a), as well as the Sivas (D'Arrigo & Cullen 2001), southwestern (Touchan et 54 al. 2003, Touchan et al. 2007; Köse et al. 2013), south-central (Akkemik & Aras 2005) and 55 western Anatolian (Köse et al. 2011) regions of Turkey. These studies used tree rings to 56 57 reconstruct precipitation because available moisture is often found to be the most important limiting factor that influences radial growth of many tree species in Turkey. These studies 58 revealed past spring-summer precipitation, and described past dry and wet events and their 59 60 duration. Recently, Heinrich et al. (2013) provided a winter-to-spring temperature proxy for Turkey from carbon isotopes within the growth rings of Juniperus excelsa since AD 1125. Low-61 62 frequency temperature trends corresponding to the Medieval Climatic Anomaly and Little Ice Age were identified in the record, but the proxy failed to identify the recent warming trend 63

during the 20th century. In this study, we present a tree-ring based spring temperature
reconstruction from Turkey and compare our results to previous reconstructions of temperature
and precipitation to provide a more comprehensive understanding of climate conditions during
the 19th and 20th centuries.

68

69 **2 Data and Methods**

70 2.1 Climate of the Study Area

71

The study area, which spans 36–42° N and 26–38° E, was based on the distribution of available 72 tree-ring chronologies. This vast area covers much of western Anatolia and includes the western 73 Black Sea, Marmara, and western Mediterranean regions. Much of this area is characterized by a 74 Mediterranean climate that is primarily controlled by polar and tropical air masses (Türkeş 1996, 75 Deniz et al. 2011). In winter, polar fronts from the Balkan Peninsula bring cold air that is 76 centered in the Mediterranean. Conversely, the dry, warm conditions in summer are dominated 77 by weak frontal systems and maritime effects. Moreover, the Azores high-pressure system in 78 summer and anticyclonic activity from the Siberian high-pressure system often cause below 79 normal precipitation and dry sub-humid conditions over the region (Türkeş 1999, Deniz et al. 80 2011). In this Mediterranean climate, annual mean temperature and precipitation range from 3.6 81 °C to 20.1 °C and from 295 to 2220 mm, respectively, both of which are strongly controlled by 82 83 elevation (Deniz et al. 2011).

84

85

2.2 Development of tree-ring chronologies

89

88

90 To investigate past temperature conditions, we used a network of 23 tree-ring site chronologies (Fig. 1). Fifteen chronologies were produced by previous investigations (Mutlu et al. 2011, 91 92 Akkemik et al. 2008, Köse et al. unpublished data, Köse et al. 2011, Köse et al. 2005) that focused on reconstructing precipitation in the study area. In addition, we sampled eight new 93 study sites and developed tree-ring time series for these areas (Table 1). Increment cores were 94 95 taken from living *Pinus nigra* Arn. and *Pinus sylvestris* L. trees and cross-sections were taken from Abies nordmanniana (Steven) Spach and Picea orientalis (L.) Link trunks. 96 97 Samples were processed using standard dendrochronological techniques (Stokes & Smiley 1968, 98 Orvis & Grissino-Mayer 2002, Speer 2010). Tree-ring widths were measured, then visually 99 crossdated using the list method (Yamaguchi 1991). We used the computer program COFECHA, 100 101 which uses segmented time-series correlation techniques, to statistically confirm our visual crossdating (Holmes 1983, Grissino-Mayer 2001). Crossdated tree-ring time series were then 102 103 standardized by fitting a 67% cubic smoothing spline with a 50% cutoff frequency to remove non-climatic trends related to the age, size, and the effects of stand dynamics using the ARSTAN 104 program (Cook 1985, Cook et al. 1990a). These detrended series were then pre-whitened with 105 106 low-order autoregressive models to produce time series with a strong common signal and without biological persistence. These series may be more suitable to understand the effect of 107 108 climate on tree-growth, even if any persistence due to climate might be removed by pre-109 whitening. For each chronology, the individual series were averaged to a single chronology by

110	computing the biweight robust means to reduce the influences of outliers (Cook et al. 1990b). In
111	this research we used residual chronologies obtained from ARSTAN to reconstruct temperature.
112	
113	The mean sensitivity, which is a metric representing the year-to-year variation in ring width
114	(Fritts 1976), was calculated for each chronology and compared. The minimum sample depth for
115	each chronology was determined according to expressed population signal (EPS), which we used
116	as a guide for assessing the likely loss of reconstruction accuracy. Although arbitrary, we
117	required the commonly considered threshold of $EPS > 0.85$ (Wigley et al. 1984; Briffa & Jones
118	1990).
119	
120	2.3 Temperature reconstruction
121	
122	We extracted monthly temperature and precipitation records from the climate dataset CRU TS
123	3.23 gridded at 0.5° intervals (Jones and Harris 2008) from KNMI Climate Explorer
124	(http://climexp.knmi.nl) for 36-42 °N, 26-38 °E. The period AD 1930-2002 was chosen for the
125	analysis because it maximized the number of station records within the study area.
126	
127	First, the climate-growth relationships were investigated with response function analysis (RFA)
128	(Fritts 1976) for biological year from previous October to current October using the
129	DENDROCLIM2002 program (Biondi & Waikul 2004). This analysis is done to determine the
130	months during which the tree-growth is the most responsive to temperature. Second, the climate
131	reconstruction is performed by regression based on the principal component (PCs) of the 23
132	chronologies within the study area. Principle Component Analysis (PCA) was done over the

133	entire period in common to the tree-ring chronologies. The significant PCs were selected by
134	stepwise regression. We combined forward selection with backward elimination setting $p \le 0.05$
135	as entrance tolerance and p \leq 0.1 as exit tolerance. The final model obtained when the regression
136	reaches a local minimum of RMSE. The order of entry of the PCs into the model was PC_3 , PC_{21} ,
137	PC ₄ , PC ₁₅ , PC ₅ , PC ₁₇ , PC ₇ , PC ₉ , PC ₁₀ . The regression equation is calibrated on the common
138	period (1930–2002) between robust temperature time-series and the selected tree-ring series.
139	Third, the final reconstruction is based on bootstrap regression (Till and Guiot, 1990), a method
140	designed to calculate appropriate confidence intervals for reconstructed values and explained
141	variance even in cases of short time-series. It consists in randomly resampling the calibration
142	datasets to produce 1000 calibration equations based on a number of slightly different datasets.
143	The quality of the reconstruction is assessed by a number of standard statistics. The overall
144	quality of fit of reconstruction is evaluated based on the determination coefficient (R^2), which
145	expresses the percentage of variance explained by the model and the root mean squared error
146	(RMSE), which expresses the calibration error. This does not insure the quality of the
147	extrapolation which needs additional statistics based on independent observations, i.e.
148	observations not used by the calibration (verification data). They are provided by the
149	observations not resampled by the bootstrap process. The prediction RMSE (called RMSEP), the
150	reduction of error (RE) and the coefficient of efficiency (CE) are calculated on the verification
151	data and enable to test the predictive quality of the calibrated equations (Cook et al, 1994).
152	Traditionally, a positive RE or CE values means a statistically significant reconstruction model,
153	but bootstrap has the advantage to produce confidence intervals for such statistics without
154	theoretical probability distribution and finally we accept the RE and CE for which the lower
155	confidence margin at 95% are positive. This is more constraining than just accepting all positive

RE and CE. For additional verification, we also present traditional split-sample procedure results
that divided the full period into two subsets of equal length (*Meko and Graybill*, 1995).

158

To identify the extreme March–April cold and warm events in the reconstruction, standard deviation (SD) values were used. Years one and two SD above and below the mean were identified as warm, very warm, cold, and very cold years, respectively. Finally, as a way to assess the spatial representation of our temperature reconstruction, we conducted a spatial field correlation analysis between reconstructed values and the gridded CRU TS3.23 temperature field (Jones and Harris 2008) for a broad region of the Mediterranean over the entire instrumental period (ca. 1930–2002).

166

167 **3 Results and Discussion**

168 3.1 Tree-ring chronologies

In addition to 15 chronologies developed by previous studies, we produced six *P. nigra*, one *P.* 169 170 sylvestris, one A. nordmanniana / P. orientalis chronologies for this study (Table 2). The Çorum district produced two P. nigra chronologies: one the longest (KAR; 627 years long) and the other 171 172 the most sensitive to climate (SAH; mean sensitivity value of 0.25). Previous investigations of climate-tree growth relationships reported a mean sensitivity range of 0.13–0.25 for P. nigra in 173 Turkey (Köse 2011, Akkemik et al. 2008). The KAR, SAH, and ERC chronologies (with mean 174 175 sensitivity values from 0.22 to 0.25) were classified as very sensitive, and the SAV, HCR, and PAY chronologies (mean sensitivity values range 0.17–0.18) contained values characteristic of 176 177 being sensitive to climate. The lowest mean sensitivity value was obtained for the ART A.

178 *nordmanniana / P. orientalis* chronology. Nonetheless, this chronology retained a statistically 179 significant temperature signal (p < 0.05).

180

181 3.2 March-April temperature reconstruction

182 RFA coefficients of May to August precipitation are positively correlated with most of the tree-

ring series (Fig. 2) and among them, May and June coefficients are generally significant. The

184 first principal component of the 23 chronologies, which explains 47% of the tree-growth

185 variance, is highly correlated with May–August total precipitation, statistically ($r = 0.65, p \le 100$

186 0.001) and visually (Fig. 3). The high correlation was expected given that numerous studies also

187 found similar results in Turkey (Akkemik 2000a, Akkemik 2000b, Akkemik 2003, Akkemik et

al. 2005, Akkemik et al. 2008, Akkemik & Aras 2005, Hughes et al. 2001, D'Arrigo & Cullen

189 2001, Touchan et al. 2003; Touchan et al. 2005a, Touchan et al. 2005b, Touchan et al. 2007,

190 Köse et al. 2011, Köse et al. 2013, Martin-Benitto et al. 2016).

191

The influence of temperature was not as strong as May–August precipitation on radial growth, although generally positive in early spring (March and April) (Fig. 2). Conversely, the ART chronology from northeastern Turkey contained a strong temperature signal, which was significantly positive in March. In addition to this chronology, we also used the chronologies that revealed the influence of precipitation, as well as temperature to reconstruct March–April temperature.

198

The higher order PCs of the 23 chronologies are significantly correlated with the March–April
temperature and, by nature, are independent on the precipitation signal (Table 3). The best

201 selection for fit temperature are obtained with the PC₃, PC₄, PC₅, PC₇, PC₉, PC₁₀, PC₁₅, PC₁₇, 202 PC_{21} , which explains together 25% of the tree-ring chronologies. So the temperature signal remains important in the tree-ring chronologies and can be reconstructed. The advantage to 203 204 separate both signals through orthogonal PCs enable to remove an unwanted noise for our temperature reconstruction. Thus, PC₁ was not used as potential predictor of temperature because 205 206 it is largely dominated by precipitation (Table 3, Fig. 3). The last two PCs contain a too small part of the total variance to be used in the regressions. However, even if Jolliffe (1982) and Hadi 207 & Ling (1998) claimed that certain PCs with small eigenvalues (even the last one), which are 208 209 commonly ignored by principal components regression methodology, may be related to the 210 independent variable, we must be cautious with that because they may be much more dominated by noise than the first ones. So, the contribution of each PC to the regression sum of squares is 211 212 also important for selection of PCs (Hadi & Ling 1998). The findings of Jolliffe (1982) and Hadi & Ling (1998) provide a justification for using non-primary PCs, (e.g., of second and higher 213 order) in our regression, given that correlations with temperature may be over-powered by 214 215 affects from precipitation in our study area (Cook 2011, personal communication). 216 217 Using this method, the calibration and verification statistics indicated a statistically significant

reconstruction (Table 4, Fig. 4). For additional verification, we also present split-sample
procedure results. Similarly bootstrap results, the derived calibration and verification tests using
this method indicated a statistically significant RE and CE values (Table 5).

221

The regression model accounted for 67% (Adj. $R^2 = 0.64$, $p \le 0.0001$) of the actual temperature variance over the calibration period (1930–2002). Also, actual and reconstructed March–April temperature values had nearly identical trends during the period 1930–2002 (Fig. 4). Moreover, the treering chronologies successfully simulated both high frequency and warming trends in the temperature data
during this period. The reconstruction was more powerful at classifying warm events rather than cold
events. Over the last 73 years, eight of ten warm events in the instrumental data were also observed in
the reconstruction, while five of nine cold events were captured. Similarly, previous tree-ring based
precipitation reconstructions for Turkey (Köse et al. 2011; Akkemik et al. 2008) were generally
more successful in capturing dry years rather than wet years.

231

232 Our temperature reconstruction on the 1800–2002 period is obtained by bootstrap regression, 233 using 1000 iterations (Fig. 5). The confidence intervals are obtained from the range between the 2.5th and the 97.5th percentiles of the 1000 simulations. For the pre-instrumental period (1800– 234 1929), a total of 23 cold (1813, 1818, 1821, 1824, 1837, 1848, 1854, 1858, 1860, 1869, 1877– 235 1878, 1880–1881, 1883, 1897–1898, 1905–1907, 1911–1912, 1923) and 13 warm (1801–1802, 236 1807, 1845, 1853, 1866, 1872–1873, 1879, 1885, 1890, 1901, 1926) events were determined. 237 After comparing our results with event years obtained from May–June precipitation 238 reconstructions from western Anatolia (Köse et al. 2011), the cold years 1818, 1848, and 1897 239 appeared to coincide with wet years and 1881 was a very wet year for the entire region. 240 241 Furthermore, these years can be described as cold (in March–April) and wet (in May–June) for western Anatolia. 242 243 244 Spatial correlation analysis revealed that our network-based temperature reconstruction was representative of conditions across Turkey, as well as the broader Mediterranean region (Fig. 6). 245

246 During the period 1930–2002, estimated temperature values were highly significant (*r* range 0.5–

247 0.6, p < 0.01) with instrumental conditions recorded from southern Ukraine to the west across 248 Romania, and from northern areas of Libya and Egypt to the east across Iraq. The strength of the 249 reconstruction model is evident in the broad spatial implications demonstrated by the 250 temperature record. Thus, we interpret warm and cold periods and extreme events within the 251 record with high confidence.

252

Among the warm periods in our reconstruction, conditions during the year 1879 were dry, 1895 wet, and 1901 very wet across the broad region of western Anatolia (Köse et al. 2011). Hence, we defined 1879 as a warm (in March–April) and dry year (in May–June), and 1895 and 1901 were warm and wet years. In the years 1895 and 1901 the combination of a warm early spring and a wet late spring-summer caused enhanced radial growth in Turkey, interpreted as longer growing seasons without drought stress.

259

Of these event years, 1897 and 1898 were exceptionally cold and 1845, 1872 and 1873 were 260 261 exceptionally warm. During the last 200 years, our reconstruction suggests that the coldest year was 1898 and the warmest year was 1873. The reconstructed extreme events also coincided with 262 263 accounts from historical records. Server (2008) recounted the winter of 1898 as characterized by anomalously cold temperatures that persisted late into the spring season. A family, who brought 264 their livestock herds up into the plateau region in Kırşehir seeking food and water were suddenly 265 266 covered in snow on 11 March 1898. This account of a late spring freeze supports the reconstruction record of spring temperatures across Turkey, and offers corroboration to the 267 268 quality of the reconstructed values.

269

270 Sevf (1985) reported that extreme summer temperature during the year 1873 resulted in 271 widespread crop failure and famine. Historical documents recorded an infamous drought-derived famine that occurred in Anatolia from 1873 to 1874 (Quataert, 1996, Kuniholm, 1990), which 272 273 claimed the lives of 250,000 people and a large number of cattle and sheep (Faroqhi, 2009). This 274 drought caused widespread mortality of livestock and depopulation of rural areas through human 275 mortality, and migration of people from rural to urban areas. Further, the German traveler Naumann (1893) reported a very dry and hot summer in Turkey during the year 1873 (Heinrich 276 et al, 2013). Conditions worsened when the international stock exchanges crashed in 1873, 277 278 marking the beginning of the "Great Depression" in the European economy (Zürcher, 2004). Our temperature record suggests that dry conditions during the early 1870s were possibly exacerbated 279 by warm spring temperatures that likely carried into summer. A similar pattern of intensified 280 drought by warm temperatures was demonstrated recently by Griffin and Anchukaitis (2014) for 281 the current drought in California, USA. 282

283

Extreme cold and warm events were usually one year long, and the longest extreme cold and 284 warm events were two and three years, respectively. These results were similar with durations of 285 286 extreme wet and dry events in Turkey (Touchan et al. 2003, Touchan et al. 2005a, Touchan et al. 2005b, Touchan et al. 2007, Akkemik & Aras, 2005, Akkemik et al. 2005, Akkemik et al. 2008, 287 Köse et al. 2011). Moreover, seemingly innocuous short-term warm events, such as the 1807 288 289 event, were recorded across the Mediterranean and in high elevations of the European regions. Casty et al. (2005) reported the year 1807 as being one of the warmest alpine summers in the 290 291 European Alps over the last 500 years. As such, a drought record from Nicault et al. (2008)

echoes this finding, as a broad region of the Mediterranean basin experienced droughtconditions.

294

Low frequency variability of our spring temperature reconstruction showed larger variability in nineteenth century than twentieth century. Similar results observed on previous tree-ring based precipitation reconstructions from Turkey (Touchan et al. 2003, D'Arrigo et al. 2001, Akkemik and Aras 2005, Akkemik et al. 2005, Köse et al. 2011). Moreover, cold periods observed in our reconstruction are generally appeared as generally wet in the precipitation reconstructions, while warm periods generally correlated with dry periods (Fig. 7).

301

Heinrich et al. (2013) analyzed winter-to-spring (January-May) air temperature variability in 302 Turkey since AD 1125 as revealed from a robust tree-ring carbon isotope record from Juniperus 303 excelsa. Although they offered a long-term perspective of temperature over Turkey, the 304 reconstruction model, which covered the period 1949-2006, explained 27% of the variance in 305 306 temperature since the year 1949. In this study, we provided a short-term perspective of temperature fluctuation based on a robust model (calibrated and verified 1930–2002; Adj. $R^2 =$ 307 0.64; $p \le 0.0001$). Yet, the Heinrich et al. (2013) temperature record did not capture the 20th 308 century warming trend as found elsewhere (Wahl et al. 2010). However, their temperature trend 309 does agree with trend analyses conducted on meteorological data from Turkey and other areas in 310 311 the eastern Mediterranean region. The warming trend seen during our reconstruction calibration period (1930–2002) was similar to the data shown by Wahl et al. (2010) across the region and 312 hemisphere. Further, the warming trends seen in our record agrees with data presented by Turkes 313 & Sumer (2004), of which they attributed to increased urbanization in Turkey. Considering long-314

315	term changes in spring temperatures, the 19 th century was characterized by more high-frequency
316	fluctuations compared to the 20 th century, which was defined by more gradual changes and
317	includes the beginning of decreased DTRs in the region (Turkes & Sumer, 2004).
318	
319	4 Conclusions
320	
321	In this study, we used a broad network of tree-ring chronologies to provide the first tree-ring
322	based temperature reconstruction for Turkey and identified extreme cold and warm events during
323	the period 1800–1929 CE. Similar to the precipitation reconstructions against which we compare
324	our air temperature record, extreme cold and warm years were generally short in duration (one
325	year) and rarely exceeded two-three years in duration. The coldest and warmest years over
326	western Anatolia were experienced during the 19 th century, and the 20 th century is marked by a
327	temperature increase.
328	
329	Reconstructed temperatures for the 19 th century suggest that more short-term fluctuations
330	occurred compared to the 20 th century. The gradual warming trend shown by our reconstruction
331	calibration period (1930-2002) is coeval with decreases in spring DTRs. Given the results of
332	Turkes and Sumer (2004), the variations in short- and long-term temperature changes between
333	the 19 th and 20 th centuries might be related to increased urbanization in Turkey.
334	
335	The study revealed the potential for reconstructing temperature in an area previously thought
336	impossible, especially given the strong precipitation signals displayed by most tree species
337	growing in the dry Mediterranean climate that characterizes broad areas of Turkey. Our

338	reconstruction only spans 205 years due to the shortness of the common interval for the
339	chronologies used in this study, but the possibility exists to extend our temperature
340	reconstruction further back in time by increasing the sample depth with more temperature-
341	sensitive trees, especially from northeastern Turkey. Thus future research will focus on
342	increasing the number of tree-ring sites across Turkey, and maximizing chronology length at
343	existing sites that would ultimately extend the reconstruction back in time.
344	
345	Acknowledgements
346	
347	This research was supported by The Scientific and Technical Research Council of Turkey
348	(TUBITAK); Projects ÇAYDAG 107Y267 and YDABAG 102Y063. N. Köse was supported by
349	The Council of Higher Education of Turkey. We are grateful to the Turkish Forest Service
350	personnel and Ali Kaya, Umut Ç. Kahraman and Hüseyin Yurtseven for their invaluable support
351	during our field studies. J. Guiot was supported by the Labex OT-Med (ANR-11-LABEX-0061),
352	French National Research Agency (ANR).
353	

354 **References**

- Akkemik, Ü.: Dendroclimatology of Umbrella pine (*Pinus pinea* L.) in Istanbul (Turkey), Tree-
- 356 Ring Bull., 56, 17–20, 2000a.
- 357 Akkemik, Ü.: Tree-ring chronology of *Abies cilicica* Carr. in the Western Mediterranean Region
- of Turkey and its response to climate, Dendrochronologia, 18, 73–81, 2000b.
- Akkemik, Ü.: Tree-rings of *Cedrus libani* A. Rich the northern boundary of its natural
 distribution, IAWA J, 24(1), 63-73, 2003.
- 361 Akkemik ,Ü and Aras, A.: Reconstruction (1689–1994) of April–August precipitation in
- southwestern part of central Turkey, Int. J. Clim., 25, 537–548, 2005.
- 363 Akkemik, Ü., Dagdeviren, N., and Aras, A.: A preliminary reconstruction (A.D. 1635–2000) of
- spring precipitation using oak tree rings in the western Black Sea region of Turkey, Int. J.
 Biomet., 49(5), 297–302, 2005.
- 366 Akkemik, Ü., D'Arrigo, R., Cherubini, P., Köse, N., and Jacoby, G.: Tree-ring reconstructions of
- precipitation and streamflow for north-western Turkey, Int. J. Clim., 28, 173–183, 2008.
- Biondi, F. and Waikul, K.: DENDROCLIM2002: A C++ program for statistical calibration of
 climate signals in tree-ring chronologies, Comp. Geosci., 30, 303–311, 2004.
- 370 Briffa, K. R. and Jones, P. D.: Basic chronology statistics and assessment. In: Methods of
- 371 Dendrochronology: Applications in the Environmental Sciences (Cook, E. and Kairiukstis, L.
- A. eds). Kluwer Academic Publishers, Amsterdam, pp. 137–152, 1990.
- Casty, C., Wanner, H., Luterbacher, J., Esper, J., and Böhm, R.: Temperature and precipitation
- 374 variability in the European Alps since 1500, Int. J. Clim., 25(14), 1855–1880, 2005.

- Cook, E.: A time series analysis approach to tree-ring standardization. PhD. Dissertation.
 University of Arizona, Tucson, 1985.
- 377 Cook, E., Briffa, K., Shiyatov, S., and Mazepa, V.: Tree-ring standardization and growth-trend
- 378 estimation. In: Methods of Dendrochronology: Applications in the Environmental Sciences
- 379 (Cook, E. and Kairiukstis, L. A. eds). Kluwer Academic Publishers, Amsterdam, pp.104–
 380 122, 1990a.
- 381 Cook, E., Shiyatov, S., and Mazepa, V.: Estimation of the mean chronology. In: Methods of
- 382 Dendrochronology: Applications in the Environmental Sciences (Cook, E. and Kairiukstis, L.
- A. eds). Kluwer Academic Publishers, Amsterdam, pp. 123–132, 1990b.
- D'Arrigo, R. and Cullen, H. M.: A 350-year (AD 1628–1980) reconstruction of Turkish
 precipitation. Dendrochronologia ,19(2), 169–177, 2001.
- Deniz, A., Toros, T., and Incecik, S.: Spatial variations of climate indices in Turkey, Int. J.
 Clim., 31, 394-403, 2011.
- Fritts, H. C.: Tree Rings and Climate. Academic Press, New York, 1976.
- Griggs, C., DeGaetano, A., Kuniholm, P., and Newton, M.: A regional high-frequency
 reconstruction of May–June precipitation in the north Aegean from oak tree rings, A.D.
- 391 1809–1989, Int. J. Clim., 27, 1075–1089, 2007.
- 392 Grissino-Mayer, H. D.: Evaluating crossdating accuracy: A manual and tutorial for the computer
- 393 program COFECHA, Tree-Ring Res., 57, 205–221, 2001.
- 394 Griffin, D. and Anchukaitis, K. J.: How unusual is the 2012–2014 California drought? Geophy.
- Res. Lett., 41(24), 9017–9023, 2014.

- Hadi, A. S. and Ling, R. F.: Some cautionary notes on the use of principal components
 regression, Amer. Statist., 52(1), 15–19, 1998.
- Heinrich, I., Touchan, R., Liñán, I. D., Vos, H., and Helle, G.: Winter-to-spring temperature
 dynamics in Turkey derived from tree rings since AD 1125, Clim. Dynam., 41(7–8), 1685–
 1701, 2013.
- Holmes, R. L.: Computer-assisted quality control in tree-ring data and measurements, Tree-Ring
 Bull., 43, 69–78, 1983.
- Hughes, M. K., Kuniholm, P. I, Garfin, G. M., Latini, C., and Eischeid, J.: Aegean tree-ring
 signature years explained, Tree-Ring Res., 57(1), 67–73, 2001.
- Jolliffe, I. T.: A note on the use of principal components in regression, Appl. Stat., 31(3), 300–
 303, 1982.
- 407 Jones, P. D. and Harris, I.: Climatic Research Unit (CRU) time-series datasets of variations in
- 408 climate with variations in other phenomena. NCAS British Atmospheric Data Centre, 2008.
- 409 <u>http://catalogue.ceda.ac.uk/uuid/3f8944800cc48e1cbc29a5ee12d8542d</u>
- 410 Köse, N., Akkemik, Ü., and Dalfes, H. N.: Anadolu'nun iklim tarihinin son 500 yılı:
 411 Dendroklimatolojik ilk sonuçlar. Türkiye Kuvaterner Sempozyumu-TURQUA-V, 02–03
- Haziran 2005, Bildiriler Kitabı, 136–142 (In Turkish), 2005.
- Köse, N., Akkemik, Ü., Dalfes, H. N., and Özeren, M. S.: Tree-ring reconstructions of May–June
 precipitation of western Anatolia, Quat. Res., 75, 438–450, 2011.
- 415 Köse N., Akkemik U., Guner H.T., Dalfes H.N., Grissino-Mayer H.D., Ozeren M.S., Kindap T.
- 416 (2013) An improved reconstruction of May– June precipitation using tree-ring data from
- 417 western Turkey and its links to volcanic eruptions, Int. J. Biometeorol., 57(5):691–701

- Martin-Benito, D., Ummenhofer C.C., Köse, N., Güner, H.T., Pederson, N. 2016. Tree-ring
 reconstructed May-June precipitation in the Caucasus since 1752 CE, Clim. Dyn., DOI
 10.1007/s00382-016-3010-1.
- 421 Meko, D. M. and Graybill, D. A.: Tree-ring reconstruction of upper Gila River discharge, Wat.
- 422 Res. Bull., 31, 605–616, 1995.
- 423 Mutlu, H., Köse, N., Akkemik, Ü., Aral, D., Kaya, A., Manning, S. W., Pearson, C. L., and
- 424 Dalfes, N.: Environmental and climatic signals from stable isotopes in Anatolian tree rings,
- 425 Turkey, Reg. Emviron. Change, doi: 10.1007/s1011301102732, 2011.
- 426 Nicault, A., Alleaume, S., Brewer, S., Carrer, M., Nola, P., and Guiot, J.: Mediterranean drought
- 427 fluctuation during the last 500 years based on tree-ring data, Clim. Dynam., 31(2–3), 227–
- 428 245, 2008.
- Orvis, K. H. and Grissino-Mayer, H. D.: Standardizing the reporting of abrasive papers used to
 surface tree-ring samples, Tree-Ring Res., 58, 47–50, 2002.
- 431 Server, M.: Evaluation of an oral history text in the context of social memory and traditional
 432 activity, Milli Folklor 77, 61–68 (In Turkish), 2008.
- 433 Speer, J. H.: Fundamentals of Tree-Ring Research, University of Arizona Press, Tucson, 2010.
- 434 Stokes, M. A. and Smiley, T. L.: An Introduction to Tree-ring Dating, The University of Arizona
 435 Press, Tucson, 1996.
- 436 Till, C. and Guiot, J.: Reconstruction of precipitation in Morocco since A D 1100 based on
- 437 *Cedrus atlantica* tree-ring widths, Quat. Res., 33, 337–351, 1990.
- 438 Touchan, R., Garfin, G. M., Meko, D. M., Funkhouser, G., Erkan, N., Hughes, M. K., and
- 439 Wallin, B. S.: Preliminary reconstructions of spring precipitation in southwestern Turkey
- 440 from tree-ring width, Int. J. Clim., 23, 157–171, 2003.

- 441 Touchan, R., Xoplaki, E., Funkhouser, G., Luterbacher, J., Hughes, M. K., Erkan, N., Akkemik,
- Ü., and Stephan, J.: Reconstruction of spring/summer precipitation for the Eastern
 Mediterranean from tree-ring widths and its connection to large-scale atmospheric
 circulation, Clim. Dynam., 25, 75–98, 2005a.
- Touchan, R., Funkhouser, G., Hughes, M. K., and Erkan, N.: Standardized Precipitation Index
 reconstructed from Turkish ring widths, Clim. Change, 72, 339-353, 2005b.
- Touchan, R., Akkemik, Ü., Huges, M. K., and Erkan, N.: May–June precipitation reconstruction
 of southwestern Anatolia, Turkey during the last 900 years from tree-rings, Quat. Res., 68,
 196–202, 2007.
- 450 Turkes, M.: Spatial and temporal analysis of annual rainfall variations in Turkey. Int. J. Clim.,
 451 16, 1057–1076, 1996.
- 452 Turkes, M.: Vulnerability of Turkey to desertification with respect to precipitation and aridity
 453 conditions. Turk. J. Engineer. Environ Sci., 23, 363–380, 1999.
- 454 Turkes, M. and Sumer, U. M.: Spatial and temporal patterns of trends variability in diurnal
 455 temperature ranges of Turkey. Theor. Appl. Clim., 77, 195–227, 2004.
- 456 Wahl, E. R., Anderson, D. M., Bauer, B. A., Buckner, R., Gille, E. P., Gross, W. S., Hartman,
- 457 M., and Shah, A.: An archive of high-resolution temperature reconstructions over the past
- 458 two millennia, Geochem. Geophys. Geosyst., 11, Q01001, doi:10.1029/2009GC002817,
- 459 2010.
- 460 Wigley, T. M. L., Briffa, K. R., and Jones, P. D.: On the average value of correlated time series
- with applications in dendroclimatology and hydrometeorology, J. Clim. Appl. Met., 23, 201–
 213, 1984.

- 463 Yamaguchi, D. K.: A simple method for cross-dating increment cores from living trees. Can. J.
- 464 For. Res., 21, 414–416, 1991.

Site name	Site code	Species	No. trees/ cores	Aspect	Elev. (m)	Lat. (N)	Long. (E)
Çorum, Kargı, Karakise kayalıkları	KAR	Pinus nigra	22 / 38	SW	1522	41°11'	34°28'
Çorum, Kargı, Şahinkayası mevkii	SAH	P. nigra	12 / 21	S	1300	41°13'	34°47'
Bilecik, Muratdere	ERC	P. nigra	12 / 25	SE	1240	39°53'	29°50'
Bolu, Yedigöller, Ayıkaya mevkii	BOL	P. sylvestris	10 / 20	SW	1702	40°53'	31°40'
Eskişehir, Mihalıççık, Savaş alanı mevkii	SAV	P. nigra	10 / 18	S	1558	39°57'	31°12'
Kayseri, Aladağlar milli parkı, Hacer ormanı	HCR	P. nigra	18 / 33	S	1884	37°49'	35°17'
Kahramanmaraş, Göksun, Payanburnu mevkii	PAY	P. nigra	10 / 17	S	1367	37°52'	36°21'
Artvin, Borçka, Balcı işletmesi	ART	Abies nordmanniana Picea orientalis	23 / 45	Ν	1200– 2100	41°18'	41°54'

465 Table 1. Site information for the new chronologies developed by this study in Turkey.

	Tot	al chronolog	<u>y</u>	Cor	Common interval			
Site Code	Time span	1st year (*EPS > 0.85)	Mean sensitivity	Time span	Mean correlations: among radii /between radii and mean	Variance explained by PC1 (%)		
KAR	1307– 2003	1620	0.22	1740–1994	0.38 / 0.63	41		
SAH	1663– 2003	1738	0.25	1799–2000	0.42 / 0.67	45		
ERC	1721– 2008	1721	0.23	1837–2008	0.45 / 0.69	48		
BOL	1752– 2009	1801	0.18	1839–1994	0.32 / 0.60	36		
SAV	1630– 2005	1700	0.17	1775–2000	0.33 / 0.60	38		
HCR	1532– 2010	1704	0.18	1730–2010	0.38 / 0.63	40		
PAY	1537– 2010	1790	0.18	1880–2010	0.28 / 0.56	32		
ART	1498– 2007	1624	0.12	1739–1996	0.37 / 0.60	41		

468 Table 2. Summary statistics for the new chronologies developed by this study in Turkey.

469 *EPS = Expressed Population Signal [Wigley et al., 1984]

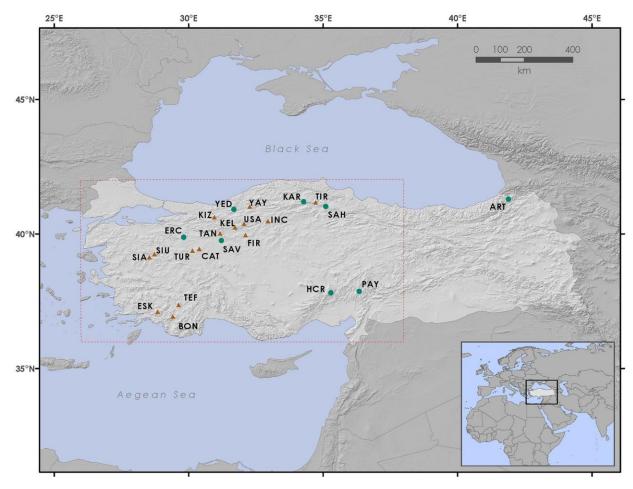
	Explained variance	Correlation coefficients with		The chronologies represented by higher magnitudes** in the eigenvectors
	(%)	May–August PPT	March–April TMP	
PC1	46.57	0.65	0.19	KAR, KIZ, TEF, BON,USA,TUR, CAT, INC, ERC, YAU, SAV, TAN, SIU
101	10.07	0.02	0.17	KAR, SAV, TIR, BOL, YAU, ESK,
PC2	7.86	-0.07	0.15	TEF,BON, SIU
PC3*	4.93	0.04	-0.48	HCR, PAY, BOL, YAU, SIA
PC4*	4.68	0.11	0.17	TEF, KEL, FIR, SIA, KIZ, SIU, ART
PC5*	4.42	-0.25	0.27	SAH, TIR, FIR, ART
PC6	3.73	0.15	-0.14	KIZ, FIR, SAV, KAR, TIR, PAY, ESK, TEF, BON, ART
PC7*	3.56	0.19	0.18	KIZ, BON, BOL, YAU, HCR, PAY, INC
PC8	2.87	0.26	0.01	HCR, ESK, BON, FIR, ERC, SIA
PC9*	2.45	0.16	0.17	PAY, USA, BOL, YAU, TIR, HCR, FIR, SIA, SIU
PC10*	2.43	0.10	-0.08	TUR, CAT, SAV, SIA, KEL, ERC, SIU
PC11	2.09	-0.36	-0.20	HCR, TEF, USA, INC, PAY, TUR, SAV, SIL
1011	2.07	0.50	0.20	TEF, CAT, YAU HCR, ESK, USA, BOL,
PC12	1.80	-0.12	0.05	SIA
PC13	1.63	-0.06	0.17	TEF, TUR, BOL, KAR, YAU, SIA
PC14	1.55	-0.14	0.06	TIR, USA, FIR, TUR, YAU, KAR, BON
PC15*	1.50	-0.20	-0.14	KIZ, BON, USA, ESK, INC, BOL
PC16	1.31	0.04	0.08	SAH, HCR, INC, YAU, SAV, KAR, FIR, BOL, SIU
PC17*	1.25	0.15	0.19	SAH, SIU, KAR, ESK, TUR, ERC
PC18	1.14	0.13	0.02	KAR, TEF, TUR, SAV, BON, CAT
PC19	1.09	0.15	-0.11	PAY, INC, SAV, HCR, KEL, CAT, TAN
PC20	0.95	-0.15	-0.01	TIR, SAH, CAT
PC21*	0.89	0.06	-0.28	TUR, INC, TIR, SAV
PC22	0.85	0.44	0.10	KIZ, SAH, BON, YAU, SIU
PC23	0.67	-0.22	-0.02	TAN, KEL, TUR, CAT

471 Table 3. Statistics from reconstruction model principal components analysis.

"*" indicates the PCs, which used in the reconstruction as predictors

^{473 &}quot;**" which exceed ± 0.2 value.

Table 4. Calibration and verification statistics of bootstrap method (1000 iterations
applied) showing the mean values based on the 95% confidence interval (CI)

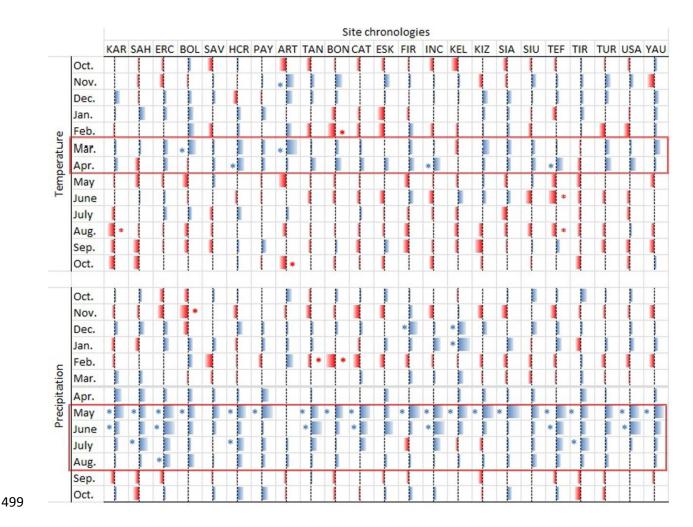

		Mean (95% CI)
Calibration	RMSE	0.65 (0.52; 0.77)
	R^2	0.73 (0.60; 0.83)
Verification	RE	0.54 (0.15; 0.74)
	CE	0.51 (0.04; 0.72)
	RMSEP	0.88 (0.67; 1.09)

RMSE root mean squared error; R^2 coefficient of determination; *RE* reduction of error; *CE*

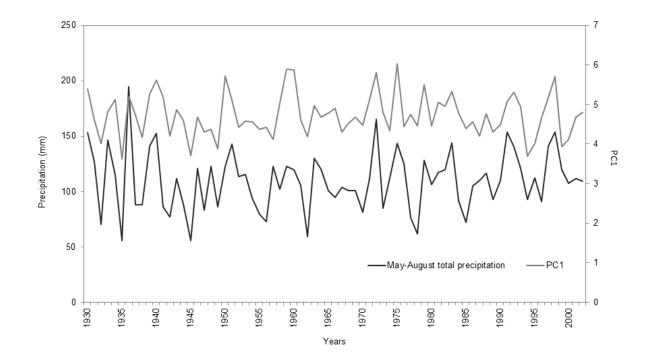
483 coefficient of efficiency; *RMSEP* root mean squared error prediction

485 Table 5. Results of the statistical calibrations and cross-validations

	Calibration	Verification				
	Period	Period	Adj. R ²	F	RE	CE
	1930–1966	1967–2002	0.55	5.91 $p \le 0.0001$	0.64	0.58
	1967–2002	1930–1966	0.71	10.45 $p \le 0.0001$	0.63	0.46
486						
487						
488						



489


490 **Figure 1.** Tree-ring chronology sites in Turkey used to reconstruct temperature. Circles

```
491 represent the new sampling efforts from this study and the triangles represent previously-
```

- 492 published chronologies (YAY, SIA, SIU: Mutlu et al. 2011; TIR: Akkemik et al. 2008; TAN:
- 493 Köse et al. unpublished data; KIZ, ESK, TEF, BON, KEL, USA, FIR, TUR: Köse et al. 2011;
- 494 CAT, INC: Köse et al. 2005). The box (dashed line) represents the area for which the
- 495 temperature reconstruction was performed.
- 496
- 497
- 498

Figure 2. Summary of response function results of 23 chronologies. Red color represents negative effects of climate variability on tree ring width; blue color represents positive effects of climate variability on tree ring width. "*" indicates statistically significant response function confidents ($p \le 0.05$). Each response function includes 13 weights for average monthly temperatures and 13 monthly precipitations from October of the prior year to October of current year.

Figure 3. The comparison of May-August total precipitation (mm) and the first principal

508 component of 23 tree-ring chronologies.

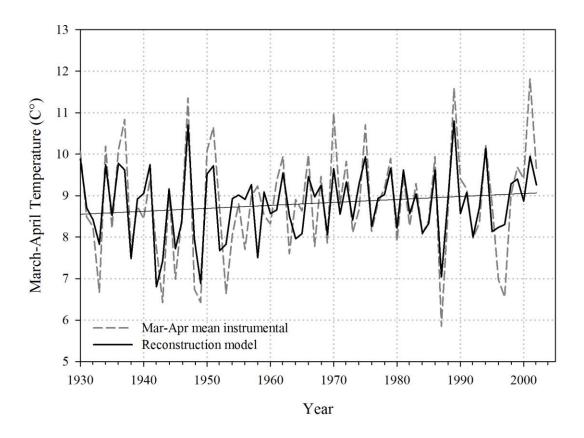


Figure 4. Actual (instrumental) and reconstructed March–April temperature (°C). Dashed lines
(dark grey) represent actual values and solid lines (black) represent reconstructed values shown
with trend line (linear black line). Note: y-axes labels range 5–13 °C.

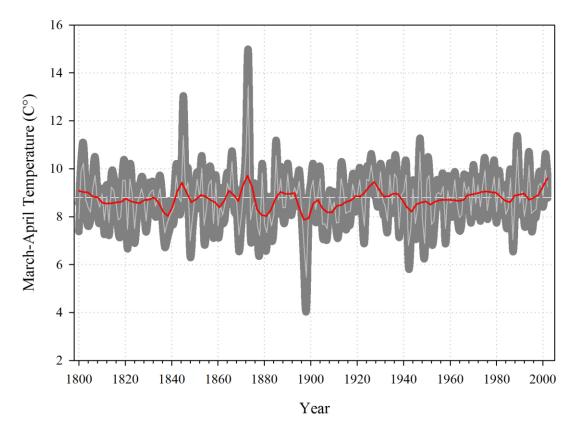


Figure 5. March–April temperature reconstruction for Turkey for the period 1800–2002
CE. The central horizontal line (dashed white) shows the reconstructed long-term mean;
dark grey background denotes Monte Carlo (n = 1000) bootstrapped 95% confidence
limits; and the solid black line shows 13-year low-pass filter values. Note: y-axis labels
range 2–16 °C.

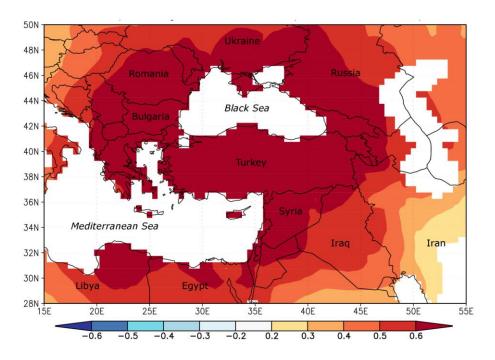
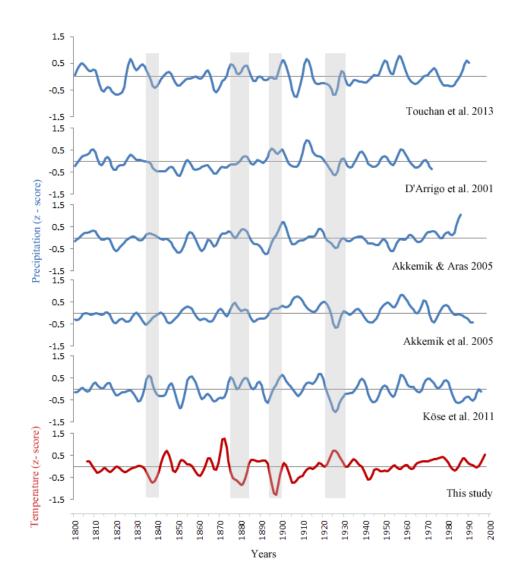



Figure 6. Spatial correlation map for the March–April temperature reconstruction. Spatial
field correlation map showing statistical relationship between the temperature
reconstruction and the gridded temperature field at 0.5° intervals (CRU TS3.23; Jones and

Harris 2008) during the period 1930–2002 over the Mediterranean region.

Figure 7. Low-frequency variability of previous tree-ring based precipitation

reconstructions from Turkey and spring temperature reconstruction. Each line shows 13-

543 year low-pass filter values. z-scores were used for comparison.