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Abstract. An earlier analysis of pore water salinity/chlorinity in two deep-sea cores, using terminal constraint methods of

control theory, concluded that although a salinity amplification in the abyss was possible during the LGM, it was not required

by the data. Here the same methodology is applied to δ18Ow in the upper 100m of four deep-sea cores. An ice volume

amplification to the isotopic ratio is, again, consistent with the data but not required by it. In particular, results are very

sensitive, with conventional diffusion values, to the assumed initial conditions at -100 ky. If the calcite values of δ18O are fully5

reliable, then inferred enriched values of the ratio in sea water are necessary to preclude sub-freezing temperatures, but the sea

water δ18O in pore waters does not independently support the conclusion.

1 Introduction

Based upon the work of McDuff (1985), Schrag and de Paolo (1993), Schrag et al. (2002), Adkins and Schrag (2001, 2003),

Insua et al. (2014), and several others, on the properties of pore-waters in abyssal cores, inferences have been made about the10

salinity and temperature of the regional and global abyssal oceans during the last glacial maximum (LGM). A summary of the

central conclusion (e.g. Adkins et al., 2002) would be that the ocean was almost everywhere near freezing temperatures, and

with an abyssal salinity much above the global volume average, particularly in the Southern Ocean.

Those inferences have become a part of the ongoing discussion of climate physics, including the whereabouts of global

carbon during the LGM, and are a standard against which models are being tested: e.g., Otto-Bliesner et al. (2006), IPCC AR515

(2013), Kobayashi et al. (2015). Recently Miller (2014), Miller et al. (2015) have challenged this interpretation showing, using

a Monte Carlo method, that the uncertainties of the inferences were too great to assert that the LGM abyssal stratification could

be determined with useful accuracy.

Their conclusion was tested by Wunsch (2015; hereafter W15) using salinity (chlorinity) data obtained from the pore-waters

of two of the cores used by Adkins and Schrag (2003) and Miller (2014), Miller et al. (2015; hereafter M15). In contrast to20

the latter authors, the analysis was carried out in the physically more direct context of standard control theory: pore fluid data

were treated as a “terminal constraint” on the time-evolving pore-water properties.1 Using highly optimistic assumptions (a

1Miller et al. (2015) used a Markov Chain-Monte Carlo (MCMC) approach. Whether this stochastic method is intuitively more accessible than the one

used here is a matter of taste.
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known one-dimensional advection-diffusion model with perfect parameters, known initial conditions, etc.) the uncertainties in

the estimated abyssal salinity through time supported the Miller et al. (2015) inference. In general, the very high local values

of abyssal salinity, S, much above the LGM volumetric mean, were possible within the uncertainties of the chlorinity/salinity

data and its model, but were not required by the data and model.

The purpose of this present paper is to extend the W15 salinity analysis to the pore-water measurements of the oxygen5

isotope ratio, δ18Ow; see Schrag and dePaolo (1993), Adkins and Schrag (2001, 2003), Schrag et al. (2002), M15. The oxygen

isotope tracer is of particular importance for the interpretation of the calcite ratio of δ18Oc in foraminifera, to separate the ice

volume effect (controlling δ18Ow) from the temperature signature in δ18Oc during the last glacial maximum. As discussed

by these previous authors, both colder in situ water temperatures, and increases in global ice volume lead to an increase in

δ18Oc (cf. Bradley, 1999, p. 199+). Unless the ice volume contribution in δ18Ow is sufficiently large, some δ18Oc values imply10

sub-freezing deep ocean temperatures. Schrag et al. (2002) discuss the limits on the required global volumetric mean increase

in δ18Ow,with a lower bound (Duplessy, 1978; Bradley, 1999) of 1.1 o/oo to prevent below-freezing temperatures as inferred

from δ18Oc. A maximum change of 1.3 o/oo is found if the entirety is attributed to a sea level–drop of about 120m at the

LGM (Fairbanks, 1989) with no associated temperature change. But as Schrag et al. (2002) and others emphasized, no reason

exists to believe that any kind of spatially uniform changes occurred during the glacial and deglacial intervals. The temperature15

change estimate leans on finding the small difference between two noisy numbers and involves the accuracy of the average

global ice sheet δ18O during the LGM and non-negligible salinity effects in δ18Oc among other problems.

As in W15, the focus here is on the upper 100m of the cores, where the observed δ18Ow has its maximum, instead of aiming

for an overall analysis from the full pore-water data depth range. Again the emphasis is on understanding the extent to which

the δ18Ow, by themselves, imply large ambient values in the abyssal waters.20

The general procedure here for both salinity and δ18Ow is identical to that in W15 which has a broader discussion. That is,

any tracer c(z, t) in the pore-waters is supposed to satisfy a one-dimensional advection-diffusion equation,
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Here z is positive upwards from the base of the core data, time runs forward,w is an advective flow relative to the surrounding25

solid, but porous, medium and k is a vertical diffusion coefficient. No diagenetic reactive processes are included (see e.g.,

Berner, 1980; Schrag and de Paolo, 1993). ∂k/∂z, if non-zero, can be thought of as an effective velocity, w∗, but it competes

with the effects of variable k in the last term of Eq. (1b). Derivation of this equation is not straightforward, and involves

numerous assumptions discussed by Berner (1980), Boudreau (1997), Huettel and Webster (2001), Bruna and Chapman (2015),

Voemans et al. (2016) and others. Because this equation has been the model used by previous workers, it is simply adopted here30

as a black-box framework for discussion of the resulting uncertainties in the pore-water inferences with little discussion of its

2

Clim. Past Discuss., doi:10.5194/cp-2015-193, 2016
Manuscript under review for journal Clim. Past
Published: 25 January 2016
c© Author(s) 2016. CC-BY 3.0 License.



probable violations. δ18Ow is a ratio of concentrations, but the denominator (the concentration
[
16O

]
) is treated as invariant

so that a standard advection-diffusion equation is still appropriate.2

If k,w are known, Eq. (1) is a conventional parabolic partial differential equation in z, t whose textbook solution involves

specifying: (a) the initial conditions, (b) the boundary condition at z = h (the fluid-solid interface) and (c) the boundary condi-

tion at z = 0, the base of the pore-water data. As discussed by Wunsch (2006), problems involving observations almost never5

coincide with the well-posed situations described in most differential equations textbooks, and one must specifically ask “what

is known, and what has to be determined?” In the present situation with real core data, apart from the model, information is

available only at the time when the core was obtained, t= tf , and includes c(z, tf ) = C (z, tf )±∆C (z, tf ) where C (z, tf )

are the “true” terminal values, and ∆C (z, tf ) is an estimate of their accuracy. In many cores, the porosity and tortuosity of the

solid phase are also measured at time tf and are used to infer k (z, tf ) , also with some (not always stated), uncertainty. The10

measured values, Cterm = c(z, tf ) , are the “terminal constraint” on the tracer, and represent the values that any estimate of

the core values through time, c(z, t) , 0≤ t < tf to which the concentration must converge within error bars (here also labelled

“uncertainty”).

Because the core properties are measured only at time tf , the initial conditions, C0 (z), are unknown and a plausible guess is

required. Two candidates suggest themselves: (1) Relying on the rough quasi-periodicity of Pleistocene ice ages (see e.g., M15),15

one can setC0 (z) = c(z, tf )±∆C (z, t= 0) , but where ∆C (z, t= 0)>>∆C (z, t= tf ) owing to the significant uncertainty.

(2) Take the completely agnostic value C0 (z) = 0±∆C (z, t= 0) , and attempt to determine the initial conditions from the

data. (See Table 1 for the notation.)

What of the boundary condition Ch (t) = C (z = h,t)? Determining Ch (t) has been the focus of the existing literature, with

inferred values being the estimates of LGM and deglacial abyssal salinities and isotopic ratios and is what led to the general20

inferences described above. As with all estimation problems, it helps greatly to have a good (accurate) a priori estimate of the

true value. As outlined by McDuff (1985) and Adkins and Schrag (2001), plausibly both oceanic salinity and δ18Ow would

be controlled largely by ice volume changes, and they and subsequent investigators have usually taken a scaled version of the

estimated sea level curve as a sensible starting place. Because sea level curves are sometimes based upon δ18O values in corals

and cores and which are presumably correlated with δ18Ow, we follow M15, in using their estimate—one that avoided such25

data and as shown in Fig. 1, scaled for δ18Ow. An enrichment at the estimated global ice maximum about -20 ky BP occurs.

The curve, which will be used as an a priori estimate, was allowed to range from -0.19 to 1.16 o/oo with a mean value of 0.43

o/oo.

Let the guessed prior be written as C̃h (t) = Ch (t)±∆Ch (t), where ∆Ch (t) is another uncertainty estimate. The bottom

boundary condition is problematic. With finite diffusion and/or an upward directed w, structures below the measured pore fluid30

depth can propagate into the measured domain. A separate or combined calculation would be required for determining those

unknown structures, and we again follow previous investigators in using a zero-flux boundary condition at z = 0. The problem

can easily be reformulated to determine that boundary condition instead of, or in addition to, Ch (t) , and noting that in general,

∂c(0)/∂z 6= 0 in the data.

2This assumption would be a poor one for tracers, such as isotopic ratios of Nd, where the denominator can vary significantly over the ocean volume.
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2 Estimation Structure

Following W15, the problem is written in discrete numerical form using a Dufort-Frankel method (Roache, 1976) with the

exception that now k will be treated explicitly as a linear function of z with a factor of two variation, but it makes little quan-

titative difference to the results; see the Appendix). W15 described three, equivalent, stable methods for solving the resulting

terminal constraint estimation problem.3 Again, with the goal of finding the most optimistic estimates of uncertainty, w,k are5

treated here as perfectly known, all data being used to compute the control variable, which is the correction to the guessed a

priori Ch (t) and its uncertainty. Here only the so-called RTS smoother algorithm is used, as it produces rigorous uncertainty

estimates (rigorous up to the model choice, including the prior uncertainties). With k,w known and time-independent, the

problem is a linear one, with the model written in “state-space” form as,

x(t+ ∆t) = A(t)x(t) + B(t)q(t) + Γ(t)u(t) , t= 0,∆t,2∆t, ...,(N − 1)∆t, (2)10

tf = (N − 1)∆t

A is the 2M×2M “state transition” matrix (a function ofw,k), q(t) represents the prescribed boundary conditions and B = Γ

distributes the boundary condition over the requisite grid points.4 Here q =q (t) is a scalar, and B is a vector of all zeros except

with unity at the top boundary point–the core-ocean interface or,

B =Γ = [0,0, ...0,0,1]T , (3)15

that is, zero vectors except for the last point. The state vector, and hence the terminal data has dimension 2M, where M is the

number of vertical gridpoints in z. u(t) is the “control” and is the adjustment that will be made to q(t) to render the state as

consistent as possible with the terminal data conditions. The state vector is x(t) = [c(z, t−∆t) , c(z, t)]with discretized vector

0≤ z ≤ L, in ∆z. The numerical scheme requires two time levels in x(t) . In the present special case, matrices, A,B,Γ are

here all taken to be time-independent and perfectly known, and q(t) = q (t), u(t) = u(t) are scalars representing the abyssal20

water δ18Ow prior, and adjustment respectively. (Many extensions of this formalism exist, including non-linear systems.)

An equation governing the observations, y (t) , is written,

E(t)x(t) + n(t) = y (t) , (4)

where n(t) is the noise in the observations. In the present special case, E(t) = 0, t < tf , E(tf ) = I2M where I is the identity

matrix (that is, observations exist only at the terminal time).25

The estimation equations are described more fully in W15. Full specification of the system includes these equations plus all

of the a priori estimates of uncertainty in parameters, initial conditions, measurement noise, Etc.

3Anyone interested in the rigorous mathematics of such problems in continuous space and time is urged to consult Lions (1971).
4The notation is that bold lower-case letters indicate column vectors; bold upper-case letters (Latin or Greek) are matrices, and the superscript T means

the transpose. Vectors and matrices sometimes reduce to scalars.
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2.1 Identification

Standard control theory and statespace methods (e.g., Goodwin and Sin, 1984; Franklin and Powell, 1998; Wunsch, 2006)

commonly distinguish between two problems associated with Eqs. (2,4), that of “identification” and “statespace and control

estimation.” The identification problem in this case reduces to answering the question: “What values of the parameters w,k

are the best ones to use in modelling the data?” The formalism following from Eq. (2) is sufficiently general to include repre-5

sentations of the space-time structure of k (z, tf ) , w (z, tf )—if equations governing their time-space evolution were available.

Absent such information, the simplest, but arbitrary and optimistic, assumptions range from assuming constant values in one

or both of space and time to, at the opposite extreme, assuming a white-noise structure in both space and time ending with

the structures observed at the terminal time in the core. The former assumptions under-parameterize the true variability, and

the latter introduce an enormous number of further unknown parameters relative to the available data. Various intermediate10

assumptions can be made.

2.2 State Estimation and Control

If the identification problem has been solved, producing a useful model (or “plant” in the engineering control literature), avail-

able data can be used instead to determine the adjusted boundary condition C̃h (t) = q (t) + ũ(t) , and the best estimate of the

full state variable x̃(t)→ [c(z, t)]. It was this second problem addressed in W15—in which guesses were made of the most ap-15

propriate model and the terminal constraint problem then solved by standard sequential methods (Lagrange multipliers/adjoint,

and the Rauch-Tung-Striebel (RTS) smoother). It was argued then, that the uncertainty of the resulting C̃h (t) was so great,

despite using all of the terminal data to determine it, that little could be said about the abyssal water salinity change during the

LGM and the subsequent deglaciation. Using some or all of the same data to also determine k (z, t) ,w (t) could only further

increase the uncertainty of the estimate ũ(t) . This result was consistent with M15.20

2.3 Observability and Controllability

Control methods introduce the concepts of observability and controllability (Wunsch, 2006; Marchal, 2014) as well as a series

of related ideas such as “reachability” (see Goodwin and Sin, 1984). Here, “observability” means that the observations are

adequate to perfectly reconstruct the initial conditions. “Controllability” implies that the system can be driven from any initial

condition to an arbitrary terminal value.25

The extent to which the terminal data are determined by the initial conditions is an important issue here. Thus (e.g., Wunsch,

2006, p. 233) with a single observation at the end time, and in the absence of any external disturbance, the observability matrix

is

O = I2NAtf = Atf ,

and with Ch (t) = 0 would, if Atf is of full rank, permit exact solution of30

x(tf ) = Ox(0) ,
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for x(0) . Loss of information about the initial conditions will arise directly from the dissipative nature of diffusion or, if

there is a finite w, from the sweeping out of information by advection from the region of observation. Using k = 10−10 m2/s,

w = 0, ∆t= 127.3 y, and tf = 786∆t y, L= 100 km and 101 grid points in z, the rank of O is 24 (A has rank 100, the

number of non-surface-boundary grid points in the vertical). Thus a “range” of 24 structures in the initial conditions can be

inferred from the terminal data, and 76 will lie in its null space. With these parameters, the system is not fully observable and5

the question is whether the null space is of serious concern or not. (Structures in the terminal state null space of O are not

determined by the initial conditions, and might be provided by the control instead. Structures in its range can be provided by

the initial conditions, but can also be provided by the control.) Loss of information between the starting and ending times is

intuitively sensible: small vertical-scale structures in x(0) do not survive measurably over 100,000 ky in a diffusive system.

Large vertical-scale structures can and do survive; see the analytical solutions in W15 and the cases analyzed below.10

Suppose that the initial condition were zero. Then “controllability” would answer the question of whether any choice of

control in Ch (t) = q (t)+u(t) would carry the system to the terminal data Cterm (z)? Then the controllability matrix Θ (e.g.,

Wunsch, 2006, p. 232) is

Θ =
{
I2N ,A,A2, ...,Atf−∆t

}
Γ (5)

The system is controllable only to the extent that Θ is full rank, M, for tf −∆t= (N − 2)∆t. In the present case, from the15

definition of Γ (Eq. 3), the rank is estimated as about 33.

Neither of these concepts depends on the actual data. The formalisms can be used to find explicit descriptions of the terminal

data structures determinable from the initial conditions and controls. Here we proceed instead by direct construction of the

solutions, having inferred that there will be a strong dependence on both initial conditions and controls, with some inevitable

residuals to be regarded as “noise.” A fuller discussion of controllability and observability depends upon understanding whether20

the smaller, but non-zero, eigenvalues of A and its powers are sufficiently large compared to the unclear noise level.

3 The Data

Fig. 2 displays the positions of the five cores for which δ18Ow data were available (courtesy of M. Miller, personal commu-

nication, 2015, and see Table 1) superimposed upon the modern δ18Ow, distribution at 3500m from the GISS website; see

LeGrande and Schmidt (2006). The modern range at this depth is roughly from -0.3 to 0.3 o/oo, plus outliers. An artificial25

boundary for the Antarctic-origin bottom waters, owing to a lack of data, is visible (see LeGrande and Schmidt, 2006), as is

the relatively strong gradient in the Atlantic Ocean. Any calculated global spatial average from four locations for this or any

other depth would have a large uncertainty. For reference purposes, a straight area-weighted average of the gridded values in

Fig. 3 is -0.013 o/oo.

Measured terminal porosity in each of the cores is displayed in W15. Fig. 3 shows the δ18Ow measurements with depth,30

with the exception of core 1239, which is shown in Fig. 4.

The visible fluctuations in all cores exceed the estimated analytical accuracy of 0.03 o/oo (Adkins and Schrag, 2001), but the

extent to which they represent real changes in boundary conditions through time, their initial conditions and fluxes from below
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Core No. Reference Location Water Depth (m)

ODP981 Jansen et al. (1996) NE Atlantic, Feni Drift/Rockall 2200

ODP1063 Keigwin et al. (1998) Bermuda Rise 4600

ODP1093 Gersonde et al. (1999) Southern Ocean, SW Indian Ridge 3600

ODP1123 Carter et al. (1999) E. of New Zealand, Chatham Rise 3300

ODP1239 Mix et al. (2002) E. Tropical Pacific, Carnegie Ridge/Panama Basin 1400
Table 1. Cores from which chlorinity/salinity data were used, along with a reference to their initial description in the Ocean Drilling Program

(ODP) and with a geographical label. A nominal water depth of the core-top is also listed.

the measured core depth, as opposed to a variety of noise processes in the formation of a core undergoing active sedimentation,

remains obscure. One of the major issues is whether structures other than the visible overall maximum, presumably at the

LGM, are signals to be understood, or mere noise, to be suppressed.

Differences among the core δ18Ow do not easily support an hypothesis of any kind of globally uniform variation in the

bottom water concentration, Ch (t) = q (t)+u(t) anywhere below about 100m depth. Visually, cores 1093 and 1239 are quali-5

tatively different from the other three, with 1239 showing very large excursions near-surface, and 1093 having roughly constant

values with depth, but with superimposed structures. Under-sampled core 1239 has extreme values represented primarily by

single point excursions, likely connected to the extreme volatility of dynamical properties in the equatorial Pacific Ocean and

is not further discussed here. The remaining three cores all have a visual maximum of greater or lesser definition at some tens

of meters depth. Whether other features are noise or signal is an imponderable. Differences in core water depths must always10

be borne in mind as well.

Differences among the cores imply that there need not be any overall, that is global, control on their time histories. (See the

cautionary statements in Schrag et al., 2002). Dynamics and modern oceanographic structures (as in Fig. 2) instead support the

accepted inference of different time histories of the values of δ18Ow in the bottom waters, consistent with the different core

profiles.15

Fig. 5 shows normalized versions of the oxygen isotope and salinity data in the cores. If these two properties satisfy the same

advection-diffusion equation (1), they must have different temporally varying boundary and/or initial conditions, or be subject

to possible biogeochemical interactions not treated here.

Begin as in W15, in which the observed core provides the terminal constraint, and the initial condition is assumed to be the

same as the terminal one, but with a larger error estimate. Absent any more compelling possibility, the same sealevel curve, is20

used, but scaled to lie between -0.2 o/oo and 1.15 o/oo (Fig. 1).

3.1 The Average δ18Ow Core

Knowledge of oceanic dynamics and the modern distribution, as well as the core δ18Ow data in Fig. 3 make it very unlikely that

a globally uniform shift in the oxygen isotope ratio ever occurred. Injection of ice-melt, precipitation, and evaporation necessary
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to remove and create continental ice sheets controlling the porewater δ18Ow involve primarily oceanic surface properties, and

the time scale to reach any kind of dynamic and kinematic equilibrium over the entire ocean volume requires thousands of

years (e.g., Wunsch and Heimbach, 2008; Siberlin and Wunsch, 2010; Gebbie, 2012).

In the absence of regionally coherent core porewater data, a major problem is determining the extent to which structures

in the δ18Ow data represent purely local “noise”, or regionally important climate signatures that must be understood. As a5

simplified context for later discussion of the individual cores, a start is made by averaging the four cores displayed in Fig. 3,

with the result also shown there, and extending to the depth of the shallowest record (138m). An average core does not exist

in nature, but provides a generic data set to discuss the methodology and results. In any core, one can guess at the structures

to be treated as a noise process rather than as signal. Averaging is a primarily data-based noise reduction process, in which

incoherent small-vertical scale features will tend to be suppressed. With only four examples, the standard error of the result,10

shown in Fig. 6, is very large, having only three degrees of freedom. Nonetheless, we proceed. No attention has been paid to

differences in sedimentation rate, or other depth controlling processes. Results will be used as a framework for later discussion

of the individual cores. Because of the linearity of the problem, the final estimation uncertainties do not depend upon the data

themselves. In addition, the control solution for the average core will be the same as averaging the controls of the individual

cores—if the same statistics are used for them.15

The analysis follows much of the earlier literature in setting w = 0. Results from assuming a purely diffusive response,

“near-periodic” initial conditions (initial conditions set to the terminal data), and a constant Ch (t) = 0 are shown in Fig.

7. P0 = (2o/oo)2 I, Q= (2 o/oo)2
. A very large uncertainty, ±2 o/oo is assigned to both initial conditions and the control,

respectively. The terminal data uncertainty is the calculated standard deviation of the four cores. Unless specifically stated

otherwise, k is linear over the top 100m core depth with values 5× 10−11− 10−10m2/s in all cases.20

The fit to the terminal state is statistically acceptable, with an isotopic maximum at 60-70 m. On the other hand, no significant

LGM maximum appears in the control—instead, the smoother places most of the structure into the initial conditions—which,

consistent with the observability discussion, persists as a local maximum through the 100 ky time interval. This result empha-

sizes the ambiguity of initial conditions and control with pure diffusion at the assumed rate over both 100m in the vertical and

100 ky over the time duration.25

Examples such as this one render concrete a number of interlocking elements of the problem. (1) Noise or uncertainty

covariances for the initial conditions, the terminal data, and the prior Ch (t) are as much a part of the model as is k, and the

underlying partial differential equation, or the data themselves. Their choices determine what is regarded as signal and what is

noise. (2) Consider an extreme case. By setting the initial conditions equal to the terminal data within some uncertainty, and

letting k→ 0, a completely acceptable solution would be found by fixing the control as the constant Ch (t) = Cterm (z = 0) .30

In the limit, all of the initial condition structure is maintained through to tf . The only reason to preclude such a solution is the

requirement that k > 0. (3) In producing a local maximum at the depth inferred to be the properties of the LGM, the governing

equation produces a tight tradeoff between a large value of k, permitting adequate penetration to the observed depth, versus its

strong tendency to diminish the amplitude of the resulting maximum (cf. Adkins and Schrag, 2003). Whether both amplitude
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and depth can be simultaneously reproduced, with a simple rule for k, has to be determined in each case, and a judgment may

have to be made as to which, if either feature, is the more robust element in the data?

In contrast to the quasi-periodic initial and final conditions, (Fig. 8) shows the result when the initial condition was taken

to be zero: the system responds by reconstructing the near-periodic initial condition. Again the residual is acceptable, and the

control hardly differs. Initial conditions are very important with this diffusivity values and time interval.5

Now consider what happens when the prior is taken to be the scaled sea level curve of Fig. 1, with zero initial conditions,

and as shown in Fig. 9. The terminal fit is once again acceptable, and the control adjustments are very small. The standard

inference of enhanced δ18Ow at about -20 ky by order 1 o/o relative to today is also consistent with the model and the data. As

in W15 for salinity, an LGM maximum is not required by them, but becomes an assumption to rationalize temperature data.

The strong dependence upon the initial condition is striking. It can be suppressed as shown in Fig. 10 where the initial10

condition was set to zero, with a minute uncertainty, and the terminal uncertainty was strongly downweighted in the vicinity

of the depth of the local maximum. Then as shown in the figure, a solution reproducing the terminal maximum is found, with

a time-varying control over almost the entire record. This solution is most like earlier published ones. On the other hand, the

uncertainty in ũ(t) still greatly exceeds any useful range.

When the sealevel prior is used in this situation (not shown), the final total control is visually very similar to that shown15

in Fig. 10. This result suggests that suppression of the initial conditions as unknowns brings the system closer to producing a

unique control, but a zero initial state is not easily justified.

3.2 Core 1063

None of the five cores is obviously “typical”, but core 1063 on the Bermuda Rise, a focus of the study of Adkins and Schrag

(2001), has the characteristic maximum at depth with a quasi-linear decrease with depth. Again only the upper 100m are20

considered.

The a priori terminal constraint variance is R =(0.3o/oo)2 I, (about 10 times larger than the value in Adkins and Schrag,

2001) (I is the identity matrix and now meant to be approximately the analytical measurement error, P0 = (0.17 o/oo)2 I,

Q= (1.0 o/oo)2 somewhat more physically realistic than the very large, agnostic values used with the mean core. Only a

fraction of the total number of possible examples will be displayed.25

Fig. 11 shows the purely diffusive solution with the sea level prior and the quasi-periodic initial condition. The region of

influence of the core-top boundary condition is confined to about the top 50m, consistent with W15. Qualitative deviations

occur only in the last 5000 years. This solution must be rejected as 90% of the terminal values lie outside the approximate 95%

confidence (two-standard deviations) interval. Note again that none of the adjustments, ũ(t) , are statistically significant.

When k was reduced by a factor of 100 below the nominal value used for the mean core, a better fit was found, but it still30

had to be rejected as the δ18Ow maximum occurred about 10m above that observed in the core. It would appear that this core

is not consistent with the prior within the stipulated error bars.

9

Clim. Past Discuss., doi:10.5194/cp-2015-193, 2016
Manuscript under review for journal Clim. Past
Published: 25 January 2016
c© Author(s) 2016. CC-BY 3.0 License.



A possibility is that including a non-zero lower boundary condition, c(z = 0, t) , representing upward diffusion of signals

from below would improve the residual—but no compelling reason exists for permitting that further increase in unknown

degrees-of-freedom.

Fig.12 shows the Core 1063 solution with quasi-periodic boundary conditions when it is forced to the water column maxi-

mum by greatly reducing the estimated error in its vicinity, and with the sea level prior. The fit near the maximum is, as forced5

and expected, good, but the smaller scale structures are not reproduced. The same situation, but with the flat zero-prior is shown

in Fig. 13. This solution is marginally better than for the sea level prior, but no LGM maximum appears in the control. In terms

of the residuals, this solution effectively treats all structures in the top 100 m of the core, except for the maximum excursion,

as a noise process. If that inference is accepted, then a posteriori, an estimate of the variance of the noise structure in the core

has been made.10

3.3 Core 1093

Core 1093, in the Southern Ocean on the Southwest Indian Ridge, has been the main basis of the inference of a strongly salinity

stratified abyssal ocean during the LGM. For the top 100 m of δ18Ow, Fig. 14 shows that once again the quasi-periodic initial

conditions with a flat prior can reproduce the terminal constraint but with no requirement of a maximum in q (t) +u(t) . The

initial condition carries most of the structure.15

3.4 Cores 981, 1123

Similar results emerge from the remaining two cores and so only representative solutions are shown in Figs. 15, 16, both

for the case of quasi-periodic initial conditions, the flat prior and forcing to the δ18Ow peak at depth. As in the other cores,

the dependence on the initial conditions is clear. Both show a significant adjustment ũ(t) near the terminal time, but neither

requires an LGM peak, although the sea level prior is also acceptable (not shown).20

4 Discussion

To a very great extent, the results of analyzing these cores depend very directly upon a long list of assumptions of which a

rough summary if those made here would include:

(1) Physics/chemistry are one-dimensional

(2) Sedimentation rates are constant25

(3) Rules for diffusivity/porosity/tortuosity are accurate

(4) Advection/diffusion without chemical reaction processes is adequate

(5) Initial conditions are similar to the terminal measurements, but with a larger uncertainty.

(6) k(z, t),w(z, t) are time independent (and equal to the estimated terminal value).

(7) Structures in the terminal values are/are not signals (are/are not noise) and accuracy is dominated by analytical accuracy30

(or not)
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(8) Lower boundary condition at z = 0 is one of no flux, with no upward diffusion or advection from below the data depth.

(9) The scaled sea level curve is a useful prior boundary condition estimate of order ±1 g/kg for salinity and +/- 1 o/oo for

δ18Ow (the latter is sometimes increased to ±2 o/oo to permit nearly arbitrary behavior).

(10) Variance estimates for the uncertainties in the terminal data and in the initial conditions are approximately correct.

One of the reasons this problem is so interesting is its intimate connection between the physical model (advection/diffusion),5

and the statistical model (the uncertainty estimates) and which govern the division between signal and noise in the data. For the

range of k used here, the competition between dominance by the initial conditions and the changes induced by the control can

produce a realistic maximum at depth only by interpreting everything except the gross shape as an unexplained noise structure.

This inference may well be correct, but is not proven. The great sensitivity to initial conditions can be reduced, as in W15, by

assuming a significant downward-directed advection velocity, w < 0. Support for such an hypothesis would have to come from10

a great deal more knowledge of the fluid-sediment dynamical model.

The overall inference here, consistent with both M15 and W15, is that the conventional picture of a very cold, highly saline

abyssal ocean during the LGM remains possible, but is not a requirement of the existing data. If LGM δ18Ow is insufficiently

enhanced, then taken at face value, the δ18Oc data would imply some oceanic temperatures below the freezing point. That issue

might be sufficient to be convincing evidence that high δ18Ow must have occurred, but the dependence upon the reliability of15

the interpretation of the foraminifera data will be plain (e.g., Bradley, 1999). A growing literature (e.g., Marchal and Curry,

2008; Huybers and Wunsch, 2010; Burke et al., 2011; Gebbie, 2012; Amrhein et al., 2015; W15; M15) attempting to quantify

inferred circulation differences between the LGM and the modern increasingly finds it difficult to distinguish any qualitative

or even quantitative differences. Such findings do not disprove hypotheses of major change to water mass volumes, including

cold, strong abyssal salinities during the LGM, but only reinforce the need for far more data than are now available—if the20

hypotheses are to become factual.

Appendix A: Appendix: Numerical Tests

Consider a purely diffusive system, with k = k0 + k1z, that is growing linearly from the bottom of the core. The governing

equation is

(k0 + k1z)
∂2c

∂z2
+ k1

∂c

∂z
− ∂c

∂t
= 0, (A1)25

subject to the periodic boundary condition, Ch (t) = c(z = 0, t) = cos(σt) , σ = 2π/20000y, with t in years. Setting c=

ĉ(z)exp(−iσt), and making the substitution, ζ = k0 + k1z, a form of Bessel’s equation is found (Olver, 2010)

d2ĉ(z)
dz2

+
1
ζ

dĉ(z)
dz

+
iσĉ(z)
k2

1ζ
= 0,

with solution

ĉ(ζ) = aJ0

(
2
√
iσ

k1
ζ

)
+ bY0

(
2
√
iσ

k1
ζ

)
(A2)30
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where J0,Y0 are the Bessel functions, noting the singular behavior as k1→ 0 (Kelvin functions can also be used.) The upper

and lower boundary conditions are

aJ0

(
2
√
iσ

k1
(k0 + k1L)

)
+Y0

(
2
√
iσ

k1
(k0 + k1L)

)
= 1, z = L

aJ1

(
2
√
iσ

k1
k0

)
+Y1

(
2
√
iσ

k1
k0

)
= 0, z = 0

and solved for a,b, where the identities J ′0 =−J1, Y
′
0 =−Y1 were used. Fig. 17 shows the comparison between the numerical5

and analytical solutions, as well as the result with constant k in place of the linear form used in this paper.
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Figure 1. Prior estimate of the ocean-sediment interface boundary condition on δ18Ow, derived from the sea level curve of Miller et al.

(2015). The maximum a priori value, for the LGM is 1.15±1o/oo and the minimum, calculated very approximately from the data in Fig. 2 is

-0.2±1o/oo, consistent with previous such estimates in the references (e.g., Miller et al., 2015). Time zero is at -100 ky. Vertical dashed line

indicates a range of 1 o/oo between the nominal modern and the change to the LGM described by Schrag et al. (2002).

 −75° 

 −60° 

 −45° 

 −30° 

 −15° 

   0° 

 +15° 

 +30° 

 +45° 

 +60° 

 +75° 

3500m

δ18O 

−0.5 −0.45 −0.4 −0.35 −0.3 −0.25 −0.2 −0.15 −0.1 −0.05 0    0.05 0.1  0.15 0.2  0.25 0.3  0.35 0.4  0.45 0.5  

1123

1239

981

1063

1093

Figure 2. Modern δ18Ow at 3500m (from LeGrande and Schmidt, 2006) with superimposed core positions (black circles). Note, however,

that the core tops are not generally at this depth (Table 1). Note also (G. Gebbie, private communication, 2015) that the structures in this

chart may be overly sensitive to the method used for gridding. Region of little or no data in the Southern Ocean is bounded by the thick black

line.
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Figure 3. The four δ18O profiles used here along the mean value to the depth of the shallowest record (core 1123). Recall that the tops of the

cores lie at different water depths.
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Figure 4. δ18O in core 1239, eastern equatorial Pacific, showing apparent undersampling near the core top and likely related to the intense

dynamical variations expected on the equator and continental margins. Note the zero depth at 400m. These data were not further used here.

Notation Variable Definition

Initial Condition C0 (z) c(t= 0,z)

Boundary Condition Ch (t) c(t,z = 0)

Terminal Condition Cterm (z) c(t= tf ,z)

Table 2. Notation used for initial, final and boundary conditions. In the discrete form, two time-steps of the concentration cmake up the state

vector, boldmathx(t), and corresponding imposed conditions, Tildes over variables denote estimates.
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very end. The smoothed solution is very similar to that with a near-periodic initial condition.

18

Clim. Past Discuss., doi:10.5194/cp-2015-193, 2016
Manuscript under review for journal Clim. Past
Published: 25 January 2016
c© Author(s) 2016. CC-BY 3.0 License.



KY

M
E

T
E

R
S

 

 

0 50 100
0

20

40

60

80

100

0

0.2

0.4

0.6

0.8

1

KY

 

 

0 50 100
0

20

40

60

80

100(b)

−0.2

0

0.2

0.4

0.6

0.8

−0.5 0 0.5
0

20

40

60

80

100

o/oo

(c)

0 20 40 60 80 100
−0.5

0

0.5

1

1.5

KY

o/
oo

(d)

95 96 97 98 99 100
−4

−2

0

2

4

KY

(e)

−0.2 0 0.2 0.4 0.6
0

20

40

60

80

100

o/oo

M
E

T
E

R
S

(f)

(a)

terminal resid.

std. error

q(t)+u(t)

std. error

u(t)

Term. data

smoothed 
est.

KF Pred.

Figure 9. The mean core, upper 100m, zero initial conditions but with the sea level prior in Fig. 1. The small adjustment, u(t) , demonstrates

that the terminal data are also consistent with the inference of a very high δ18Ow at about -20ky with an increment exceeding 1 o/oo between

the LGM and the present. Note, however, the very large uncertainties remaining in ũ(t) .
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Figure 10. Using the full 140m of the average core, with the initial conditions prevented from changing significantly, and a flat prior, a

solution reproducing the δ18Ow maximum at depth through the reduced values of R there, and treating all other features as errors. ũ(t)

is now distributed over most of the 100 KY, but with no statistical significance anywhere. Strong reduction in the prior uncertainty of the

terminal state is visible as the very narrow standard errors in the estimate visible in (c) and in the terminal reproduction of the gross maximum.

Large number of outliers in c̃(z, tf ) would imply an inconsistency between the solution and the prior error estimate.
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Figure 11. Results for core 1063 (Bermuda Rise) δ18Osw, for a purely diffusive system, the sealevel prior, and quasi-periodic initial-

conditions in a failed solution. 90% of the terminal misfit lies outside two standard deviations. The results of the Kalman filter are shown (a),

and below about 50 meters in the core are strongly dependent upon the initial conditions which coincide with those of the core. Also shown

is the misfit at the last time step, t= tf (model fit to the core) and the standard error (b). Adjustment to the a priori curve is very small except

very close to the termination. Control ũ(t) is shown (e) and which differs visibly from the prior only in the sharp upturn at the very end.
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Figure 12. Same conditions as in Fig. 11 for core 1063 but with the solution forced to reproduce the local maximum through the terminal

uncertainty estimate. All residual structures would be noise of unknown nature. The Ch (t) maximum does exceed the estimated volumetric

global mean, but the uncertainties remain close to ±2 o/oo. Again, pinched error bars in (c) show the forcing to the local maximum visible

in (f). This solution is most like those discussed in the earlier literature, fitting only to the local maximum, and treating all other structures as

noise.
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Figure 13. Core 1063 with a flat prior, quasi-periodic initial-final conditions, and with the terminal data uncertainty matrix R structured

to emphasize the range of depths of the core maximum . Position and magnitude of the maximum are good. All other structures are then

inferred to be a noise process. Compare Fig. 13

Figure 14. Core 1093 with a quasi-periodic initial condition, a flat prior, and terminal uncertainties forcing solution to the δ13Cw at depth.

Total control is flat, until the very end.
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Figure 15. Results for Core 981 in the northeast Atlantic Ocean using a flat prior and quasi-periodic boundary conditions for the situation in

which the solution is forced to produce the maximum at depth by uncertainty variance weighting.

Figure 16. Results for Core 1123, east of New Zealand, for a flat prior, quasi-periodic initial conditions, and forcing to the δ18Ow peak at

depth.
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Figure 17. Comparison, for a 100 m deep core, of the numerical solution with k0 = 10−9 m2/s, k1 = 10−11 m/s and a 20,000 y period, with

the analytical solution (A2). The analytical solution with constant k = 10−9 m2/s is also shown.
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