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Abstract. Data assimilation (DA) is an emerging topic in palaeoclimatology and one of the key challenges in this field. As-

similating proxy-based continental mean temperature reconstructions into the MPI-ESM model showed a lack of information

propagation to small spatial scales (Matsikaris et al., 2015b). Here, we investigate whether this lack of regional skill is due

to the methodology or to errors in the assimilated reconstructions. Error separation is fundamental, as it can lead to improve-

ments in DA methods. We address the question by performing a new set of simulations, using two different sets of target data;5

the proxy-based PAGES 2K reconstructions (DA-P scheme), and the HadCRUT3v instrumental observations (DA-I scheme).

Again, we employ ensemble-member selection DA using the MPI-ESM model, and assimilate Northern Hemisphere (NH)

continental mean temperatures; the simulated period is 1850-1949 AD. Both DA schemes follow the large-scale target and ob-

served climate variations well, but the assimilation of instrumental data improves the performance. This improvement cannot

be seen for Asia, where the limited instrumental coverage leads to errors in the target data and low skill for the DA-I scheme.10

No skill on small spatial scales is found for either of the two DA schemes, demonstrating that errors in the assimilated data are

not the main reason for the unrealistic representation of the regional temperature variability in Europe and the NH. It can thus

be concluded that assimilating continental mean temperatures is not ideal for providing skill on small spatial scales.

1 Introduction

Proxy-based palaeoclimatic reconstructions are spatially incomplete and contain large uncertainties caused by non-climatic15

noise, reconstruction methods, measurement errors, inadequate understanding of the proxy response to environmental varia-

tions and other factors (e.g. Jansen et al., 2007; Jones and Mann, 2004). Standard model simulations cannot follow the real

internal climate variability, and also include systematic biases and errors in the forcings or in the response to them (Fernandez-

Donado et al., 2013). Data assimilation (DA) combines empirical information from proxy data with numerical simulations to

obtain the best climate state estimates, aiming to capture both the forced and internal climate variability (e.g. Widmann et al.,20

2010; Hakim et al., 2013). This study employs DA using ensemble member selection, a method that has been pioneered by

Goosse et al. (2006) (see also Crespin et al., 2009; Goosse et al., 2010, 2012; Annan and Hargreaves, 2012; Matsikaris et al.,

2015a). Other approaches to DA have also been employed with success (e.g. Huntley and Hakim, 2010; Pendergrass et al.,

2012; Bhend et al., 2012; Steiger et al., 2014), all corroborating that DA has the potential to provide improved reconstructions
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for the climate of the past and help increase the understanding of climate variability.

The DA problem in palaeoclimatology is different to the relevant problem in numerical weather forecasting in many respects.

In contrast to the wealth of direct and indirect measurements available for initialising the weather forecasts or for reanalyses,

empirical estimates for past climate states are limited and the spatial coverage is incomplete (Widmann et al., 2010). Moreover,5

the proxy data constrain seasonal and longer variability rather than individual weather states. In addition, the need for the meth-

ods to be efficient enough for long simulations and the high computational cost required introduces another limitation to the

use of palaeoclimate DA. As a result, most of the palaeoclimate DA approaches undertaken so far, including the “degenerate

particle filter” ensemble selection employed here, are rather pragmatic and not formulated within the standard framework of

DA. The study presented here contributes to assessing how well the particle filter works.10

As a prerequisite for a realistic simulation of regional-scale variability, the main modes of atmospheric circulation need

to be constrained by DA. Matsikaris et al. (2015b) assimilated reconstructed continental mean temperatures for the Northern

Hemisphere (NH), and showed that although the DA simulations generally followed the large-scale target temperatures well,

there was a lack of skill for temperatures within Europe on smaller spatial scales. A potential reason for this lack of skill is15

that continental temperatures might not be ideal for constraining the atmospheric circulation and thus regional temperatures.

Additional reasons related to the DA approach are the decadal resolution of the assimilated data, the root mean square (RMS)

error-based cost function, and the limited ensemble size. Moreover, the errors in the assimilated data, i.e. the differences be-

tween reconstructed and true temperatures may cause unrealistic large-scale states and in turn unrealistic regional temperatures.

It is an open question whether the lack of skill on small spatial scales found in Matsikaris et al. (2015a) is mainly due to the20

DA method or also to the errors in the assimilated data. Separation of these potential contributions is important, as it can lead

to improvements of the DA method.

A fundamental problem in the validation of DA simulations for the past is that the true climate is unknown. This problem

can in principle be addressed by simulations for the instrumental period and evaluation of the DA simulations against direct25

observations. In this study, we assimilate decadal mean temperatures for the NH continents derived from gridded instrumental

temperature observations (Brohan et al., 2006) and proxy data (PAGES 2K Consortium, 2013) for the period 1850-1949 AD.

The two sets of DA simulations are referred to as DA-I (for the instrumental-based scheme) and DA-P (for the proxy-based

scheme). As in Matsikaris et al. (2015b), we use the Earth System Model developed at the Max Planck Institute for Meteo-

rology (MPI-ESM), an ensemble size of 20 members for each DA scheme, and ensembles that are generated sequentially for30

sub-periods based on the best members of previous sub-periods.

This setup addresses the validation problem, and assuming that the instrumental observations constitute perfect input data

for DA, allows also to distinguish between methodology and data error in the DA setup of Matsikaris et al. (2015b): the error

in the DA-I scheme is mainly the methodology error, while the difference in the errors of the two schemes is the consequence35
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of the errors in the proxy-based temperature reconstructions. There are however limitations of this approach, as the global

observational coverage is very incomplete early in the record and there are gaps even in recent years, leading to some uncer-

tainties in the assimilated data (Brohan et al., 2006). We evaluate the performance of the two schemes against the target and the

observed temperatures for large spatial scales, and compare the cost functions. We also examine the skill of the two schemes

with respect to the observed European and NH regional temperature variability.5

2 Model, data and method

The study is based on a coarse-resolution version of the MPI-ESM coupled model, which follows the configuration for palaeo-

applications (MPIESM-P) described in Jungclaus et al. (2014). The atmosphere model ECHAM6 (Stevens et al., 2013) is run

at T31 horizontal resolution (3.75◦ × 3.75◦) with 31 vertical levels. The ocean-sea ice model MPIOM (Marsland et al., 2003)

is run at a horizontal resolution of 3.0◦ (GR30) and 40 vertical levels. The model includes the OASIS3 coupler and the land10

surface model JSBACH (Raddatz et al., 2007). Two sets of DA simulations are conducted, selecting the best among 20 en-

semble members, in the first case based upon comparison with the Past Global Changes (PAGES) “2k Network” proxy-based

reconstructions (DA-P scheme), and in the second case upon comparison with the HadCRUT3v instrumental observations

(DA-I scheme). The PAGES 2K network is a set of continental-scale temperature reconstructions with annual resolution, apart

from North America, for which 10- and 30-year averages are provided (PAGES 2K Consortium, 2013). Only the NH conti-15

nental reconstructions have been assimilated, which include annual mean temperatures for the Arctic (60-90N, 180W-180E),

summer means (JJA) for Asia (23.5-55N, 60-160E) and Europe (35-70N, 10W-40E) and decadal means representing all sea-

sons for North America (30-55N, 130-75W). The HadCRUT3v data set provides monthly instrumental surface temperature

observations interpolated on a 5◦ × 5◦ grid (Brohan et al., 2006). In the assimilation of the HadCRUT3v temperatures, the

same continental-scale regions and seasons as the ones defined by the PAGES 2K groups have been used.20

The assimilation method follows the ensemble-based DA schemes for degenerate particle filters (e.g. Goosse et al., 2006;

Crespin et al., 2009). The implementation of the method is the same as the one described in Matsikaris et al. (2015b). The

initial condition of the two ensembles was taken as the last day of 1849 AD from a transient forced simulation starting in 850

AD. Twenty ensemble members were generated in each scheme by introducing small perturbations in an atmospheric diffusion25

parameter, and after 10 years of simulations, a RMS error-based cost function was used to compare the simulated decadal mean

temperatures of the NH continents with the PAGES 2K and HadCRUT3v reconstructions respectively. The member that mini-

mized the cost function was selected as the “analysis” for that period and was used as the initial condition for the subsequent

10-year simulation. The procedure was repeated sequentially until 1950 AD.

30

Before being used in the cost function, the simulations, proxy-based reconstructions and instrumental data were all standard-

ized in order to remove biases in the mean and variance, and to give equal weight to each continent regardless of the variance

of the respective temperature time series. The standardization in the DA-P scheme used the long-term 850-1849 AD mean and
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variance, while for the DA-I scheme the reference period was 1850-1949 AD. The cost function in the two DA schemes is:

CF (t) =

√√√√ 4∑
i=1

(
T i
mod(t)−T i

tar(t)
)2

(1)

where i denotes the NH continents, T i
mod(t) is the standardized modelled decadal mean of the temperatures in each continent

and T i
tar(t) is the respective standardized target mean temperature (proxy-based in the DA-P scheme and instrumental-based

in the DA-I scheme). We note that for high-dimensional state spaces, one requires a large number of ensemble members in5

order to find a close analogue of an atmospheric state (Van Den Dool, 1994). The use of the continental averages of decadal

mean temperatures in the cost function reduces the dimensionality of the problem, leading to a better chance of finding a good

analogue with the small 20 member ensemble employed here.

3 Results

We address two questions when evaluating the performance of the two DA schemes: i) how well the DA analyses follow the10

assimilated target; and ii) how well they follow the reality as given in the instrumental data set. The study employs two different

metrics. The first one, correlation, measures the similarity of the temperature variations regardless of biases or scaling differ-

ences. Significant positive correlations are an indication of a common response to changes in external forcings or a similar

realisation of internal variability. The second metric, RMS error, tests how close the DA analysis and the reconstructed or ob-

served temperatures are. It is worth mentioning that the PAGES 2K reconstructions are calibrated against the instrumental data15

sets. For “composite plus scale” methods, the temporal evolution of the reconstruction is given by the proxy data composite,

regardless of the calibration record, which is only used for scaling. The situation is different for regression-based methods,

where the parameter fitting leads to reconstructions that have a temporal behaviour that is more similar to the instrumental

continental temperature series than a simple composite. The number and quality of proxy records decrease when going back

in time, and therefore the discrepancies between the real climate and the proxy-based reconstructions increase, with the con-20

sequence of less realistic teleconnections for the reconstructions. As the errors in reconstructions can be expected to increase

back in time, the skill found in our analysis for the DA-P scheme is an upper limit for the skill of periods before 1850 AD.

3.1 Consistency with the assimilated target data

For each DA scheme, the simulated NH continental temperatures are first compared with the assimilated target data, i.e. the

PAGES 2K proxy-based reconstructions for the case of the DA-P scheme and the HadCRUT3v instrumental data for the case25

of the DA-I scheme. This evaluates the coherence of the DA analyses with the assimilated target. We compare the consistency

for the NH continents and the NH mean using both the standardized time series, as this is the form of the data included in the

cost function, and the raw (non-standardized) temperature anomalies. Plots are only shown for the raw anomalies; this is the

standard way of presenting simulation output. The comparison is based on decadal means, which is the timescale used in the

assimilation. Agreement on smaller timescales can possibly arise due to the common response of simulations and reconstruc-30
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tions (or observations) to the forcings, but it cannot stem directly from the assimilation (apart from some correlation inherited

from the decadal timescale).

Figure 1 compares the NH continental decadal mean temperature anomalies for the DA-P analysis with the PAGES 2K

reconstructions (anomalies w.r.t. the 850-1850 AD mean), as well as the DA-I analysis with the HadCRUT3v reconstruction5

(anomalies w.r.t. the 1850-1949 AD mean). The DA-P analysis follows the temperature variations of the assimilated proxy-

based reconstructions very closely, showing that the DA method is skilful. The correlations between the DA-P analysis and the

PAGES 2K reconstructions are 0.93 for the Arctic, 0.86 for Asia, 0.85 for Europe and 0.91 for North America. As correlations

are independent of scaling, they are the same for the standardized and the raw temperature anomalies. The DA-I analysis and the

instrumental data, HadCRUT3v, are also in good agreement, having significant positive correlations on the decadal timescale10

for the Arctic (0.96), Europe (0.85) and North America (0.88). They are however strongly inconsistent for Asia (correlation is

0.24). The skill of the assimilation on the inter-annual timescale (not shown) is moderate in both schemes (with the exception

of Asia in DA-I), largely owing as mentioned previously to the response to the forcings. The results obtained here are robust in

terms of sampling uncertainty, as shown in Matsikaris et al. (2015a), who employing the same methodology demonstrated that

the skill of the DA analysis is significantly higher than the skill obtained from random sampling.15

The RMS errors are calculated from the decadal mean differences between the DA analyses and the target time series for

each continent. With the DA-P scheme, the RMS errors of the non-standardized time series are 0.20 for the Arctic, 0.11 for

Asia, 0.21 for Europe and 0.19 for North America, while with the DA-I scheme, they are 0.13, 0.20, 0.16 and 0.14 respectively.

However, unscaled RMS errors (and cost functions) cannot be compared due to the very different variance of the datasets.20

The RMS errors for the standardized anomalies with the DA-I scheme (0.21 for the Arctic, 0.53 for Asia, 0.35 for Europe and

0.27 for North America) are lower than the DA-P ones (0.89, 0.49, 0.70 and 0.56 respectively), in all continents except Asia.

Despite the fact that the standardisation of the DA-I and the DA-P time series is based on different periods, the standardised

anomalies are approximately comparable, as the period 1850-1949 AD used in the DA-I scheme is out of the impact of the

strong anthropogenic forcing of the late 20th century. The same holds for the cost function comparisons. The fact that the RMS25

errors are (apart from Asia) lower for the DA-I scheme than for the DA-P scheme shows that the analysis follows the target

more closely when assimilating instrumental data.

The large discrepancy between the DA-I analysis and the instrumental data for Asia is owing to the fact that the mean

temperature for the continent in the instrumental data set is not representative of the region due to the sparse observations, as30

discussed below. The agreement between the instrumental time series and the PAGES 2K series is also much lower than for the

other continents. A visual comparison of the temperature variations in the DA-I analysis with the instrumental data for Asia

shows that they are in better agreement towards the end of the simulation period, when more observations are available.
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3.2 Impact of the low observational coverage

The incomplete coverage of the PAGES 2K continental areas by the HadCRUT3v grid cells leads to a spatial sampling error

in the continental mean temperatures, in addition to the error due to the uncertainty in the individual grid cells. This spatial

sampling error depends on the number and position of the grid cells in the continental region, and increases with the lower

observational coverage. Such a case is the region of Asia, where the coverage is extremely sparse at the beginning of the period5

and progressively becomes more complete (figure 2). The expected error is exacerbated by the uneven spatial resolution during

the first few decades, when coverage was concentrated in the western Pacific Ocean and East China Sea. To check the impact

of the poor observational coverage on the mean temperature of Asia, we subsampled the data of the last four decades of the

simulation period (1910-1949 AD) to have the same coverage as the first decade (1850-59 AD), and calculated the difference

between the complete and the subsampled average temperatures. The four “low data coverage” means are compared with the10

respective higher data coverage means in table 1. The differences are on the order of 0.1◦C, which is similar to the standard

deviation of the DA-I analysis in Asia (0.12, figure 1), indicating a significant impact of the poor observational coverage.

The sampling error in the gridded instrumental data leads to possible inconsistencies with reality and with the forcings, in-

cluding errors in the dynamical links between different continents (e.g. correlations). The limited instrumental coverage is thus15

expected to lead to errors in the target data for Asia, which can explain the low skill of the DA-I scheme for this continent. As

the gridded observational record is an imperfect input data set for our assimilation scheme, the difference between the skill of

the assimilation of proxy-based and instrumental reconstructions is not identical to the additional error caused by the proxies.

Our initial objective of obtaining a clear error separation can therefore not be fully accomplished.

20

3.3 Cost functions comparison

Another way of measuring the closeness between the simulated and assimilated time series in the two DA schemes is the

costfunction, which is the RMS error-based measure that has been used to select the best ensemble member for each decade.

The best cost functions of the DA-I scheme are found to be consistently lower than the DA-P ones in all decades, in agreement

with the lower RMS errors found previously for the DA-I scheme. The mean of the cost functions for the closest member of25

the DA-P scheme is 1.27, whereas it is 0.61 for the DA-I scheme. Consistent with the results found in section 3.1, this suggests

that less realistic targets, such as noisy proxy-based reconstructions, cannot be followed as well by the model as more realistic

ones, such as the instrumental data, especially in a small ensemble.

The cost function used in this study does not include weights that account for the different levels of uncertainty in the assim-30

ilated data or for the different size of the regions represented. For the case of the proxy-based reconstructions, this is mainly

because the uncertainty estimates have been calculated by the PAGES 2K groups using different methods for the different

regions and thus the errors are not directly comparable. In addition, the published PAGES 2K uncertainties are defined for data
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at annual resolution. The decadal means used in the cost function can be expected to have lower uncertainties, but the exact

level is difficult to determine due to the autocorrelation of the non-climatic noise in the reconstruction (Moberg and Brattstrom,

2011). For consistency, the instrumental errors (e.g. measurement and bias errors as well as the effect of limited observational

coverage on the continental averages) have not been taken into account either.

5

3.4 Evaluation against the observed climate

The DA-I analysis has already been evaluated against the observed climate, i.e. the instrumental data. We now evaluate the

DA-P analysis against these data, and compare the performance of the two schemes. The simulation anomalies are calculated

with respect to the mean for the period 1961-90 AD taken from a historical run with the MPI-ESM model, while the obser-

vation anomalies are calculated with respect to the mean of the HadCRUT3v data set for the same period. The decadal mean10

temperature anomalies for the DA-P and the DA-I analysis as well as the instrumental data in the NH continents are shown

in figure 3. The correlations between the DA-P analysis and the HadCRUT3v data set, given in table 2, are much lower than

the ones between the DA-I analysis and HadCRUT3v in Europe, slightly lower in the Arctic and North America, but higher in

Asia. For the NH mean, the DA-I analysis is again more consistent with the observations.

15

It may not appear surprising that the correlation of the observed climate with the DA-I analysis is higher than with the DA-P

analysis, because the observations have been assimilated in the DA-I scheme. However, this is not trivial as the cost function

was based on RMS error and not on correlation. A limitation of this part of the analysis is that the HadCRUT3v data set serves

a twofold purpose: it is used as both the validation data and the assimilation target for the DA-I scheme. In a hypothetical case

where the PAGES 2K reconstructions for the NH mean were closer to reality than the HadCRUT3v mean, the DA-I analysis20

may still follow the HadCRUT3v reconstruction better. The overall consistency of the DA-P analysis with the instrumental

data on the large spatial scales shows that given realistic targets, the Matsikaris et al. (2015b) DA setup, which followed the

same scheme for a previous period (1750-1849 AD), performs well.

The correlations of the decadal mean temperature anomalies between the DA-P analysis and the DA-I one are relatively25

high in all continents, and modest even in the case of Asia (0.80 for the Arctic, 0.48 for Asia, 0.71 for Europe and 0.78 for

North America). The correlation for Asia is lower than the correlations of the other three continents, but it is higher than the

correlation between the DA-I analysis and the HadCRUT3v observations. The assimilation of an unrealistic mean temperature

for Asia in the DA-I scheme causes the minimization of the cost function to be dominated by the variations in the other

three continents. In general, the DA-I analysis is affected by both the target temperatures and the teleconnections between the30

continents. As the assimilated mean temperature for the Asia region in the DA-I scheme is unrealistic due to the large sampling

error, the influence of the teleconnections leads the DA temperatures being inconsistent with the target data.
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3.5 Skill on spatial patterns

Simulated temperature variations at regional scale cannot be in agreement with the observed ones in a free running simulation,

due to the dominant contribution of random internal variability compared to forced climate variability. Good skill on small

spatial structures would therefore be added value and is one of the aims of DA. This skill is not easy to achieve in our setup,

as it relies on constraining large-scale circulation modes by the assimilated continental temperatures. Based on a “maximum5

covariance analysis” of links between the NH continental temperatures and the NH sea level pressure field, Matsikaris et al.

(2015b) found that large-scale circulation states are moderately well constrained by the continental temperatures, indicating

the potential of skill in small-scale temperature variability in our DA setup.

We have examined the spatial maps for each decade for the DA analyses and the observations, for Europe and the NH in10

winters and summers. The DA patterns for the NH in most decades show no agreement with the observed patterns in either

of the two schemes (not shown). The patterns in the European sector (35N-65N, 10W-30E), where the instrumental data set

is almost complete, are also inconsistent. As an example, figure 4 shows the European decadal surface air temperature maps

for the two DA analyses and the HadCRUT3v gridded observations for the summers of 1850-1859 AD and 1940-1949 AD.

The spatial correlations of the DA analyses, regridded onto the coarser resolution observational grid, with the HadCRUT3v15

data are not significant. The average decadal correlations for the European summers, winters, NH summers and NH winters

are -0.12, -0.14, 0.05 and 0.04 respectively with the DA-P scheme, and 0.24, -0.05, 0.07 and 0.01 with the DA-I scheme. The

DA-I analysis has a higher correlation than the DA-P one only for Europe in summer, but this improvement is likely to be

happening only by chance, especially as the NH teleconnections in summer are weaker than in winter and the performance of

the DA scheme probably not as good.20

The fact that the assimilation of observational data does not provide any added value on regional scales shows that the

errors in the proxy-based reconstructions are not the main source of this lack of skill. The use of the continental scale target

temperatures in the cost function is thus the dominant source of error for the unrealistic representation of the small-scale

temperature variability. Other aspects of the methodology, such as the ensemble size, may also have contributions. However,25

even though larger ensemble sizes might lead to some improvements, the complete lack of skill for our 20-member ensemble

indicates that constraining continental scales is not sufficient for providing regional skill in our setup.

4 Summary and discussion

This study has analysed two sets of ensemble simulations, which have assimilated continental-scale decadal instrumental

temperature observations and proxy-based reconstructions respectively. On the continental and hemispheric scale, both DA30

analyses follow the target variations well. However, although the correlations of the two DA analyses with the target tempera-

tures are in general similar, the RMS errors of the DA-I analysis are much lower than those of the DA-P one. An exception for

this is the case of Asia, where the DA-I analysis is inconsistent with the observations due to the limited observational coverage,
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which leads to errors in the target data. Another measure used for evaluating the two DA schemes is the decadal cost functions.

The cost functions of the DA-I scheme are found to be consistently lower than those of the DA-P scheme, in agreement with the

lower RMS errors of the DA-I analysis. Furthermore, the DA-I analysis outperforms the DA-P one in terms of the correlations

against the observed climate (HadCRUT3v data), but not substantially.

5

The overall performance of the two schemes confirms the expectation that the skill of DA is improved by the use of more

realistic assimilation data, as these include more realistic teleconnections. In all continents, the DA temperatures are influenced

by both the assimilated data and the teleconnections between the NH continents. In cases where the target is unrealistic, such

as the Asia mean temperature of the DA-I scheme, the influence of the teleconnections leads to the simulated temperatures in

the DA analysis being different to the target data. In addition to assessing the differences in the performance of the two DA10

schemes, the study serves as a validation of the Matsikaris et al. (2015b) DA scheme. In principle, since the DA-P scheme

is the same as the Matsikaris et al. (2015b) scheme, which was run for the pre-industrial period (1750-1849 AD), the high

consistency of the DA-P analysis with the observations over the instrumental period on the large spatial scales shows that the

Matsikaris et al. (2015b) setup yields analyses that are close to the true continental and hemispheric-scale temperatures given

realistic targets. The fact that the HadCRUT3v is used as both the validation data and the assimilation target for the DA-I15

scheme is a limitation of the study.

No skill on representing the regional temperature variability was found for either of the two DA schemes, as the spatial corre-

lations between both DA analyses and the gridded instrumental data for the NH and the European sectors were non-significant.

This demonstrates that even target data with only small errors are associated with low skill on small spatial scales. Therefore,20

methodology is the main source of this lack of skill. Error separation, which was one of the main objectives of the study, could

however only be partly achieved, since the observational record is affected by significant sampling error. The methodology

consists of several components, such as the assimilation of continental means, the ensemble size and the specific formulation

of the cost function. Given that the combination of the 20-member ensemble with the cost function formulation leads to a

skilful representation of the large-scale variations, we believe that the main reason for the lack of added value on small spatial25

scales is the use of the continental scale for the assimilated data.

The lack of skill in capturing small-scale temperature variability when assimilating continental mean temperatures might be

related to the spatial scale or to the location of the continental-scale target data. A systematic investigation of the optimal spatial

scale and optimal locations for assimilated temperatures is essential for the improvement of DA methods for palaeoclimatic30

applications. If the spatial scale is too large, which is likely to be the case for continental-scale target series, the temperature

gradients within the regions that are caused by the major circulation modes are ignored, and the information about the phase of

these modes might thus be lost. At the other end of the spectrum is the assimilation of individual local temperature reconstruc-

tions. Although this would in principle capture the full information about spatial temperature fields, the local reconstructions

might be associated with much larger errors than reconstructions for larger areas, which are based on a larger number of proxy35
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records. While advanced assimilation methods that take into account the errors of the assimilated data can be expected to work

well in this situation, simple methods as those used here might work better if spatially averaged temperatures with smaller

errors are assimilated.
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Table 1. Decadal winter mean temperatures (anomalies w.r.t. the 1850-1949 AD mean) for the high and low density coverage of Asia in

HadCRUT3v, during the last four decades of the simulation period.

Decade 1910-1919 1920-1929 1930-1939 1940-1949

High density mean 0.01 -0.10 -0.01 0.11

Low density mean -0.11 -0.14 -0.06 0.18

Table 2. Correlations between the NH continental mean temperatures from the DA analyses and the gridded instrumental data, for the two

DA schemes.

Arctic Asia Europe N. America NH mean

DA-P 0.90 0.62 0.45 0.84 0.78

DA-I 0.96 0.24 0.85 0.88 0.91

13



Figure 1. Left column: Continental decadal mean temperature anomalies in the NH for the DA-P analysis (blue) and the proxy-based

reconstructions (green). The reference period is 850-1849 AD. Right column: Continental decadal mean temperature anomalies in the NH

for the DA-I analysis (red) and the instrumental data (black). The reference period is 1850-1949 AD.
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Figure 2. HadCRUT3v instrumental coverage in the PAGES 2K box for Asia during the first (1850-1859 AD) and last (1940-1949 AD)

decade of the period. The values are decadal winter mean temperatures as anomalies w.r.t. the 1850-1949 AD mean.
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Figure 3. NH continental and mean decadal temperature anomalies for the DA-P analysis (blue), DA-I analysis (red) and the instrumental

data (black). The reference period is 1961-1990 AD.
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Figure 4. European decadal surface air temperatures (anomalies w.r.t. the 1850-1949 AD mean) for the DA-P analysis, the DA-I analysis

and the HadCRUT3v reconstructions, for the summers of 1850-1859 AD and 1940-1949 AD.
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