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Abstract. Spectral analysis is a key tool for identifying periodic patterns in sedimentary sequences,

including astronomically related orbital signals. While most spectral analysis methods require equally-

spaced samples, this condition is rarely achieved either in the field or when sampling sediment cores.

Here, we propose a method to assess the impact on the resulting power spectra of the uncertainty or

error made in the measurement of sample stratigraphic position. We apply a Monte-Carlo procedure5

to randomise the sample steps of depth series using a gamma distribution. Such a distribution pre-

serves the stratigraphic order of samples, and allows control of the mean and variance of the sample

step distribution after randomisation. We test the Monte-Carlo procedure on two geological datasets

and find that at 5% uncertainty in the sample positions, the power of the spectral peaks is signifi-

cantly affected in all frequencies above ~1/3 of the Nyquist frequency. The randomisation process10

progressively affects the lower frequencies when increasing the level of uncertainty in the sample

position. With 10% sample position uncertainty, the change in relative power exceeds 10% in all

frequencies above ~1/5 of the Nyquist frequency. For robust applications of the power spectrum, we

suggest strongly controlling the measurement of the sample position, keeping the variance of the

sample distribution to a maximum of 10% of the average sample step. In addition, the simulations15

indicate that taking at least 6-10 samples per precession cycle should allow calculation of robust

power spectra estimates in the Milankovitch band.

1 Introduction

Spectral analysis methods have become a key tool for identifying Milankovitch cycles in sedimentary

series and are a crucial tool in the construction of robust astronomical time scales (Hinnov, 2013).20

The climatic or environmental proxy series that form the subject of spectral analyses are generally

the result of measurements on rock samples collected from a sedimentary sequence, consisting of

cores or outcrops. Most of spectral analysis methods (Fourier Transforms and derivatives, such as

the Multi-Taper Method) require equally-spaced depth- or time-series, which implies that samples
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need to be taken at a constant sample step. Unfortunately, this is rarely achieved, especially for25

sedimentary sequences sampled in outcrops. Often, an uncertainty of ~5-15% is observed in the

thickness or distance measurements, even when using a Jacob’s staff (Weedon and Jenkyns, 1999).

In core sediments, uncertainties in the sample position are also observed when performing physical

sampling at very high resolution or because of core expansion phenomena (Hagelberg et al., 1995).

Although uncertainties exist on the actual position of samples, few case studies document their30

effect on the identification of periodic patterns. Moore and Thomson (1991) recognised that perturba-

tions of the regular sampling scheme (i.e. jittered sampling) impact the power spectrum by reducing

spectral power in the high frequencies. Huybers and Wunsch (2004) and Martinez and Dera (2015)

address an analogous problem by assessing the effect of sampling uncertainty on the age model of

a calibrated time series that is plotted against numerical age. However, none of these studies explic-35

itly addresses the impact of errors in the measurement of the sample position on uncertainties in

the power spectrum amplitudes. In this study, we address this problem by quantifying the impact of

such errors on the frequency, as well as the power of higher-frequency cycles. Therefore, we pro-

vide a new procedure that is based on a Monte-Carlo approach for sample step randomisation. The

randomised sample steps are subsequently used to assess the impact of the sample-position error on40

spectral analyses. We first apply the procedure to a theoretical example, and then to two previously

published geological datasets: 1) sampled as regularly as possible and 2) sampled irregularly. Based

on our results, we suggest that one should take at least ~10 measurements per high-frequency cycle

in order to provide robust estimates of the power of the high-frequency cycles.

2 The error model45

In this paper, the term “stratigraphic uncertainty” refers to the uncertainty in the sample positions.

Testing the impact of the stratigraphic uncertainty on the spectral analyses requires a randomisation

procedure that correctly reflects typical errors made during measurements of the stratigraphic posi-

tion of samples. Therefore, two conditions must be respected: (i) the stratigraphic order of samples

is fixed and should not be changed by the randomisation process, (ii) the average and standard devia-50

tion of sample steps should be maintained during the randomisation process. Both conditions can be

achieved if the error model randomises the sample distances rather than the sample positions. In that

case, the probability density function should have a positive and continuous distribution (i.e. values

obtained after randomisation are continuous and positive). In addition, the average sample step and

the standard deviation of the distance between two successive samples are known and parameterized.55

The gamma distribution fulfils all these conditions. The gamma distribution is continuous and has a

positive support. Parameters k and Θ respectively define the shape of the distribution and its range

of values. The mean (E) of the density of probability is defined as (Burgin, 1975):

E = k ∗Θ (1)
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and its variance (σ2)60

σ2 = k ∗Θ2 = E ∗Θ (2)

Both the mean (E) and the variance (σ2) are known, as they correspond to the mean and variance of

the sample steps, and they can be quantified in the field (see Section 4 for a discussion on the variance

of sample steps). Therefore, k and Θ can easily be parameterized using the following relations:

Θ =
σ2

E
(3)65

k =
E

Θ
(4)

Various gamma probability density functions are shown in Figure 1. A high variance-to-mean ratio

corresponds to a high Θ-parameter value compared to the k-parameter. The resulting density proba-

bility function corresponds to an exponential probability function in the most severe and spectrum-70

destructive case. This distribution corresponds to sampling conditions during which no control was

exerted on the stratigraphic position of samples, so that the uncertainty on the sample position is at a

maximum. Obviously, this situation is not a realistic case of geological practice. In the opposite case,

a low variance-to-mean ratio corresponds to a low Θ-parameter value compared to the value of the

k-parameter. The resulting density probability function is close to a Gaussian curve, although bound75

on one side to 0, so that the curve has a positive support. This case corresponds to geological sam-

pling during which the position of each sample was carefully measured and reported with respect to

the stratigraphic column. Nevertheless, even in this case, stratigraphic uncertainties are unavoidable,

mainly because of outcrop or core conditions.

3 The geological datasets80

Two published geological datasets were used here to assess the effect of stratigraphic uncertainty on

power spectra.

3.1 Gamma-ray spectrometry from La Charce (Valanginian, Early Cretaceous)

A total of 555 gamma-ray spectrometry measurements were performed in situ on the La Charce

section (Department of Drôme, SE France; Martinez et al., 2013, 2015). The section is composed of85

marl-limestone alternations that were deposited in a hemipelagic environment during the Valanginian

and Hauterivian stages (~134-132 Ma, Early Cretaceous; Martinez et al., 2015). Detailed analyses of

the clay mineralogical, geochemical, and faunal contents indicated that these alternations reflect or-

bital climate forcing. Gamma-ray spectrometry measurements were used to identify the precession,

obliquity and 405-kyr eccentricity cycles (see Martinez et al., 2015).90
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Gamma-ray spectrometry measurements were performed directly in the field with an as regular

as possible sample step of 0.20 m. Before each measurement, rock surfaces were first cleaned to re-

move reworked material and flattened to prevent any border effects that could affect the measurement

value. Each measurement was performed using a SatisGeo GS-512 spectrometer, with a constant ac-

quisition time of 60 seconds (more details are provided in Martinez et al., 2013). The raw data are95

available in the following link: http://www.sciencedirect.com/science/article/pii/S0031018213000977.

3.2 Magnetic susceptibility from La Thure section (Givetian, Middle Devonian)

The second case study consists of the 184-m-thick continuous early-Givetian to early-Frasnian se-

quence of the La Thure section. The Givetian sequence is composed of bedded limestone, mainly

deposited in a shallow-water rimmed-shelf characterised by a large set of internal and external100

rimmed-shelf environments (Pas et al. in press). The overlying early Frasnian sequence is dominated

by shale deposited in a siliciclastic drowned platform (Pas et al., 2014). The magnetic susceptibility

(MS) data from the La Thure section, in combination with three other MS datasets from the Dinant

Syncline in southern Belgium and northern France were used by De Vleeschouwer et al. (2014)

to make an estimate of the duration of the Givetian Stage, and subsequently to calibrate the Devo-105

nian time scale (De Vleeschouwer and Parnell, 2014). Spectral analysis of the MS data from the

La Thure section revealed the imprint of different Milankovitch astronomical parameters, including

eccentricity, obliquity and precession (Fig. 3C in De Vleeschouwer et al. (2014)). A total of 484 sam-

ples were taken along the 184-m thick sequence, with an irregular sample step that varied between

20-45 cm, depending on outcrop conditions (average sample step: 38 cm). Magnetic susceptibility110

measurements were performed using a KLY-3S instrument (AGICO, noise level 2 ∗ 10−8SI) at the

University of Liège (Belgium) (more details provided in De Vleeschouwer et al., 2014). The raw

data are provided in the following Pangaea link: http://doi.pangaea.de/10.1594/PANGAEA.855764.

4 Implementation of the models in the stratigraphic-uncertainty tests

Weedon and Jenkyns (1999) estimated the error on the stratigraphic position of a sample to be115

5.3% by measuring the thickness of the same sequence twice. The La Charce section, one of the

datasets treated here, has been measured multiple times in different publications. The thickness of

the studied section was assessed at 106 m, 109 m and 116 m (Bulot et al., 1992; Martinez et al.,

2013; Reboulet and Atrops, 1999) with an average of 110.3 ± 5.1 m, and a relative uncertainty of

4.6% in the total thickness of the series. In the field, the distance between two successive samples120

was measured independently from the construction of the log, providing an independent assessment

of the distribution of the actual distance between two successive samples. The average sample step is

20 cm, with a standard deviation of the sample steps of 2.5 cm, which corresponds to an uncertainty

of 12.5% in the average sample step.
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Based on the assessments summarised in the previous paragraph, we tested three different levels125

for the error on the measurement of sample steps (5%, 10% and 15%), which we consider realistic

scenarios for geological sampling during fieldwork. We applied our Monte-Carlo based procedure

for randomising sample steps to a sinusoidal series, as well as to the two previously-published ge-

ologic datasets described in section 3 (De Vleeschouwer et al., 2014; Martinez et al., 2013, 2015),

with three different error levels. During every Monte-Carlo simulation, the distance between two130

points is randomised according to a gamma distribution, of which the mean corresponds to the dis-

tance between two points measured in the field, and of which the standard deviation corresponds

to 5%, 10% or 15% of the measured distance. Each test consists of 1000 Monte-Carlo simulations,

leading to 1000 different time series, each with a different distortion of the stratigraphic positions of

samples.135

Spectral analyses were performed using the Multi-Taper Method (MTM; Thomson, 1982, 1990),

using three 2π-tapers (2π-MTM analysis) and with the Lomb-Scargle method (Lomb, 1976; Scar-

gle, 1982). For the 2π-MTM analysis, confidence levels of the spectra of the original geological

datasets tested were calculated using the Mann and Lees (1996) approach (ML96), with median-

smoothing calculated with the method of the Tukey’s end point rule, as suggested by Meyers (2014).140

The window width for the median-smoothing was fixed at 20% of the Nyquist Frequency, as evalu-

ated empirically by Mann and Lees (1996). As MTM analysis requires strictly regular sample steps,

the geological datasets were linearly interpolated at 0.01 m before and after randomisation. The sum

of sinusoid series is generated with a regular sample step of 1 arbitrary unit. After randomisation,

the depth-randomised series was linearly interpolated at 1 arbitrary unit.145

Lomb-Scargle spectra were calculated with the REDFIT algorithm (Schulz and Mudelsee, 2002).

The Lomb-Scargle method calculates the spectrum of unevenly-sampled series. Lomb-Scargle power

spectra can be biased in the high frequencies due to the non-independency of the frequencies (Lomb,

1976; Scargle, 1982); however, the REDFIT algorithm corrects the power spectrum by fitting a red-

noise model to the spectrum (Mudelsee, 2002; Schulz and Mudelsee, 2002). Here, we applied no150

segmentation to the series and a rectangular window. This parameterization maximises the effect of

sample step randomisation on the spectrum.

During each test, both MTM and REDFIT Lomb-Scargle power spectra were calculated for each

of the 1000 Monte-Carlo distorted series. Subsequently, the average MTM and Lomb-Scargle spectra

were calculated. The confidence levels of the datasets were calculated before randomisation and155

directly plotted to the simulated spectra. The sum of sinusoids series does not need correction for

red noise and the raw Lomb-Scargle spectra are shown. The two geological datasets show a red-noise

background and the REDFIT-corrected Lomb-Scargle spectra were shown.

Finally, we provide a quantification of the relative change in spectral power, using the following

criterion:160

Er(f) =
∣∣∣∣
Pori(f)−Pave(f)

Pave(f)

∣∣∣∣ (5)
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with f : the frequencies explored in the spectral analyses, Er: the relative change of power, Pori: the

power spectrum before randomization, and Pave: the average power spectrum of the 1000 simula-

tions.

5 Application to a sum of sinusoids165

The effect of randomising the sample position within the section is first tested on a sum of pure

sinusoids. A dataset of 600 points is generated with a sample step of 1 arbitrary unit. The series is

a sum of 24 sinusoids, having equal amplitudes and different frequencies: frequencies range from

0.02 to 0.48 cycles/arbitrary unit and increase with increments of 0.02 cycles/arbitrary unit (Fig.

2A). Figures 2B to 2D show, in grey, the 2π-MTM spectra of 1000 Monte-Carlo randomisations of170

the sample step in this depth series, with a standard deviation ranging from 5 to 15% of the average

sample step. The average spectrum of these simulations is shown with 5% uncertainty (orange - Fig.

2B), 10% uncertainty (red - Fig. 2C), and 15% uncertainty (brown - Fig. 2D). The most striking fea-

ture after gamma-model randomisation is the progressive and strong decrease of the powers towards

the high frequencies, even when the lowest level of uncertainty (5%) is considered. Notably, for 5%175

uncertainty in sample position, a 10% reduction in power of the spectral peaks is observed in all

frequencies above 24% of the Nyquist frequency, while at 50% of the Nyquist frequency the power

of the peaks is reduced by more than 40% (Fig. 2E). For 10% and 15% uncertainty, a 10% reduction

in power of the peaks is respectively observed in all frequencies above 16% and 12% of the Nyquist

frequency, while at 50% of the Nyquist frequency the power of the peaks is reduced by respectively180

60% and 73% (Fig. 2E).

The tests of the Lomb-Scargle spectra (Fig. 3) shows a 10% decrease power (i) in all frequencies

above 32% of the Nyquist frequency in the 5%-uncertainty test, (ii) above 16% of the Nyquist

frequency in the 10%-uncertainty test and (iii) above 12% of the Nyquist frequency in the 15%-

uncertainty test. In the 5%-uncertainty test, the first significant change in power occurs at a higher185

frequency in the Lomb-Scargle spectrum than in the MTM spectrum. At 10% and 15% uncertainty,

the first frequency at which the relative change in power exceeds 10% is the same in both the Lomb-

Scargle and the MTM spectra (Figs. 2 and 3).

The sample step randomisation distorts the distances between two successive points (Figs. 2F-2H).

The periods of the original signal are thus distorted, triggering a dispersion of the power spectrum on190

a large set of frequencies. In the original sum of sinusoid series, the power spectrum is concentrated

on the frequencies of the sinusoids (Fig. 2A). After sample step distortion, part of the power spec-

trum of these frequencies is shifted to the surrounding frequencies (Fig. 2B-2D). Consequently, we

observe on the spectrum (i) a decrease in the average power spectrum at the frequencies of the series

before randomisation and (ii) an enhancement of the average power spectrum of the surrounding195

frequencies. The lowest frequencies are much less affected by sample step randomisation, because a
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strong change in periods is needed to shift from a frequency to another in the lowest frequencies. In

the high frequencies, small changes to the period are sufficient to cause frequency shift. The higher

the error on the sample step, the stronger the dispersal of the distances between two successive points

(Figs. 2F to 2H), and the more the lowest frequencies are impacted. Differences in the first frequency200

showing significant relative change in power are only observed between the Lomb-Scargle and the

MTM spectra at 5% uncertainty. The difference between the two methods may be due to the resam-

pling procedure, required in the MTM analysis, that reduces the amplitude of cycles documented by

less than 5 points (Hinnov et al., 2002).

It should be noted that in the case of pure sinusoids, the signal is only composed of pure harmonics205

that concentrate the spectral power at specific frequencies. Therefore, a small shift in the sample

position triggers a strong decrease of the average power spectrum at these specific frequencies. In

addition, in this theoretical example, the sampling step was strictly constant before randomisation

(1 arbitrary unit). More realistically, geological datasets are not strictly evenly sampled, and their

spectra are rather composed of a mixture of harmonics, narrow-band and background components.210

In the following section, the results of the test on two geological datasets are shown.

6 Application to geological datasets

6.1 Gamma-ray series from La Charce

The raw gamma-ray series from La Charce is demonstrated in the black curve in Figure 4A, while

the red curve shows a random sample step simulation performed by fixing a standard deviation of215

the distribution of the sample steps at 15% of the average sample step. This comparison shows (i)

that the stratigraphic order of the samples in the raw series is preserved after randomisation and

(ii) that the maximum difference in the stratigraphic position of a specific sample between the raw

and the randomised curve is a few meters, even with the strongest dispersion of the sample steps

tested here. This difference realistically simulates small thickness errors, which accumulate when220

measuring successive sample steps.

Prior to performing 2π-MTM analyses, the gamma-ray series (raw and sample-position ran-

domised) was linearly interpolated at 0.01 m, detrended using a best-fit linear regression and stan-

dardised to zero average and unit variance. Prior to REDFIT Lomb-Scargle analysis, the datasets

(raw and randomised) were simply linearly detrended using a best-fit linear regression and standard-225

ised.

The 2π-MTM analysis of the La Charce section shows two main significant bands at 20 m and

from 1.3 to 0.8 m (>99% Confidence Level, hereafter abbreviated CL; Fig. 4C). A final low-power

peak at 0.7 m exceeds the 95% CL. In previous cyclostratigraphic studies, the peak of 20 m was

interpreted as the imprint of 405-kyr eccentricity forcing, while the peaks of 1.3 to 0.7 m were230

predominantly attributed to precession forcing (Boulila et al., 2015; Martinez et al., 2013, 2015).
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The REDFIT spectrum shows two bands of periods exceeding the 99% CL at 18 m and from 1.4

to 0.8 m. The peak at 0.7 m observed in the MTM analysis exceed the 90% CL in the REDFIT

spectrum. These periods are similar to the periods observed in the 2π-MTM spectrum. The small

differences in periodicity observed in the lowest frequencies are likely to be related to the difference235

in frequencies explored between both methods. In addition, the REDFIT spectrum, as parameterised

here, produces narrower peaks than the multi-taper spectrum. Therefore, the lowest frequencies in

the REDFIT spectrum are composed of a group of narrow peaks, whereas a single broad peak is

observed in the 2π-MTM spectrum.

After randomisation with a standard deviation fixed at 5% of the average sample step, significant240

changes in power occur in frequencies above 40% of the Nyquist frequency in the 2π-MTM spectrum

(Fig. 5G), and above 34% of the Nyquist frequency in the REDFIT spectrum (Fig. 6G). At 5%

uncertainty, the peak at 0.7 m does not exceed the 90% CL in the REDFIT spectrum (Fig. 6A), while

it still reaches the 95% CL in the 2π-MTM spectrum (Fig. 5A). Generally, the spectra of the series

after randomisation with 5% uncertainty are similar with the spectra before randomisation in the245

Milankovitch band. Only the last third of the spectra are smoothed compared to the original series

(Figs. 5D, 6D). At σ=10% and 15%, significant changes in the power spectrum respectively occur

in frequencies above 24% and 19% of the Nyquist frequency in the 2π-MTM spectrum (Figs. 5H-I),

while such changes occur respectively from 20% and 19% of the Nyquist frequency in the REDFIT

spectrum (Figs. 6H-I). The average spectra are significantly smoothed in the precession band in both250

the 2π-MTM and the REDFIT spectra (Figs. 5E-F, 6E-F). Notably at σ=15%, the significant peak

at 0.8 m in the spectra of the raw series appears as simple shoulder of a peak at 1 m (Figs. 5C, 6C).

On average, a decrease in spectral power of 25% in the MTM spectrum and of 50% in the REDFIT

spectrum is commonly observed in the precession band for the test with σ fixed at 15% of the average

sample step (Figs. 5I, 6I).255

6.2 Magnetic susceptibility from La Thure

The magnetic susceptibility signal from La Thure is shown in Figure 4B in black together with a

series with randomised sample step in red. As in the case of the La Charce series, the stratigraphic

order of the samples is preserved in the randomised series. The difference in the stratigraphic posi-

tion of a specific sample between the raw and the randomised curve locally amounts several meters,260

realistically simulating the cumulative thickness errors on the measurement of sample positions in

the field. Prior to 2π-MTM analysis, the randomised datasets were linearly interpolated at 0.01 m.

The long-term trend of the mean was removed from the series by subtracting a piecewise best-fit

linear regression. The long-term trend of the variance was then removed by dividing the series by

the instantaneous amplitude smoothed with a LOWESS regression with a 10% coefficient. This265

approach allows the series to have a stationary mean and variance. The series was subsequently stan-
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dardised (average=0; standard deviation=1). Prior to the REDFIT analysis, the identical procedure

was applied, except for the linear interpolation, as this is not required by the Lomb-Scargle method.

The 2π-MTM analysis of the La Thure section shows significant periods at 36 m (>95% CL)

interpreted as the manifestation of the 405-kyr eccentricity cycle (De Vleeschouwer et al., 2014),270

at 7.9 m (>99% CL) interpreted as 100-kyr eccentricity cycles, a group of significant periods from

2.8 m to 2.2 m (>99% CL) interpreted as obliquity, and a group of significant periods from 1.7

to 1.1 m (>99% CL) interpreted as precession (Fig. 4D). In the lowest frequencies, the REDFIT

spectrum (Fig. 4F) shows a group of peaks centred on 30-40 m (>99% CL), a peak at 14 m (>95%

CL), which is not significant in the 2π-MTM spectrum. Conversely, the period at 7.9 m observed275

in the 2π-MTM spectrum does not reach the 90% CL in the REDFIT spectrum. These differences

are likely related to the difference in the frequencies explored between both methods, to the fact that

REDFIT spectra as parameterised here produce narrower peaks than the 2π-MTM spectra, and to

the different approaches to calculate the red-noise background (Meyers, 2014; Mudelsee, 2002). In

the REDFIT spectrum, the obliquity band shows three periods at 3.3 m (>90% CL), 2.6 m (>90%280

CL) and 2.3 m (>95% CL). The precession band shows periods at 1.5 m (>90% CL), 1.2 m (>95%

CL), 1.1 m (>99% CL) and at 0.9 m (>99% CL). Generally, the precession and obliquity bands show

lower confidence levels than with the 2π-MTM spectrum, likely because of the different approach

to calculate the red-noise background.

After randomisation with a standard deviation fixed at 5% of the average sample step, significant285

changes in power occur in frequencies above 34% of the Nyquist frequency in the 2π-MTM spectrum

(Fig. 7G), and above 38% of the Nyquist frequency in the REDFIT spectrum (Fig. 8G). In the

REDFIT spectrum, the peak at 0.9 m does not exceed the 95% CL after randomisation (Fig. 8A).

At 10% uncertainty in the sample step, significant change in power occur in frequencies above 23%

of the Nyquist frequency in the 2π-MTM spectrum, and above 21% in the REDFIT spectrum (Figs.290

7H, 8H). In the 2π-MTM spectrum, the peak at 1.2 m is hard to distinguish from the background

(Figs. 7B, 7E). In the REDFIT spectrum, the precession is also greatly smoothed and no peak in

this band reaches the 95% CL (Figs. 8B, 8E). Finally, at 15% uncertainty in the sample step, 10%

of relative change in power is reached in frequencies above 14% of the Nyquist frequency in the

2π-MTM spectrum, and above 15% of the Nyquist frequency in the REDFIT spectrum (Figs. 7I,295

8I). In both methods, the spectral peaks in the precession are flattened (Figs. 7C, 7F, 8C, 8F). In the

obliquity band, the amplitudes of the peak are significantly reduced.

7 Discussion

7.1 Comparison of the results between the two geological datasets

Although the 2π-MTM and REDFIT spectra do not show exactly the same power and main signifi-300

cant periods, the relative change in power shows a similar behaviour between the two methods and
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between the two geological datasets for a same fixed standard deviation of the average sample step.

In all cases, the spectral power values at high frequencies are more affected than at low frequencies,

and increasing uncertainty in the sample position increases the relative change in powers.

In particular at 5% uncertainty, a 10% relative change in power occurs -on average- at 37% of the305

Nyquist frequency. An uncertainty of about 5% is commonly observed in the thickness measurement

of outcrop sections (see section 4), even when using a Jacob’s staff (Weedon and Jenkyns, 1999).

An uncertainty lower than 5% is very hard to achieve and, therefore, we suggest applying 5% uncer-

tainty as the lowest level of uncertainty that can be reached when working on real geological data.

The above-presented result suggest that precession-related peaks in the power spectrum should be at310

a frequency that is lower than ~1/3 of the Nyquist frequency in order to obtain a robust detection of

the full Milankovitch band. This requires that more than 6 samples per precession cycle have to be

taken. Actually, 6 samples per astronomical cycle should be considered the lowest sampling density,

since all tests carried out in the framework of this paper show that at 5% uncertainty, significant

dispersion of spectral power occurs at frequency higher than ~1/3 of the Nyquist frequency. Hence,315

the high-frequency portion of the spectrum should be interpreted with much caution. At 10% uncer-

tainty, all analyses show a threshold of significant relative change in power at 22% of the Nyquist

frequency, with very little difference between the four methods (20% to 24%; Figs. 5 to 8). The

results indicate that significant changes in power occur in frequencies above ~1/5 of the Nyquist fre-

quency, suggesting that taking a minimum of 10 samples per precession cycle is required to prevent320

strong biases in the power estimates for the Milankovitch frequency band.

7.2 When to apply this test?

Uncertainties in the measurement of sample position can practically not be avoided in outcrop condi-

tions. The similarity between the topographic slope and the sedimentary dip, the absence or scarcity

of marker beds, or the need to move laterally in a section can trigger disturbances in the sampling325

regularity. In core sedimentary sequences, non-destructive automated measurements such as X-ray

fluorescence, gamma-ray spectrometry or magnetic susceptibility should prevent errors in the sam-

ple position. However, physical samplings (e.g. for geochemistry or mineralogy) are subject to small

uncertainties, especially when the sampling resolution is very high. Core sedimentary series can in

addition be affected by expansion of sediment caused by release of gas or release of overburden pres-330

sure (Hagelberg et al., 1995). This test is thus useful for geologists who wish to run spectral analyses

on sedimentary depth-series generated from outcropping sections or core samples. All analyses in

this paper show that with higher uncertainty on the sample step, the low frequencies are increasingly

affected. The relative change in power between the various tests all showed different patterns, and

no general model could be deduced. The relative change in power at a given frequency depends335

on the dispersion of the sample step, on the method of spectral analysis, but also on the original

sedimentary sequence studied. Each depth-series generated from this sampling can be seen as one
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of the 1000 random simulations. The test randomises the sample position from the original series,

and produces a smooth version of the spectrum of the raw series. The generation of the raw series

impacts on the test at frequencies having low powers (a small change in a weak power can trigger340

high values of relative change in power), and at high frequencies. The relative change in power does

not depend on the size of the sample step itself, as the same proportion of the spectrum is affected

for a given level of uncertainty. However, a control on the dispersion of the sample steps and the

application of the test proposed here are needed to assess the dispersion of the sample step during

the sampling procedure and the impact of this dispersion on the spectrum. The question is how to345

assess the dispersion of the sample step in the field? If the section is well bedded, we suggest apply-

ing the same procedure as we did for La Charce, i.e. sample position measured independently from

the bed thickness measurements, and a precise report of the sample positions on the sedimentary

log of the series. Orbital forcing can also be detected in a monotonous thick marly section, showing

no apparent bedding (e.g., Ghirardi et al., 2014; Matys Grygar et al., 2014). In that case, we rather350

suggest measuring the total thickness of the sequence several times to assess the potential dispersion

of the sample steps.

7.3 Implications for astronomical time scale and palaeoclimate reconstructions

Linking sedimentary cycles to orbital cycles or assessing the quality of an orbital tuning procedure

often require the determination of the amplitude modulation of the orbital cycles (Moiroud et al.,355

2012; Zeeden et al., 2015). Stratigraphic uncertainties trigger a decrease of the power spectrum of the

main significant frequencies while distributing the power spectrum to the surrounding frequencies.

Thus, a filter, if designed very narrowly, can lead to a distortion of the actual amplitude of the

filtered frequency. This is particularly critical for the precession band, which has been proven to be

sensitive to stratigraphic uncertainty (Figs. 5 to 8), and for which amplitude modulation is governed360

by eccentricity. Note than the procedure of Zeeden et al. (2015) is based on a wide filter, so that

the biases triggered by stratigraphic uncertainty on their test should be limited. Otherwise, a robust

reconstruction of the amplitude modulation of the precession band requires limited biases of the

power spectrum in the precession, which requires a good control on the sample position in the field,

and a recommended density of sampling of 6-10 samples per precession cycle, depending on the365

uncertainty of the sample position.

Also in the evaluation of the relative contribution of precession and obliquity-related climatic

forcing, an accurate assessment of the respective spectral power is essential (Ghirardi et al., 2014;

Martinez et al., 2013; Weedon et al., 2004). Notably, whenever obliquity cycles are expressed more

manifestly compared to precession cycles, this has been interpreted as a reflection of important cli-370

mate dynamics and feedback mechanisms at high latitudes (Ruddiman and McIntyre, 1984), the

build-up and decay of quasi-stable carbon reservoirs (Laurin et al., 2015), or direct obliquity forcing

at tropical latitudes (Bosmans et al., 2015; Park and Oglesby, 1991). A robust evaluation of the rela-
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tive contribution of precession and obliquity requires at least that no bias occurs from the generation

of the depth series, which includes the sampling procedure. Once again, a good control of the sam-375

ple position accompanied by a high density of sampling will importantly improve interpretations of

the relative contributions of the precession and obliquity on the spectrum, which will in turn help

making accurate palaeoclimatic interpretations.

8 Conclusions

Errors made during the measurement of the stratigraphic position of a sample significantly affect380

the power spectrum of depth series. We present a method to assess the impact of such errors that is

compatible with different techniques for spectral analysis. Our method is based on a Monte-Carlo

procedure that randomises the sample steps of the depth series, using a gamma distribution. Such

a distribution preserves the stratigraphic order of samples, and allows controls on the mean and

the variance of the distribution of sample steps after randomisation. The simulations presented in385

this paper show that the gamma distribution of sample steps realistically simulates errors that are

generally made during the measurement of sample positions. The three case studies presented in this

paper all show a strong decrease in the power spectrum at high frequencies. With 5% stratigraphic

uncertainty, the power spectrum is significantly affected in frequencies above 37% of the Nyquist

frequency. With 10% uncertainty, the power spectrum is noticeably different in frequencies above390

22% of the Nyquist frequency. With 15% uncertainty, significant relative changes in power occur

in frequencies above 15% of the Nyquist frequency. Simulations were performed on two geological

datasets sampled with a density of 5 samples per precession cycle. These simulations show that with

10% uncertainty, the power of the precession band is decreased by 30-50%. Robust reconstruction

of the power spectrum in the entire Milankovitch band requires a robust control of the sample step395

on the field, and requires a high density of sampling. To avoid any dispersion of the power spectrum

in the precession band, we suggest taking at least 6-10 samples per precession cycle depending on

the level of uncertainty in the sample position.

Acknowledgements. ERC Consolidator Grant “EarthSequencing” (Grant Agreement No. 617462) funded this

project. Anna-Joy Drury is acknowledged for English-proof reading.400

12

Clim. Past Discuss., doi:10.5194/cp-2015-188, 2016
Manuscript under review for journal Clim. Past
Published: 29 January 2016
c© Author(s) 2016. CC-BY 3.0 License.



References

Bosmans, J. H. C., Hilgen, F. J., Tuenter, E., and Lourens, L. J.: Obliquity forcing of low-latitude climate,

Climate of the Past, 11, 1335–1346, doi:10.5194/cp-11-1335-2015, http://www.clim-past.net/11/1335/2015/,

2015.

Boulila, S., Charbonnier, G., Galbrun, B., and Gardin, S.: Climatic precession is the main driver of Early Cre-405

taceous sedimentation in the Vocontian Basin (France): Evidence from the Valanginian Orpierre succession,

Sedimentary Geology, 324, 1–11, 2015.

Bulot, L. G., Thieuloy, J. P., Eric, B., and Klein, J.: Le cadre stratigraphique du Valanginien supérieur et de

l’Hauterivien du Sud-Est de la France: définition des biochronozones et caractérisation de nouveaux biohori-

zons, Géologie Alpine, 68, 13–56, 1992.410

Burgin, T. A.: The Gamma Distribution and Inventory Control, Operational Research Quarterly, pp. 507–525,

1975.

De Vleeschouwer, D. and Parnell, A. C.: Reducing time-scale uncertainty for the Devonian by integrat-

ing astrochronology and Bayesian statistics, Geology, 42, 491–494, doi:10.1130/G35618.1, http://geology.

gsapubs.org/content/42/6/491.abstract, 2014.415

De Vleeschouwer, D., Boulvain, F., Da Silva, A.-C., Pas, D., Labaye, C., and Claeys, P.: The astronomical cal-

ibration of the Givetian (Middle Devonian) timescale (Dinant Synclinorium, Belgium), Geological Society,

London, Special Publications, 414, doi:10.1144/SP414.3, http://sp.lyellcollection.org/content/early/2014/11/

20/SP414.3.abstract, 2014.

Ghirardi, J., Deconinck, J.-F., Pellenard, P., Martinez, M., Bruneau, L., Amiotte-Suchet, P., and Pucéat, E.:420

Multi-proxy orbital chronology in the aftermath of the Aptian Oceanic Anoxic Event 1a: Palaeoceanographic

implications (Serre Chaitieu section, Vocontian Basin, SE France), Newsletters on Stratigraphy, 47, 247–262,

doi:10.1127/0078-0421/2014/0046, 2014.

Hagelberg, T. K., Pisias, N. G., Shackleton, N. J., Mix, A. C., and Harris, S. E.: Refinement of a high-resolution,

continuous sedimentary section for studying equatorial Pacific Ocean paleoceanography, Leg 138, in: Pro-425

ceedings of the Ocean Drilling Program, Scientific Results, 138, edited by Pisias, N. G., Mayer, L. A.,

Janecek, T. R., Palmer-Julson, A., and van Andel, T. H., College Station, Tex.: Ocean Drilling Program,

Texas A & M University, College Station, Texas, 1995.

Hinnov, L. A.: Cyclostratigraphy and its revolutionizing applications in the earth and planetary sciences, Geo-

logical Society of America Bulletin, 125, 1703–1734, doi:10.1130/B30934.1, http://gsabulletin.gsapubs.org/430

content/125/11-12/1703.abstract, 2013.

Hinnov, L. A., Schulz, M., and Yiou, P.: Interhemispheric space-time attributes of the Dansgaard-Oeschger

oscillations between 100 and 0 ka, Quaternary Science Reviews, 21, 1213 – 1228, doi:10.1016/S0277-

3791(01)00140-8, http://www.sciencedirect.com/science/article/pii/S0277379101001408, 2002.

Huybers, P. and Wunsch, C.: A depth-derived Pleistocene age model: Uncertainty estimates, sedimentation435

variability, and nonlinear climate change, Paleoceanography, 19, doi:10.1029/2002PA000857, http://dx.doi.

org/10.1029/2002PA000857, 2004.
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Figure 1. Gamma probability density functions (PDF). All Gamma PDF’s have a positive support, which is

a crucial characteristic to realistically simulate sample steps. The gamma density probability functions were

generated with the Matlab gampdf function.
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Figure 2. Effect of the gamma-law randomised sample steps on the 2π-MTM spectra of the series of sum of

pure sinusoids. 2π-MTM spectrum of the series sum of sinusoids: (A.) without sample step randomisation; (B.,

C. and D.) with a sample step randomisation showing a standard deviation σ of respectively 5%, 10% and 15%

of the average sample step of the series. For each simulation shown in B., C. and D., the grey lines represent

the spectrum of each of the simulation and the red, orange and brown curve represent the average spectrum.

(E.) Evolution of the relative change in power of the spectral peaks from frequency 0 to the Nyquist frequency

observed in each of the simulations. The black dash line represents the threshold of 10% of misfit. The brown,

red and orange vertical dash lines represent the frequency for which the threshold of 10% of misfit is reached.

(F., G. and H.) Distribution of the randomised sample steps after one of the Monte-Carlo simulations.
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Figure 3. Effect of the gamma-law randomised sample steps of the Lomb-Scargle spectra of the series of sum

of pure sinusoids. Lomb-Scargle spectra of the series sum of sinusoids: (A.) without sample step randomisation;

(B., C. and D.) with a sample step randomisation showing a standard deviation σ of respectively 5%, 10% and

15% of the average sample step of the series. (E.) Evolution of the relative change in power of the spectral peaks

from frequency 0 to the Nyquist frequency observed in each of the simulations.

Figure 4. Superposition of the raw data (in black) to one simulation of gamma-law-randomised sample steps

with an uncertainty of 15% (in red) for (A.) the La Charce series, and (B.) the La Thure series. Notice that the

stratigraphic order of the points remains unchanged after the randomisation process. 2π-MTM spectra of (C.)

the La Charce section and (D.) the La Thure section. REDFIT Lomb-Scargle spectrum of (E.) the La Charce

section and (F.) the La Thure section.
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Figure 5. Effect of the gamma-law randomisation of the sample step on the 2π-MTM spectrum of the gamma-

ray series from the La Charce section. (A., B., C.) 2π-MTM spectrum of the series sum of sinusoids with a

sample step randomisation showing a standard deviation σ of respectively 5%, 10% and 15% of the average

sample step of the series. The grey lines represent the spectrum of each of the 1000 simulations and the black

curve represents the average spectrum. The same confidence levels as in Fig. 4C are reported. (D., E., F.)

Superposition of the 2π-MTM spectrum before randomisation (in black) and the average spectrum after the

1000 simulations (in red). (G., H. and I.) Evolution of the relative change in power from frequency 0 to the

Nyquist frequency for each of the simulations. The horizontal red dash lines represent the threshold of 10% of

misfit. The vertical red dash lines represent the frequency for which the threshold of 10% of misfit is reached.

The blue line represents the 5-points Gaussian moving average, and the solid red line represents the 10%-

LOWESS regression. BW: BandWidth. The colour code of the confidence levels is the same as in Fig. 4.
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Figure 6. Effect of the gamma-law randomisation of the sample step on the REDFIT spectrum of the gamma-

ray series from the La Charce section. (A., B., C.) REDFIT Lomb-Scargle spectra of the gamma-ray series with

a sample step randomisation showing a standard deviation σ of respectively 5%, 10% and 15% of the average

sample step of the series. The grey lines represent the spectrum of each simulation and the black curve represents

the average spectrum. The same confidence levels as in Fig. 4E are reported. (D., E., F.) Superposition of the

REDFIT Lomb-Scargle spectrum before randomisation (in black) and the average spectrum after the 1000

simulations (in red). (G., H., I.) Evolution of the relative change in power from frequency 0 to the Nyquist

frequency for each of the simulations. The horizontal red dash lines represent the threshold of 10% of misfit.

The vertical red dash lines represent the frequency for which the threshold of 10% of misfit is reached. The

blue line represents the 5-points Gaussian moving average, and the solid red line represents the 10%-LOWESS

regression. The colour code of the confidence levels is the same as in Fig. 4.
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Figure 7. Effect of the gamma-law randomisation of the sample step on the 2π-MTM spectrum of the gamma-

ray series from the La Thure section. (A., B., C.) 2π-MTM spectrum of the series sum of sinusoids with a sample

step randomisation showing a standard deviation σ of respectively 5%, 10% and 15% of the average sample

step of the series. The grey lines represent the spectrum of each of the 1000 simulations and the black curve

represents the average spectrum. The same confidence levels as in Fig. 4D are reported. (D., E., F.) Superposition

of the 2π-MTM spectrum before randomisation (in black) and the average spectrum after the 1000 simulations

(in red). (G., H. and I.) Evolution of the relative change in power from frequency 0 to the Nyquist frequency for

each of the simulations. The horizontal red dash lines represent the threshold of 10% of misfit. The vertical red

dash lines represent the frequency for which the threshold of 10% of misfit is reached. The blue line represents

the 5-points Gaussian moving average, and the solid red line represents the 10%-LOWESS regression. BW:

BandWidth. The colour code of the confidence levels is the same as in Fig. 4.
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Figure 8. Effect of the gamma-law randomisation of the sample step on the REDFIT spectrum of the gamma-

ray series from the La Thure section. (A., B., C.) REDFIT Lomb-Scargle spectra of the gamma-ray series with

a sample step randomisation showing a standard deviation σ of respectively 5%, 10% and 15% of the average

sample step of the series. The grey lines represent the spectrum of each simulation and the black curve represents

the average spectrum. The same confidence levels as in Fig. 4F are reported. (D., E., F.) Superposition of the

REDFIT Lomb-Scargle spectrum before randomisation (in black) and the average spectrum after the 1000

simulations (in red). (G., H., I.) Evolution of the relative change in power from frequency 0 to the Nyquist

frequency for each of the simulations. The horizontal red dash lines represent the threshold of 10% of misfit.

The vertical red dash lines represent the frequency for which the threshold of 10% of misfit is reached. The

blue line represents the 5-points Gaussian moving average, and the solid red line represents the 10%-LOWESS

regression. The colour code of the confidence levels is the same as in Fig. 4.
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