
Answers to comments from Christian Zeeden 
 

Christian Zeeden (CZ): the La Thure series shows both precession and obliquity. Could you exemplary discuss what the result from your test means for this example record, and how it aids the interpretation? >> The authors: This example is indeed interesting because both obliquity and precession have been observed (De 
Vleeschouwer et al., 2015), with obliquity having higher powers than precession. Several studies suggested that a 
dominance of obliquity in tropical sediments reflect cooling or icehouse conditions, while dominance of precession 
would be associated to greenhouse conditions (Zachos et al., 2001; Westerhold and Röhl, 2009; Boulila et al., 2011). 
With the implementation of our test we show that precession nearly vanishes at 15% of uncertainty. As a result, if 
one does not take into account this sampling bias on power spectrum one can misleadingly interpret a dominance of 
obliquity in sediments, which impacts in turn on the climatic interpretations. 
CZ: explain what the Nyquist frequency represents. 
>> The authors: The Nyquist frequency is the highest frequency (or smallest period) that can be detected. It 
corresponds to the inverse of twice the sample step. This information will be added in the next version of the 
manuscript. 
>> Done. A short definition of the Nyquist frequency is provided lines 224-225 (line numbers from the marked-up 
manuscript below). 
CZ: you suggest uncertainty to be fully random. I propose to briefly discuss why you assume this – and what effect(s) systematic uncertainty may have. >> The authors: We assume a fully random error, based on comparisons with actual data of sample distances repeatedly measured on the La Charce series. This comparison went as follows: In a first step, the thicknesses of the individual beds were measured and a lithologic log was drawn based on these measurements. In a second step, samples were taken from the studied section every 20 centimetres and the sample positions were indicated on the lithologic log. After this second step, we observed that the distances between two successive samples was not exactly 20 cm, but rather ranged from 10 cm to 30 cm, with an average of 19.7 cm and a standard deviation of 2.5 cm. This observation was made by comparing the expected stratigraphic position of the nth sample (n x 20 cm) with the stratigraphic position of the bed the sample comes from in the lithologic log. The mismatch in sample position between the lithologic log and the bed from which the sample was taken can be quantified for every sample within the studied stratigraphic interval. We evaluated the distribution of every sample´s mismatch and observed a log-normal distribution. This observation is the basis for our suggestion to consider the stratigraphic uncertainty to be fully random. 
In addition, the total thickness of the series was measured at 109,33 m. With this thickness we expected to take 547 samples. Instead, we took 555 samples. We thus have an error of 8 samples out of 555 samples, either 1.4% difference. This is of course much lower than the actual thickness measurement error for individual sample distances, which implies no systematic error.  
We will briefly discuss the absence of systematic error in the revised manuscript 
>> Done. Lines 94-102, we add a new condition for justifying the fact that no systematic error is made when measuring each sample distance independently from the previous measurements 
CZ: Lines 117-120: 106-116m is the overall spread in section thickness. From a conceptual point of view I think that this spread can hardly directly be used to estimate uncertainty in sample distance, because you see a result of ~550 (gamma distributed) sample distances summed up. Several of these will be shorter and longer than 20 cm – so your relative uncertainty will probably be higher – or fully systematic. >> The authors: The reviewer is right. On average, the error made to measure the entire section is lower than the error made to measure sample distances. On entire sections, systematic errors will have for consequence overestimate the thickness of certain parts of the section while other parts will be have underestimated thicknesses. Thus, the error made to measure the total thickness of the section will be lower than the distance between two successive points. Here, the error made to measure the total thickness of a section is rather used to provide a minimum amount of thickness uncertainty. It will be indeed very hard to do better on short distances than what is done on a long, average distance.  



>> This answer does not need any change in the manuscript 
CZ: Lines 143, 223: Do I understand correct that you interpolate all time series (also with spacing of ~0.2 m and ~0.38 m) at 0.01 m intervals? Is this necessary and useful, and does this oversampling influence your results? >> The authors: When linearly interpolating at the average sample step of the original series, we can reduce the amplitude of the high frequencies, independently of the error made on measuring the sample distance (Hinnov et al., 2002). So we overinterpolated at 0.01m to not create this bias in the analysis. However, we acknowledge that this procedure results in an inflation of the AR-1 coefficient of the red-noise fit. In the revised version of the manuscript, we will linearly interpolate the series at the median sample distance, as also suggested by Linda Hinnov (the other referee). To limit the loss of power in the high frequencies, we designed an optimized interpolation scheme, that will be applied in the revised version of the manuscript. This optimized strategy will be based on the minimal average offset between the original sample positions and the interpolated sample positions. 
>> Done. The optimized linear interpolation is now based of best-fit curve between the original time series and the time series that has been resampled at the mean sample distance of the original time series. Changes are now observed in the last four figures of the manuscript. An appendix has been added to detail the optimized linear interpolation, and the method has been updated in lines 227-232. 
CZ: Lines 159-164: Your approach is good, but personally I would propose to also determine 95% confidence intervals of power by considering not only the average power spectrum from simulations. This may facilitate to compare (integrated) precession and obliquity power for paleoclimate studies. >> The authors: This is a great idea! That will be applied in the next version of the manuscript 
>> Done. The grey areas in the last four figures represent the 95% confidence intervals of power (Figs. 3 and 8-11). 
CZ: 175ff: a table summarizing the results presented may be helpful in addition.  >> The authors: Another great idea to make the results clearer and present them in a concise form that will help the readers >> Done. See Table 2  CZ: In Fig. 4 the confidence levels of the MTM and Lomb-Scargle spectra are different. I would propose to mention this in the figure caption. >> The authors: That’s true! We will explicitly mention that in the next version of the manuscript 
>> Differences exist in the confidence levels between the MTM method and the Lomb-Scargle method due to different degrees of freedom between the two approaches. The 2π-MTM analysis has a degree of freedom of ~6 (Mann and Lees, 1996), while the Lomb-Scargle method has a degree of freedom of 2 (Schulz and Stattegger, 1997). Differences are also observed in the La Thure series, which exhibits a high autocorrelation coefficient value. Addition al information is added  
CZ: 10, 13: maybe express Nyquist frequency as sampling interval to be clearer >> The authors: This is another good idea to make the things clearer! Knowing the fact that the Nyquist frequency is twice the sample step, it is very easy to convert the percentage of the Nyquist frequency to number of sample steps. For instance, 20% of the Nyquist Frequency represents 10 times the sample step. >> Done. See notably Figs. 3, 8-11 and Table 2  CZ: 15-17: “In addition, the simulations indicate that taking at least 6-10 samples per precession cycle should allow calculation of robust power spectra estimates in the Milankovitch band.” – This is not limited to precession I think, what about a more general statement as ‘In addition, the simulations indicate that taking at least 6-10 samples per cycle should allow calculation of robust power spectra estimates in the respective cycle band’? >> The authors: The reviewer is right. This requirement is actually valid for shortest cycle to be analysed, whatever its origin and period (obliquity, eccentricity or solar cycles). 
>> In the manuscript, we replaced 4-10 samples per precession to 4-10 samples per thinnest cycles of interest. The case of the precession is maintained as example for the case of studies focused on the Milankovitch band (e.g., lines 30, 34, 517, 543 in the abstract and conclusion). 
CZ: 28-29: “In core sediments, uncertainties in the sample position are also observed when performing physical sampling at very high resolution or because of core expansion phenomena (Hagelberg et al., 1995)” – suggestion: 



‘In cored sediments, uncertainties in the sample position are also observed when performing physical sampling at very high resolution or because of core expansion phenomena (Hagelberg et al., 1995) or imperfect coring (Ruddiman et al., 1987).’ >> The authors: We would like to thank the reviewer for this suggestion. It is indeed very important to say that core sections are not devoid of bias. We will rephrase as suggested. 
>> Done (line 58). 
CZ: 37-38: “In this study, we address this problem by quantifying the impact of such errors on the frequency, as well as the power of higher-frequency cycles.” ! the second part of this sentence (“the frequency, as well as the power of higher-frequency cycles”) may be ‘the frequency and power distributions’? >> The authors: We thank the reviewer for this suggestion, which makes the sentence much clear. We will rephrase as suggested. 
>> Done (lines 69-70) 
CZ: 42-44: This sentence seems in contradiction to the last sentence of the abstract, more consistent phrasing may solve this. 
>> The authors: I think the reviewer refers to this sentence: “Based on our results, we suggest that one should take at least ~10 measurements per high-frequency cycle in order to provide robust estimates of the power of the high-frequency cycles.” And that is in contradiction with the last sentence of the abstract in which we said 6-10 samples per thinnest cycle targeted are necessary to identify all necessary cycles in the band we wish to explore. The authors apologize for this inconsistency and we will change “~10 measurements” by “6-10 samples per highest-frequency cycle…” for more consistency with the abstract. 
>> This answer does not need any change in the manuscript 
 CZ: 48: delete ‘correctly’? 64: remove ‘easily’ >> The authors: OK for both 
>>Done 
CZ: 98/99: could you mention that these are Devonian, and give a rough age as for the La Charce section? >> The authors: OK for precising the ages of the sections. The ages of the La Thure section (Givetian, middle Devonian) are around 380 Ma (De Vleeschouwer and Parnell, 2014). 
>> Done (lines 171-172) 
 CZ: 108: are the two brackets necessary? >> The authors: Sorry for that misspelling. We will remove one of the brackets in the next version 
>> Done (line 188) 
CZ: 119/120: “with an average of 110.3 ± 5.1 m, and a relative uncertainty of 4.6%” I would propose to mention that the “5.1 m” and “uncertainty of 4.6%” are estimated from only three experiments, and that these are regarded as representative, but may not be actually. >> The authors: The comment from Linda Hinnov in page C2, bullet point 4, perfectly illustrates your comment: their team measured the La Charce section twice and found 112 m and 132 m thicknesses, either an average of 122 ± 10 m. The uncertainty is (10/122*100) 8.2% of the total thickness of the series. So our estimate is based on published data, but according to the personal comments from Linda Hinnov, available online in the second referee comments, this can be larger from a team to another. 
CZ: 146: maybe give also reference to the R package used (‘dplR’) >> The authors: We will mention that Lomb-Scargle analyses have been done with the dplR in the next version. 
>> Done (lines 238-239) 



CZ: 155: “The confidence levels of the datasets were calculated before randomisation and directly plotted to the simulated spectra.” I am unsure how this is meant, and I would suggest phrasing this more clearly. >> The authors: The authors apologize for this unclear phrasing. That only means that we plotted in the 1,000 randomized spectra the AR1-confidence levels calculated in the original series to make easier the comparison of powers. 
>> A comment from Linda Hinnov requested to calculate the confidence levels for each simulation, so this part has been updated to take into account the comment from the other reviewer (lines 252-253) 
CZ: 160-164: “Pori: the power spectrum before randomization” – as you calculate this for individual frequencies, following may be more clear: ‘Pori: power before randomization for a specific frequency’, same for Pave (if I understand this correct). >> The authors: The reviewer is right. The rigorous phrasing should be: Pori(f): power before randomization at frequency f. The same for the others. We will rephrase in the next version of the manuscript 
>> Done (lines 264-265) 
CZ: 172 “with 5% uncertainty” – maybe clarify as ‘with 5% stratigraphic uncertainty’ >> The authors: This change will be done 
>> Done (line 276) 
CZ: 200: with “first frequency” ‘lowest frequency’ is meant I assume – could you clarify this? >> The authors: The reviewer is right, and we now see that our phrasing was ambiguous because it depends if we read the spectrum from the left or from the right. The phrasing suggested by the reviewer should eliminate our ambiguous phrasing. 
>> Done (throughout sections 6 and 7) 
CZ: 205-211: Please make clearer that geological data usually have no precise frequencies, but frequency ranges. You mention this, but I am not sure if everyone will understand this easily. >> The authors: We suggest to mention after the sentence line 210: “For instance, because of variations of the sedimentation rates, the sedimentary expression of the orbital cycles is not focalised on specific frequencies but rather expressed on ranges of frequencies” 
>> Done (lines 327-329) 
CZ: 217: I am not sure if you need to mention “that the stratigraphic order of the samples in the raw series is preserved after randomisation” again. You develop this earlier in the manuscript. >> The authors: We agree that this statement has been repeated and is superfluous in this line. We will delete this statement at 217 in the next version of the manuscript. 
>> Done 
CZ: 220f: “This difference realistically simulates small thickness errors, which accumulate when measuring successive sample steps.” – this can in my opinion be formulated better, and should highlight that errors may accumulate, or may also not accumulate but level out.-  >> The authors: We suggest the following sentence to rephrase: “this difference is interpreted as the simulation of small thickness measurement errors, which accumulate when measuring successive sample steps”. 
>> Done. We finally do not need to add this piece of information since we precised that error model in random and not systematic (lines 94-102). 
CZ: 241: “above 40% of the Nyquist frequency”, I would suggest to also mention the frequency, maybe in brackets after this statement. Maybe bring these ratios in direct reference to precession (e.g. _1/3rd of precession frequency/wavelength), so that this is more clear for readers not so familiar with time series analysis. >> The authors: ok for both suggest, and we will also precise the equivalent in terms of number of sample steps, as suggested in a previous comment from the reviewer. 
CZ: 258/59: “As in the case of the La Charce series, the stratigraphic order of the samples is preserved in the randomised series” – In my opinion this is clear by now in the manuscript, and does not need to be repeated. 



>> The authors: OK for removing this piece of information 
>> Done 
CZ: 304: replace “powers” by “power” >> The authors: OK 
>> Done 
CZ: 310: “result suggest” – one of these need an “s” in the end >> The authors: result needs an “s” in the end 
>> Done 
CZ: 312/13: “This requires that more than 6 samples per precession cycle have to be taken” - samples or measurements? >> The authors: The authors see the ambiguity and regret it. We are talking about number of samples to take per precession cycles. This will be clarified in the manuscript 
CZ: 355: 356: maybe also refer to (Meyers, 2015; Shackleton et al., 1995) >> The authors: OK for adding the references 
>> Done (line 598) 
CZ: 396: “on the field” – in the field? >> The authors: The correct expression is “in the field”. Will be corrected in the next version 
>> Done (lines 585, 632) 
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Answers to comments from Linda Hinnov 
 2. The error model  Linda Hinnov (LA): The authors call on the gamma probability density distribution to characterize stratigraphic sampling. Here there could be more explanation, e.g., a simple illustration of the problem, i.e., in Figure 1 add a diagram of a hypothetical stratigraphic section, different sampling sequences, and their histograms – perhaps the same ones as presented in Figure 2);  

>> The authors: We thank the reviewer for this interesting suggestion that will help the reader to understand the problem. We actually have prepared a figure to illustrate the problem showing a hypothetical series with positions of samples obviously non-equally spaced. The diagrams used in real examples will be reused here, as suggested 
>> Done: new Figure 1 illustrates the problem 
LA: in Figure 1 caption indicate “gampdf(x, k, )” and label horizontal axis as “x”. The models presented in Figure 2 
displayed in F, G and H: what values of k and  do these correspond to? 
>> The authors: k and  can be easily calculated using equations (3) and (4) of the manuscript. The mean sample 
distance is 1 unit in this case, and we performed the gamma test using setting the standard deviation at 0.05, 
010 and 0.15 units respectively. In the 3 cases, k and  values are as follows: 

- Sd=0.05 units: =0.0025 and k=400 
- Sd=0.10 units: =0.01 and k=100 
- Sd=0.15 units: =0.0225 and k=44 

This piece of information will be added in the revised version of the manuscript 
>> Done (new Figure 3) 
 
4. Implementation of the models in the stratigraphic-uncertainty tests 
LA: This reviewer can personally attest to the difficulty in measuring a consistent thickness for the same outcrop by different researchers - in my experience in one case: 112 m vs. 132 m! For overturned sections, any dip error committed will contribute to a positive bias in stratigraphic thickness measurements. There is undoubtedly such a problem in the steeply dipping Cretaceous section at La Charce examined in this paper. 
>> The authors: We thank the reviewer for this comment that was reused in the answer to referee 1. This example supports our idea that reaching a constant sample step on geological data is not trivial. 
>> This discussion does not need revision in the manuscript 
 
LA: On issues concerning methods, it is important to restrict interpolation to mean or median rate when applying AR noise models with MTM spectra (such as used in SSA-MTM Toolkit). The Devonian section has a mean sample rate of 0.38 m – not clear what the median rate is – and this is much larger than the interpolation to 0.01 m. The Cretaceous section has a mean sample rate of 0.20 m, so has a similar problem. The authors should recalculate the MTM analysis with interpolation to the median sample spacing of the two sections. (The red noise spectra will be significantly different because of the way the autocorrelation lag-1 coefficient is calculated.) The other parameter that requires reporting is whether “log” or “linear” fitting was enabled in the calculation of robust red noise for the MTM spectra. 
>> The authors: The other reviewer (Christian Zeeden) has also commented on the overinterpolation procedure. Basically, we will provide a new method of interpolation, in order to optimize this step and limiting the loss of power in the high frequencies, that naturally occurs when resampling at the mean sample distance (see Hinnov et al., 2003). 



>> Correction done, interpolation is now optimized in order to limit the loss of powers in the high frequencies. Data are linearly interpolated at the average sample distance of the original dataset (lines 227-232 + Appendix A) 
As for the comment on the linear or log-fit, we employed a linear fit, from Meyers’ astrochron ML96 function. In this function, the method for calculating the background median smooth fit has been modified by entering a Tukey’s robust end point rule for the very low frequencies, which allows the level of lag-1 coefficient to be increased. This is below what the help of mtm.ML96 function says: 
“This function conducts the Mann and Lees (1996; ML96) "robust red noise" analysis, with an 
improved median smoothing approach. The original Mann and Lees (1996) approach applies a 
truncation of the median smoothing window to include fewer frequencies near the edges of the 
spectrum; while truncation is required, its implementation in the original method often results in an 
"edge effect" that can produce excess false positive rates at low frequencies, commonly within the 
eccentricity-band (Meyers, 2012). 
To help address this issue, an alternative median smoothing approach is applied that implements 
Tukey's robust end-point rule and symmetrical medians (see the function runmed for details).” 
>> The median-fit of the red-noise background of La Thure was previously based on a “linear” comparison of powers. We now used a comparison of log-powers, much consistent with the red-noise background of La Thure with the REDFIT analysis (new Figures 6c, 10). 
 
 5. Application to a sum of sinusoids  LA: This section quantifies the loss of power at high frequencies with increasing uncertainty of (variability in) the sample step sequence for a simulated sum-of-sinusoids series. The absence of windowing in the Lomb-Scargle (LS) spectra would be expected to result in higher spectral variance compared to multitaper-windowed MTM spectra, and may account for the elevated grey spectra from the LS Monte Carlo simulations (compared to those of the 
MTM spectra). Interestingly, for 10% and 15% , loss of power occurs at practically the same frequencies in both MTM and LS spectra. Would it be possible to indicate the expected variance in Nyquist frequency for the 3 cases (5%, 10%, 15%) in order to understand the accuracy of the MTM and LS spectra? A new order of the graphs in Figures 2 and 3 might benefit the presentation:   

 New Figure 2: display Figs. 2F, G, H only, and explain how these relate to k and  (or put them into a Figure 1B).   
 New Figure 3: in top row, display Fig. 2A, B, C, D; bottom row display Fig. 3A, B, C, D.   
 Figs. 2E and 3E could be placed into a new figure.  >> The authors: We will modify the figures as suggested and ask the reviewer to further clarification about the variance question. >> Figures modified (new Figures 3 and 4) >> As for the variance question, the reviewer is right; the grey-spectra level is much elevated in the Lomb-Scargle analysis than in the MTM analysis. Following the recommendation of Christian Zeeden, we now display in Figure 3 

and from Figures 8 to 11 the 95% zone of the 1000 simulations, which we assume to represent the 2-interval of the power spectrum estimates. We think than displaying the curve is much meaningful than the value of variance at the Nyquist frequency.  LA: What did we learn from this exercise and how will it help with the interpretation of the geological datasets to follow? 
>> The authors: This exercise is performed on a pure sinusoid signal, not related to any geological data, and having an arbitrary sample step. It shows the general pattern of disturbing the sampling interval on the power spectrum, 



independently of the nature of the geological data (finite length, noisy and non-strictly periodic). In this case, the power spectrum can be controlled and be fixed as equal for all spectral peaks, which helps to examine the relative change in power throughout the spectrum. 
>> In the sum of sinusoid case, we now emphasise the loss of power in the high frequencies, since the power spectrum of spectral peak can be controlled. In the real geological example, we rather emphasise on the loss of significance level in the high frequencies, which is a direct consequence of the loss of power in the high frequencies, and which has the most implications for matching sedimentary series to insolation series. 
  6. Application to geological datasets  LA: The MTM spectrum of the Devonian series (Figure 4D) shows a robust red noise model with extremely elevated low frequencies, implying that a “log” fit was calculated in SSAMTM Toolkit, and that the model suffers additionally from the 0.01 m interpolation (see comments for Section 4). Some of the text in this section about differences in red noise calculations (which by the way are not meaningfully explained) may not be needed once the interpolation problem is addressed.  >> The authors: To calculate the spectrum of the La Thure section with the confidence levels, we used the mtm.ML96 function from astrochron package. A linear model of background fit was used (please find below the code line we applied: ML96_1    = mtmML96(dat_pad1,tbw=2,ntap=3,padfac=1,demean=T,detrend=T,medsmooth=0.2,                     opt=3,linLog=1,siglevel=0.95,output=1,CLpwr=T,xmin=0,xmax=1/(2*dtmoy),                     sigID=F,pl=2,genplot=F,verbose=F)  linLog=1 means we used a linear fit model.  Definitely, we will re-fix the resample step at the median sample distance, which is 0.30 m.  >> The spectral background of the La Thure section is now calculated based on a comparison of log power, instead of linear powers previously. The results are much consistent with the red-noise fit calculated with the REDFIT method.  >> We decided to fix the sample step at 0.38 m for La Thure, which corresponds to the average sample distance of the series. This choice is motivated by the fact that only 30% of the series is sampled at a density equal or higher than the median sample distance, while 43% of the series is sampled at a density equal or higher than the average sample distance.  7. Discussion  LA: The main point of this study is that sampling is the critical decision that must be made when evaluating a stratigraphic sequence for paleoclimate signals. Almost all problems can be controlled with high-density sampling, e.g., 6-10 samples per putative precession cycle. It appears that one can easily expect 5% errors in stratigraphic position measurements, which combined with sedimentation rate variations, will mix the highest frequencies of a sampled sequence. Thus we are always alarmed at how low in power – and misaligned – precession cycles are in stratigraphic spectra. In the end, one never knows if a sample that has been collected has been assigned to its true stratigraphic position. This is an important limitation that is under-appreciated by the geological community and the authors should be commended for tackling this problem.  >> The authors: We thank the reviewer for this very positive comment, which will probably feed the discussion of the revised version of the manuscript. >> This was implemented in the discussion from lines 601-624.   LA: A number of issues have been left unexplored: (1) how does systematic sample position error, such as can occur with receded marls alternating with prominent limestones in outcrops, affect stratigraphic spectra; (2) can astronomical tuning bypass the positional uncertainty problem (notwithstanding the recent approach described in Zeeden et al., 2015); and (3) how does the positional uncertainty problem affect the red noise model estimates? 



 >> The authors: For question (1), we have shown to the other reviewer that the error is not systematic but fully random, even in the case of alternating sedimentation. >> For question (2), the error in the sample position acts on average like variations of the sedimentation rate: it decreases the power spectrum in the high frequencies, and distributes the power of the obliquity and precession over a large range of frequencies. The approach of Zeeden et al (2015) applies a very wide bandpass filter which should limit the effect of such error, because a large of frequencies are taken into account in the filter. However, we acknowledge that in spectra of sedimentary series, it is common to observe a band of frequencies between the obliquity and precession for which we don’t know if they are related to one or the other cycle. A combination of methods involving wide filters and evolutive spectral analysis should help in resolving this issue. >> For question (3), this is an interesting question, and actually at this point, we do not have the answer to this question. However, this could be the topic of a follow-up study. >> For question (3), we have included in the new manuscript the calculations of the red-noise confidence levels for each simulation. After 1000 simulations, the red-noise confidence levels are on average very similar to the confidence levels before randomisation and show very narrow dispersion. This stability is probably due to the fact that the sample distance randomisation implies a dispersion of the power spectrum on a broad spectral band. The fit of the spectral background being calculated on a broad band, the randomisation procedure does not change the average power calculated on a broad band. Implemented in Figs. 8-11, Table 1, and discussed from lines 601-608.   Other comments  LA: Lines 23-24: The Multi-Taper Method (Thomson, 1982) might be more accurately characterized as a spectrum estimator that is based on the Fourier Transform – not as a derivative of the Fourier Transform. >> The authors: The reviewer is right. The multi-taper method is roughly the average of Fourier Transforms of the series studied weighted by windows called Slepian sequences.  LA: Line 27: A recent massive improvement to the Jacob’s staff in outcrop studies is terrestrial laser scanning with precision positioning at the mm level (Franceschi et al., 2011; Franceschi et al., 2015). >> The authors: We thank the reviewer for having provided us with this reference.   LA: Line 101: Change to “Pas et al., 2015”. >> The authors: OK  LA: Lines 264- 265: what does the output of the “long-term trend of the variance” look like, and what was used to compute the “LOWESS regression with a 10% coefficient”? >> The authors: The figure of the detrend procedure will be added in the next version of the manuscript, and   LA: Line 350: For monotonous stratigraphy yielding Milankovitch signal see also Latta et al., 2006. >> The authors: This reference is elder than the one we have cited in the original manuscript. OK to add this citation. >> Done (line 639).  LA: Line 355: Change “require” to “requires” >> The authors: OK  LA: Line 361: Delete “Note than”. >> The authors: OK  LA: Supplementary File: R package dplR appears to be used but not referenced in the main text. R is used to calculate REDFIT– is it provided in the dplR package? >> The authors: The authors are really sorry for having forgotten to cite dplR package. The other referee, Christian Zeeden, has also noticed that. As we cited the astrochron package from Stephen Meyers, we also have to cite dplR package, which will be done in the revised version of the manuscript. >> Done (lines 238-239).  
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Abstract 14 
Spectral analysis is a key tool for identifying periodic patterns in sedimentary 15 
sequences, including astronomically related orbital signals. While most spectral 16 
analysis methods require equally-spaced samples, this condition is rarely achieved 17 
either in the field or when sampling sediment core. Here, we propose a method to 18 
assess the impact of the uncertainty or error made on the measurement of the sample 19 
stratigraphic position on the resulting power spectra. We apply a Monte-Carlo 20 
procedure to randomise the sample steps of depth series using a gamma distribution. 21 
Such a distribution preserves the stratigraphic order of samples, and allows 22 
controlling the average and the variance of the distribution of sample distances after 23 
randomisation. We apply the Monte-Carlo procedure on two geological datasets and 24 
find that gamma distribution of sample distances completely smooths the spectrum at 25 
high frequencies and decreases the power and significance levels of the spectral peaks 26 
in an important proportion of the spectrum. At 5% of stratigraphic uncertainty, few 27 
portion of the spectrum is completely smoothed. Taking at least 3 samples per 28 
thinnest cycle of interest should allow this cycle to be still observed in the spectrum, 29 
while taking at least 4 samples per thinnest cycle of interest should allow its 30 
significance levels to be preserved in the spectrum. At 10 and 15% uncertainty, these 31 



thresholds increase, and taking at least 4 samples per thinnest cycle of interest should 32 
allow the targeted cycles to be still observed in the spectrum. In addition, taking at 33 
least 10 samples per thinnest cycle of interest should allow their significance levels to 34 
be preserved.  For robust applications of the power spectrum in further studies, we 35 
suggest to provide a strong control of the measurement of the sample position. A 36 
density of 10 samples per putative precession cycle is a safe sampling density for 37 
preserving spectral power and significance level in the Milankovitch band. For lower 38 
density sampling, the use of gamma-law simulations should help in assessing the 39 
impact of stratigraphic uncertainty in the power spectrum in the Milankovitch band. 40 
Gamma-law simulations can also model the distortions of the Milankovitch record in 41 
sedimentary series due to variations in the sedimentation rate.  42 
 43 
1. Introduction 44 
Spectral analysis methods have become a key tool for identifying Milankovitch cycles 45 
in sedimentary series and are a crucial tool in the construction of robust astronomical 46 
time scales (Hinnov, 2013). The climatic or environmental proxy series that form the 47 
subject of spectral analyses are generally the result of measurements, performed on 48 
rock samples collected from a sedimentary sequence, either in cores or in outcrop. 49 
Most of spectral analysis methods (Fourier Transforms and derivatives such as Multi-50 
Taper Method) require equally-spaced depth- or time-series, which implies that 51 
samples need to be taken at a constant sample step (Fig. 1a). Unfortunately, this is 52 
rarely achieved, especially for sedimentary sequences sampled in outcrops (e.g., Figs. 53 
1b-c and e). Often, an uncertainty of ~5-15% is observed in the thickness or distance 54 
measurements, even when using a Jacob’s staff (Weedon and Jenkyns, 1999). In core 55 
sediments, uncertainties in the sample position are also observed when performing 56 



physical sampling at very high resolution or because of core expansion phenomena 57 
(Hagelberg et al., 1995) or imperfect coring (Ruddiman et al., 1987). 58 
 59 
Although uncertainties exist on the actual position of samples, few case studies 60 
document their effect on the identification of periodic patterns. Moore and Thomson 61 
(1991) recognised that perturbations of the regular sampling scheme (i.e. jittered 62 
sampling) impact the power spectrum by reducing spectral power in the high 63 
frequencies. Huybers and Wunsch (2004) and Martinez and Dera (2015) address an 64 
analogous problem, by assessing the effect of the uncertainty on the age model on a 65 
calibrated time series that is plotted against numerical age. However, none of these 66 
studies explicitly addresses the impact of errors in the measurement of the sample 67 
position on uncertainties in the power spectrum amplitudes. In this study, we address 68 
this problem by quantifying the impact of such errors on the frequency and power 69 
distribution. Therefore, we provide a new procedure that is based on a Monte-Carlo 70 
approach for randomising the distance between two successive samples in a 71 
sedimentary series. The resulting simulated series are subsequently used to assess the 72 
impact of the sample-position error on spectral analyses. We first apply the procedure 73 
to a theoretical example, and then to two previously published geological datasets, 74 
one as-regularly-as-possible sampled and another irregularly sampled. 75 
 76 
 77 
2. The error model 78 
In this paper, the term “stratigraphic uncertainty” refers to the uncertainty on the 79 
sample positions. Testing the impact of the stratigraphic uncertainty on the spectral 80 
analyses requires a randomisation procedure that reflects typical errors made during 81 



measurements of the stratigraphic position of samples. Figures 1c to e illustrates the 82 
consequences of the stratigraphic uncertainties on a geological series (here the La 83 
Charce series, see section 3.1). Fig. 1c compares the real sampling made on this series 84 
(in red) to an ideal sampling in which samples are taken at a strictly even sample 85 
distance (in black). Errors in the sample positions distort the sedimentary series: some 86 
intervals are compressed while some others are dilated. Ideally, all sample distances 87 
should be strictly the same, so that the distribution of sample distances should be 88 
concentrated on only one value (Fig. 1d). In reality, as uncertainties exist on the 89 
sample positions, the sample distances show a distribution over a certain range of 90 
values, which depends on the accuracy with which the distance measurements have 91 
been taken (Fig. 1e). In the case of the La Charce series, the standard deviation of the 92 
sample distances is assessed at 12.5% of the average sample distance (the method to 93 
estimate this standard deviation is provided in section 4). If the error in the distance 94 
measurement was systematic, one should expect the same level of error in the total 95 
length of the series. However in total, the difference of the length of the series 96 
between the ideal case (all sample distances strictly the same) and the real case is only 97 
1.4% of the total length of the series (Fig. 1c). Each sample distance is measured 98 
independently from the other sample distances, so that each measurement can 99 
overestimate or underestimate the real distance between two successive samples. The 100 
errors thus compensate each others, implying that the process at the origin of the error 101 
measurements is not systematic but random. 102 
 103 
Three conditions must be respected to design the error model: (i) the stratigraphic 104 
order of sample is hard set and must not be changed by the randomisation process 105 
(e.g., Fig. 1c), (ii) the average and standard deviation of sample steps must be 106 



maintained during the randomisation process, (iii) the error model must be random. 107 
These conditions can be achieved if the error model randomises the sample distances 108 
rather than the sample positions. In that case, the probability density function should 109 
have a positive and continuous distribution (i.e. values obtained after randomisation 110 
are continuous and positive). In addition, the average sample step and the standard 111 
deviation of the distance between two successive samples are known and should be 112 
parameterized. 113 
 114 
The gamma distribution respects all these conditions. The gamma distribution is 115 
continuous and has a positive support. Two parameters are used to define the shape of 116 
the distribution (k) and its range of values (. The mean (E) of the density of 117 
probability is defined as (Burgin, 1975):  118 

   (1) 119 
and its variance (2) as:  120 

  (2) 121 
Both the mean (E) and the variance (2) are known, as they correspond to the mean 122 
and variance of the sample steps, and they can be quantified in the field (see Section 4 123 
for a discussion on the variance of sample steps). Therefore, k and  can be 124 
parameterized using the following relations: 125 

  (3) 126 

   (4) 127 
Various versions of gamma probability density functions are shown in Fig. 2. A high 128 
variance-to-mean ratio corresponds to a high -parameter value compared to the 129 
value of the k-parameter. The resulting density probability function corresponds to an 130 



exponential probability function in the most severe and spectrum-destructive case. 131 
This distribution corresponds to sampling conditions during which no control was 132 
exerted on the stratigraphic position of samples, so that the uncertainty on the sample 133 
position is at a maximum. Obviously, this situation is not a realistic case to reflect 134 
geologic practice. 135 
In the opposite case, a low variance-to-average ratio corresponds to a low -136 
parameter value compared to the value of the k-parameter. The resulting density 137 
probability function is close to a Gaussian curve, although bound on one side to 0, so 138 
that the curve has a positive support. This case corresponds to geologic sampling 139 
during which the position of each sample was carefully measured and reported with 140 
respect to the stratigraphic column. Nevertheless, even in this case, stratigraphic 141 
uncertainties exist, mainly because of outcrop or core conditions. Interestingly, this 142 
latter case has a similar distribution to the distribution of sample distances in the La 143 
Charce series (Fig. 1e). This illustrates that the gamma model is well adapted for 144 
simulating the errors made on the measurement of the sample distances. 145 
 146 
3. The geological datasets 147 
Two geological datasets from previously published papers were used here to assess 148 
the effect of stratigraphic uncertainty on power spectra. 149 
 150 
3.1. Gamma-ray spectrometry from La Charce (Valanginian, Early Cretaceous) 151 
A total of 555 gamma-ray spectrometry measurements were performed in situ on the 152 
La Charce section (Department of Drôme, SE France; Martinez et al., 2013, 2015). 153 
The section is composed of marl-limestone alternations that were deposited in a 154 
hemipelagic environment during the Valanginian and Hauterivian stages (~134-132 155 



Ma ago, Early Cretaceous; Martinez et al., 2015). Detailed analyses of their clay 156 
mineralogical, geochemical, faunal contents allowed these alternations to be attributed 157 
to orbital climate forcing. Gamma-ray spectrometry measurements have been used to 158 
discriminate the precession, obliquity and 405-kyr eccentricity cycles (see Martinez et 159 
al., 2015). 160 
 161 
Gamma-ray spectrometry measurements have been performed directly in the field 162 
with an as-regular-as-possible sample step of 0.20 m. Before each measurement, rock 163 
surfaces have first been cleaned from the reworked material and flattened to prevent 164 
any border effects that could affect the measurement value. Each measurement was 165 
performed using a SatisGeo GS-512 spectrometer, with a constant acquisition time of 166 
60 seconds (more details are provided in Martinez et al., 2013). 167 
 168 
3.2. Magnetic susceptibility from La Thure section (Givetian, Middle Devonian) 169 
The second case-study consists of the 184-m-thick continuous early-Givetian to early-170 
Frasnian sequence of the La Thure section (~383-380 Ma, Middle-Late Devonian; De 171 
Vleeschouwer and Parnell, 2014; De Vleeschouwer et al., 2015; Pas et al., 2016). The 172 
Givetian sequence is composed of bedded limestone, mainly deposited in a shallow-173 
water rimmed-shelf characterised by a large set of internal and external rimmed-shelf 174 
environments (Pas et al. 2016). The overlying early Frasnian sequence is dominated 175 
by shale deposited in a siliciclastic drowned platform (Pas et al., 2015). The magnetic 176 
susceptibility data from the La Thure section, in combination with three other MS 177 
data sets from the Dinant Syncline in southern Belgium and northern France were 178 
used by De Vleeschouwer et al. (2015) to make an estimate of the duration of the 179 
Givetian Stage, and subsequently to calibrate the Devonian time scale (De 180 



Vleeschouwer and Parnell, 2014). Spectral analysis of the MS data from the La Thure 181 
section revealed the imprint of different Milankovitch astronomical parameters, 182 
including eccentricity, obliquity and precession (Fig. 3c in De Vleeschouwer et al., 183 
2015). A total of 484 samples were taken along the 184-m thick sequence, with an 184 
irregular sample step that varied between 20-45 cm, depending on outcrop conditions 185 
(average sample step: 38 cm). Magnetic susceptibility measurements were performed 186 
using a KLY-3S instrument (AGICO, noise level 2 x 10-8 SI) at the University of 187 
Liège (Belgium) (more details are provided in De Vleeschouwer et al., 2015). 188 
 189 
4. Implementation of sample step uncertainty models for the stratigraphic-190 
uncertainty tests 191 
Weedon and Jenkyns (1999) estimated the error on the stratigraphic position of a 192 
sample at 5.3% by measuring the thickness of the same sequence twice. The La 193 
Charce section, one of the datasets treated here, has been measured multiple times in 194 
the framework of different publications. The thickness of the studied section was 195 
assessed at 106 m, 109 m and 116 m (Bulot et al., 1992; Martinez et al., 2013; 196 
Reboulet and Atrops, 1999) either an average of 110.3 ± 5.1 m, or an error of 4.6%. In 197 
the field, the distance between two successive samples was measured independently 198 
from the construction of the log, providing an independent assessment of the 199 
dispersion of the actual distance between two successive samples. The average sample 200 
step is 20 cm, with a standard deviation of the sample steps of 2.5 cm, either a level of 201 
uncertainty of 12.5% of the average sample step (Fig. 1e). 202 
 203 
Based on the assessments summarised in the previous paragraph, we tested three 204 
different levels for the error on the measurement of sample steps (5%, 10% and 15%), 205 



which we consider realistic scenarios for geologic sampling during fieldwork. We 206 
applied our Monte-Carlo based procedure for randomising sample steps to a 207 
sinusoidal series, as well as to the two previously published geologic datasets 208 
described in section 3 (De Vleeschouwer et al., 2015; Martinez et al., 2013, 2015), 209 
with three different error levels. During every Monte-Carlo simulation, the distance 210 
between two points is randomised according to a gamma distribution, of which the 211 
mean corresponds to the distance between two points measured in the field, and of 212 
which the standard deviation corresponds to 5%, 10% or 15% of the measured 213 
distance. Each test consists of 1000 Monte-Carlo simulations, leading to 1000 214 
different time series, each with a different distortion of the stratigraphic positions of 215 
samples. 216 
 217 
Spectral analyses were performed using the Multi-Taper Method (MTM; Thomson, 218 
1982, 1990), using three 2π-tapers (2π-MTM analysis) and with the Lomb-Scargle 219 
method (Lomb, 1976; Scargle, 1982). For the 2π-MTM analysis, confidence levels of 220 
the spectra of the original geological datasets tested have been calculated using the 221 
Mann and Lees (1996) approach (ML96), with median-smoothing calculated with the 222 
method of the Tukey’s end point rule, as suggested by Meyers (2014). The window 223 
width for the median-smoothing was fixed at 20% of the Nyquist Frequency (the 224 
highest frequency which can be detected in a time series), as evaluated empirically by 225 
Mann and Lees (1996). MTM analysis requires strictly regular sample steps to be 226 
performed, so that geological datasets were linearly interpolated at the average sample 227 
distance of the original series before and after randomisation. We limit the loss of 228 
amplitude in the high-frequency fluctuations due to resampling by applying an 229 
optimized procedure to find the best starting point of the interpolated series. To oour 230 



knowledge, this procedure is new, and we therefore describe it in Appendix 1. We 231 
provide the corresponding R-function in the supplementary material. The sum of 232 
sinusoid series is generated with a regular sample step of 1 arbitrary unit. After 233 
randomisation, the depth-randomised series was linearly interpolated at 1 arbitrary 234 
unit. 235 
 236 
Lomb-Scargle spectra were calculated with the REDFIT algorithm (Schulz and 237 
Mudelsee, 2002) available in the R-package dplR (Bunn, 2008, 2010; Bunn et al., 238 
2015). The Lomb-Scargle method calculates the spectrum of unevenly-sampled 239 
series. Lomb-Scargle power spectra can be biased in the high frequencies due to the 240 
non-independency of the frequencies (Lomb, 1976; Scargle, 1982), so that the 241 
REDFIT algorithm has been provided to correct the power spectrum by fitting a red-242 
noise model to the spectrum (Mudelsee, 2002; Schulz and Mudelsee, 2002). Here, we 243 
applied no segmentation to the series and a rectangular window. This 244 
parameterization maximises the effect of sample step randomisation on the spectrum. 245 
 246 
During each test, both MTM and REDFIT Lomb-Scargle power spectra were 247 
calculated for each of the 1000 Monte-Carlo distorted series. Subsequently, the 248 
average power spectra and the range of powers covered by 95% of the simulations 249 
were calculated for the MTM and Lomb-Scargle analyses. The confidence levels of 250 
the datasets deduced from the red-noise fit of the spectral background were calculated 251 
after each simulation. The average power of the confidence levels and the range of 252 
powers of the confidence levels covered by 95% of the simulations were calculated 253 
and directly plotted to the simulated spectra. The sum of sinusoids series does not 254 
need correction to red noise and the raw Lomb-Scargle spectra are shown. The two 255 



geological datasets show a red-noise background and the REDFIT-corrected Lomb-256 
Scargle spectra were shown. 257 
 258 
We finally provide a quantification of the relative change in spectral power, using the 259 
following criterion: 260 

 (5) 261 

With  f: the frequencies explored in the spectral analyses 262 
 Er: the relative change of power 263 
 Pori(f): the power spectrum before randomisation at frequency f. 264 
 Pave(f): the average power spectrum of the 1000 simulations at frequency f. 265 
 266 
5. Application to a sum of sinusoids 267 
The effect of randomising the sample position on the section is first tested on a sum of 268 
pure sinusoids. A dataset of 600 points is generated with a sample step of 1 arbitrary 269 
unit. The series is a sum of 24 sinusoids, having equal amplitudes and different 270 
frequencies: frequencies range from 0.02 to 0.48 cycles/arbitrary unit and increase 271 
with increments of 0.02 cycles/arbitrary unit (Fig. 3a, b). Fig. 3 shows the 2π-MTM 272 
and Lomb-Scargle spectra of the sum of sinusoids before and after applying 1000 273 
Monte-Carlo simulations of distorted sample distances. The grey zones indicate the 274 
interval covering 95% of the power in the 1000 simulations. The average spectrum of 275 
these simulations is shown in orange for the test with 5% stratigraphic uncertainty 276 
(Figs. 3c, d), red for 10% uncertainty (Figs. 3e, f), and brown for 15% uncertainty 277 
(Figs. 3g, h). The most striking feature after gamma-model randomisation is the 278 
progressive and strong decrease of the power spectrum towards the high frequencies, 279 
even when the lowest level of uncertainty (5%) is considered.  280 



 281 
Fig. 4 notably shows the relative change in power of the average spectrum after 282 
applying the 1000 simulations. At 5% uncertainty, a decrease of 50% in the power 283 
spectrum is observed in the 2π-MTM spectrum at 57% of the Nyquist frequency, 284 

equivalent to 3.5x the average sample distance. The level of 50% of decrease in the 285 
power spectrum is rather observed in the Lomb-Scargle spectrum at 80% of the 286 
Nyquist frequency, i.e. 2.5x the average sample distance. This implies that even for a 287 
very low level of noise, the values of the power spectrum can be largely 288 
underestimated in the upper half of the spectrum. At 10% uncertainty, a decrease of 289 
power spectrum is observed at 38-39% of the Nyquist frequency, both in the Lomb-290 
Scargle and the 2π-MTM spectra, which is equivalent to 5.2x the average sample 291 
distance. Finally, at 15% uncertainty, both Lomb-Scargle and 2π-MTM indicate that 292 
50% of decrease in the power spectrum has occurred at 27% of the Nyquist 293 
frequency, which is equivalent to 7.4x the average sample distance. This example 294 
shows the worse is the control of the sample position in the sedimentary series, the 295 
more one needs to take sample per cycle to limit the loss of power of the cycles 296 
targeted. 297 
 298 
Stratigraphic uncertainty does not only trigger loss of power of the spectral peaks, it 299 
also increases the power spectral background (Fig. 3). At 5% and 10% uncertainties, 300 
the average and background spectrum still preserve the structure of individual peaks 301 
in both 2π-MTM and Lomb-Scargle analyses (Figs. 3c-f). Indeed, spectra for 302 
individual Monte-Carlo simulations still exhibit spectral peaks at these frequencies 303 
although they are characterized by variable power and deviations in the frequencies at 304 
which the peaks are localised. However, at 15% uncertainty, the average power at the 305 



highest frequencies is flattened and the structure of the peaks is not distinguishable 306 
anymore (Figs. 3e-h). This zone of the spectrum cannot be regarded as reliably 307 
interpretable. 308 
These analyses from a sum of pure sinusoids show that the higher is the stratigraphic 309 
uncertainty, the higher is the loss in power of the spectral peaks and the more the low 310 
frequencies are affected by this loss of power. At 15% uncertainty, the spectrum is 311 
flattened in the highest frequency and cannot be interpreted in this part of the 312 
spectrum. Because of its higher frequency resolution, the Lomb-Scargle analysis, as 313 
we computed, here displays higher spectrum background levels than in the 2π-MTM 314 
analysis. It however changes very few the highest frequency that can be interpreted, 315 
even at 15% uncertainty. 316 
 317 
 318 
 319 
It should be noticed that in the case of pure sinusoids, the signal is only composed of 320 
pure harmonics concentrating the spectral power at specific frequencies. This makes 321 
that a small shift in the sample position triggers a strong decrease of the average 322 
power spectrum at these specific frequencies. In addition, in this theoretical example, 323 
the sample before randomisation procedure was strictly constant (1 arbitrary unit). 324 
More realistically, spectra of geological datasets are rather composed of a mixture of 325 
harmonics, narrow-band and background components, and the sample step is not 326 
strictly constant. For instance, because of variations of the sedimentation rates, the 327 
sedimentary expression of the orbital cycles is not focalised on specific frequencies 328 
but rather expressed on ranges of frequencies (e.g., Weedon, 2003, p. 132). This can 329 
add some noise in the high frequencies, and blur the spectra even more than in the 330 



case of pure sinusoids. In the following, the results of the application of the test on 331 
two geological datasets are shown. 332 
 333 
6. Application to geological datasets 334 
6.1. Spectral analysis prior to randomisation 335 
 336 
6.1.1. The La Charce series 337 
Prior to performing 2π-MTM analyses, the gamma-ray series was detrended using a 338 
best-fit linear regression, linearly interpolated each 0.20 m, and standardised to zero 339 
average and unit variance (Fig. 5). Prior to REDFIT Lomb-Scargle analysis, the 340 
datasets (raw and randomised) were simply linearly detrended using a best-fit linear 341 
regression and standardised. 342 
 343 
The 2π-MTM analysis of the La Charce section shows two main significant bands 344 
(>99% Confidence Level, hereafter abbreviated CL) at 20 m and from 1.3 to 0.8 m 345 
(Fig. 6a). The peak of 20 m has been interpreted as the imprint of 405-kyr eccentricity 346 
forcing, while the group of peak of 1.3 to 0.8 m has been dominantly related to 347 
precession (Boulila et al., 2015; Martinez et al., 2013, 2015). The REDFIT spectrum 348 
shows two bands of periods exceeding the 99% CL at 18 m and from 1.4 to 0.8 m 349 
(Fig. 6b). These periods are similar to the periods observed in the 2π-MTM spectrum. 350 
The small differences in periodicity observed in the lowest frequencies are likely to be 351 
related to the difference in frequencies explored between both methods. In addition, 352 
the REDFIT spectrum as parameterised here produces narrower peaks than the multi-353 
taper spectrum, so that the lowest frequencies in the REDFIT spectrum are composed 354 



of a group of narrow peaks, rather than a single broad peak observed in the 2π-MTM 355 
spectrum.  356 
 357 
The autoregressive coefficient, a measure for the redness of the spectrum, is assessed 358 
at 0.440 in the 2π-MTM analysis, while it is assessed at 0.468 in the REDFIT analysis 359 
(Table 1). The S0-value, the average power of the red-noise process within the entire 360 
spectrum, is 3.54x10-4 in the MTM analysis, while it is 0.398 in the REDFIT analysis 361 
(Table 1). This difference in the S0 value is due to the difference of signal treatment 362 
when calculating the MTM or the REDFIT spectrum. 363 
 364 
6.1.2. The La Thure series 365 
Prior to performing 2π-MTM analyses, the magnetic susceptibility series was 366 
detrended by subtracting a piecewise best-fit linear regression (Fig. 7a). The series 367 
was then linearly interpolated each 0.38 m, and the trend of the variance was removed 368 
by dividing the series by its instantaneous amplitude smoothed with a LOWESS 369 
regression with a 10% coefficient (Fig. 7b). Such approach allows the series to have a 370 
stationary mean and variance (Fig. 7c). The series was subsequently standardised 371 
(average=0; standard deviation=1). Prior to the REDFIT analysis, the identical 372 
procedure was applied, except for interpolation at an even sample step, as this is not 373 
required by the Lomb-Scargle method. 374 
 375 
The 2π-MTM analysis of the La Thure section shows significant periods at 39 m 376 
(>99% CL) interpreted as the manifestation of the 405-kyr eccentricity cycle (De 377 
Vleeschouwer et al., 2015), at 7.8 m (>95% CL) interpreted as 100-kyr eccentricity 378 
cycles, a group of significant periods from 2.8 m to 2.2 m (99% CL) interpreted as 379 



obliquity, and a group of significant periods from 1.6 to 1.1 m (>95% and >99% CL) 380 
interpreted as precession (Fig. 6C). In the lowest frequencies, the REDFIT spectrum 381 
(Fig. 4F) shows a group of peaks centred on 30-40 m (>99% CL), a peak at 13 m 382 
(>95% CL), which is not significant in the 2π-MTM spectrum. Conversely, the period 383 
at 7.9 m observed in the 2π-MTM spectrum does not reach the 90% CL in the 384 
REDFIT spectrum. These differences are likely related to the difference in the 385 
frequencies explored between both methods, and to the fact that REDFIT spectra as 386 
parameterised here produce narrower peaks than the 2π-MTM spectra. In the REDFIT 387 
spectrum, the obliquity band shows two periods at 3.3 m (95% CL), and 2.3 m (>95% 388 
CL). The precession band shows periods at 1.5 m (>90% CL), 1.1 m (>99% CL) and 389 
at 0.9 m (>95% CL).  390 
 391 
The autoregressive coefficient of the red-noise background level is assessed at 0.657 392 
in the 2π-MTM analysis, and at 0.407 in the REDFIT analysis (Table 1). The 393 
difference in the autoregressive coefficient is due to the method of calculation of the 394 
red-noise background (from the spectrum in the MTM analysis, from the time series 395 
in the REDFIT analysis; Mann and Lees, 1996; Meyers, 2014; Mudelsee, 2002). The 396 
Lomb-Scargle analysis also tends to produce higher powers in the high frequencies, 397 
thus reducing the autoregressive coefficient estimate in the REDFIT analysis (Schulz 398 
and Mudelsee, 2002). This difference also illustrates the difficulty in calculating the 399 
autoregressive coefficient when the redness of the spectrum increases (see Meyers, 400 
2012). Finally, the S0-value is assessed at 1.67x10-3 in the 2π-MTM analysis, and at 401 
0.890 in the REDFIT analysis (Table 1).  402 
 403 
6.2. Impact on the power spectrum of randomising the sample distances 404 



 405 
6.2.1. The La Charce series 406 
At 5% uncertainty, the average 2π-MTM spectrum of the La Charce still shows 407 
periods at 20.5 m as well as several periods around 1 m exceeding the 99% CL (Fig. 408 
8a). At 10% uncertainty, the peak at 0.8 m does not exceed the 95% CL (Fig. 8b), and 409 
it is completely smoothed at 15% uncertainty (Fig. 8c). The increasing level of 410 
stratigraphic uncertainty progressively smooths the average spectrum, with the highest 411 
frequencies most affected (Figs. 8d-f). Notably at 5% uncertainty, fluctuations of the 412 
spectrum at frequencies higher than 81% of the Nyquist frequency are suppressed 413 
(Table 2). At 10% and 15% uncertainty, this threshold decrease to respectively 58 and 414 
43% of the Nyquist frequency (Figs. 8d-f). Increasing levels of uncertainty also tend 415 
to reduce the power of the spectral peaks in an increasing portion of the spectrum. At 416 
5% uncertainty, the average spectrum of the simulations is practically identical to the 417 
spectrum of the original series from frequency 0 to 27% of the Nyquist frequency 418 
(Fig. 8d). This range is reduced to 0 - 19% of the Nyquist frequency at 10% 419 
uncertainty (Fig. 8e) and to 0 - 18% of the Nyquist frequency at 15% uncertainty (Fig. 420 
8f). 421 
 422 
In the REDFIT spectrum with 5% of stratigraphic uncertainty, the periods at 20.5 m 423 
and around 1 m still exceed the 99% CL (Fig. 9a). Like in the 2π-MTM analyses, the 424 
period at 0.8 m does not exceed the 99% CL at 10% uncertainty, while it is 425 
completely smoothed at 15% uncertainty (Figs. 9b-c). The tendency of the Lomb-426 
Scargle analysis to produce high-power peaks in the high frequencies limits the effect 427 
of the smoothing of the spectrum at 5% uncertainty (Fig. 9d). However, at 10 and 428 
15% uncertainties, fluctuations in the spectrum at frequencies higher than respectively 429 



58 and 42% of the Nyquist frequency are completely smoothed (Figs. 9e-f; Table 2). 430 
At 5% uncertainty, the average spectrum of the simulations cannot be distinguished 431 
from the spectrum of the original series from frequency 0 to 29% of the Nyquist 432 
frequency (Fig. 9d), while at 10 and 15% uncertainties, this range is restricted to 0 - 433 
19% of the Nyquist frequency (Fig. 9e-f). 434 
 435 
The average autoregressive coefficients of the 1000 simulations (with ± the interval 436 
covering 95% of the simulations) are respectively assessed for 5, 10, and 15% of 437 
stratigraphic uncertainties at 0.433 ± 0.025, 0.432 ± 0.037, 0.434 ± 0.048 in the 2π-438 
MTM analyses, and at 0.468 ± 0.002, 0.467 ± 0.003, 0.467 ± 0.006 in the REDFIT 439 
analyses (Table 1). The average S0-values of the 1000 simulations are respectively 440 
assessed for 5, 10, and 15% of stratigraphic uncertainties at 3.55x10-4 ± 0.13x10-4, 441 
3.58x10-4 ± 0.20x10-4, 3.61x10-4 ± 0.25x10-4 in the 2π-MTM analyses, and at 0.399 ± 442 
0.003, 0.402 ± 0.005, 0.407 ± 0.008 in the REDFIT analyses.  443 
 444 
 445 
6.2.2. The La Thure series 446 
At 5% uncertainty, the 2π-MTM spectrum of the La Thure series still exhibits 447 
significant frequencies at 39 m, 1.5 m and 1.1 m exceeding the 99% CL, and at 7.5 m, 448 
2.9 m, 2.2 m and 1.6 m exceeding the 95% CL (Fig. 10a). At 10% uncertainty, the 449 
1.1-m peak is much smoother, centred on a period of 1.2 m and only exceeds the 95% 450 
CL (Fig. 10b). The other periods of the precession at 1.5 and 1.6 m, only exceed the 451 
90 and 95% CL, respectively. The significant periods of the obliquity bands, at 2.2 452 
and 2.9 m show weaker powers than in the spectrum of the original series, but still 453 
exceed the 95% CL. At 15% uncertainty, the band of periods at 1.2 m is nearly 454 



entirely flattened and hardly distinguishable from the spectral background (Fig. 10c). 455 
In addition, all frequencies from the obliquity and the precession do not exceed the 456 
95% CL. The reduction in the significance levels in the precession and obliquity 457 
bands is the consequence of increasing loss in power of the spectral peaks in high 458 
frequencies. At 5% uncertainty, the average spectrum of the simulations is 459 
confounded to the spectrum of the original series from frequency 0 to 52% of the 460 
Nyquist frequency (Fig. 10d), while at 10 and 15% uncertainties, this range is 461 
restricted to 0 - 20% of the Nyquist frequency (Figs. 10e-f; Table 2). 462 
 463 
At 5% uncertainty, the REDFIT analysis still displays a significant period at 30-40 m 464 
exceeding the 99% CL, and a period at 2.3 m exceeding the 95% CL (Fig. 11a). The 465 
peak at 1.5 m does not exceed anymore the 90% CL, while the peaks at 1.1 m and 0.9 466 
m do not exceed anymore the 95% CL. At 10% uncertainty and 15% uncertainties, 467 
spectral peaks in the precession and the obliquity bands does not reach the 95% CL 468 
anymore. The tendency of the Lomb-Scargle analysis to produce high-power peaks in 469 
the high frequencies prevents from strong smoothing of the power spectrum at 5% 470 
uncertainty. However, at 10 and 15% uncertainties, all fluctuations of the power 471 
spectrum at frequencies higher than 53% Nyquist frequency are flattened and not 472 
distinguishable (Table 2). The significance level in the eccentricity band is still 473 
preserved in the average spectrum. At 10 and 15% uncertainty, the power spectrum 474 
displays spectral peaks with reduced powers compared to the spectrum of the original 475 
series, which impacts the significance levels at the obliquity and precession bands 476 
(Figs. 11d-f). At 5% uncertainty the REDFIT spectrum of the La Thure series remains 477 
practically unchanged compared to the spectrum of the original series from 0 to 58% 478 



Nyquist (Fig. 11d), while at 10 and 15% uncertainty this range is respectively 479 
restricted to 0 - 22% and 0 - 19% Nyquist frequency (Figs. 11e-f). 480 
 481 
The average autoregressive coefficients of the 1000 simulations are respectively 482 
assessed for 5, 10, and 15% of stratigraphic uncertainties at 0.658 ± 0.025, 0.653 ± 483 
0.029, 0.651 ± 0.033 in the 2π-MTM analyses, and at 0.406 ± 0.004, 0.405 ± 0.008, 484 
0.404 ± 0.013 in the REDFIT analyses (Table 1). The average S0-values of the 1000 485 
simulations are respectively assessed for 5, 10, and 15% of stratigraphic uncertainties 486 
at 1.67x10-3 ± 0.04x10-3, 1.67x10-3 ± 0.05x10-3, 1.68x10-3 ± 0.07x10-3 in the 2π-MTM 487 
analyses, and at 0.894 ± 0.011, 0.900 ± 0.019, 0.904 ± 0.008 in the REDFIT analyses. 488 
 489 
 490 
 491 
7. Discussion 492 
7.1. Comparison of the results between the two geological datasets 493 
In the 2π-MTM simulations, the spectral peaks tend to be smoothen at 5% of 494 
stratigraphic uncertainty from ~80% Nyquist frequency to the Nyquist frequency, 495 
which implies that taking at least 3 samples per cycle of interest should not smooth 496 
the spectral peaks in the frequency band targeted (e.g., the Milankovitch cycles) 497 
(Table 2). In the REDFIT simulations, the tendency of the spectrum to produce high-498 
power spectra in high frequencies even makes all the spectral peaks of the original 499 
spectrum still identifiable at 5% uncertainty. If a low level of stratigraphic uncertainty 500 
is maintained, practically all spectral peaks at frequencies below 80% Nyquist 501 
frequencies will be preserved. These thresholds dramatically decrease to 53% to 66% 502 
of Nyquist frequencies at 10% of stratigraphic uncertainty in all simulations, while it 503 



decreases to 42% to 53% of Nyquist frequency at 15% uncertainty. Thus, a medium 504 
level of stratigraphic uncertainty implies taking at least 4 samples per cycles of 505 
interest, while a high level of uncertainty implies taking at least 5 samples per cycle of 506 
interest. 507 
 508 
Comparisons between original and average simulated spectra show that at 5% 509 
uncertainty, both could be confounded from 0 to 27% of Nyquist frequency in the La 510 
Charce series and from 0 to 52% of Nyquist frequency in the La Thure series. At 10 511 
and 15% uncertainties, these range dramatically shift from 0 to 20-22% Nyquist 512 
frequency. Although differences exist in the variance of the average spectrum and in 513 
the frequency resolution between the 2π-MTM and the REDFIT analyses, both 514 
analyses show, for each series, the same range of frequencies in which simulated and 515 
original spectra could be confounded. These thresholds imply that taking 4-8 samples 516 
per cycle of interest should limit loss of power of the spectral peaks in the targeted 517 
bands at 5% uncertainty. At 10 and 15% uncertainty, taking at least 10 samples per 518 
cycle of interest should limit the loss of power in the targeted band. Limiting the loss 519 
of power in the frequencies of interest appears to be crucial because the average 520 
power of the confidence levels remain unchanged after applying the simulations. 521 
Simulations of distortions of the geological series smoothes the spectrum by 522 
distributing the power spectrum from the spectral peaks to the surrounding 523 
frequencies. The calculation of confidence levels in the MTM analyses is based on a 524 
moving median of the power spectrum performed over a broad range of frequencies 525 
(usually 1/5 of the total spectrum; Mann and Lees, 1996). Thus, when distorting the 526 
time series, the distribution of the power spectrum over a narrow range of frequencies 527 
does not change the overall median of the power spectrum calculated over 1/5 of the 528 



total spectrum, and thus does not change the average level of confidence levels after 529 
simulations. The effect of time-series distortions on the power of confidence levels is 530 
even smaller in the REDFIT analysis, in which the confidence levels are directly 531 
calculated on the time series itself and not on the spectrum (Mudelsee, 2002). The 532 
decrease of the power of the spectral peaks due to distortions of the geological series 533 
thus implies a decrease in the significance levels of the main cycles of the series. In 534 
case of low level of red noise, like in the La Charce series (Figs. 8-9), spectral 535 
smoothing and decrease in power in the precession band does not strongly impact the 536 
interpretations, since the significance level in the precession band still exceed the 99% 537 
CL, even after implementation of a level of 15% of stratigraphic uncertainty. 538 
However, in case of strong red noise, like in the La Thure series, the decrease of 539 
power in high frequencies have a strong impact on the significance levels after 540 
implementation of the simulations. At a medium level of stratigraphic uncertainty 541 
(10%), taking 10 samples per cycle of interest is needed to limit the loss of power in 542 
the cycles of interest and thus to limit the decrease in the level of significance of these 543 
targeted cycles.  544 
 545 
As an example, if the targeted range of frequencies are the Milankovitch cycles, the 546 
shortest period of interest are the precession cycles. A density of 1 sample 4 kyr 547 
should allow the detection of the spectral peaks in the precession band. A density of 548 
sampling of 1 sample per 2 kyr should then ensure the detection of significant peaks 549 
in the precession band, even in case of strong red noise and medium-to-high levels of 550 
stratigraphic uncertainy. The minimum density of sampling being dependant of the 551 
level of red noise and stratigraphic uncertainty, we deeply recommend to apply the 552 



simulations developed here to assess the impact of stratigraphic uncertainty to the 553 
identification of significant spectral peaks in the sedimentary record. 554 
 555 
 556 
7.2. In which case to apply this test? 557 
Uncertainties in the measurement of sample position can practically not be avoidable 558 
in outcrop conditions. The similarity between the topographic slope and the 559 
sedimentary dip, the absence or scarcity of marker beds, or the need to move laterally 560 
in a section trigger disturbances in the regularity of the sampling. In core sedimentary 561 
sequences, non-destructive automation measurements such as X-ray fluorescence, 562 
gamma-ray spectrometry or magnetic susceptibility should prevent from errors in the 563 
sample position. However, physical samplings (e.g. for geochemistry or mineralogy) 564 
are subject to small uncertainties, especially when the sampling resolution is very 565 
thin. Core sedimentary series can in addition be affected by expansion of sediment 566 
caused by release of gas or release of overburden pressure (Hagelberg et al., 1995). 567 
This test is thus useful for geologists who wish to run spectral analyses on 568 
sedimentary depth-series generated from outcropping sections or core samples. All 569 
analyses in this paper show that with higher uncertainty on the sample step, the low 570 
frequencies are increasingly affected. The relative change in power between the 571 
various tests all showed different patterns, and no general model could be deduced. 572 
The relative change in power at a given frequency depends on the dispersion of the 573 
sample step, on the method of spectral analysis, but also on the original sedimentary 574 
sequence to study. Each depth-series generated from this sampling can be seen as one 575 
of the 1000 random simulations. The test randomises the sample position from the 576 
original series, and produces a smooth version of the spectrum of the raw series. The 577 



generation of the raw series impacts on the test at frequencies having low powers (a 578 
small change in a weak power can trigger high values of relative change in power), 579 
and at high frequencies. The relative change in power does not depend on the size of 580 
the sample step itself, as the same proportion of the spectrum is affected for a given 581 
level of uncertainty. However, a control on the dispersion of the sample steps and the 582 
application of the test proposed here are needed to assess the dispersion of the sample 583 
step during the sampling procedure and the impact of this dispersion on the spectrum. 584 
The question is how to assess the dispersion of the sample step in the field? If the 585 
section is well bedded, we suggest applying the same procedure as we did for La 586 
Charce, i.e. sample position measured independently from the bed thickness 587 
measurements, and precise report of the sample positions on the sedimentary log of 588 
the series. Orbital forcing can also be detected in a monotonous thick marly section, 589 
showing no apparent bedding (e.g., Ghirardi et al., 2014; Matys Grygar et al., 2014). 590 
In that case, we rather suggest measuring several times the total thickness of the 591 
sequence to assess the potential dispersion of the sample steps. 592 
7.3. Implications for astronomical time scale and palaeoclimate reconstructions 593 
Linking sedimentary cycles to orbital cycles or assessing the quality of an orbital 594 
tuning procedure often require a good matching between the sedimentary period ratios 595 
and the orbital period ratios (Huang et al., 1993; Martinez et al., 2012; Meyers and 596 
Sageman, 2007) and/or the determination of the amplitude modulation of the orbital 597 
cycles (Meyers, 2015; Moiroud et al., 2012; Shackleton et al., 1995; Zeeden et al., 598 
2015). On average, stratigraphic uncertainties trigger a decrease of the power 599 
spectrum of the main significant frequencies while distributing the power spectrum to 600 
the surrounding frequencies. In the studied geological data, stratigraphic uncertainties 601 
mostly impact the precession band, by decreasing the power and significance levels of 602 



the spectral peaks and multiplying the main frequencies for each individual runs. The 603 
occurrence of low-power spectral peaks in the precession bands, and the fact that 604 
frequency ratios between the precession and lower frequencies does not match the 605 
orbital frequency ratios are quite common in the geological data (e.g., Ghirardi et al., 606 
2014; Huang et al., 2011; Thibault et al., 2016), and can be a consequence of 607 
stratigraphic uncertainties.  608 
Variations in the sedimentation rate produces a similar effect as stratigraphic 609 
uncertainties and can be modelled with the Monte-Carlo simulations applied in this 610 
study. As sedimentation rates always vary within a sedimentary series, any particular 611 
astronomical cycle can be recorded on various thicknesses of sediments, which in turn 612 
decreases the power of this astronomical cycle and distributes its power over a large 613 
range of frequencies (Weedon, 2003). Stratigraphic uncertainties add additional noise 614 
which blurs the spectra of sedimentary series at high frequencies. 615 
Astronomical tuning can help in removing the effects of stratigraphic uncertainties 616 
and variations in sedimentation rates (e.g., Hays et al., 1976; Huang et al., 2011; 617 
Zeeden et al., 2013). The identification of the repetition of any astronomical cycle and 618 
their attribution to the same duration removes the effects of distortion of the 619 
sedimentary series, and concentrates the variance of the power over several 620 
frequencies. Filtering a band of frequencies of interest can help in identifying the 621 
repetition of the cycle used for the astronomical calibration (e.g., Westerhold et al., 622 
2008; Thibault et al., 2016; De Vleeschouwer et al., 2015). Because of distortions of 623 
the sedimentary series, a filter, if designed very narrowly, can lead to a distortion of 624 
the actual amplitude and number of repetitions of the filtered frequency. This is 625 
particularly critical for the precession band, which has been proven to be sensitive to 626 
stratigraphic uncertainty (Figs. 8 to 11), and for which amplitude modulation is 627 



governed by eccentricity. The use of a wide- band filter, such as in the procedure of 628 
Zeeden et al. (2015), limits these biases and helps in a better reconstruction of the 629 
short wavelengths. Otherwise, a robust reconstruction of the amplitude modulation of 630 
the precession band requires limited biases of the power spectrum in the precession, 631 
which requires a good control on the sample position in the field. In addition, the 632 
simulations indicate that taking at least 4-10 samples per cycle should allow 633 
calculation of robust power spectra estimates in the respective cycle band (Table 1; 634 
Figs. 8-11). 635 
 636 
Also in the evaluation of the relative contribution of precession and obliquity-related 637 
climatic forcing, an accurate assessment of the respective spectral power is essential 638 
(Ghirardi et al., 2014; Latta et al., 2006; Martinez et al., 2013; Weedon et al., 2004). 639 
Notably, whenever obliquity cycles are expressed more manifestly compared to 640 
precession cycles, this has been interpreted as a reflection of important climate 641 
dynamics and feedback mechanisms at high latitudes (Ruddiman and McIntyre, 642 
1984), the build-up and decay of quasi-stable carbon reservoirs (Laurin et al., 2015), 643 
or direct obliquity forcing at tropical latitudes (Bosmans et al., 2015; Park and 644 
Oglesby, 1991). A robust evaluation of the relative contribution of precession and 645 
obliquity requires at least that no bias occurs from the generation of the depth-series, 646 
which includes the sampling procedure. This is particularly crucial in the case where 647 
the autoregressive coefficient of the red-noise background is high as in the La Thure 648 
series. Because of their low powers in the spectrum of the raw series, the spectral 649 
peaks related to the precession cycles become not significant at 10 to 15% 650 
uncertainties (Figs. 9-10). In that case, one can misleadingly interpret the absence of 651 
the record of the precession cycles in the sedimentary series while, the absence of 652 



significant high frequencies can simply be the consequence of spectral smoothing 653 
when increasing the level of stratigraphic uncertainty. Once again, a good control of 654 
the sample position accompanied by a high density of sampling will importantly 655 
improve interpretations of the relative contributions of the precession and obliquity on 656 
the spectrum, which will in turn help making accurate palaeoclimatic interpretations. 657 
 658 
8. Conclusion 659 
Errors made during the measurement of the stratigraphic position of a sample 660 
significantly affect the power spectrum of depth series. We present a method to assess 661 
the impact of such errors that is compatible with different techniques for spectral 662 
analysis. Our method is based on a Monte-Carlo procedure that randomises the 663 
sample steps of the time series, using a gamma distribution. Such a distribution 664 
preserves the stratigraphic order of samples, and allows controlling the average and 665 
the variance of the distribution of sample steps after randomisation. The simulations 666 
presented in this paper show that the gamma distribution of sample steps realistically 667 
simulates errors that are generally made during the measurement of sample positions. 668 
The three case studies presented in this paper all show a strong decrease in the power 669 
spectrum at high frequencies. Simulations indicate that the power spectrum can be 670 
completely smoothed for periods samples less than 3-4 times the average sample 671 
distance. Thus taking at least 3-4 samples per thinnest cycle of interest (e.g., 672 
precession cycles for the Milankovitch band) should preserve spectral peaks of this 673 
cycle. However, the decrease of power observed in a large portion of the spectrum 674 
implies a decrease in the significance level of the spectral peaks. Taking at least 4-10 675 
samples per thinnest cycle of interest should allow their significance level to be 676 
preserved, depending on the level of stratigraphic uncertainty and depending on the 677 



redness of the power spectrum. Robust reconstruction of the power spectrum in the 678 
entire Milankovitch band requires a robust control of the sample step in the field, and 679 
requires a high density of sampling. To avoid any dispersion of the power spectrum in 680 
the precession band, taking 10 samples per precession cycles appears to be a safe 681 
density of sampling. For lower resolution of sampling, it is recommended to apply 682 
gamma-law simulations to ensure that stratigraphic uncertainty few impact powers 683 
and significance levels of the targeted cycles. Gamma-law simulations can also be 684 
used to simulate the effect of variations in the sedimentation rate on insolation series, 685 
which should help in modelling the trasnfert from insolation series to sedimentary 686 
series. 687 
 688 
Appendix A: optimized linear interpolation 689 
When interpolating an unevenly sampled time-series to an even sample distance, part 690 
of amplitude is lost in the high frequencies because the position of the samples in the 691 
interpolated series do not necessarily correspond to the position of the maximums and 692 
minimums of the original time-series (Figs. A1a and b). Oversampling has been 693 
suggested to limit the loss of amplitude during the interpolation process (Hinnov et 694 
al., 2002). However, oversampling impacts the autoregressive coefficient when 695 
estimating the level of red noise in the spectrum background (Hinnov, 2016). The 696 
optimized linear interpolation is here designed to limit the loss of amplitude of high-697 
frequency cycles by minimizing the average misfit (M) of the MS values between the 698 
original and the resampled time series (Fig. A1c, Eq. A1): 699 
 700 
ܯ = ଵ

௡ ∗ ∑ หݏ௢௥௜[݅] − ௜௡௧௘௥௣[݅]ห௡௜ୀଵݏ   Eq. A1 701 
 702 



With: M is the average misfit between the values of the two curves 703 
 n is the number of points compared 704 
 sori is the original signal 705 
 sinterp is the resampled signal at the average sample distance of the original 706 
series 707 
 708 
This comparison is only possible if the depths (or ages) of sori[i] and sinterp[i] are the 709 
same. This is of course not the case between the original and the resampled time 710 
series (Fig. A1b), otherwise interpolation would not be necessary. To circumvent this 711 
problem, the original and the resampled time series are both linearly interpolated with 712 
a sample step equal to the maximum resolution by which the depths (or ages) are 713 
provided. For instance, in the case of the La Thure series, the depths are given with a 714 
resolution of 0.01 m, so that sori and sinterp are linearly interpolated at 0.01 m. This 715 
procedure does not change the shape of neither the original time series nor the time 716 
series resampled at the average sample distance (Fig. A1c). 717 
 718 
To test which resampled time series fits the best with the original time series, various 719 
depths are tested as starting points to resample the time at the average sample distance 720 
(Fig. A1d). The various scenarios of starting points tested increment by dx and have 721 
the following range: 722 
 723 
௦ܶ௧.௧௘௦௧ = ௦ܶ௧.௢௥௜: :ݔ݀ ( ௦ܶ௧.௢௥௜ + ݕ݋݉݀ −  Eq. A2 724  (ݔ݀

 725 
With,  Tst.test, the tested starting points of time series resampled at the average sample 726 

distance  727 



 Tst.ori, the starting point of the original time series 728 
 dmoy, the average sample distance of the original time series 729 
 dx, the resolution with which the depths (or ages) are given 730 
 731 
The best-fit curve is the one for which M is minimized. 732 
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Figure caption 894 

 895 
Fig. 1. Illustration of the problem. (a) Theoretical sedimentary log with position of 896 
samples in an ideal case where the samples are strictly equally distant. (b) Theoretical 897 
sedimentary log with position of samples in a common sampling pattern where all 898 
samples are not strictly equally distant. Here the error in the sample position is 899 
exaggerated for the purpose of the example. (c) The gamma-ray series from La 900 
Charce shown as if all samples were strictly equidistant (black curve), and as they are 901 
positioned in Martinez et al. (2013) (red curve). (d) Distribution of sample distances 902 
in case of ideal sampling of the La Charce series (all sample distances are fixed at 903 
0.20 m). (e) Distribution of sample distances in case of the La Charce series as 904 
published in Martinez et al. (2013). 905 
 906 



 907 
Fig. 2. Gamma probability density functions (PDF). All Gamma PDF’s have a 908 
positive support, which is a crucial characteristic to realistically simulate sample 909 
steps. The gamma density probability functions were generated with the Matlab 910 
gampdf function. 911 
 912 
  913 



914 Fig. 3. Effect of the gamma-law randomised sample distances on the 2π-MTM and 915 
Lomb-Scargle spectra of the series of sum of pure sinusoids. (a) and (b) Spectra of the 916 
series without sample step randomisation. (c) and (d) with 5% of stratigraphic 917 
uncertainty. (e) and (f) with 10% of stratigraphic uncertainty. (g) and (h) with 15% of 918 
stratigraphic uncertainty. For each simulation shown from (c) to (h), the grey areas 919 
represent the interval covering 95% of the simulations, while the red, orange and 920 
brown curves represent the average spectrum.  921 
  922 



 923 

 924 
Fig. 4. Relative change in power in the (a) 2π-MTM spectra, and (b) Lomb-Scargle 925 
spectra after applying the gamma-law simulations of distortion of the time series. The 926 
arrows indicate at which frequency (relatively to the Nyquist frequency) the change in 927 
power exceeds 50%.  928 



 929 Fig. 5. Detrending procedure of the gamma-ray series from the La Charce section. (a) 930 
Raw gamma-ray signal (black curve) with best-fit linear trend (red curve). (b) 931 
Gamma-ray series after subtraction of the linear trend and standardisation (average = 932 
0; standard deviation = 1). 933 
 934 
  935 



 936 

 937 
Fig. 6. Spectra of the La Charce and La Thure series before Monte-Carlo simulations 938 
of the sample distances. (a) 2π-MTM spectrum of the La Charce series. (b) REDFIT 939 
spectrum of the La Charce series. (c) 2π-MTM spectrum of the La Thure series. (d) 940 
REDFIT spectrum of the La Thure series. The main significant frequencies are given 941 
in meters. 942 
 943 
 944 
 945 
 946 
 947 



 948 
 949 

 950 
Fig. 7. Detrending procedure of the magnetic susceptibility (MS) series from the La 951 
Thure section. (a) Raw MS signal (black curve) with piecewise best-fit linear trend of 952 
the average (red curve). (b) MS series after subtraction of the piecewise linear trend 953 
(black curve), with instantaneous amplitude (green curve) and LOWESS regression of 954 
the instantaneous amplitude applied with a coefficient of 10% (red curve). (c) MS 955 
curve after dividing the MS series “average-detrended” by the LOWESS regression of 956 
the instantaneous amplitude, and after standardisation. 957 
 958 



 959 
Fig. 8. Effect of the gamma-law randomisation of the sample distances on the 2π-960 
MTM spectrum of the La Charce series. (a to c) 2π-MTM spectra with a level of 961 
stratigraphic uncertainty respectively fixed 5%, 10% and 15% of the average sample 962 
distance of the series. The grey area represents the interval covering 95% of the 963 
simulations. The average confidence levels are reported on the spectra with their 964 
respective areas covering 95% of the simulations. Main significant periods are 965 
indicated in meters with, in bold, their corresponding orbital cycles. E: 405-kyr 966 
eccentricity. (d to f) Superposition of the 2π-MTM spectra before randomisation (in 967 
black) and the average spectrum after the 1000 simulations (in red). The red dashed 968 
bands indicate the lowest frequency from which the spectrum is completely smoothen, 969 
so that no more frequency can be identified. The green dashed band represents the 970 
highest frequency in which the spectrum of the series before randomisation appears 971 
practically confounded to the spectrum after randomisation.  972 



 973 

 974 
Fig. 9. Effect of the gamma-law randomisation of the sample distances on the 975 
REDFIT spectrum of the La Charce series. (a to c) REDFIT spectra with a level of 976 
stratigraphic uncertainty respectively fixed 5%, 10% and 15% of the average sample 977 
distance of the series. The grey area represents the interval covering 95% of the 978 
simulations. The average confidence levels are reported on the spectra with their 979 
respective areas covering 95% of the simulations. Main significant periods are 980 
indicated in meters with, in bold, their corresponding orbital cycles. E: 405-kyr 981 
eccentricity. (d to f) Superposition of the REDFIT spectra before randomisation (in 982 
black) and the average spectrum after the 1000 simulations (in red). The red dashed 983 
bands indicate the lowest frequency from which the spectrum is completely smoothed, 984 
so that no more frequency can be identified. The green dashed band represents the 985 



highest frequency in which the spectrum of the series before randomisation appears 986 
practically confounded to the spectrum after randomisation.  987 

 988 
Fig. 10. Effect of the gamma-law randomisation of the sample distances on the 2π-989 
MTM spectrum of the La Thure series. (a to c) 2π-MTM spectra with a level of 990 
stratigraphic uncertainty respectively fixed 5%, 10% and 15% of the average sample 991 
distance of the series. The grey area represents the interval covering 95% of the 992 
simulations. The average confidence levels are reported on the spectra with their 993 
respective areas covering 95% of the simulations. Main significant periods are 994 
indicated in meters with, in bold, their corresponding orbital cycles. E: 405-kyr 995 
eccentricity; e: 100-kyr eccentricity. (d to f) Superposition of the 2π-MTM spectra 996 
before randomisation (in black) and the average spectrum after the 1000 simulations 997 
(in red). The red dashed bands indicate the lowest frequency from which the spectrum 998 



is completely smoothed, so that no more frequency can be identified. The green 999 
dashed band represents the highest frequency in which the spectrum of the series 1000 
before randomisation appears practically confounded to the spectrum after 1001 
randomisation. 1002 
 1003 

 1004 
Fig. 11. Effect of the gamma-law randomisation of the sample distances on the 1005 
REDFIT spectrum of the La Charce series. (a to c) REDFIT spectra with a level of 1006 
stratigraphic uncertainty respectively fixed 5%, 10% and 15% of the average sample 1007 
distance of the series. The grey area represents the interval covering 95% of the 1008 
simulations. The average confidence levels are reported on the spectra with their 1009 
respective areas covering 95% of the simulations. Main significant periods are 1010 
indicated in meters with, in bold, their corresponding orbital cycles. E: 405-kyr 1011 



eccentricity; e: 100-kyr eccentricity. (d to f) Superposition of the REDFIT spectra 1012 
before randomisation (in black) and the average spectrum after the 1000 simulations 1013 
(in red). The red dashed bands indicate the lowest frequency from which the spectrum 1014 
is completely smoothed, so that no more frequency can be identified. The green 1015 
dashed band represents the highest frequency in which the spectrum of the series 1016 
before randomisation appears practically confounded to the spectrum after 1017 
randomisation. 1018 
 1019 

 1020 



Fig. A1. Scheme of the procedure of the optimized linear interpolation of time series. 1021 
An example of application is shown for the La Thure section in Fig. A2. Differences 1022 
in the resulting spectrum between the best-fit and the worst-fit resampled time series 1023 
are displayed in this figure. Main differences in the spectra of the two cases are 1024 
observed in the middle and high frequencies. Compared to the worst-fit resampling, 1025 
the spectra of the best-fit resampling show decreased power and confidence levels in 1026 
the middle frequencies (from 0.2 to 0.7 cycles.m-1), while increased power and 1027 
confidence levels rather occur in the high frequencies (from 0.7 cycles.m-1 to the 1028 
Nyquist frequency). Fitting the best curve to the original time series thus impacts on 1029 
the calculation of the power spectrum and the confidence levels of the spectral peaks. 1030 
 1031 



 1032 
Fig. A2. Comparison of spectra of the resampled time series for the worst-fit case (a 1033 
and c), and for the best-fit case (b and d). Spectra (a) and (b) are calculated using the 1034 
2π -multi-taper method with confidence levels calculated using the method of Mann 1035 
and Lees (1996) with a Tukey’s end-point rule (Meyers, 2014). (c) and (d) show the 1036 
confidence levels compared to a red noise. Red arrows indicate the frequency at 1037 
which powers and confidence levels decrease from the worst-fit case to the best-fit 1038 
case. Green arrows display the opposite case. 1039 



 1040 
 1041 

    =0% =5% =10% =15% 
La Charce - MTM 

Autoregressive coefficient 0.440 0.433 ± 0.025 0.432 ± 0.037 0.434 ± 0.048 
Average power (x10-4) 3.54 3.55 ± 0.13 3.58 ± 0.20 3.61 ± 0.25 

La Charce - redfit 
Autoregressive coefficient 0.468 0.468 ± 0.002 0.467 ± 0.003 0.467 ± 0.006 

Average power 0.398 0.399 ± 0.003 0.402 ± 0.005 0.407 ± 0.008 
La Thure - MTM 

Autoregressive coefficient 0.657 0.658 ± 0.025 0.653 ± 0.029 0.651 ± 0.033 
Average power (x10-3) 1.67 1.67 ± 0.04 1.67 ± 0.05 1.68 ± 0.07 

La Thure - redfit 
Autoregressive coefficient 0.407 0.406 ± 0.004 0.405 ± 0.008 0.404 ± 0.013 

Average power 0.890 0.894 ± 0.011 0.900 ± 0.019 0.904 ± 0.027 
Table 1. Results of red-noise background estimates from the La Charce and the La Thure 1042 
series with the 2π-MTM and the REDFIT analyses. 1043 
 1044 

Level of stratigraphic uncertainty 
 5% 10% 15% 

  Highest frequency before smoothing 81% Nyquist 58% Nyquist 43% Nyquist 
La Charce equivalent number sample steps 2.5x 3.4x 4.7x 

MTM Highest frequency confounded spectra 27% Nyquist 19% Nyquist 18% Nyquist 
  equivalent number sample steps 7.4x 10.8x 11.3x 
  Highest frequency before smoothing / 58% Nyquist 42% Nyquist 
La Charce equivalent number sample steps / 3.4x 4.8x 

REDFIT Highest frequency confounded spectra 28% Nyquist 18% Nyquist 18% Nyquist 
  equivalent number sample steps 6.8x 10.9x 10.9x 
  Highest frequency before smoothing 83% Nyquist 66% Nyquist 52% Nyquist 

La Thure equivalent number sample steps 2.4x 3.0x 3.9x 
MTM Highest frequency confounded spectra 52% Nyquist 20% Nyquist 20% Nyquist 

  equivalent number sample steps 3.9x 10x 10x 
  Highest frequency before smoothing / 53% Nyquist 53% Nyquist 

La Thure equivalent number sample steps / 3.8x 3.8x 
REDFIT Highest frequency confounded spectra 52% Nyquist 22% Nyquist 20% Nyquist 

  equivalent number sample steps 3.9x 9.3x 10x% 
 1045 
Table 2. Synthesis of the results of highest frequencies before smoothing of the spectra 1046 
when applying the Monte-Carlo simulations, and of highest frequency in which the spectra 1047 
before and after simulation can be confounded.  1048 
 1049 


