We would like to take this opportunity to thank the editor and all reviewers for their thoughtful and constructive comments, from which our manuscript has greatly benefited. For the most part the changes that were made in response to the reviewer's comments are outline in the individual responses to reviewer's comments. All minor typos, rewording and changes to the figures have been made. Outlined below is a list of the major changes we have made to the manuscript and an instance where we found it was not possible to fulfill the request of the reviewer during revision of the manuscript.

Major issues addressed:

1) Presentation of other datasets

We have made considerable revisions to the introduction. Here, we now present the pre-existing $\delta^{11}B_{sw}$ records, focusing on the similarity between records. The discussion of these various records has been extended later in the manuscript in comparison to our new $\delta^{11}B_{sw}$. As with the introduction, we follow the referee's suggestion and the revised discussion section now clearly emphasises the similarity between the various records, building towards consensus. Only in the case of specific discrepancies between the records do we explore the differences in methodology between the $\delta^{11}B_{sw}$ reconstructions as a way to explain any of the differences.

2) More detailed discussion of uncertainties and modeling parameters.

The uncertainties used in the Monte Carlo simulation and the variables changed in the modeling studies have now been tabulated in order to improve the clarity in these sections of the manuscript. Included in the table of uncertainties is also a justification of the 2σ that we apply.

3) Simplifying the $\delta^{11}B_{sw}$ output and applying the most appropriate $\delta^{13}C/pH$ relationship

Reviewer 1 suggested that given the overlap in uncertainties between the different records we presented, it wasn't appropriate to recommend the use of one of our $\delta^{11}B_{sw}$ record over another. This valuable comment led us to re-think the presentation of our central argument with regard to the uncertainty of $\Delta pH/\Delta\delta^{13}C$ relationship and thereby, we think, both simplified and improved our study. We now present a single record that captures a broader range of different $\delta^{13}C/pH$ relationships than any of our

initial scenarios. In practical terms, this is done by applying a flat probability (ie. Equal rather than normally distributed) of ± 0.05 to the ΔpH estimate using the central $\Delta p H / \Delta \delta^{13} C$ slope of 0.175/‰ diagnosed from our extensive sensitivity tests using both the CYCLOPS and GENIE models. This nominal uncertainty is equivalent to the broad range of $\Delta p H/\Delta \delta^{13}C$ slopes of 0.14/‰ and 0.21/‰ – covering the vast majority of our model simulations and removing the need to present separate "slope scenarios". That is, because we have used a flat probability there is an equal likelihood of any value between about 0.14/‰ and 0.21/‰. To avoid confusion and given the evidence from our δ^{13} C data and modeling work we have also now discarded the hypothetical scenario where the pH gradient was assumed to have remained the same as modern. The second motivation for following this broad approach is that it is not possible to test the δ^{13} C/pH relationship at our specific sites as requested by reviewer 1, nor for the low latitudes. Currently pre-industrial surface water δ^{13} C data is only available for the North Atlantic >20°N (Olsen and Ninnemann, 2010). When a wider dataset of pre-industrial water column δ^{13} C is available in the future, it will be possible to refine our $\delta^{11}B_{sw}$ record. We now make this point explicitly.

4) Exploration of the smoothing parameter and the impact on the record

In order to test the dependence of the output record on the smoother we have undertaken a binning exercise where we have averaged our data over 8 Myr intervals. The calculated mean and two standard errors of the data in each interval show that the difference between the middle Miocene $\delta^{11}B_{sw}$ and modern is significant. The presence of the rise in $\delta^{11}B_{sw}$ across this interval in a number of other published records suggests that our record adds to the growing consensus on the evolution of $\delta^{11}B_{sw}$ in the Neogene.

- 1 A record of Neogene seawater δ^{11} B reconstructed from paired δ^{11} B
- 2 analyses on benthic and planktic foraminifera.
- Greenop Rosanna^{1,2*}, Hain, Mathis P.¹, Sosdian, Sindia M.³, Oliver, Kevin J.C.¹
- 5 Goodwin, Philip¹, Chalk, Thomas B.^{1,4}, Lear, Caroline H.³, Wilson, Paul A.¹, Foster,
 6 Gavin L.¹

7 ^{*}Corresponding author

- 8 ¹ <u>Ocean and Earth Science</u>, National Oceanography Centre Southampton, University
- 9 of Southampton, Waterfront Campus, European Way, Southampton SO14 3ZH, UK
- 10 ²School of Geography & Geosciences, Irvine Building, University of St Andrews,
- 11 North Street, St Andrews, KY16 9AL, UK
- 12 ³School of Earth & Ocean Sciences, Cardiff University, Cardiff, CF10 3AT, UK
- 13 ⁴ Department of Physical Oceanography, Woods Hole Oceanographic Institution,
- 14 Woods Hole, Massachusetts, USA
- 15

16 Abstract:

The boron isotope composition (δ^{11} B) of foraminiferal calcite, which reflects 17 18 seawater pH, is a well-established proxy for reconstructing past seawater carbonate 19 chemistry and, in the case of planktic foraminifera, past atmospheric CO₂. However, 20 to translate δ^{11} B measurements determined in calcareous fossils into pH we need to know the boron isotope composition of the seawater in which they grew ($\delta^{11}B_{sw}$). 21 22 While a number of $\delta^{11}B_{sw}$ reconstructions exist, <u>more work is needed to build</u> 23 confidence in our knowledge of this important parameter. Here we present a new 24 <u>Neogene</u> $\delta^{11}B_{sw}$ record based on the $\delta^{11}B$ difference between <u>paired measurements of</u> 25 planktic and benthic foraminifera and an estimate of the coeval water column pH 26 gradient derived from planktic/benthic δ^{13} C data, To underscore this approach we 27 present extensive tests using the CYCLOPS and GENIE carbon cycle models to 28 demonstrate that the planktic/benthic $\Delta pH/\Delta \delta^{13}C$ relationship is relatively insensitive 29 to ocean and carbon cycle changes. In keeping with previously published records, our

r.greenop 17/8/2016 17:50 Deleted: . r.greenop 5/9/2016 11:50 Deleted: Foster, G.L. ¹ , r.greenop 17/8/2016 17:50 Deleted: . r.greenop 5/9/2016 11:51 Formatted: Not Superscript/ Subscript r.greenop 17/8/2016 17:51 Deleted: planktic r.greenop 11/8/2016 14:13 Deleted: placo- atmospheric CO ₂ and r.greenop 5/9/2016 11:52 Deleted: parent r.greenop 8/6/2016 20:30 Deleted: the discrepancies between them reveals uncertainties and deficiencies that need to be addressed r.greenop 11/8/2016 14:18 Deleted: r.greenop 11/8/2016 14:18 Deleted: . r.greenop 11/8/2016 14:18 Deleted: we then r.greenop 11/8/2016 14:18 Deleted: we then r.greenop 11/8/2016 14:19 Deleted: calculate $\delta^{11}B_{sw}$ two different ways. One variant of our method assumes that the PH gradient between surface and deep has remained the same as today over the past 23
r.greenop 5/9/2016 11:50 Deleted: Foster, G.L. ¹ , r.greenop 17/8/2016 17:50 Deleted: . r.greenop 5/9/2016 11:51 Deleted: Hain, M.P. ¹ , r.greenop 17/8/2016 17:50 Deleted: . r.greenop 5/9/2016 11:51 Formatted: Not Superscript/ Subscript r.greenop 11/8/2016 14:13 Deleted: palaeo- atmospheric CO ₂ and r.greenop 5/9/2016 11:52 Deleted: parent r.greenop 8/6/2016 20:30 Deleted: the discrepancies between them reveals uncertainties and deficiencies that need to be addressed r.greenop 11/8/2016 14:18 Deleted: PH gradient r.greenop 11/8/2016 14:15 Deleted: we then r.greenop 11/8/2016 14:18 Deleted: We then r.greenop 11/8/2016 14:19 Deleted: We then r.greenop 11/8/2016 14:19 Deleted: We then r.greenop 11/8/2016 14:19 Deleted: we unenthod assumes that the pH gradient between surface and deep has
Deleted: Foster, G.L. ¹ , f.greenop 17/8/2016 17:50 Deleted: f.greenop 5/9/2016 11:51 Deleted: Hain, M.P. ¹ , f.greenop 17/8/2016 17:50 Deleted: f.greenop 17/8/2016 17:50 Deleted: f.greenop 17/8/2016 17:50 Deleted: f.greenop 17/8/2016 17:50 Deleted: f.greenop 17/8/2016 17:50 Deleted: f.greenop 17/8/2016 17:50 Deleted: f.greenop 17/8/2016 17:51 Deleted: f.greenop 17/8/2016 11:51 Formatted: Not Superscript/ Subscript f.greenop 17/8/2016 11:52 Deleted: palaeo- atmospheric CO ₂ and f.greenop 5/9/2016 11:52 Deleted: parent f.greenop 11/8/2016 20:30 Deleted: the discrepancies between them reveals uncertainties and deficiencies that need to be addressed f.greenop 11/8/2016 14:18 Deleted: PH gradient f.greenop 11/8/2016 14:15 Deleted: We then f.greenop 11/8/2016 14:19 Deleted: we then f.greenop 11/8/2016 14:19 f.greenop 11/8/2016 14:1
r.greenop 17/8/2016 17:50 Deleted: . r.greenop 5/9/2016 11:51 Deleted: Hain, M.P. ¹ , r.greenop 17/8/2016 17:50 Deleted: . r.greenop 5/9/2016 11:51 Formatted: Not Superscript/ Subscript r.greenop 17/8/2016 17:51 Deleted: planktic r.greenop 11/8/2016 14:13 Deleted: palaeo- atmospheric CO ₂ and r.greenop 5/9/2016 11:52 Deleted: parent r.greenop 8/6/2016 20:30 Deleted: the discrepancies between them reveals uncertainties and deficiencies that need to be addressed r.greenop 11/8/2016 14:18 Deleted: PH gradient r.greenop 11/8/2016 14:15 Deleted: we then r.greenop 11/8/2016 14:18 Deleted: We then r.greenop 11/8/2016 14:19 Deleted: we then r.greenop 11/8/2016 14:19 Deleted: we then r.greenop 11/8/2016 14:19 Deleted: we then r.greenop 11/8/2016 14:19 Deleted: we then r.greenop 11/8/2016 14:19
Deleted: . r.greenop 5/9/2016 11:51 Deleted: Hain, M.P. ¹ , r.greenop 17/8/2016 17:50 Deleted: . r.greenop 5/9/2016 11:51 Formatted: Not Superscript/ Subscript r.greenop 17/8/2016 11:51 Deleted: planktic r.greenop 11/8/2016 14:13 Deleted: palaeo- atmospheric CO ₂ and r.greenop 5/9/2016 11:52 Deleted: parent r.greenop 8/6/2016 20:30 Deleted: the discrepancies between them reveals uncertainties and deficiencies that need to be addressed r.greenop 11/8/2016 14:18 Deleted: PH gradient r.greenop 11/8/2016 14:18 Deleted: between surface and deep water r.greenop 11/8/2016 14:18 Deleted: We then r.greenop 11/8/2016 14:19 Deleted: calculate $\delta^{11}B_{sw}$ two different ways. One variant of our method assumes that the pH gradient between surface and deep has
r.greenop 5/9/2016 11:51 Deleted: Hain, M.P. ¹ , r.greenop 17/8/2016 17:50 Deleted: . r.greenop 17/8/2016 11:51 Formatted: Not Superscript/ Subscript r.greenop 17/8/2016 11:51 Deleted: planktic r.greenop 11/8/2016 14:13 Deleted: palaeo- atmospheric CO ₂ and r.greenop 5/9/2016 11:52 Deleted: parent r.greenop 8/6/2016 20:30 Deleted: the discrepancies between them reveals uncertainties and deficiencies that need to be addressed r.greenop 11/8/2016 14:18 Deleted: PH gradient r.greenop 11/8/2016 14:15 Deleted: we then r.greenop 11/8/2016 14:18 Deleted: We then r.greenop 11/8/2016 14:19 Deleted: we then
Deleted: Hain, M.P. ¹ , r.greenop 17/8/2016 17:50 Deleted: r.greenop 17/8/2016 17:50 Deleted: r.greenop 17/8/2016 17:50 Deleted: r.greenop 17/8/2016 17:50 Deleted: r.greenop 17/8/2016 17:50 Deleted: r.greenop 17/8/2016 17:50 Deleted: r.greenop 5/9/2016 11:51 Formatted: Not Superscript/ Subscript r.greenop 17/8/2016 17:51 Deleted: planktic r.greenop 11/8/2016 14:13 Deleted: palaeo- atmospheric CO ₂ and r.greenop 5/9/2016 11:52 Deleted: parent r.greenop 8/6/2016 20:30 Deleted: the discrepancies between them reveals uncertainties and deficiencies that need to be addressed f.greenop 11/8/2016 14:18 Deleted: r.greenop 11/8/2016 14:18 Deleted: PH gradient f.greenop 11/8/2016 14:15 Deleted: between surface and deep water f.greenop 11/8/2016 14:18 Deleted: We then f.greenop 11/8/2016 14:19 Deleted: We then f.greenop 11/8/2016 14:19 Deleted: calculate $\delta^{11}B_{sw}$ two different ways. One variant of our method assumes that the pH gradient between surface and deep has
r.greenop 17/8/2016 17:50Deleted:r.greenop 17/8/2016 17:51Deleted:r.greenop 17/8/2016 11:51Formatted: Not Superscript/ Subscriptr.greenop 11/8/2016 14:13Deleted: plankticr.greenop 5/9/2016 11:52Deleted: parentr.greenop 8/6/2016 20:30Deleted: the discrepancies between them reveals uncertainties and deficiencies that need to be addressedr.greenop 11/8/2016 14:18Deleted:Deleted: PH gradientr.greenop 11/8/2016 14:15Deleted: between surface and deep waterr.greenop 11/8/2016 14:18Deleted: We thenr.greenop 11/8/2016 14:19Deleted: Calculate δ ¹¹ B _{sw} two different ways. One variant of our method assumes that the pH gradient between surface and deep has
Deleted: . r.greenop 17/8/2016 17:50 Deleted: . r.greenop 17/8/2016 11:51 Formatted: Not Superscript/ Subscript r.greenop 17/8/2016 17:51 Deleted: planktic r.greenop 11/8/2016 14:13 Deleted: palaeo- atmospheric CO ₂ and r.greenop 5/9/2016 11:52 Deleted: parent r.greenop 8/6/2016 20:30 Deleted: the discrepancies between them reveals uncertainties and deficiencies that need to be addressed r.greenop 11/8/2016 14:18 Deleted: PH gradient r.greenop 11/8/2016 14:15 Deleted: between surface and deep water r.greenop 11/8/2016 14:18 Deleted: We then r.greenop 11/8/2016 14:19 Deleted: calculate $\delta^{11}B_{sw}$ two different ways. One variant of our method assumes that the pH gradient between surface and deep has
r.greenop 17/8/2016 17:50 Deleted: . r.greenop 17/8/2016 17:50 Deleted: . r.greenop 17/8/2016 17:50 Deleted: . r.greenop 17/8/2016 17:50 Deleted: . r.greenop 5/9/2016 11:51 Formatted: Not Superscript/ Subscript r.greenop 17/8/2016 17:51 Deleted: planktic r.greenop 11/8/2016 14:13 Deleted: palaeo- atmospheric CO ₂ and r.greenop 5/9/2016 11:52 Deleted: parent f.greenop 8/6/2016 20:30 Deleted: the discrepancies between them reveals uncertainties and deficiencies that need to be addressed f.greenop 11/8/2016 14:18 Deleted: PH gradient f.greenop 11/8/2016 14:15 Deleted: between surface and deep water f.greenop 11/8/2016 14:18 Deleted: We then f.greenop 11/8/2016 14:19 Deleted: Calculate $\delta^{11}B_{sw}$ two different ways. One variant of our method assumes that the pH gradient between surface and deep has
Deleted: . r.greenop 17/8/2016 17:50 Deleted: . r.greenop 17/8/2016 17:50 Deleted: . r.greenop 17/8/2016 17:50 Deleted: . r.greenop 5/9/2016 11:51 Formatted: Not Superscript/ Subscript r.greenop 17/8/2016 17:51 Deleted: planktic r.greenop 11/8/2016 14:13 Deleted: planktic r.greenop 11/8/2016 11:52 Deleted: parent r.greenop 8/6/2016 20:30 Deleted: the discrepancies between them reveals uncertainties and deficiencies that need to be addressed r.greenop 11/8/2016 14:18 Deleted: f.greenop 11/8/2016 14:18 Deleted: pH gradient r.greenop 11/8/2016 14:18 Deleted: between surface and deep water r.greenop 11/8/2016 14:18 Deleted: We then r.greenop 11/8/2016 14:19 Deleted: calculate $\delta^{11}B_{sw}$ two different ways. One variant of our method assumes that the pH gradient between surface and deep has
r.greenop 17/8/2016 17:50 Deleted: . r.greenop 17/8/2016 17:50 Deleted: . r.greenop 17/8/2016 17:50 Deleted: . r.greenop 17/8/2016 17:50 Deleted: . r.greenop 17/8/2016 17:51 Deleted: planktic r.greenop 17/8/2016 17:51 Deleted: planktic r.greenop 11/8/2016 14:13 Deleted: palaeo- atmospheric CO_2 and r.greenop 5/9/2016 11:52 Deleted: parent r.greenop 8/6/2016 20:30 Deleted: the discrepancies between them reveals uncertainties and deficiencies that need to be addressed r.greenop 11/8/2016 14:18 Deleted: r.greenop 5/9/2016 11:53 Deleted: pH gradient r.greenop 11/8/2016 14:15 Deleted: between surface and deep water r.greenop 11/8/2016 14:18 Deleted: We then r.greenop 11/8/2016 14:19 Deleted: calculate $\delta^{11}B_{sw}$ two different ways. One variant of our method assumes that the pH gradient between surface and deep has
Deleted: . r.greenop 17/8/2016 17:50 Deleted: . r.greenop 17/8/2016 17:50 Deleted: . r.greenop 5/9/2016 11:51 Formatted: Not Superscript/ Subscript r.greenop 17/8/2016 17:51 Deleted: planktic r.greenop 11/8/2016 14:13 Deleted: planktic r.greenop 11/8/2016 14:13 Deleted: parent r.greenop 8/9/2016 11:52 Deleted: he discrepancies between them reveals uncertainties and deficiencies that need to be addressed r.greenop 11/8/2016 14:18 Deleted: f.greenop 5/9/2016 11:53 Deleted: pH gradient r.greenop 11/8/2016 14:15 Deleted: between surface and deep water r.greenop 11/8/2016 14:18 Deleted: We then r.greenop 11/8/2016 14:19 Deleted: calculate $\delta^{11}B_{sw}$ two different ways. One variant of our method assumes that the pH gradient between surface and deep has
r.greenop 17/8/2016 17:50 Deleted: . r.greenop 17/8/2016 17:50 Deleted: . r.greenop 5/9/2016 11:51 Formatted: Not Superscript/ Subscript r.greenop 17/8/2016 17:51 Deleted: planktic r.greenop 17/8/2016 14:13 Deleted: palaeo- atmospheric CO ₂ and r.greenop 5/9/2016 11:52 Deleted: parent r.greenop 8/6/2016 20:30 Deleted: the discrepancies between them reveals uncertainties and deficiencies that need to be addressed f.greenop 11/8/2016 14:18 Deleted: f.greenop 5/9/2016 11:53 Deleted: pH gradient f.greenop 11/8/2016 14:15 Deleted: between surface and deep water f.greenop 11/8/2016 14:18 Deleted: We then f.greenop 11/8/2016 14:19 Deleted: calculate $\delta^{11}B_{sw}$ two different ways. One variant of our method assumes that the pH gradient between surface and deep has
Deleted: . r.greenop 17/8/2016 17:50 Deleted: . r.greenop 5/9/2016 11:51 Formatted: Not Superscript/ Subscript r.greenop 17/8/2016 17:51 Deleted: planktic r.greenop 11/8/2016 14:13 Deleted: palaeo- atmospheric CO ₂ and r.greenop 5/9/2016 11:52 Deleted: palaeo- atmospheric Subscript r.greenop 8/6/2016 20:30 Deleted: the discrepancies between them reveals uncertainties and deficiencies that need to be addressed r.greenop 11/8/2016 14:18 Deleted: r.greenop 5/9/2016 11:53 Deleted: pH gradient r.greenop 11/8/2016 14:15 Deleted: between surface and deep water r.greenop 11/8/2016 14:18 Deleted: We then r.greenop 11/8/2016 14:19 Deleted: calculate δ ¹¹ B _{sw} two different ways. One variant of our method assumes that the pH gradient between surface and deep has
Deleted: . r.greenop 5/9/2016 11:51 Formatted: Not Superscript/ Subscript r.greenop 17/8/2016 17:51 Deleted: planktic r.greenop 11/8/2016 14:13 Deleted: palaeo- atmospheric CO ₂ and r.greenop 5/9/2016 11:52 Deleted: parent r.greenop 8/6/2016 20:30 Deleted: the discrepancies between them reveals uncertainties and deficiencies that need to be addressed r.greenop 11/8/2016 14:18 Deleted: r.greenop 5/9/2016 11:53 Deleted: pH gradient r.greenop 11/8/2016 14:15 Deleted: between surface and deep water r.greenop 11/8/2016 14:18 Deleted: We then r.greenop 11/8/2016 14:19 Deleted: calculate δ ¹¹ B _{sw} two different ways. One variant of our method assumes that the pH gradient between surface and deep has
Deleted: . r.greenop 5/9/2016 11:51 Formatted: Not Superscript/ Subscript r.greenop 17/8/2016 17:51 Deleted: planktic r.greenop 11/8/2016 14:13 Deleted: palaeo- atmospheric CO ₂ and r.greenop 5/9/2016 11:52 Deleted: parent r.greenop 8/6/2016 20:30 Deleted: the discrepancies between them reveals uncertainties and deficiencies that need to be addressed r.greenop 11/8/2016 14:18 Deleted: r.greenop 5/9/2016 11:53 Deleted: pH gradient r.greenop 11/8/2016 14:15 Deleted: between surface and deep water r.greenop 11/8/2016 14:18 Deleted: We then r.greenop 11/8/2016 14:19 Deleted: calculate δ ¹¹ B _{sw} two different ways. One variant of our method assumes that the pH gradient between surface and deep has
Formatted: Not Superscript/ Subscript r.greenop 17/8/2016 17:51 Deleted: planktic r.greenop 11/8/2016 14:13 Deleted: palaeo- atmospheric CO ₂ and r.greenop 5/9/2016 11:52 Deleted: parent r.greenop 8/6/2016 20:30 Deleted: the discrepancies between them reveals uncertainties and deficiencies that need to be addressed r.greenop 11/8/2016 14:18 Deleted: r.greenop 5/9/2016 11:53 Deleted: pH gradient r.greenop 11/8/2016 14:15 Deleted: between surface and deep water r.greenop 11/8/2016 14:18 Deleted: We then r.greenop 11/8/2016 14:19 Deleted: calculate δ ¹¹ B _{sw} two different ways. One variant of our method assumes that the pH gradient between surface and deep has
r.greenop 17/8/2016 17:51Deleted: plankticr.greenop 11/8/2016 14:13Deleted: palaco- atmospheric CO2 andr.greenop 5/9/2016 11:52Deleted: parentr.greenop 8/6/2016 20:30Deleted: the discrepancies between themreveals uncertainties and deficiencies that needto be addressedr.greenop 11/8/2016 14:18Deleted:r.greenop 5/9/2016 11:53Deleted: pH gradientr.greenop 11/8/2016 14:15Deleted: between surface and deep waterr.greenop 11/8/2016 14:18Deleted: We thenr.greenop 11/8/2016 14:19Deleted: calculate $\delta^{11}B_{sw}$ two differentways. One variant of our method assumes thatthe pH gradient between surface and deep has
Deleted: planktic f.greenop 11/8/2016 14:13 Deleted: palaeo- atmospheric CO ₂ and f.greenop 5/9/2016 11:52 Deleted: parent f.greenop 8/6/2016 20:30 Deleted: the discrepancies between them reveals uncertainties and deficiencies that need to be addressed f.greenop 11/8/2016 14:18 Deleted: f.greenop 11/8/2016 14:15 Deleted: pH gradient f.greenop 11/8/2016 14:15 Deleted: between surface and deep water f.greenop 11/8/2016 14:18 Deleted: We then f.greenop 11/8/2016 14:19 Deleted: calculate δ ¹¹ B _{sw} two different ways. One variant of our method assumes that the pH gradient between surface and deep has
r.greenop 11/8/2016 14:13 Deleted: palaeo- atmospheric CO ₂ and r.greenop 5/9/2016 11:52 Deleted: parent r.greenop 8/6/2016 20:30 Deleted: the discrepancies between them reveals uncertainties and deficiencies that need to be addressed r.greenop 11/8/2016 14:18 Deleted: r.greenop 5/9/2016 11:53 Deleted: pH gradient r.greenop 11/8/2016 14:15 Deleted: between surface and deep water r.greenop 11/8/2016 14:18 Deleted: We then r.greenop 11/8/2016 14:19 Deleted: calculate δ ¹¹ B _{sw} two different ways. One variant of our method assumes that the pH gradient between surface and deep has
Deleted: palaeo- atmospheric CO ₂ and r.greenop 5/9/2016 11:52 Deleted: parent r.greenop 8/6/2016 20:30 Deleted: the discrepancies between them reveals uncertainties and deficiencies that need to be addressed r.greenop 11/8/2016 14:18 Deleted: r.greenop 5/9/2016 11:53 Deleted: pH gradient r.greenop 11/8/2016 14:15 Deleted: between surface and deep water r.greenop 11/8/2016 14:18 Deleted: We then r.greenop 11/8/2016 14:19 Deleted: calculate δ ¹¹ B _{sw} two different ways. One variant of our method assumes that the pH gradient between surface and deep has
r.greenop 5/9/2016 11:52 Deleted: parent r.greenop 8/6/2016 20:30 Deleted: the discrepancies between them reveals uncertainties and deficiencies that need to be addressed r.greenop 11/8/2016 14:18 Deleted: r.greenop 5/9/2016 11:53 Deleted: pH gradient r.greenop 11/8/2016 14:15 Deleted: between surface and deep water r.greenop 11/8/2016 14:18 Deleted: We then r.greenop 11/8/2016 14:19 Deleted: calculate δ ¹¹ B _{sw} two different ways. One variant of our method assumes that the pH gradient between surface and deep has
Deleted: parent r.greenop 8/6/2016 20:30 Deleted: the discrepancies between them reveals uncertainties and deficiencies that need to be addressed r.greenop 11/8/2016 14:18 Deleted: r.greenop 5/9/2016 11:53 Deleted: pH gradient r.greenop 11/8/2016 14:15 Deleted: between surface and deep water r.greenop 11/8/2016 14:18 Deleted: We then r.greenop 11/8/2016 14:19 Deleted: calculate δ ¹¹ B _{sw} two different ways. One variant of our method assumes that the pH gradient between surface and deep has
r.greenop 8/6/2016 20:30 Deleted: the discrepancies between them reveals uncertainties and deficiencies that need to be addressed r.greenop 11/8/2016 14:18 Deleted: r.greenop 5/9/2016 11:53 Deleted: r.greenop 11/8/2016 14:15 Deleted: between surface and deep water r.greenop 11/8/2016 14:15 Deleted: between surface and deep water r.greenop 11/8/2016 14:18 Deleted: We then r.greenop 11/8/2016 14:19 Deleted: calculate δ ¹¹ B _{sw} two different ways. One variant of our method assumes that the pH gradient between surface and deep has
Deleted: the discrepancies between them reveals uncertainties and deficiencies that need to be addressed r.greenop 11/8/2016 14:18 Deleted: r.greenop 5/9/2016 11:53 Deleted: pH gradient r.greenop 11/8/2016 14:15 Deleted: between surface and deep water r.greenop 11/8/2016 14:18 Deleted: We then r.greenop 11/8/2016 14:19 Deleted: calculate δ ¹¹ B _{sw} two different ways. One variant of our method assumes that the pH gradient between surface and deep has
reveals uncertainties and deficiencies that need to be addressed r.greenop 11/8/2016 14:18 Deleted: r.greenop 5/9/2016 11:53 Deleted: pH gradient r.greenop 11/8/2016 14:15 Deleted: between surface and deep water r.greenop 11/8/2016 14:18 Deleted: We then r.greenop 11/8/2016 14:19 Deleted: calculate δ ¹¹ B _{sw} two different ways. One variant of our method assumes that the pH gradient between surface and deep has
r.greenop 11/8/2016 14:18 Deleted: r.greenop 5/9/2016 11:53 Deleted: pH gradient r.greenop 11/8/2016 14:15 Deleted: between surface and deep water r.greenop 11/8/2016 14:18 Deleted: We then r.greenop 11/8/2016 14:19 Deleted: calculate δ ¹¹ B _{sw} two different ways. One variant of our method assumes that the pH gradient between surface and deep has
Deleted: r.greenop 5/9/2016 11:53 Deleted: pH gradient r.greenop 11/8/2016 14:15 Deleted: between surface and deep water r.greenop 11/8/2016 14:18 Deleted: We then r.greenop 11/8/2016 14:19 Deleted: calculate δ ¹¹ B _{sw} two different ways. One variant of our method assumes that the pH gradient between surface and deep has
r.greenop 5/9/2016 11:53 Deleted: pH gradient r.greenop 11/8/2016 14:15 Deleted: between surface and deep water r.greenop 11/8/2016 14:18 Deleted: We then r.greenop 11/8/2016 14:19 Deleted: calculate δ ¹¹ B _{sw} two different ways. One variant of our method assumes that the pH gradient between surface and deep has
Deleted: pH gradient r.greenop 11/8/2016 14:15 Deleted: between surface and deep water r.greenop 11/8/2016 14:18 Deleted: We then r.greenop 11/8/2016 14:19 Deleted: calculate δ ¹¹ B _{sw} two different ways. One variant of our method assumes that the pH gradient between surface and deep has
r.greenop 11/8/2016 14:15 Deleted: between surface and deep water r.greenop 11/8/2016 14:18 Deleted: We then r.greenop 11/8/2016 14:19 Deleted: calculate $\delta^{11}B_{sw}$ two different ways. One variant of our method assumes that the PH gradient between surface and deep has
Deleted: between surface and deep water r.greenop 11/8/2016 14:18 Deleted: We then r.greenop 11/8/2016 14:19 Deleted: calculate $\delta^{11}B_{sw}$ two different ways. One variant of our method assumes that the pH gradient between surface and deep has
r.greenop 11/8/2016 14:18 Deleted: We then r.greenop 11/8/2016 14:19 Deleted: calculate $\delta^{11}B_{sw}$ two different ways. One variant of our method assumes that the pH gradient between surface and deep has
Deleted: We then r.greenop 11/8/2016 14:19 Deleted: calculate $\delta^{11}B_{sw}$ two different ways. One variant of our method assumes that the pH gradient between surface and deep has
r.greenop 11/8/2016 14:19 Deleted: calculate $\delta^{11}B_{sw}$ two different ways. One variant of our method assumes that the pH gradient between surface and deep has
Deleted: calculate $\delta^{11}B_{sw}$ two different ways. One variant of our method assumes that the pH gradient between surface and deep has
ways. One variant of our method assumes that the pH gradient between surface and deep has
the pH gradient between surface and deep has
Ma; the other uses the δ^{13} C gradient between
surface and deep
r.greenop 11/8/2016 14:20
Deleted: to represent change in the pH

Deleted: to represent change in the pH gradient through time. The results of these two methods of calculating $\delta^{11}B_{ww}$ are broadly consistency with each other, however, based on extensive carbon cycle modelling using CYCLOPS and GENIE we favour the $\delta^{13}C$ gradient method.

r.greenop 8/6/20 Deleted: In

- 63 reconstruction <u>suggests that $\delta^{11}B_{sw}$ was ~ 37.5 % during the early and middle</u>
- 64 Miocene and rapidly increased from ~12 to 5 Ma to reach a plateau near the modern
- 65 value of 39.61 %, A similar pattern of change is evident in the seawater composition
- 66 of the Mg, Li and Ca stable isotope systems. Concurrent shifts in the seawater
- 67 isotopic composition of all four of these elements during the late Miocene<u>are</u>
- 68 suggestive of a common forcing mechanism. Based on the observed direction of
- 69 change we hypothesise that an increase in secondary mineral formation during
- 70 continental weathering may have affected the isotopic composition of the riverine
- 71

72 **1. Introduction**

input to the ocean since ~12-15 Ma.,

73	Key to determining the relationship between CO_2 and climate in the geological past is
74	the calculation of reliable estimates of absolute CO_2 through time. In recent years the
75	boron isotope composition (δ^{11} B) of foraminiferal calcite has become <u>a high-profile</u>
76	tool, for reconstructing CO ₂ beyond the last 800 kyrs and throughout the Cenozoic Era
77	(Foster, 2008; Hönisch et al., 2009; Pearson et al., 2009; Bartoli et al., 2009; Foster et
78	al., 2012; Badger et al., 2013; Henehan et al., 2013; Greenop et al., 2014; Martínez-
79	Botí, et al., 2015a). Yet long-term change in the boron isotope composition of
80	seawater ($\delta^{11}B_{sw}$) is <u>currently</u> poorly constrained and represents a major source of the
81	uncertainty associated with δ^{11} B-determined CO ₂ estimates (e.g. Pearson et al., 2009).
82	In the modern ocean boron is a conservative element with a spatially invariant
83	isotope ratio (39.61‰; Foster et al., 2010), but this value is subject to change through
84	geological time. The residence time of boron in the ocean is estimated to lie between
85	11 and 17 Myrs (Lemarchand et al., 2000). Therefore we can expect the uncertainty
86	associated with $\delta^{11}B_{\scriptscriptstyle sw}$ to be an important factor in CO_2 estimates beyond the late
87	Pliocene (~ 4-5 Ma, Palmer et al., 1998; Lemarchand et al., 2000; Pearson et al.,
88	2009; Foster et al., 2012).
89	The ocean boron budget and its isotopic composition are controlled by a number of
90	inputs and outputs (Fig. 1). However, because the magnitude of the boron fluxes

- 91 between land, the ocean and the atmosphere in the modern are still poorly
- 92 understood, the residence time and changes in both concentration ([B]_{sw}) and isotopic
- 93 composition ($\delta^{11}B_{sw}$) through time remain uncertain. The main inputs of B into the

r.greenop 21/7/2016 10:40 **Deleted:** favoured $\delta^{11}B_{sw}$ r.greenop 8/6/2016 20:31 **Deleted:** , $\delta^{11}B_{sw}$ r.greenop 11/8/2016 14:20 Deleted: is around 2 % lower than today at r.greenop 11/8/2016 14:20 Deleted: and r.greenop 11/8/2016 14:21 Deleted: increases to the modern value (39.61 ‰) by ~ 5 Ma r.greenop 11/8/2016 14:21 Deleted: of three other stable isotope systems, r.greenop 11/8/2016 14:23 Deleted: , r.greenop 11/8/2016 14:24 Deleted: suggest a common forcing mechanism. We hypothesise the most likely cause of these shifts is a change in the isotopic composition of the riverine input, potentially driven by an increase in secondary mineral formation since ~15 Ma. nop 5/9/2016 16:24 Deleted: one of the most commonly used r.greenop 5/9/2016 16:25 Deleted: s r.greenop 6/9/2016 11:32 Deleted: to r.greenop 15/6/2016 21:25 Deleted: ì r.greenop 15/6/2016 21:26

r.greenop 26/7/2016 19:37 Deleted: 2

Deleted: ì

115	ocean are silicate weathering delivered to the ocean by rivers (Lemarchand et al.,		
116	2000, hydrothermal vents (You et al., 1993) and fluid expelled from accretionary		r groopon 26/7/2016 10:27
117	prisms (Smith et al., 1995). The major <u>Joss terms</u> are oceanic crust alteration (Smith	\square	r.greenop 26/7/2016 19:37 Deleted: 2, hydrothermal vents (Y [1]
118	et al., 1995), adsorption onto sediments (Spivack and Edmond, 1987) and co-		
119	precipitation into carbonates (Hemming and Hanson, 1992). In case of all three	//	
120	outputs, the light ¹⁰ B isotope is preferentially removed relative to ¹¹ B, such that the	/	
121	seawater $^{11}_{\star}B/^{10}_{\star}B$ ratio ($\delta^{11}B_{sw}$, 39.61‰) is significantly greater than that of the		r groopon 11/9/2016 14:20
122	cumulative inputs ($\delta^{11}B$ of $\sim 10.4\%$; Lemarchand et al., 2000). Our understanding of		r.greenop 11/8/2016 14:29 Formatted[2]
123	the modern boron fluxes outlined above, and illustrated in Fig. 1, implies a significant		r.greenop 11/8/2016 14:27 Deleted: such that seawater is isotopically
124	imbalance between inputs and outputs and consequently the poorly constrained		heavier (39.61‰) than the inputs (which average at 10.4‰)Our understandin[3]
125	ocean-atmosphere boron fluxes may also be an important part of the ocean's modern		
126	boron mass balance, (Park and Schlesinger, 2002). In the context of this study,	/	
127	however, we follow Lemarchand et al., (2000) and assume atmospheric fluxes are		
128	unlikely to have varied significantly on geological timescales and therefore will not		
129	be discussed further in reference to the Neogene record.		
130 131	Unlike many other isotopic systems (e.g. $\frac{\delta^7 \text{Li}_{sw}}{\delta^{26} \text{Mg}_{sw}}, \frac{\delta^{44/40} \text{Ca}_{sw}}{\delta^{87} \text{Sr}/86}$) to date		r.greenop 11/8/2016 14:59
132	no archive has been discovered that simply records unaltered $\delta^{11}B_{sw}$. This is a result		Formatted: Space After: 12 pt, No
133	of the pH _{-dependent boron speciation in seawater upon which the $\delta^{11}B$-pH proxy is}		widow/orphan control, Don't adjust space between Latin and Asian text, Don't adjust space between Asian text and numbers
134	based (<u>Hemming & Hanson 1992</u>) that imparts a pH dependency on the δ^{11} B of all	M	space between Asian text and numbers
135	marine precipitates so far examined. Empirical reconstructions of $\delta^{11}B_{\scriptscriptstyle sw}$ must	\mathbb{N}	r.greenop 11/8/2016 14:38 Formatted [4]
136	therefore use "indirect" approaches. So far four approaches have been applied to the		r.greenop 11/8/2016 14:35
137	problem (Fig. 2): (1) geochemical modeling (Lemarchand et al., 2000), (2) δ ¹¹ B		Deleted: Mg, Ca, Li, Sr to date no
138	analysis of halites (Paris et al., 2010), (3) measurements of benthic for a miniferal $\delta^{11}B$		
139	coupled to various assumptions about past changes in ocean pH (Raitzsch and		
140	Hönisch, 2013), and (4) measurements of $\delta^{11}B$ in surface and thermocline dwelling		
141	foraminifera coupled with additional information on the pH gradient of the surface		
142	Description of al. 1008; Description and Delivery 1000; Description and Delivery 2000;		
143	ocean (Palmer et al., 1998; Pearson and Palmer 1999, Pearson and Palmer 2000;		
115	<u>Anagnostou et al., 2016). G</u> eochemical modelling of the changes in the flux of boron		
144			
	<u>Anagnostou et al., 2016).</u> eochemical modelling of the changes in the flux of boron		
144	<u>Anagnostou et al., 2016).</u> Geochemical modelling of the changes in the flux of boron into and out of the ocean through time has been used to suggest that $\delta^{11}B_{sw}$ increased		
144 145	<u>Anagnostou et al., 2016).</u> Geochemical modelling of the changes in the flux of boron into and out of the ocean through time has been used to suggest that $\delta^{11}B_{sw}$ increased from 37‰ at 60 Ma to 40‰ ± 1‰ today, driven by a combination of processes		

204	that are significantly lower than all other approaches (Fig. 2; Paris et al., 2010), with	/
205	implausible variability among samples of the same age (7% range), thereby casting	
206	doubt over the reliability of this approach (Raitzsch and Hönisch, 2013). In the case	
207	of approach 3, $\delta^{11}B_{sw}$ is calculated from globally distributed benthic $\delta^{11}B$ data with an	
208	imposed degree of deep-ocean pH change (Fig. 2; Raitzsch and Hönisch, 2013). This	
209	method hinges on two key assumptions: (a) a near linear surface water pH increase of	
210	0.39 over the past 50 Myrs taken from the intermediate pH output from two modeling	
211	studies (Berner and Kothavala, 2001; Tyrrell and Zeebe, 2004; Ridgwell, 2005), and	
212	(b) a prescribed constant surface-to-deep ocean pH gradient of 0.3 (Tyrrell and	
213	Zeebe, 2004, and modern observations). The modeled surface pH and estimated fixed	
214	pH gradient is then used to estimate deep ocean pH, and then convert benthic	
215	for a miniferal δ^{11} B measurements to δ^{11} B _{sw} . This approach yields broadly similar	
216	results to geochemical modeling (Fig. 2). The fourth approach exploits the non-linear	
217	relationship between δ^{11} B and pH alongside estimated pH gradients in the ocean to	
218	constrain $\delta^{11}B_{sw}$ (Palmer et al., 1998; Pearson and Palmer 1999, Pearson and Palmer	
219	2000) and is the basis of the approach used in this study. The advantage of this	
220	<u>method is that $\delta^{11}B_{sw}$ can be reconstructed empirically</u> without relying on dependent	
221	pH constraints. The non-linear relationship between $\delta^{11}B$ and pH means that the pH	
222	difference between two $\delta^{11}B$ data points varies as a function of $\delta^{11}B_{sw}$ (Fig. 3).	() [
223	Consequently, if the size of the pH gradient can be estimated then there is only one	
224	$\delta^{11}B_{_{sw}}$ value that is consistent with the foraminiferal $\delta^{11}B$ measurements and the	
225	specified pH gradient irrespective of the absolute pH (Fig. 3c). Previously this	
226	approach has been applied to pH variations in the surface ocean and used in studies	(
227	of Cenozoic <i>p</i> CO ₂ to account for changes in $\delta^{11}B_{sw}$ (determined using $\delta^{11}B$ in surface	
228	and thermocline-dwelling foraminifera) (Fig. 2) (Palmer et al., 1998; Pearson and	
229	Palmer 1999, Pearson and Palmer 2000: Anagnostou et al., 2016). This approach uses	
230	a constant pH gradient between the surface and some depth proximal to the oxygen	
231	minimum zone and the boron isotope values of a mixed layer dwelling species and	
232	thermocline dweller to calculate a value for $\delta^{11}B_{sw}$ (Pearson and Palmer, 1999). The	
233	resulting record suggests that $\delta^{11}B_{sw}$ varies between 37.7% and 39.4% through the	
234	Neogene (Fig. 2) (Pearson and Palmer, 2000).	
025		
235	The same method, but using planktic-benthic instead of surface planktic- thermocline	
236	planktic δ^{11} B gradients to calculate δ^{11} B _{sw} , was recently applied to the middle	

r.greenop 8/6/2016 21:01 Deleted: Yet brine-halite fractionation offsets of -20% to -30% and -5% are reported from laboratory and natural environments respectively casting doubt over the validity of the assumption that no fractionation occurs during halite formation (Vengosh et al., 1992; Liu et al., 2000). These fractionations and riverine input during basin isolation will drive the evaporite-hosted boron to low- $\delta^{11}B$ isotope values such that the fluid inclusion record likely provides a lower limit for the $\delta^{11}B_{ew}$ through time (i.e. $\delta^{11}B_{sw}$ is heavier than the halite fluid inclusions of Paris et al. (2010)). Nevertheless, evaporites form from modified seawater in isolated basins making then ... [6] r.greenop 11/8/2016 14:53 **Deleted:** An alternative semi-empiric ... [7] r.greenop 5/9/2016 13:57 Deleted: assumes r.greenop 11/8/2016 14:55 Deleted: 1 r.greenop 11/8/2016 14:55 Deleted: 2 r.greenop 5/9/2016 13:58 Deleted: r.greenop 5/9/2016 13:5 Deleted: r.greenop 11/8/2016 14:56 r.greenop 18/7/2016 15:00 Deleted: While this approach yields a [9] r.greenop 11/8/2016 14:59 Deleted: record empirically is deteri ... [10] r.greenop 11/8/2016 15:00 Deleted: One way to avoid using ab ... [11] r.greenop 5/9/2016 16:36 **Deleted:**, irrespective of absolute pH, r.greenop 18/7/2016 14:56 Deleted: r.greenop 5/9/2016 14:08 **Deleted:** The resultant curve produced by t r.greenop 5/9/2016 16:3 Deleted: his method r.greenop 5/9/2016 14:08 Deleted: shows

r.greenop 18/7/2016 12:14

Moved down [3]: Unfortunately, t. [12]

Deleted: Results from studies employing

Deleted: suggest that $\delta^{11}B_{sw}$ has varied by

this method

r.greenop 8/6/2016 21:00

7% over the Neogene (Fig. 2) r.greenop 11/8/2016 14:54 **Deleted:** (Paris et al., 2010)

348	Miocene where it yielded a $\delta^{11}B_{sw}$ of 37.6 $^{+0.4}_{-0.5}$ % (Foster et al., 2012). <u>A further</u>
349	modification to the method of Pearson and Palmer (1999) was also proposed in that
350	study wherein δ^{13} C in foraminiferal calcite was used to estimate the surface-to-deep
351	pH gradient (Foster et al., 2012). Here, we reconstruct $\delta^{11}B_{sw}$ for the last 23 Ma, the
352	Neogene, based on this modified approach. We undertake extensive sensitivity tests
353	using both the CYCLOPS carbon cycle box model and the GENIE Earth system
354	model to define the plausible range in the relationship between surface/deep pH
355	difference and δ^{13} C difference, which is an essential parameter for this approach.
356	Finally, we employ a Monte Carlo approach for comprehensive propagation of
357	uncertainty in all input parameters and we focus on reconstructing $\delta^{11}B_{sw}$ – the
358	implications of our work for understanding the evolution of Neogene ocean pH and
359	atmospheric pCO_2 will be documented elsewhere

360 2. Methods

361 2.1 Site Locations and Age Models

362	For a from four sites are used to construct the planktic-benthic δ^{11} B pairs;
363	Ocean Drilling Program, ODP, Site 758 and ODP Site 999 for the Pleistocene and
364	Pliocene samples and ODP Site 926 and Site 761 for the Miocene (Fig. 4) (this study;
365	Foster et al., 2012; Martinez-Boti et al., 2015a, Sosdian et al., in prep). We also
366	incorporate the middle Miocene planktic-benthic pair from Site 761 in Foster et al
367	(2012). <u>To place all data from all sites</u> on a single age model <u>we use the nanno and</u>
368	planktic foraminifera stratigraphy from sites, 999, 926 and 761 (Shipboard Scientific
369	Party, 1997; Shipboard Scientific Party, 1995; Zeeden et al., 2013; Holbourn et al.,
370	2004) updated to GTS2012 (Gradstein et al., 2012). At Site 758 the
371	magnetostratigraphy (Shipboard Scientific Party, 1989) is used and updated to
372	GTS2012 (Gradstein et al., 2012).

373 2.2 Boron Isotope Analysis and pH Calculation

- 374 The boron isotope measurements (expressed in delta notation as $\delta^{11}B$ permil
- 375 variation) were made relative to the boric acid standard SRM 951; (Catanzaro et al.,
- 376 1970). Boron was first separated from the Ca matrix prior to analysis using the boron

5

reenop 11/8/2016 15:13

Deleted: The major limitation of these pH gradient approaches is the assumption of a constant pH gradient through time. A useful extension to this method therefore utilises the r.greenop 11/8/2016 18:05 **Deleted:**

r.greenop 11/8/2016 18:05 **Deleted:** and then determine $\delta^{11}B_{sw}$

r.greenop 11/8/2016 18:05

Deleted: Here we expand on the study of Foster et al. (2012) and present a number of new $\delta^{11}B_{sw}$ records based on $\delta^{11}B$ measured in planktic-benthic pairs. In our first treatment of the data we assume that the pH gradient has remained the same as modern at each site through time. In the second approach we utilise benthic-planktic $\delta^{13}C$ gradients to correct for changes in the pH gradient. Using a biogeochemical box model and an Earth system model we also assess the extent to which the relationship between pH and $\delta^{13}C$ gradients has remained constant under a comprehensive range of hypothetical carbon system and oceanographic states. We also use this model output to determine which $pH/\delta^{13}C$ regression is most appropriate for our data. In this study we focus on reconstructing $\delta^{11}B_{\text{sw}},$ whereas implications of our record in terms of the evolution of Neogene ocean pH and atmospheric pCO_2 are documented in a follow up study (Sosdian et al., submitted). r.greenop 5/9/2016 14:14

Deleted: Martinez-Boti

Deleted: Martinez-Boti
r.greenop 6/9/2016 11:39
Deleted: submitted
r.greenop 5/9/2016 14:09
Deleted: ,
r.greenop 5/9/2016 16:51
Deleted: In order to put all the sites
r.greenop 5/9/2016 16:51
Deleted: at
r.greenop 5/9/2016 16:52
Deleted: Site
r.greenop 5/9/2016 16:52
Deleted: Site
r.greenop 5/9/2016 16:52
Deleted: Site
r.greenop 5/9/2016 16:52
Deleted: the biostratigraphy is used from
r.greenop 6/9/2016 11:40
Deleted:), (
r.greenop 6/9/2016 11:40
Deleted:) and (
r groopop 6/0/2016 11:40

Deleted: respectively and

- 417 specific resin Amberlite IRA 743 following Foster et al. (2013). The boron isotopic
- 418 composition was then determined using a sample-standard bracketing routine on a
- 419 ThermoFisher Scientific Neptune multicollector inductively coupled plasma mass
- 420 spectrometer (MC-ICPMS) at the University of Southampton (following Foster et al.,
- 421 2013). The relationship between $\delta^{11}B$ of B(OH)₄ and pH is very closely
- 422 approximated by the following equation:

$$pH = pK_B^* - \log \left(-\frac{\delta^{11}B_{SW} - \delta^{11}B_{CaCO_3}}{\delta^{11}B_{SW} - \alpha_B \cdot \delta^{11}B_{CaCO_3} - 1000 \cdot (\alpha_B - 1)} \right)$$
(1)

424	Where pK_B^* is the equilibrium constant, dependent on salinity, temperature, pressure	
425	and seawater major ion composition (i.e., [Ca] and [Mg]), α_B is the fractionation	r.greenop 5/9/2016 14:12 Formatted: Space After: 12 pt, No
426	factor between the two boron species and $\delta^{11}B_{_{sw}}$ is the boron isotope composition of	widow/orphan control, Don't adjust space between Latin and Asian text, Don't adjust space between Asian text and numbers
427	seawater. Here we use the fractionation factor of 1.0272, calculated from	space between Asian text and humbers
428	spectrophotometric measurements (Klochko et al., 2006). No temperature correction	
429	was applied as a number of recent studies suggest that it is not significant over our	
430	investigated temperature range (Rae et al. 2011; Henehan et al., 2013; Martìnez-Botì	
431	et al. (2015b); Kaczmarek et al. 2016). Although the δ^{11} B of foraminifera correlates	
432	well with pH and hence $[CO_2]_{aq}$, the $\delta^{11}B_{calcite}$ is often not exactly equal to $\delta^{11}B_{borate}$	r.greenop 5/9/2016 14:12 Formatted: Font:Times, 12 pt
433	(Sanyal et al., 2001; Foster, 2008; Henehan et al., 2013). The planktic species used to	
434	construct the benthic-planktic pairs changes through time, as a single species is not	
435	available for the entire Neogene (this study; Foster et al., 2012; Martìnez-Botì et al.,	
436	2015a, Sosdian et al., in prep). Here Globigerinoides ruber is used for 0 to 3 Ma,	
437	Trilobatus sacculifer (formally Globigerinoides sacculifer and including Trilobatus	r.greenop 6/9/2016 11:41 Deleted: submitted
438	trilobus; Hembleden et al., 1987; Spezzaferri et al., 2015) for 0 to 20 Ma and	
439	Globigerina praebulloides for 22 to 23 Ma. The calibration for G. ruber (300-	
440	355μm) is derived from culturing data supported by core top data (Henehan et al.,	r.greenop 11/8/2016 18:07
441	2013). The T. sacculifer calibration (300-355µm) is from Sosdian et al., (in prep)	Deleted: is from Henehan et al., (2013)
442	where the <i>T. sacculifer</i> calibration of Sanyal et al., (2001) is used with a modified	r.greenop 6/9/2016 11:41 Deleted: submitted
443	intercept so that it passes through the core top value for T. sacculifer (300–355 μ m)	Deleted. submitted
444	from ODP Hole 999A (Seki et al., 2010). Unlike the asymbiotic modern <u>G</u> . bulloides,	
445	G. praebulloides appears to be symbiotic at least in the latest Oligocene (Pearson and	r.greenop 6/9/2016 11:42 Deleted: T
446	Wade, 2009). Therefore, we apply the <i>T. sacculifer</i> (300-355 μ m) calibration to this	

451	species. For <i>T. sacculifer</i> (500-600µm) <u>between 0 and 1 Ma</u> , we use the calibration	
452	from Martinez-Boti et al, (2015b) where the calibration of Sanyal et al. (2001)	r.greenop 15/6/2016 21:50 Deleted: at 0.7 Ma
453	measured using NTIMS is corrected for the offset between MC-ICPMS and NTIMS	r.greenop 11/8/2016 18:11
454	using a comparison of core-top T. sacculifer measured by the two different methods	Deleted: , r.greenop 5/9/2016 14:12
455	from adjacent sites (Foster, 2008; Sanyal et al., 1995). In order to constrain deep-	Formatted: Font:Times
456	water pH, analysis was conducted on benthic foraminifera Cibicidoides wuellestorfi	
457	or Cibicidoides mundulus depending on which species were most abundant in each	
458	sample. The $\delta^{11}B$ of both <i>Cibicidoides</i> species shows no offset from the theoretical	
459	δ^{11} B of the borate ion and therefore no calibration is needed to adjust for species-	
460	specific offsets (Rae et al., 2011).	r.greenop 5/9/2016 14:12 Formatted: Font:Times
461	As mentioned above, in addition to $\delta^{11}B_{calcite}$, temperature, salinity, water depth	r.greenop 5/9/2016 14:12 Formatted: Font:(Asian) Japanese, (Other) English (US)
462	(pressure) and seawater major ion composition are also needed to calculate pH from	
463	$\delta^{11}B$. We use the MyAMI specific ion interaction model (Hain et al., 2015) to	
464	calculate the appropriate equilibrium constants based on existing [Ca] and [Mg]	
465	reconstructions (Horita et al., 2002; Brennan et al., 2013). Sea surface temperature	
466	(SST) is calculated from tandem Mg/Ca analyses on an aliquot of the $\delta^{11}B$ sample	
467	(with a conservative 2σ uncertainty of 2°C). Adjustments were made for changes in	r.greenop 13/7/2016 16:24
468	Mg/Ca_{sw} using the records of Horita et al. (2002) and Brennan et al. (2013), and	Deleted: planktic foraminifera
469	correcting for changes in dependence on Mg/Ca _{sw} following Evans and Muller (2012)	
470	using $H = 0.41$ calculated from <i>T. sacculifer</i> (where H describes the power	
471	relationship between test Mg/Ca incorporation and Mg/Ca _{sw} . Delaney et al., 1985;	
472	Hasiuk and Lohmann, 2010; Evans and Muller, 2012) using the equations:	
	$Mg/Ca_{sw.c} = (Mg/Ca_{sw.a} / Mg/Ca_{sw.m})^{0.41} $ (2)	
473	Where Mg/Ca _{swc} is the correction factor applied to the temperature equation for	

- 474 changing Mg/Ca_{sw}, Mg/Ca_{swa} is the estimated Mg/Ca_{sw} for the age of the sample and
- 475 Mg/Ca_{sw.m} is modern Mg/Ca_{sw}. Temperature is then calculated using the generic
- 476 planktic foraminifera calibration of Anand et al. (2003) and including a correction
- 477 factor for Mg/Ca $_{sw}$.

 $Temperature = ln(Mg/Ca_{test}/(0.38 * Mg/Ca_{sw.c}))/0.09$ (3)

- 478 Mg/Ca analysis was conducted on a small aliquot of the sample dissolved for isotope
- 479 analysis at the University of Southampton using a ThermoFisher Scientific Element 2
 - 7

- 483 XR. Al/Ca was also measured to assess the competency of the sample cleaning.
- 484 Because of complications with the Mg/Ca-temperature proxy in Cibicidoides species
- 485 (Elderfield et al., 2006), bottom water temperatures (BWTs) are estimated here by
- 486 taking the global secular temperature change from the Mg/Ca temperature
- 487 compilation of Cramer et al. (2011), using the calibration of Lear et al. (2010) and
- 488 applying this change to the modern bottom water temperature at each site taken from
- 489 the nearest GLODAP site (with a conservative 2σ uncertainty of 2° C). Salinity is held
- 490 constant at modern values determined from the nearest GLODAP site (2σ uncertainty
- 491 of 2 ‰ uncertainty) for the entire record. Note that temperature and salinity have
- 492 little influence on the calculated pH and the uncertainty in $\delta^{11}B_{sw}$ is dominated by the
- 493 uncertainty in the δ^{11} B measurement and the estimate of the pH gradient.
- 494 The majority of the δ^{13} C data were measured at Cardiff University on a
- 495 ThermoFinnigan MAT 252 coupled with a Kiel III carbonate device for automated
- 496 sample preparation. Additional samples were measured on a gas source mass
- 497 spectrometer Europa GEO 20-20, University of Southampton equipped with
- 498 automated carbonate preparation device and on a Finnigan MAT 253 gas isotope
- 499 ratio mass spectrometer connected to a Kiel IV automated carbonate preparation
- 500 device at the Zentrum für Marine Tropenökologie (ZMT), Bremen. The Pliocene
- 501 benthic δ^{13} C from Site 999 were taken from the nearest sample in Haug and
- 502 Tiedemann, (1998). In almost all cases δ^{13} C was analysed on the same foraminiferal
- 503 species as δ^{11} B and Mg/Ca (38/44 samples). Where this was not possible another
- 504 surface dweller/benthic foraminifera was used from the same depth habitat. C.
- 505 *wuellestorfi* or *C. mundulus* were measured in all cases for benthic δ^{13} C. Stable
- 506 isotope results are reported relative to the Vienna Peedee belemnite (VPDB)
- 507 standard. We use a carbon isotope vital effect for *G*. ruber (+0.94 ‰; Spero et al.,
- 508 2003), T. sacculifer/G. praebulloides (+0.46 ‰; Spero et al., 2003; Al-Rousan et al.,
- 509 2004;), C. mundulus (+0.47 ‰; McCorkle et al., 1997) and C. wuellestorfi (+0.1 ‰;
- 510 McCorkle et al., 1997) to calculate the δ^{13} C of dissolved inorganic carbon (DIC).
- 511 2.3 Carbon isotopes as a proxy for vertical ocean pH gradient
- 512 The use of δ^{13} C in foraminiferal calcite to estimate the surface to deep pH gradient
- 513 requires knowledge of the slope of the pH- δ^{13} C relationship in the past. In this section

r.greenop 5/9/2016 14:17

Deleted: National Oceanography Centre Southampton (USNOCS)

r.greenop 5/9/2016 14:17 Deleted: was

r.greenop 13/7/2016 16:18 **Deleted:** An adjustment for vital effects on the δ^{13} C of

r.greenop 6/9/2016 11:44 Deleted: is applied

520		
520	we briefly outline, the main factors that contribute to the pH- δ^{13} C relationship in order	r.greenop 15/7/2016 11:01
521	to underpin our analysis of extensive carbon cycle model simulations.	Deleted: s
522	The production, sinking and sequestration into the ocean interior of low- $\delta^{13}C$ organic	
523	carbon via the soft-tissue component of the biological pump (e.g., Hain et al., 2014a)	
524	leads to <u>a</u> broad correlation between δ^{13} C, [CO ₃ ²⁻] and macronutrients in the ocean.	
525	The remineralization of this organic matter decreases $\delta^{13}C$ and titrates $[CO_3^{2-}]$ so as to	
526	reduce pH, while nutrient concentrations are increased. In waters that have	
527	experienced more soft tissue remineralization both pH and $\delta^{13}C$ will be lower (Fig.	
528	(5a,b), which is the dominant cause for the positive slope between $\delta^{13}C$ and pH in the	04/7/0040 40.00
529	modern ocean (e.g., Foster et al., 2012; Fig. 5c).	r.greenop 21/7/2016 10:08 Deleted: 4
520	Another significant factor affecting the spatial distribution of both δ^{13} C and pH is	r.greenop 21/7/2016 10:08 Deleted: 4
530		
531	seawater temperature, which affects both the equilibrium solubility of DIC and the	
532 533	equilibrium isotopic composition of DIC. Warmer ocean waters have decreased equilibrium solubility of DIC and so increased local [CO ₃ ²⁻] and pH (Goodwin and	
534	Lauderdale, 2013), while warmer waters have relatively low equilibrium δ^{13} C values	
535	(Lynch-Stieglitz et al, 1995). This means that a spatial gradient in temperature acts to	
536	drive δ^{13} C and pH in opposite directions: warmer waters tend to have higher pH but	
537	lower δ^{13} C. These opposing temperature effects act to reduce the pH difference	
538	between two points with greatly different temperature to below the value expected	
539	based on δ^{13} C alone. That is, when using δ^{13} C differences to estimate the pH gradient	
540	between the warm low latitude surface and cold deep waters the appropriate pH- δ^{13} C	
541	relationship will be less than expected when only considering the effect of the	
542	biological pump. For this reason, in our modeling analysis we focus on the warm-	
543	surface to cold-bottom $\Delta pH/\Delta \delta^{13}C$ rather than the slope of the overall pH- $\delta^{13}C$	
544	relationship, with the latter expected to be greater than the former.	
545	In the modern ocean, and for the preceding tens of millions of years, the two	
546	dynamics described above are likely dominant in setting spatial variation in $\delta^{13}C$ and	r.greenop 11/8/2016 18:14 Deleted: se
547	pH (and [CO ₃ ²⁻]). However, other processes will have a minor effect on either pH or	r.greenop 11/8/2016 18:15 Deleted: processes
548	δ^{13} C. For instance, the <u>dissolution of</u> CaCO ₃ <u>shells</u> increases [CO ₃ ²⁻] and pH	
549	(Broecker and Peng, 1982), but does not significantly affect δ^{13} C (Zeebe and Wolf-	r.greenop 15/7/2016 11:04 Deleted: accumulation of remineralized
550	Gladrow, 2001). Moreover, the long timescale of air/sea isotopic equilibration of CO_2	r.greenop 15/7/2016 11:04 Deleted: hard-tissue

558	combined with kinetic isotope fractionation during net carbon transfer is an important
559	factor in setting the distribution of $\delta^{13}C$ on a global ocean scale (Galbraith et al.,
560	2015; Lynch-Stieglitz et al., 1995), while the effect of CO_2 disequilibrium on $[CO_3^{2-}]$
561	and pH <u>is modest</u> (Goodwin and Lauderdale, 2013).
562	

563 2.4 Modelling the pH to δ^{13} C relationship

564	After correcting for the shift in δ^{13} C due to anthropogenic activity, or Suess effect
565	(Keeling 1979), modern ocean observations demonstrate a near linear relationship
566	between global ocean data of seawater in situ pH and δ^{13} C DIC with a slope of
567	0.201 ± 0.005 (2 σ) (Foster et al., 2012; Fig 5c.) This empirically determined slope
568	might well have been different in past oceans with very different nutrient cycling.
569	carbon chemistry and circulation compared to today, and it does not appropriately
570	represent the temperature effect described above (i.e., warm-surface to cold-bottom
571	<u>water $\Delta pH/\Delta\delta^{13}C$</u>). Here we use an ensemble approach with two independent carbon
572	cycle models to <u>investigate changes in the $\Delta pH/\Delta \delta^{13}C$ regression</u> , Below we provide
573	pertinent information on the GENIE and CYCLOPS model experiments:
574	We use the Earth System model GENIE-1 (Edwards and Marsh, 2005; Ridgwell et al.
575	2007) to assess the robustness of the pH-to- $\Delta \delta^{13}$ C relationship and its sensitivity to
576	physical and biogeochemical ocean forcing. The configuration used here is closely
577	related to that of Holden et al. (2013), in which the controls on oceanic δ^{13} C
578	distribution were assessed, with an energy and moisture balance in the atmosphere,
579	simple representations of land vegetation and sea ice, and frictional geostrophic
580	ocean physics. In each of 16 vertical levels in the ocean, increasing in thickness with
581	depth, there are 36x36 grid cells (10° in longitude and nominally 5° in latitude, with
582	higher resolution at low latitudes). Modern ocean bathymetry and land topography is
583	applied in all simulations. The ocean biogeochemical scheme (Ridgwell et al. 2007)
584	is based on conversion of DIC to organic carbon associated with phosphate uptake
585	with fixed P:C:O stoichiometry. Organic carbon and nutrients are remineralized
586	according to a remineralization profile with a pre-defined e -folding depth scale. This
587	depth scale, as well as the rain ratio of inorganic to organic carbon in sinking
588	particulate matter, is among the parameters examined in the sensitivity study. In these

r.greenop 5/9/2016 14:28

 $\label{eq:constraint} \begin{array}{l} \textbf{Deleted:} \ . \ The surface \\ \hline r.greenop 5/9/2016 14:28 \\ \hline \textbf{Deleted:} \ also has a substantial effect on $\delta^{13}C$ \\ (Lynch-Stieglitz et al., 1995) while it affects \\ \hline r.greenop 5/9/2016 14:29 \\ \hline \textbf{Deleted:} \ only marginally \\ \end{array}$

r.greenop 6/9/2016 11:46 Deleted:)

r.greenop 21/7/2016 11:18 **Deleted:** show that the r.greenop 11/8/2016 18:17 **Deleted:** pH to δ^{13} C slope can only have changed in very tight limits

 $\begin{array}{c} \text{r.greenop 11/8/2016 18:17}\\ \textbf{Deleted: } pH\text{-}\delta^{13}C \end{array}$

r.greenop 5/9/2016 16:54 Deleted: the r.greenop 5/9/2016 16:54 Deleted: n's

- 600 simulations, there is no interaction with sediments. As a result of this, <u>the</u> steady state
- 601 solutions reported here are reached within the 5000-year simulations, but are not
- consistent with being in secular steady state with regard to the balance of continental
 weathering and ocean CaCO₃ burial,
- 604 The sensitivity study consists of seven sets of experiments, each varying a single 605 model parameter relative to the control simulation with preindustrial atmospheric pCO_2 . This enables us to assess which processes, if any, are capable of altering the 606 607 ocean's ΔpH -to- $\Delta \delta^{13}C$ relationship, and the uncertainty in the predictive skill of this 608 relationship due to spatial variability. These experiments are therefore exploratory in 609 nature and intended to study plausible range rather than determine magnitude of past 610 changes. The seven parameters varied are (1) the ocean alkalinity reservoir; (2) the 611 ocean's carbon reservoir; (3) the parameter "S. Lim gas exchange" which blocks air-612 sea gas exchange south of the stated latitude, significant here because of the 613 dependence of δ^{13} C on surface disequilibrium (Galbraith et al., 2015); (4) inorganic 614 to organic carbon rain ratio, controlling the relationship between DIC and alkalinity 615 distributions; (5) "Antarctic shelf FWF", a freshwater flux adjustment (always 616 switched off in control experiments with GENIE) facilitating the formation of brine rich waters, which produces a high-salinity poorly-ventilated deep ocean at high 617 618 values; (6) "Atlantic-Pacific FWF", a freshwater flux adjustment equivalent to 619 freshwater hosing, leading to a shut-down of the Atlantic meridional overturning 620 circulation at low values; (7) remineralization depth-scale of sinking organic matter, 621 which affects the vertical gradient both of pH and δ^{13} C. A wide range of parameter 622 values is chosen for each parameter in order to exceed any plausible changes within 623 the Cenozoic. For the second <u>exploration</u> of the <u>controls on the</u> slope of $\Delta pH-\Delta \delta^{13}C$ relationship we 624 625 use the CYCLOPS biogeochemical 18-box model that includes a dynamical 626 lysocline, a subantarctic zone surface box and a polar Antarctic zone box (Sigman et al., 1998; Hain et al., 2010, 2014b). The very large model ensemble with 13,500 627 628 individual model scenarios is designed to capture the full plausible range of (a)
- 629 glacial/interglacial carbon cycle states by sampling the full solution space of Hain et
- 630 al. (2010), and (b) reconstructed secular changes in seawater [Ca] (calcium
- 631 concentration), carbonate compensation depth (CCD), weathering and atmospheric

r.greenop 5/9/2016 16:55

Deleted: a r.greenop 11/8/2016 18:18 Deleted: is obtained r.greenop 11/8/2016 18:18 Deleted: ; r.greenop 11/8/2016 18:19 Deleted: the results presented here are for the end of the simulations r.greenop 5/9/2016 14:29 Deleted: both

Deleted: both r.greenop 11/8/2016 18:19 Deleted: pH-δ¹³C

r.greenop 11/8/2016 18:20 Deleted: not r.greenop 11/8/2016 18:19 Deleted: represent real changes that may have occurred r.greenop 5/9/2016 16:56 Deleted: n's

r.greenop 5/9/2016 14:29 Deleted: test

644	CO_2 (Table 1). The following seven model parameters are systematically sampled to
645	set the 13,500 model scenarios: (1) shallow versus deep Atlantic meridional
646	overturning circulation represented by modern reference north Atlantic deep water
647	(NADW) versus peak glacial North Atlantic intermediate water (GNAIW)
648	circulation; (2) iron driven changes in nutrient drawdown in the subantarctic zone of
649	the Southern Ocean; (3) changes in nutrient drawdown of the polar Antarctic; (4)
650	changes in vertical exchange between the deep Southern Ocean and the polar
651	Antarctic surface; (5) range in seawater [Ca] concentration from 1x to 1.5x modern as
652	per reconstructions (Horita et al., 2002); (6) Pacific CCD is set to the range of 4.4-4.9
653	km via changes in the weathering flux, as per sedimentological evidence (Pälike et
654	al., 2012); (7) atmospheric CO_2 is set from 200 ppm to 1000 ppm by changes in the
655	'weatherability' parameter of the silicate weathering mechanism. The ensemble spans
656	predicted bulk ocean DIC between 1500 and 4500 μ mol/kg, a wide range of ocean
657	pH and $CaCO_3$ saturation states consistent with the open system weathering cycle,
658	and widely different states of the ocean's biological pump. All 13,500 model
659	scenarios are run for two million years after every single 'weatherability' adjustment,
660	part of the CCD inversion algorithm, guaranteeing the specified CCD depth and
661	steady state with regard to the balance of continental weathering and ocean $CaCO_3$
662	burial for the final solution (unlike the GENIE simulations CaCO ₃ burial was entirely
663	neglected due to computational cost of the long model integrations it would require).
664	The inverse algorithm typically takes at least ten steps to conversion, resulting in
665	~300 billion simulated years for this ensemble.

666 2.5 Assessing uncertainty

- $\delta^{11}B_{sw}$ uncertainty was calculated using a Monte Carlo approach where pH was
- 668 calculated for deep and surface waters at each time slice using a random sampling
- 669 (n=10000) of the various input parameters within their respective uncertainties as
- 670 represented by normal distributions. These uncertainties (2σ uncertainty in
- 671 parentheses) are: temperature (± 2 °C), salinity (± 2 units on the practical salinity
- 672 | scale) [Ca] (± 4.5 mmol/kg), [Mg], (± 4.5 mmol/kg), $\delta^{11}B_{\text{planktic}}$ (± 0.15-0.42 ‰) and
- 673 $\delta^{11}B_{\text{benthic}} (\pm 0.21 0.61 \%)_{*}$ For the estimate of the surface to sea floor pH gradient we
- 674 use the central value of the Δp H-to- $\Delta \delta^{13}$ C relationship diagnosed from our
- 675 <u>CYCLOPS and GENIE sensitivity experiments (i.e., 0.175/‰, see section 3.2 below)</u>
- r.greenop 11/8/2016 18:21 Deleted: , r.greenop 11/8/2016 18:21 Deleted: ,

678	and then we assign a ± 0.05 uncertainty range with a uniform probability (rather than		
679	a normal distribution) to the resulting surface to sea floor ApH estimate (see also		
680	Table 2). Thus, the magnitude of this nominal uncertainty is equivalent to a 0.14/2		
681	to 0.21/‰ $\Delta pH/\Delta \delta^{13}C$ uncertainty range that spans the vast majority of our		
682	CYCLOPS and GENIE simulations, and the prediction error (RMSE) of fitting a		
683	linear relationship to the GENIE pH and δ^{13} C output (see section 3.2 below). The		
684	uncertainty in the $\delta^{11}B$ measurements is calculated from the long-term reproducibility		eenop 11/8/2016 18:21 eted: and either the fixed modern pH
685	of Japanese Geological Survey <i>Porites</i> coral standard (JCP; $\delta^{11}B=24.3\%$) at the		lient at that site (± 0.05 pH units) or the pH lient predicted by the δ^{13} C-pH relationship
686	University of Southampton using the equations:	(±0	.05 pH units). In our first approach we me the pH gradient at each site has
687	$2\sigma = 2.25 \exp^{-23.01[^{11}B]} + 0.28 \exp^{-0.64[^{11}B]} $ (4)	(gra 2004 is co	ained the same as modern through time dient estimated from GLODAP; Key et al., 4). In the second approach the pH gradient orrected using the $\delta^{13}C$ gradient (where the e of the relationship between pH and $\delta^{13}C$
688	$2\sigma = 33450 \exp^{-168.2[^{11}B]} + 0.311 \exp^{-1.477[^{11}B]} $ (5)		ken from the CYCLOPS model).
689	where $\begin{bmatrix} 1^{11}B \end{bmatrix}$ is the intensity of ¹¹ B signal in volts and equation (4) and equation (5)		
690	used with $10^{11} \Omega$ and $10^{12} \Omega$ resistors, respectively.		
691	From the 10,000 Monte Carlo ensemble solutions of our 22 benthic-planktic pairs we	r.gr	eenop 15/7/2016 16:41
692	construct 10,000 randomized records of $\delta^{11}B_{sw}$ as a function of time. Each of these	\sim	matted: Line spacing: 1.5 lines
693	randomized $\delta^{11}B_{sw}$ records <u>are</u> subjected to smoothing using the locally weighted		eenop 12/8/2016 14:40 eted:
694	scatterplot smoothing (LOWESS) algorithm with a smoothing parameter (span) of	r.gr	eenop 12/8/2016 14:40
695	0.7. The purpose of the smoothing is to put some controls on the rate at which the		eted: is
696	resulting individual Monte Carlo $\delta^{11}B_{sw}$ records are allowed to change, which in		eted: ,
697	reality is limited by the seawater boron mass balance (~0.1 % per million years;		eenop 11/8/2016 18:22
698	boron residence time is 11-17 million years; Lemarchand et al., 2000). Our choice of		eted: which prevent eenop 11/8/2016 18:22
699	smoothing parameter allows for some of the individual Monte Carlo records to	Del	eted: s the
700	change as fast as $\sim 1 \%$ per million years, although in reality the average rate of		eenop 5/9/2016 14:32 eted: smoothed $\delta^{11}B_{sw}$
701	change is much smaller than this (see section 3.3). Consequently this method		eenop 12/8/2016 14:41
702	removes a significant amount of uncorrelated stochastic noise (resulting from the		eted: from changing faster eenop 12/8/2016 14:41
703	uncertainty in our input parameters) while not smoothing away the underlying signal.	Del	eted: than allowed
704	As a result of anomalously low δ^{11} B differences (< 1‰) between benthic and planktic		eenop 26/7/2016 19:38 eted: 2
705	pairs, two pairs at 8.68 Ma and 19 Ma were discarded from the smoothing. It may be		eenop 5/9/2016 15:03
706	possible that preservation is not so good within these intervals in the core and the	For	matted: Font:Times, 12 pt
707	planktic foraminifera are affected by partial dissolution (Seki et al., 2010). The		
708	spread of the ensemble of smoothed $\delta^{11}B_{sw}$ curves represents the combination of the		eenop 11/8/2016 18:24 eted: T

- 730 compounded, propagated uncertainties of the various inputs (i.e., Monte Carlo
- right sampling) with the additional constraint of gradual $\delta^{11}B_{sw}$ change over geological
- 732 time_imposed by the inputs and outputs of boron to the ocean and the total boron
- 733 inventory (i.e., the smoothing of individual Monte Carlo members, Various statistical
- properties (i.e., mean, median, standard deviation (σ), various quantiles) of this
- 735 $\delta^{11}B_{sw}$ reconstruction were evaluated from the ensemble of smoothed $\delta^{11}B_{sw}$ records.
- 736 Generally, for any given benthic-planktic pair the resulting $\delta^{11}B_{sw}$ estimates are not
- perfectly normally distributed and thus we use the median as the metric for the
- 738 central tendency (i.e., placement of marker in Figure 10).
- 739

3. Results and Discussion

740 **3.1 δ¹¹B benthic and planktic data**

Surface and deep-ocean, δ^{11} B, δ^{13} C and temperature broadly show a similar, but 741 742 inverse, pattern to one another throughout the Neogene (Fig. 6). The δ^{11} B benthic 743 record decreases from ~15 ‰ at 24 Ma to a minimum of 13.28 ‰ at 14 Ma before 744 increasing to ~17 ‰ at present day (Fig. 6). This pattern and the range of values in 745 benthic foraminiferal δ^{11} B is in keeping with previously published Neogene δ^{11} B 746 benthic records measured using NTIMS (Raitzsch and Hönisch, 2013), suggesting 747 that our deep-water δ^{11} B record is representative of large scale pH changes in the 748 global ocean. While the surface δ^{11} B_{planktic} remained relatively constant between 24 749 and 11 Ma at ~16 ‰, there is a significant increase in δ^{11} B between the middle 750 Miocene and present (values increase to ~20 ‰) (Fig. 6b). The reconstructed surface 751 water temperatures show a long-term decrease through the Neogene from ~28°C to 752 24°C, aside from during the Miocene Climatic Optimum (MCO) where maximum 753 Neogene temperatures are reached (Fig. 6c). Following Cramer et al. (2011) deep-754 water temperatures decrease from ~12°C to 4°C at the present day and similarly show 755 maximum temperatures in the MCO. Surface and deep-water $\delta^{13}C_{DIC}$ both broadly 756 decrease through the Neogene and appear to covary on shorter timescales (Fig. 6e, f). 757

r.greenop 5/9/2016 15:03 **Deleted:** and

cicicu. and

r.greenop 5/9/2016 15:03 Deleted:

r.greenop 21/7/2016 10:08 Deleted: 5

r.greenop 21/7/2016 10:08 Deleted: 5

_	r.greenop 5/9/2016 15:06
	Deleted:
-	r.greenop 21/7/2016 11:20
	Deleted: $\delta^{11}B_{borate}$
	r.greenop 11/8/2016 18:25
	Deleted:
	r.greenop 11/8/2016 18:25
$\langle \rangle$	Deleted:
	r.greenop 21/7/2016 10:08
	Deleted: 5
	r.greenop 11/8/2016 18:25
	Deleted:
	r.greenop 21/7/2016 10:08
	Deleted: 5
	r.greenop 11/8/2016 18:25
	Deleted:
	r.greenop 21/7/2016 10:08
	Deleted: 5

771 3.2 The relationship between δ^{13} C and pH gradients

772	As noted above, in the global modern ocean data, after accounting for the	
773	anthropogenic carbon, the empirical relationship between <i>in situ</i> pH and DIC δ^{13} C is	r.greenop 5/9/2016 15:06 Deleted: I
774	well described by a linear function with a slope of 0.201 ± 0.005 (2 σ) (Fig. 5; Foster	
775	et al., 2012). However, this slope is only defined by surface waters in the North	r.greenop 21/7/2016 10:08 Deleted: 4
776	Atlantic due to a current lack of modern data where the impact of the Suess effect has	
777	been corrected (Olsen and Ninneman, 2010). Consequently we are not currently able	
778	to determine the slope between the warm-surface and cold-deep ocean in the modern	
779	ocean at our sites. Instead, here we use the two modeling experiments to define this	
780	slope. In the control GENIE experiment (green star; Fig. 7), the central value for the	r groopon 15/7/2016 16:15
781	slope of the pH/ δ^{13} C relationship is slightly greater than 0.2/‰ for the full 3D data	r.greenop 15/7/2016 16:15 Deleted: and in all experiments in which
782	regression (not shown) and about 0.175/% for the warm-surface-to-cold-deep ΔpH_{-}	ocean-physics parameters (Antarctic shelf FWF and Atlantic-Pacific FWF) are varied
783	to- $\Delta\delta^{13}$ C relationship (Fig. 7) – consistent with theory for the effect of temperature	
784	gradients (see section 2.3). For both ways of analysing the GENIE output the	r.greenop 12/8/2016 10:39
785	prediction uncertainty of the regressions, the root-mean-squared error (RMSE), is	Deleted: $pH/\delta^{13}C$ gradient is slightly greater
786	$\sim 0.05\%$ under most conditions (open red circles in Fig. 7), with the exception of	than 0.2, with a root-mean-squared error (RMSE) of ~ 0.05 in a reconstruction of the
787	where large changes in either DIC or ALK result in somewhat larger changes in the	spatial distribution of pH using this relationship (Fig. 6).
788	relationship between pH and δ^{13} C (see below). In our CYCLOPS model ensemble,	
789	the central value of the slopes of the full 3D pH/ δ^{13} C regressions and of the warm-	
790	surface-to-cold-deep $\Delta pH/\Delta\delta^{13}C$ is 0.2047/% (1 σ of 0.0196/%; Fig.8a) and	
791	<u>0.1797/‰ (1σ of 0.0213/‰; Fig.8b), respectively. If we restrict our analysis of the</u>	
792	CYCLOPS ensemble to only the Atlantic-basin warm-surface-to-cold-deep	
793	$\Delta pH/\Delta \delta^{13}C$, where most of our samples come from, we find a relationship of only	
794	<u>0.1655/‰ (1σ of 0.0192/‰; Fig.8c). That is, overall, we find near-perfect agreement</u>	
795	between modern empirical data and our GENIE and CYCLOPS experiments.	
796	Encouraged by this agreement we select the warm-surface-to-cold-deep $\Delta p H/\Delta \delta^{13}C$	
797	central value of 0.175/‰ to estimate the surface/sea floor pH difference from the	
798	planktic/benthic for aminifera δ^{13} C difference. To account for our ignorance as to the	
799	accurate value of $\Delta pH/\Delta \delta^{13}C$ in the modern ocean, it's changes over the course of the	
800	study interval and the inherent prediction error from using a linear ΔpH -to- $\Delta \delta^{13}C$	
801	relationship we assign a nominal uniform uncertainty range of ± 0.05 around the	
802	central ApH estimate for the purpose of Monte Carlo uncertainty propagation. Our	

813	analysis also suggests that where surface-to-thermocline planktic/planktic gradients	
814	are employed, the plausible $\Delta pH/\Delta \delta^{13}C$ range should be significantly higher than	
815	applied here, in order to account for the relatively lower temperature difference.	
816	Based on the appropriate $\Delta pH/\Delta \delta^{13}C$ relationship we reconstruct a time varying	
817	surface to deep pH gradient, which ranges between 0.14 and 0.35 pH units over our	
818	study interval (Fig. 9) and apply a flat uncertainty of ± 0.05 . The reconstructed pH	
819	gradient remains broadly within the range of the modern values (0.19 to 0.3) although	
820	there is some evidence of multi-million year scale variability.	
0.01	As a caveat to our usage of the Δp H-to- $\Delta \delta^{13}$ C relationship we point to changes of that	
821		
822	relationship that arise in our GENIE sensitivity experiments where carbon and	
823	alkalinity inventories are manipulated, which can yield values outside of what is	
824	plausible. We note that our CYCLOPS ensemble samples a very much wider range of	
825	carbon and alkalinity inventories with $\Delta pH/\Delta \delta^{13}C$ remaining inside that range. While	
826	CYCLOPS simulates the balance between weathering and CaCO ₃ burial, which is	
827	known to neutralize sudden carbon or alkalinity perturbations on timescales much	
828	less than one million years, the configuration used for our GENIE simulations does	
829	not and is therefore subject to states of ocean carbon chemistry that can safely be	
830	ruled out for our study interval and likely for most of the Phanerozoic. The differing	
831	outputs from CYCLOPS and GENIE in the DIC and ALK experiments does highlight	
832	that $\Delta pH/\Delta \delta^{13}C$ actually depends on background seawater acid/base chemistry, in	
833	ways that are not yet fully understood. That said, the generally coherent nature of our	
834	results confirms we likely constrain the plausible range of $\Delta pH/\Delta \delta^{13}C$ for at least the	
835	Neogene, if not the entire Cenozoic, outside of extreme events such as the	
836	Palaeocene-Eocene Thermal Maximum.	
837		
057	*	
838	3.3 $\delta^{11}B_{sw}$ record through the Neogene	
	SW	
839	Using input parameter uncertainties as described in section 2.5 yields individual	
840	Monte Carlo member $\delta^{11}B_{\underline{sw}}$ estimates between 30 ‰ and 43.5 ‰ at the overall	
841	extreme points and typically ranging by $\sim 10 \%$ (dashed in Fig. 10a) for each time	
842	point, suggesting that the uncertainties we assign to the various input parameters are	
843	generous enough not to predetermine the quantitative outcomes. However, for each	

r.greenop 15/7/2016 16:15 Moved (insertion) [1] r.greenop 15/7/2016 16:15

Deleted: The slope of the $pH-\delta^{13}C$ relationship simulated by our CYCLOPS model ensemble across a range of perturbed states is 0.2047 ($1\sigma = 0.0196$) (Fig. 7a, 8), in perfect agreement with modern empirical data and our GENIE experiments.Varying the biogeochemical parameters (gas exchange, rain ratio and remineralizing depth scale) yields some change in the regressed slope of the $pH/\delta^{13}C$ relationship due to decoupled responses of pH and $\delta^{13}C$, but this gradient remains well within the 0.2 +/- 0.05 range, and a RMSE of 0.05 in the spatial relationship remains robust (Fig. 6). We take this as evidence that the uncertainty in the $pH/\delta^{13}C$ relationship assumed in our carbon chemistry calculation is well represented by a central value of 0.2 with a 0.025 standard deviation. Experiments at very high DIC or low alkalinity, either of which yield high atmospheric pCO2 and low mean ocean pH, yield gradients slightly outside the 0.2 + -0.05 range, with an elevated RMSE. This is probably associated with the non-linearity of the pH scale, modifying the gradient for a very different pH. It is to be emphasised that such extreme decoupled changes in DIC and alkalinity are not plausible within the Cenozoic, and were only possible in these simulations because of the absence of interactive sediments. ... [13]

r.greenop 15/7/2016 16:15

Moved up [1]: The slope of the pH- δ^{13} C relationship simulated by our CYCLOPS model ensemble across a range of perturbed states is 0.2047 (1 σ = 0.0196) (Fig. 7a, 8), in perfect agreement with modern empirical data and our GENIE experiments.

r.greenop 18/7/2016 15:50

Deleted: s r.greenop 18/7/2016 11:18

Deleted: The individual $\delta^{11}B_{sw}$ estimates calculated using the modern pH gradient method vary from 34.9 % to 42.2 % (\pm 0.84-4.77 %) across the Neogene with a predominance of higher values closer to the modern and lowest values in the middle Miocene (Fig. 9). After smoothing is applied to satisfy seawater B mass balance, the longterm $\delta^{11}B_{w}$ is determined as 37.5 % at 23 Ma, decreases to a minimum of 37.17 % a ... [14]

r.greenop 18/7/2016 11:18

Moved down [2]: The variability in the estimations of $\delta^{11}B_{sw}$ for each individual benthic/planktic foraminifera pair suggest that individual estimates of $\delta^{11}B_{sw}$ are sensitive to the different input parameters, particularly the assigned uncertainty in the pH gradient. However, by smoothing the record we effectively suppress error that is uncorrelated between individual benthic/planktic p4...[15]

939	planktic/benthic time point most individual Monte Carlo $\delta^{11}B_{\underline{sw}}$ estimates fall into a
940	much narrower central range (~1 $\%$ to 4 $\%$; thick black line showing interquartile
941	range in Fig. 10a). The $\delta^{11}B_{sw}$ for Plio-Pleistocene time-points cluster around ~40 ‰
942	while middle/late Miocene values cluster around ~36.5 %. The estimates at
943	individual time points are completely independent from each other, such that the
944	observed clustering is strong evidence for an underlying long-term signal in our data,
945	albeit one that is obscured by the uncertainties involved in our individual $\delta^{11}B_{\underline{sw}}$
946	estimates. The same long-term signal is also evident when pooling the individual
947	Monte Carlo member $\delta^{11}B_{sw}$ estimates into 8 million year bins and evaluating the
948	mean and spread (2σ) in each bin (Fig. 10b). This simple treatment highlights that
949	there is a significant difference between our Plio-Pleistocene and middle Miocene
950	data bins at the 95% confidence level and that $\delta^{11}B_{sw}$ appears to also have been
951	significantly lower than modern during the early Miocene.
052	2.2.1 Data smoothing
952 052	3.3.1 Data smoothing The 1 to 4.0° likely energy for $S^{11}D$ model on the other dimensioning since
953 954	The ~1 to 4 $\%$ likely ranges for $\delta^{11}B_{sw}$ would seem to be rather disappointing given the coal to constrain $\delta^{11}B_{sw}$ for all reconstructions. However, most of that uncertainty
	the goal to constrain $\delta^{11}B_{sw}$ for pH reconstructions. However, most of that uncertainty
955	is stochastic, random error that is uncorrelated from time point to time point.
956 057	Furthermore, we know from mass balance considerations that $\delta^{11}B_{sw}$ of seawater should not shoped by more than 0.1% and million users (Lamonhand et al. 2000)
957 058	should not change by more than ~0.1 ‰ per million years (Lemarchand et al., 2000)
958 959	and we use this as an additional constraint via the LOWESS smoothing we apply to
	each Monte Carlo time series. One consideration is that each and every individual
960 961	Monte Carlo $\delta^{11}B_{sw}$ estimate is equally likely and the smoothing should therefore
	target randomly selected individual Monte Carlo $\delta^{11}B_{sw}$ estimates, as we do here,
962 963	rather than smoothing over the likely ranges identified for each time point. In this
903 964	way the smoothing becomes integral part of our Monte Carlo uncertainty propagation and the spread among the 10 000 individual spreathed δ^{11} P , survey corrige the full
904 965	and the spread among the 10,000 individual smoothed $\delta^{11}B_{sw}$ curves carries the full representation of propagated input uncertainty conditional on the boron cycle mass
965 966	balance constraint. A second consideration is that the smoothing should only remove
900 967	noise, not underlying signal. As detailed above, for this reason the smoothing
907 968	parameter we choose has enough freedom to allow the $\delta^{11}B_{sw}$ change to be dictated
908 969	by the data, with only the most extreme shifts in $\delta^{11}B_{sw}$ removed. We also tested the
969 970	robustness of the smoothing procedure itself (not shown) and found only marginal
970 971	
7/1	changes when changing algorithm (LOESS versus LOWESS, with and without

r.greenop 18/7/2016 11:24

Deleted: When using $\delta^{13}C$ gradients as predictors for the pH gradient the $\delta^{11}B_{\scriptscriptstyle sw}$ values calculated are broadly similar to the results with assumed constant pH gradient: $\delta^{11}B_{sw}$ varies from 34.1 % to 42.3 % (±0.72-4.0 %) across the Neogene with the predominance of higher values closer to the modern with the lowest values in the middle Miocene (Fig. 9). However, when the individual $\delta^{11}B_{sw}$ estimates are smoothed, while the $\delta^{11}B_{sw}$ calculated using this method is similar to the constant pH gradient scenario through the late and middle Miocene (~ $37.5\% \pm 0.19$ -1.28 ‰), the subsequent increase occurs more rapidly and the $\delta^{11}B_{_{SW}}$ record reaches modern values by ${\sim}5$ Ma (Fig. 9). The variability in the estimations of $\delta^{11}B_{\mbox{\tiny sw}}$ for each individual benthic/planktic for aminifera pair suggest that individual estimates of $\delta^{11}B_{sw}$ are sensitive to the different input parameters, particularly the assigned uncertainty in the pH gradient. However, by smoothing the record we effectively suppress error that is uncorrelated between individual benthic/planktic pairs of similar age and thereby focus on the effect of changes in $\delta^{11}B_{sw}$ that are correlated over multi-million ... [16] year timescales. r.greenop 18/7/2016 11:18

Moved (insertion) [2]

1000	robust option) or when reducing the amount of smoothing (i.e., increasing the		
1001	allowed rate $\delta^{11}B_{sw}$ change). The robustness of our smoothing is further underscored		
1002	by the good correspondence with the results of simple data binning (Fig.10b).		
1003			
1004	3.4 Comparison to other $\delta^{11}B_{sw}$ records		
1005	The comparison of our new $\delta^{11}B_{sw}$ record to those previously published reveals that		r.greenop 17/8/2016 18:02
1006	despite the differences in methodology the general trends in the records show		Deleted: ,
1007	excellent agreement. The most dominant common feature of all the existing estimates		
1008	of Neogene $\delta^{11}B_{sw}$ evolution is an increase through time from the middle Miocene to		r.greenop 12/8/2016 12:17 Deleted: that a
1009	the Plio-Pleistocene (Fig. 11). While the model-based $\delta^{11}B_{sw}$ record of Lemarchand et		
1010	al. (2000) is defined by a monotonous and very steady rise over the entire study		r.greenop 12/8/2016 12:17 Deleted: present
1011	interval, all three measurement-based records, including our own, are characterized		r.greenop 21/7/2016 10:10 Deleted: 0
1012	by a single dominant phase of increase between roughly 12 and 5 Ma. Strikingly, the	C	
1013	Pearson and Palmer (2000) record falls almost entirely within our 95% likelihood		
1014	envelope, overall displaying very similar patterns of long-term change but with a		
1015	relatively muted amplitude and overall rate of change relative to our reconstruction.		
1016	Conversely, some of the second-order variations in the reconstruction by Raitzsch		
1017	and Hönisch (2013) are not well matched by our reconstruction, but the dominant		
1018	episode of rapid $\delta^{11}B_{sw}$ rise following the middle Miocene is in almost perfect		
1019	agreement. We are encouraged by these agreements resulting from approaches based		
1020	on very different underlying assumptions and techniques, which we take as indication		
1021	for an emerging consensus view of $\delta^{11}B_{sw}$ evolution over the last 25 Ma and as a		
1022	pathway towards reconstructing $\delta^{11}B_{sw}$ further back in time. Below we discuss in		r.greenop 12/8/2016 12:18
1023	more detail the remaining discrepancies between our new and previously existing		Deleted:
1024	$\delta^{11}B_{sw}$ reconstructions.		r.greenop 12/8/2016 12:18 Deleted: Our new $\delta^{11}B_{sw}$ record is broadly
1025	The record by Pearson and Palmer (2000) is well correlated to our reconstruction, but		similar to previously published estimates calculated using pH gradients in the surface ocean, in terms of both shape of the record and
1026	especialy during the early Miocene there is a notable ~0.5 ‰ offset (Fig. 11). This		magnitude of the reconstructed changes, with the notable exception in the early and middle
1027	discrepancy could be due to a number of factors. Firstly, the applicability of this		Miocene where $\delta^{11}B_{sw}$ in our record is 0.5 % lower (Fig. 10) than the published estimates of
1028	$\underline{\delta^{11}B_{sw}}$ record (derived from $\delta^{11}B$ data measured using NTIMS) to $\delta^{11}B$ records		Pearson and Palmer (2000).Unfortunately r.greenop 18/7/2016 12:14
1029	generated using the MC-ICPMS is uncertain (Foster et al., 2013). In addition, this		Moved (insertion) [3]
1030	$\underline{\delta}^{11}B_{sw}$ record is determined using a fractionation factor of 1.0194 (Kakihana et al.,		r.greenop 18/7/2016 15:09 Deleted: ,

1046	<u>1977</u>), whereas recent experimental data have shown the value to be higher $(1.0272 \pm$
1047	0.0006, Klochko et al., 2006), although foraminiferal vital effects are likely to mute
1048	this discrepancy. Thirdly, given our understanding of the δ^{11} B difference between
1049	species/size fractions (Foster, 2008; Henehan et al., 2013), the mixed species and size
1050	fractions used to make the $\delta^{11}B$ measurements in that study may have introduced
1051	some additional uncertainty in the reconstructed $\delta^{11}B_{sw}$. Conversely, there is
1052	substantial spread between our three time points during the earliest Miocene, which
1053	combined with the edge effect of the smoothing gives rise to a widening uncertainty
1054	envelope during the time of greatest disagreement with Pearson and Palmer (2000).
1055	This could be taken as indication that our reconstruction, rather than that of Pearson
1056	and Palmer, is biased during the early Miocene.

1058	The $\delta^{11}B_{_{SW}}$ record calculated using benthic $\delta^{11}B$ and assumed deep ocean pH changes
1059	(Raitzsch and Hönisch, 2013) is also rather similar to <u>our $\delta^{11}B_{sw}$ reconstruction. The</u>
1060	discrepancy between the two records in the early Miocene could plausibly be
1061	explained by bias in our record (see above) or may in part be as a result of the
1062	treatment of surface water pH in the study of Raitzsch and Hönisch (2013) and their
1063	assumption of constant surface-deep pH gradient (see Fig 9). The combined output
1064	from two carbon cycle box models is used to make the assumption that surface ocean
1065	pH near-linearly increased by 0.39 over the last 50 Myrs. The first source of surface
1066	water pH estimates is from the study of Ridgwell et al. (2005), where CO ₂ proxy data
1067	including some derived using the boron isotope-pH proxy is used, leading to some
1068	circularity in the methodology. The second source of surface water pH estimates is
1069	from Tyrrell & Zeebe (2004) and based on GEOCARB where the circularity problem
1070	does not apply. While this linear pH increase broadly matches the CO ₂ decline from
1071	proxy records between the middle Miocene and present, it is at odds with the CO_2
1072	proxy data during the early Miocene that show CO2 was lower than the middle
1073	Miocene during this interval (Beerling and Royer, 2011). Consequently the proxy
1074	$\underline{CO_2}$ and surface water pH estimates are not well described by the linear change in pH
1075	applied by Raitzsch and Hönisch (2013) across this interval, potentially contributing
1076	to the discrepancy between our respective $\delta^{11}B_{\underline{sw}}$ reconstructions
1077	Our new $\delta^{11}B_{sw}$ record falls within the broad uncertainty envelope of boron mass

	17/0/0046	10.04
lieenop	17/8/2016	10.04

Deleted: the r.greenop 17/8/2016 18:05

Deleted: values

r.greenop 17/8/2016 18:05

Deleted: ed

r.greenop 17/8/2016 18:05 **Deleted:** here, with 9 out of 16 of their individual samples falling inside our 95% confidence band even before considering the large individual sample uncertainties reported by Raitzsch and Hönisch (2013).

r.greenop 18/7/2016 15:02

Deleted: That said, the polynomial fit to the data applied by Raitzsch and Hönisch (2013) takes no account of the uncertainties of individual data points and produces an oscillating pattern that is inconsistent with our new reconstruction (Fig. 10). Furthermore, our

1092	balance calculations of Lemarchand et al. (2000), but those modelled values do not
1093	show the same level of multi-million year variability of either Raitzsch and Hönisch
1094	(2013) or our new record, therefore suggesting that the model does not fully account
1095	for aspects of the changes in the ocean inputs and outputs of boron through time on
1096	timescales less than ~10 million years.
1097	In line with the conclusions of previous studies (e.g., Raitzsch and Hönisch, 2013),
1098	our data show that the $\delta^{11}B_{sw}$ signal in the fluid inclusions (Paris et al., 2010) is
1099	mostly likely a combination of the $\delta^{11}B_{_{SW}}$ and some other factor such as a poorly
1100	constrained fractionation factor between the seawater and the halite. Brine-halite
1101	fractionation offsets of -20% to -30% and -5% are reported from laboratory and
1102	natural environments (Vengosh et al., 1992; Liu et al., 2000). These fractionations
1103	and riverine input during basin isolation will drive the evaporite-hosted boron to low-
1104	δ^{11} B isotope values such that the fluid inclusion record likely provides a lower limit
1105	for the $\delta^{11}B_{sw}$ through time (i.e. $\delta^{11}B_{sw}$ is heavier than the halite fluid inclusions of
1106	Paris et al. (2010)). In order for this halite record to be interpreted directly as $\delta^{11}B_{sw}$.
1107	a better understanding of the factor(s) controlling the fractionation during halite
1108	formation and any appropriate correction need to be better constrained.

r.greenop 26/7/2016 19:38 Deleted: 2

r.greenop 5/9/2016 16:07

Deleted: some of the controls on ocean inputs and outputs of boron are not fully understood.

1109

1110-3.5 Common controls on the seawater isotopic ratios of B, Mg, Ca and Li

1111 Our new record of $\delta^{11}B_{sw}$ has some <u>substantial</u> similarities to secular change se	
1112 other marine stable isotope records (Fig. 12). The <u>lithium isotopic composition</u>	<u>n of</u>
1113 seawater (δ^7 Li _{sw} ; Misra and Froelich, 2012) and the calcium isotopic composite	tion of
1114 <u>seawater ($\delta^{44/40}$Ca_{sw};Griffith et al., 2008) both increase through the Neogene, w</u>	hereas
1115 the magnesium isotopic composition of seawater $(\delta^{26}Mg_{sw})$ decreases (Pogge v	/on
1116 Strandmann et al., 2014) suggesting a similar control on the isotopic composit	ion of
1117 all four elements across this time interval (Fig. 12). To further evaluate the	
1118 correlation between these other marine isotope records and $\delta^{11}B_{sw}$, we interpol	ate and
1119 cross-plot $\delta^{11}B_{sw}$ and the $\delta^7 Li_{sw}$, $\delta^{44/40}Ca_{sw}$ and $\delta^{26}Mg_{sw}$ records. This analysis s	uggests
1120 that the isotopic composition of $\delta^{11}B_{sw}$, $\delta^{7}Li_{sw}$, $\delta^{26}Mg_{sw}$ and $\delta^{44/40}Ca_{sw}$ are well	
1121 correlated through the Neogene, although there is some scatter in these relatio	nships

r.greenop 21/7/2016 10:10
Deleted: 1
r.greenop 5/9/2016 16:21
Deleted: (
r.greenop 5/9/2016 16:21
Deleted: (

r.greenop 21/7/2016 10:10 Deleted: 1

1130	(Fig. 13). Although the Sr isotope record shows a similar increase during the	
1131	Neogene (Hodell et al., 1991), we focus our discussion on $\delta^{11}B_{sw}$, $\delta^{7}Li_{sw}$, $\delta^{26}Mg_{sw}$ and	r.greenop 21/7/2016 10:10 Deleted: 2
1132	$\delta^{44/40}$ Ca _{sw} given that the factors fractionating these <u>stable</u> isotopic systems are similar	r.greenop 5/9/2016 17:00 Deleted: elect to
1133	(see below).	r.greenop 5/9/2016 16:22
	-11 - 726	Deleted: e
1134	To better constrain the controls on $\delta^{11}B_{sw}$, δ^7Li_{sw} , $\delta^{26}Mg_{sw}$ and $\delta^{44/40}Ca_{sw}$ it is	
1135	instructive to compare the size and isotopic composition of the fluxes of boron,	
1136	lithium, calcium and magnesium to the ocean (Table 3). The major flux of boron into	
1137	the ocean is via riverine input (Lemarchand et al., 2000), although some studies	r.greenop 21/7/2016 11:48 Deleted: 1
1138	suggest that atmospheric input may also play an important role (Park and	r.greenop 5/9/2016 17:00
1139	Schlesinger, 2002). The <u>loss terms</u> are dominated by adsorption onto clays and the	Deleted: As noted previously, t r.greenop 26/7/2016 19:38
1140	alteration of oceanic crust (Spivack and Edmond, 1987; Smith et al., 1995).	Deleted: 2
1141	Similarly, the primary inputs of lithium into the ocean come from hydrothermal	r.greenop 12/8/2016 12:21 Deleted: outputs
1142	sources and riverine input and the main outputs are ocean crust alteration and	r.greenop 5/9/2016 17:00
1143	adsorption onto sediments (Misra and Froelich, 2012). The two dominant controls on	Deleted: to boron
1144	magnesium concentration and isotope ratio in the oceans is the riverine input, ocean	
1145	crust alteration and dolomitization (Table <u>3</u>) (Tipper et al., 2006b). The main controls	
1146	on the amount of calcium in the modern ocean and its isotopic composition is the	r.greenop 21/7/2016 11:48 Deleted: 1
1147	balance between riverine and hydrothermal inputs and removal through CaCO ₃	
1148	deposition and alteration of oceanic crust (Fantle and Tipper, 2014, Griffith et al.,	
1149	2008). Dolomitization has also been cited as playing a potential role in controlling	
1150	$\delta^{\rm 44/40} Ca_{\rm sw}$, although the contribution of this process through time is poorly constrained	
1151	(Griffith et al., 2008).	
1152	Analysis of the oceanic fluxes of all four ions suggests that riverine input may be an	
1153	important factor influencing the changing isotopic composition of B, Li, Ca and Mg	
1154	over the late Neogene (Table 3). In the case of all four elements, a combination of the	
1155	isotopic ratio of the source rock and isotopic fractionation during weathering	r.greenop 21/7/2016 11:48 Deleted: 1
1156	processes are typically <u>invoked</u> to explain the isotopic composition of a particular	Deleted: 1
1157	river system. However, in most cases the isotopic composition of the source rock is	r.greenop 5/9/2016 17:01
		Deleted: used
1158	found to be of secondary importance (Rose et al., 2000; Kısakűrek et al., 2005;	
1159	Tipper et al., 2006b; Millot et al., 2010). For instance, the δ^{11} B composition of rivers	
1160	is primarily dependent on isotopic fractionation during the reaction of water with	
1161	silicate rocks and to a lesser extent the isotopic composition of the source rock (i.e.	

1172	the manual in the and efficiency in the Decret of 2000) Willing (1)
1173	the proportion of evaporites and silicate rocks; Rose et al., 2000). While some studies
1174	have suggested that the isotopic composition of rainfall within the catchment area
1175	may be an important factor controlling the δ^{11} B in rivers (Rose-Koga et al., 2006),
1176	other studies have shown atmospheric boron to be a secondary control on riverine
1177	boron isotope composition (Lemarchand and Gaillardet, 2006). The source rock also
1178	appears to have limited influence on the $\delta^7 Li$ composition of rivers and riverine $\delta^7 Li$
1179	varies primarily with weathering intensity (Kısakűrek et al., 2005; Millot et al.,
1180	2010). The riverine input of calcium to the oceans is controlled by the composition of
1181	the primary continental crust (dominated by carbonate weathering) and a recycled
1182	component, although the relative influence of these two processes is not well
1183	understood (Tipper et al., 2006a). In addition, vegetation may also play a significant
1184	role in the $\delta^{44/40}$ Ca of rivers (Fantle and Tipper, 2014). For Mg, the isotopic
1185	composition of the source rock is important for small rivers, however, lithology is of
1186	limited significance at a global scale in comparison to fractionation in the weathering
1187	environment (Tipper et al., 2006b). Given the lack of evidence of source rock as a
1188	dominant control on the isotopic composition of rivers, here we focus on some of the
1189	possible causes for changes in the isotopic composition and/or flux of riverine input
1190	over the Neogene.
	over the Neogene. In this regard, of the four elements discussed here, the Li isotopic system is the most
1190	
1190 1191	In this regard, of the four elements discussed here, the Li isotopic system is the most
1190 1191 1192	In this regard, of the four elements discussed here, the Li isotopic system is the most extensively studied. Indeed, the change in $\delta^7 Li_{sw}$ has already been attributed to an
1190 1191 1192 1193	In this regard, of the four elements discussed here, the Li isotopic system is the most extensively studied. Indeed, the change in $\delta^7 \text{Li}_{sw}$ has already been attributed to an increase in the $\delta^7 \text{Li}_{sw}$ composition of the riverine input (Hathorne and James, 2006;
1190 1191 1192 1193 1194	In this regard, of the four elements discussed here, the Li isotopic system is the most extensively studied. Indeed, the change in $\delta^7 \text{Li}_{sw}$ has already been attributed to an increase in the $\delta^7 \text{Li}_{sw}$ composition of the riverine input (Hathorne and James, 2006; Misra and Froelich, 2012). The causes of the shift in $\delta^7 \text{Li}$ riverine have been variably
1190 1191 1192 1193 1194 1195	In this regard, of the four elements discussed here, the Li isotopic system is the most extensively studied. Indeed, the change in $\delta^7 \text{Li}_{sw}$ has already been attributed to an increase in the $\delta^7 \text{Li}_{sw}$ composition of the riverine input (Hathorne and James, 2006; Misra and Froelich, 2012). The causes of the shift in $\delta^7 \text{Li}$ riverine have been variably attributed to: (1) an increase in incongruent weathering of silicate rocks and
1190 1191 1192 1193 1194 1195 1196	In this regard, of the four elements discussed here, the Li isotopic system is the most extensively studied. Indeed, the change in $\delta^7 \text{Li}_{sw}$ has already been attributed to an increase in the $\delta^7 \text{Li}_{sw}$ composition of the riverine input (Hathorne and James, 2006; Misra and Froelich, 2012). The causes of the shift in $\delta^7 \text{Li}$ riverine have been variably attributed to: (1) an increase in incongruent weathering of silicate rocks and secondary clay formation as a consequence of Himalayan uplift (Misra and Froelich,
1190 1191 1192 1193 1194 1195 1196 1197	In this regard, of the four elements discussed here, the Li isotopic system is the most extensively studied. Indeed, the change in $\delta^7 \text{Li}_{sw}$ has already been attributed to an increase in the $\delta^7 \text{Li}_{sw}$ composition of the riverine input (Hathorne and James, 2006; Misra and Froelich, 2012). The causes of the shift in $\delta^7 \text{Li}$ riverine have been variably attributed to: (1) an increase in incongruent weathering of silicate rocks and secondary clay formation as a consequence of Himalayan uplift (Misra and Froelich, 2012), (2) a reduction in weathering intensity (Hathorne and James, 2006; Froelich
1190 1191 1192 1193 1194 1195 1196 1197 1198	In this regard, of the four elements discussed here, the Li isotopic system is the most extensively studied. Indeed, the change in $\delta^7 \text{Li}_{sw}$ has already been attributed to an increase in the $\delta^7 \text{Li}_{sw}$ composition of the riverine input (Hathorne and James, 2006; Misra and Froelich, 2012). The causes of the shift in $\delta^7 \text{Li}$ riverine have been variably attributed to: (1) an increase in incongruent weathering of silicate rocks and secondary clay formation as a consequence of Himalayan uplift (Misra and Froelich, 2012), (2) a reduction in weathering intensity (Hathorne and James, 2006; Froelich and Misra, 2014), (3) an increase in silicate weathering rate (Liu et al., 2015) and 4)
1190 1191 1192 1193 1194 1195 1196 1197 1198 1199	In this regard, of the four elements discussed here, the Li isotopic system is the most extensively studied. Indeed, the change in $\delta^7 \text{Li}_{sw}$ has already been attributed to an increase in the $\delta^7 \text{Li}_{sw}$ composition of the riverine input (Hathorne and James, 2006; Misra and Froelich, 2012). The causes of the shift in $\delta^7 \text{Li}$ riverine have been variably attributed to: (1) an increase in incongruent weathering of silicate rocks and secondary clay formation as a consequence of Himalayan uplift (Misra and Froelich, 2012), (2) a reduction in weathering intensity (Hathorne and James, 2006; Froelich and Misra, 2014), (3) an increase in silicate weathering rate (Liu et al., 2015) and 4) an increase in the formation of floodplains and the increased formation of secondary
1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200	In this regard, of the four elements discussed here, the Li isotopic system is the most extensively studied. Indeed, the change in $\delta^7 \text{Li}_{sw}$ has already been attributed to an increase in the $\delta^7 \text{Li}_{sw}$ composition of the riverine input (Hathorne and James, 2006; Misra and Froelich, 2012). The causes of the shift in $\delta^7 \text{Li}$ riverine have been variably attributed to: (1) an increase in incongruent weathering of silicate rocks and secondary clay formation as a consequence of Himalayan uplift (Misra and Froelich, 2012), (2) a reduction in weathering intensity (Hathorne and James, 2006; Froelich and Misra, 2014), (3) an increase in silicate weathering rate (Liu et al., 2015) and 4) an increase in the formation of floodplains and the increased formation of secondary minerals (Pogge von Strandmann and Henderson, 2014). In all four cases the lighter
1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201	In this regard, of the four elements discussed here, the Li isotopic system is the most extensively studied. Indeed, the change in $\delta^7 \text{Li}_{sw}$ has already been attributed to an increase in the $\delta^7 \text{Li}_{sw}$ composition of the riverine input (Hathorne and James, 2006; Misra and Froelich, 2012). The causes of the shift in $\delta^7 \text{Li}$ riverine have been variably attributed to: (1) an increase in incongruent weathering of silicate rocks and secondary clay formation as a consequence of Himalayan uplift (Misra and Froelich, 2012), (2) a reduction in weathering intensity (Hathorne and James, 2006; Froelich and Misra, 2014), (3) an increase in silicate weathering rate (Liu et al., 2015) and 4) an increase in the formation of floodplains and the increased formation of secondary minerals (Pogge von Strandmann and Henderson, 2014). In all four cases the lighter isotope of Li is retained on land in clay and secondary minerals. A mechanism
1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202	In this regard, of the four elements discussed here, the Li isotopic system is the most extensively studied. Indeed, the change in $\delta^7 \text{Li}_{sw}$ has already been attributed to an increase in the $\delta^7 \text{Li}_{sw}$ composition of the riverine input (Hathorne and James, 2006; Misra and Froelich, 2012). The causes of the shift in $\delta^7 \text{Li}$ riverine have been variably attributed to: (1) an increase in incongruent weathering of silicate rocks and secondary clay formation as a consequence of Himalayan uplift (Misra and Froelich, 2012), (2) a reduction in weathering intensity (Hathorne and James, 2006; Froelich and Misra, 2014), (3) an increase in silicate weathering rate (Liu et al., 2015) and 4) an increase in the formation of floodplains and the increased formation of secondary minerals (Pogge von Strandmann and Henderson, 2014). In all four cases the lighter isotope of Li is retained on land in clay and secondary minerals. A mechanism associated with either an increase in secondary mineral formation or the retention of
1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203	In this regard, of the four elements discussed here, the Li isotopic system is the most extensively studied. Indeed, the change in $\delta^7 \text{Li}_{sw}$ has already been attributed to an increase in the $\delta^7 \text{Li}_{sw}$ composition of the riverine input (Hathorne and James, 2006; Misra and Froelich, 2012). The causes of the shift in $\delta^7 \text{Li}$ riverine have been variably attributed to: (1) an increase in incongruent weathering of silicate rocks and secondary clay formation as a consequence of Himalayan uplift (Misra and Froelich, 2012), (2) a reduction in weathering intensity (Hathorne and James, 2006; Froelich and Misra, 2014), (3) an increase in silicate weathering rate (Liu et al., 2015) and 4) an increase in the formation of floodplains and the increased formation of secondary minerals (Pogge von Strandmann and Henderson, 2014). In all four cases the lighter isotope of Li is retained on land in clay and secondary minerals. A mechanism associated with either an increase in secondary mineral formation or the retention of these minerals on land is also consistent across Mg, Ca and B isotope systems. For

1206	Li (Pistiner and Henderson, 2003) and soil carbonates and clays are preferentially
1207	enriched in the light isotope of Ca (Tipper et al., 2006a; Hindshaw et al., 2013;
1208	Ockert et al., 2013). The formation of secondary silicate minerals, such as clays, is
1209	assumed to preferentially take up the heavy Mg isotope into the solid phase (Tipper et
1210	al., 2006a; Tipper et al., 2006b; Pogge von Strandmann et al., 2008; Wimpenny et al.,
1211	2014), adequately explaining the inverse relationship between $\delta^{11}B_{sw}$ and $\delta^{26}Mg_{sw}.$
1212	Consequently the increased formation or retention on land of secondary minerals
1213	would alter the isotopic composition of the riverine input to the ocean in the correct
1214	direction to explain the trends in all four isotope systems through the late Neogene
1215	(Fig. 1 <u>3</u>). The increased formation and retention of clays on land may have been
1216	related to the growth of the Himalayan orogeny and increased clay formation in the
1217	newly formed floodplains and foreland surrounding the mountains (Pogge von
1218	Strandmann and Henderson, 2014).

1219 4 Conclusions

Here we present a new $\delta^{11}B_{\mbox{\tiny sw}}$ record for the Neogene based on paired planktic-
benthic $\delta^{11}B$ measurements. Our new record suggests that $\delta^{11}B_{sw}$ (i) was ~ 37.5 ‰ at
the Oligocene-Miocene boundary, (ii) remained low through the middle Miocene,
(iii) rapidly increased to the modern value between 12 and 5 Ma, and (iv) plateaued at
modern values over the Plio-Pleistocene. Despite some disagreements, the fact that
our new record, and both of the published data based reconstructions capture the first-
order late Miocene $\delta^{11}B_{sw}$ rise suggests that consensus is building for the $\delta^{11}B_{sw}$
evolution through the Neogene. This emerging view on $\delta^{11}B_{sw}$ change provides a vital
constraint required to quantitatively reconstruct Neogene ocean pH, ocean carbon
chemistry and atmospheric CO ₂ using the $\delta^{11}B$ -pH proxy. When our new $\delta^{11}B_{sw}$
record is compared to changes in the seawater isotopic composition of Li, Ca and Mg
the shape of the records across the Neogene is remarkably similar. In all four cases
riverine input is cited as one of the key control of the isotopic composition of the
elements in seawater. When we compare the isotopic fractionation of the elements
associated with secondary mineral formation, the trends in the $\delta^{26}Mg_{sw}, \delta^{44/40}Ca_{sw}$
$\delta^{11}B_{sw}$ and δ^7Li_{sw} records are all consistent with an increase in secondary mineral
\mathbf{D}_{sw} and \mathbf{U} \mathbf{D}_{sw} records are an consistent with an increase in secondary innertai

r.greenop 12/8/2016 12:22 Deleted: of all the examined isotope systems and could potentially r.greenop 21/7/2016 10:10 Deleted: 2

r.greenop 12/8/2016 12:30 Formatted: Font color: Auto, English (UK)

Deleted: is r.greenop 12/8/2016 12:23 Deleted: and r.greenop 12/8/2016 12:26 Deleted: s

r.greenop 12/8/2016 12:22

r.greenop 12/8/2016 12:26

Deleted: . $\delta^{11}B_{sw}$ then increases to the modern value through the late Miocene. This new $\delta^{11}B_{sw}$ record provides a vital constraint he words B_{xx} records provide a vita constant required to estimate Neogene ocean pH, ocean carbon chemistry and atmospheric CO₂ using the δ^{11} B-pH proxy. r.greenop 5/9/2016 16:23

Deleted: the

1250 isotope systems is required, the $\delta^{11}B_{sw}$ record presented here provides additio	vides additional	
--	------------------	--

- 1251 constraints on the processes responsible for the evolution of ocean chemistry through
- 1252 time.

1253 Acknowledgements:

- 1254 This work used samples provided by (I)ODP, which is sponsored by the U.S.
- 1255 National Science Foundation and participating countries under the management of
- 1256 Joint Oceanographic Institutions, Inc. We thank W. Hale and A. Wuelbers of the
- 1257 Bremen Core Repository for their kind assistance. The work was supported by NERC
- 1258 grants NE/I006176/1 (G.L.F. and C.H.L.), NE/H006273/1 (G.L.F), NE/I006168/1
- 1259 and NE/K014137/1 and a Royal Society Research Merit Award (P.A.W), a NERC
- 1260 Independent Research Fellowship NE/K00901X/1 (M.P.H.) and a NERC studentship
- 1261 (R.G). Matthew Cooper, J. Andy Milton, and the B-team are acknowledged for their
- assistance in the laboratory.
- 1263
- 1264

1265 References:

1266	Al-Rousan, S., Pätzold, J., Al-Moghrabi, S., and Wefer, G., 2004, Invasion of
1267	anthropogenic CO ₂ recorded in planktonic foraminifera from the northern Gulf
1268	of Aqaba: International Journal of Earth Sciences, v. 93, no. 6, p. 1066-1076.
1269	Anagnostou, E., John, E.H., Edgar, K.M., Foster, G.L., Ridgewell, A., Inglis, G.N.,
1270	Pancost, R.D., Lunt, D.J., Pearson, P.N., 2016, Changing atmospheric CO ₂
1271	concentration was the primary driver of early Cenozoic climate, v. 533, p. 380-
1272	384.
1273	Anand, P., Elderfield, H., and Conte, M. H., 2003, Calibration of Mg/Ca
1274	thermometry in planktonic foraminifera from a sediment trap time series:
1275	Paleoceanography, v. 18, no. 2, DOI: 10.1029/2002PA000846.
1276	Bartoli, G., Hönisch, B., Zeebe, R.E., 2011, Atmospheric CO ₂ decline during the
1277	Pliocene intensification of Northern Hemisphere glaciations:
1278	Paleoceanography, v.26, DOI: 10.1029/2010PA002055.
1279	Badger, M. P. S., Lear, C.H., Pancost, R.D., Foster, G.L., Bailey, T.R., Leng, M.J.,
1280	and Abels, H.A., 2013, CO ₂ drawdown following the middle Miocene

- expansion of the Antarctic Ice Sheet: Paleoceanography, v. 28,
- 1282 doi:10.1002/palo.20015.
- Beerling, D. J., and Royer, D. L., 2011, Convergent Cenozoic CO₂ history: Nature
 Geosci, v. 4, no. 7, p. 418-420.

- Berner, R. A., and Kothavala, Z., 2001, GEOCARB III: A revised model of
 atmospheric CO₂ over Phanerozoic time: American Journal of Science, v. 301,
 no. 2, p. 182-204.
- Brennan S. T., Lowenstein T. K., Cendón D. I., 2013, The major-ion composition of Cenozoic seawater: the past 36 million years from fluid inclusions in marine halite: American Journal of Science, v. 313, p. 713–775.
- Broecker, W. S. and T. H. Peng, 1982, Tracers in the Sea, Lamont-Doherty Earth
 Observatory, Palisades, N. Y.
- Burton, K.W., Vigier, N., 2012, Lithium isotopes as tracers in Marine and terrestrial
 environments, Handbook of Environmental Isotope Geochemistry, Springer,
 Berlin, Heidelberg, p. 41–59.
- 1296 CARINA Group, 2009, Carbon in the Atlantic Ocean Region the CARINA project:
 1297 Results and Data, Version 1.0: Carbon Dioxide Information Analysis Center,
 1298 Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge,
 1299 Tennessee. doi: 10.3334/CDIAC/otg.CARINA.ATL.V1.0
- Catanzaro, E. J., Champion, C., Garner, E., Marinenko, G., Sappenfield, K., and W.,
 S., 1970, Boric Acid: Isotopic and Assay Standard Reference Materials NBS
 (US) Special Publications. National Bureau of Standards, Institute for
 Materials Research, Washington, DC.
- Cramer, B., Miller, K., Barrett, P., and Wright, J., 2011, Late Cretaceous-Neogene trends in deep ocean temperature and continental ice volume: Reconciling records of benthic foraminiferal geochemistry (δ¹⁸O and Mg/Ca) with sea level history: Journal of Geophysical Research-Oceans, v. 116, doi:10.1029/2011JC007255.
- 1309 Delaney, M. L., Be, A. W. H., and Boyle, E. A., 1985, Li, Sr, Mg and Na in
 1310 foraminiferal calcite shells from laboratory culture, sediment traps and
 1311 sediment cores: Geochimica Et Cosmochimica Acta, v. 49, no. 6, p. 13271312 1341.
- 1313 Deyhle, A., and Kopf, A., 2004, Possible influence of clay contamination on B
 1314 isotope geochemistry of carbonaceous samples: Applied Geochemistry, v. 19,
 1315 no. 5, p. 737-745.
- Edwards, N. R. and Marsh, R., 2005, Uncertainties due to transport- parameter
 sensitivity in an efficient 3-D ocean-climate model: Clim. Dynam., 24, 415–
 433, doi:10.1007/s00382-004-0508-8.
- Elderfield, H., Yu, J., Anand, P., Kiefer, T., and Nyland, B., 2006, Calibrations for
 benthic foraminiferal Mg/Ca paleothermometry and the carbonate ion
 hypothesis: Earth and Planetary Science Letters, v. 250, no. 3-4, p. 633-649.
- Evans, D., and Muller, W., 2012, Deep time foraminifera Mg/Ca paleothermometry:
 Nonlinear correction for secular change in seawater Mg/Ca:
- Paleoceanography, v. 27, DOI: 10.1029/2012PA002315.
 Fantle, M.S., Tipper, E.T, 2014, Calcium isotopes in the global biogeochemical Ca
 cycle: Implications for development of a Ca isotope proxy, Earth-Science
 Reviews, v. 129, p. 148-177.
- Foster, G., Hönisch, B., Paris, G., Dwyer, G., Rae, J., Elliott, T., Gaillardet, J.,
 Hemming, N., Louvat, P., and Vengosh, A., 2013, Interlaboratory comparison
 of boron isotope analyses of boric acid, seawater and marine CaCO₃ by MCICPMS and NTIMS: Chemical Geology, v. 358, p. 1-14.
- Foster, G., Lear, C. H., and Rae, J.W.B., 2012, The evolution of *p*CO₂, ice volume
 and climate during the middle Miocene: Earth and Planetary Science Letters,
 v. 341-344, p. 243-254.

- Foster, G. L., 2008, Seawater pH, pCO₂ and [CO₃²⁻] variations in the Caribbean Sea
 over the last 130 kyr: A boron isotope and B/Ca study of planktic forminifera:
 Earth and Planetary Science Letters, v. 271, no. 1-4, p. 254-266.
- Foster, G. L., Pogge von Strandmann, P. A. E., and Rae, J. W. B., 2010, Boron and
 magnesium isotopic composition of seawater: Geochemistry Geophysics
 Geosystems, v. 11, DOI: 10.1029/2010GC003201.
- Froelich, F., and Misra, S., 2014. Was the late Paleocene-early Eocene hot because
 Earth was flat? An ocean lithium isotope view of mountain building,
 continental weathering, carbon dioxide, and Earth's Cenozoic climate:
 Oceanography, v. 27, no.1, p. 36–49.
- Galbraith, E.D., Kwon, E.Y., Bianchi, D., Hain, M.P., Sarmiento, J.L., 2015, The
 impact of atmospheric *p*CO₂ on carbon isotope ratios of the atmosphere and
 ocean: Global Biogeochemical Cycles, 9, 307–324,
 doi:10.1002/2014GB004929
- Goodwin, P., and J. M. Lauderdale 2013, Carbonate ion concentrations, ocean carbon
 storage, and atmospheric CO₂: Global Biogeochem. Cycles, 27,
 doi:10.1002/gbc.20078.
- Gradstein F.M., Ogg J.G., Schmitz M., Ogg G., 2012, The Geologic Time Scale
 2012: Boston, Elsevier, 1144 p., doi:10.1016/B978-0-444-59425-9.00004-4.
- Greenop, R., Foster, G. L., Wilson, P. A., and Lear, C. H., 2014, Middle Miocene
 climate instability associated with high-amplitude CO₂ variability:
 Paleoceanography, v. 29, no. 9, DOI: 2014PA002653.
- Griffith, E., Paytan, A., Caldeira, K., Bullen, T., and Thomas, E., 2008, A Dynamic
 Marine Calcium Cycle During the Past 28 Million Years: Science, v. 322, no.
 5908, p. 1671-1674.
- Hain, M.P., Sigman, D.M., and Haug, G.H., 2010, Carbon dioxide effects of
 Antarctic stratification, North Atlantic Intermediate Water formation, and
 subantarctic nutrient drawdown during the last ice age: Diagnosis and
 synthesis in a geochemical box model: Global Biogeochem. Cycles, v. 24,
 doi:10.1029/2010GB003790.
- Hain, M.P, Sigman, D.M., and Haug, G.H., 2014a, The Biological Pump in the Past,
 Treatise on Geochemistry 2nd ed., vol. 8, chapter 18, 485-517,
 doi:10.1016/B978-0-08-095975-7.00618-5
- Hain, M.P, Sigman, D.M., and Haug, G.H., 2014b, Distinct roles of the Southern
 Ocean and North Atlantic in the deglacial atmospheric radiocarbon decline:
 Earth and Planetary Science Letters, v.394, p.198-208, doi:
 10.1016/j.epsl.2014.03.020
- Hain, M.P, Sigman, D.M., Higgins, J.A., and Haug, G.H., 2015, The effects of
 secular calcium and magnesium concentration changes on the
 thermodynamics of seawater acid/base chemistry: Implications for Eocene
 and Cretaceous ocean carbon chemistry and buffering: Global Biogeochem.
 Cycles, v. 29, doi:10.1002/2014GB004986.
- Hasiuk, F., and Lohmann, K., 2010, Application of calcite Mg partitioning functions to the reconstruction of paleocean Mg/Ca: Geochimica Et Cosmochimica Acta, v. 74, no. 23, p. 6751-6763.
- Hathorne, E. C., and James, R. H., 2006, Temporal record of lithium in seawater: A
 tracer for silicate weathering?: Earth and Planetary Science Letters, v. 246,
 no. 3–4, p. 393-406.

- Haug, G. H., and Tiedemann, R., 1998, Effect of the formation of the Isthmus of
 Panama on Atlantic Ocean thermohaline circulation: Nature, v. 393, no. 6686,
 p. 673-676.
- Hemleben Ch, Spindler M, Breitinger, Ott R., 1987, Morphological and physiological
 responses of *Globigerinoides sacculifer* (Brady) under varying laboratory
 conditions: Marine Micropaleontology, v.12, p. 305-324.
- Hemming, N. G., and Hanson, G. N., 1992, Boron isotopic composition and
 concentration in modern marine carbonates: Geochimica et Cosmochimica
 Acta, v. 56, no. 1, p. 537-543.
- Henehan, M. J., Rae, J. W. B., Foster, G. L., Erez, J., Prentice, K. C., Kucera, M.,
 Bostock, H. C., Martinez-Boti, M. A., Milton, J. A., Wilson, P. A., Marshall,
 B. J., and Elliott, T., 2013, Calibration of the boron isotope proxy in the
 planktonic foraminifera Globigerinoides ruber for use in palaeo-CO₂
- reconstruction: Earth and Planetary Science Letters, v. 364, no. 0, p. 111-122.
 Hindshaw, R. S., Bourdon, B., Pogge von Strandmann, P. A. E., Vigier, N., and
- Burton, K. W., 2013, The stable calcium isotopic composition of rivers
 draining basaltic catchments in Iceland: Earth and Planetary Science Letters,
 v. 374, no. 0, p. 173-184.
- Hodell, D.A., Mueller, P.A., Garrido, J.R., 1991, Variations in the strontium isotopic
 composition of seawater during the Neogene: Geology, v.11, p. 24-27.
- Holbourn, A., Kuhnt, W., Simo, J., and Li, Q., 2004, Middle Miocene isotope
 stratigraphy and paleoceanographic evolution of the northwest and southwest
 Australian margins (Wombat Plateau and Great Australian Bight):
 Palaeogeography Palaeoclimatology Palaeoecology, v. 208, no. 1-2, p. 1-22.
- Holden, P. B., N. R. Edwards, S. A. Müller, K. I. C. Oliver, R. M. De'ath and A. Ridgwell, 2013. Controls on the spatial distribution of oceanic $\delta^{13}C_{DIC}$:
- Biogeosciences 10, 1815-1833.
 Hönisch, B., Hemming, N. G., Archer, D., Siddall, M., and McManus, J. F., 2009,
- Atmospheric Carbon Dioxide Concentration Across the Mid-Pleistocene
 Transition: Science, v. 324, no. 5934, p. 1551-1554.
- Horita, J., Zimmermann, H., and Holland, H. D., 2002, Chemical evolution of
 seawater during the Phanerozoic: Implications from the record of marine
 evaporites: Geochimica Et Cosmochimica Acta, v. 66, no. 21, p. 3733-3756.
 Kaczmarek, K., Nehrke, G., Misra, S., Bijma, J., Elderfield, H., 2016, Investigating
 the effects of growth rate and temperature on the B/Ca ratio and δ¹¹B during
- 1418 inorganic calcite formation, v. 421, p. 81-92.
- Kakihana, H., Kotaka, M., Satoh, S., Nomura, M., and Okamoto, M., 1977,
 Fundamental studies on ion-exchange separation of boron isotopes: Bulletin
 of the Chemical Society of Japan, v. 50, no. 1, p. 158-163.
- 1422
 Keeling, C.D., 1979, The Suess effect: ¹³Carbon-¹⁴Carbon interrelations: Environment

 1423
 International, v. 2, no. 4-6, p. 229-300.
- Key, R. M., Kozyr, A., Sabine, C. L., Lee, K., Wanninkhof, R., Bullister, J. L., Feely,
 R. A., Millero, F. J., Mordy, C., and Peng, T. H., 2004, A global ocean carbon
 climatology: Results from Global Data Analysis Project (GLODAP): Global
 Biogeochem. Cycles, v. 18, no. 4, doi:10.1029/2004GB002247.
- Kısakűrek, B., James, R. H., and Harris, N. B. W., 2005, Li and δ⁷Li in Himalayan rivers: Proxies for silicate weathering?: Earth and Planetary Science Letters, v. 237, no. 3–4, p. 387-401.
 - 27

- Klochko, K., Kaufman, A. J., Yao, W. S., Byrne, R. H., and Tossell, J. A., 2006,
 Experimental measurement of boron isotope fractionation in seawater: Earth and Planetary Science Letters, v. 248, no. 1-2, p. 276-285.
- Lear, C. H., Mawbey, E. M., and Rosenthal, Y., 2010, Cenozoic benthic foraminiferal
 Mg/Ca and Li/Ca records: Toward unlocking temperatures and saturation
 states: Paleoceanography, v. 25, doi:10.1029/2009PA001880.
- Lee, K., Kim, T. W., Byrne, R. H., Millero, F. J., Feely, R. A., and Liu, Y. M., 2010,
 The universal ratio of boron to chlorinity for the North Pacific and North
 Atlantic oceans: Geochimica Et Cosmochimica Acta, v. 74, no. 6, p. 18011811.
- Lemarchand, D., and Gaillardet, J., 2006, Transient features of the erosion of shales
 in the Mackenzie basin (Canada), evidences from boron isotopes: Earth and
 Planetary Science Letters, v. 245, no. 1–2, p. 174-189.
- Lemarchand, D., Gaillardet, J., Lewin, E., and Allegre, C. J., 200<u>0, The influence of</u> rivers on marine boron isotopes and implications for reconstructing past ocean pH: Nature, v. <u>408</u>, p. <u>951-954</u>
- Liu, W. G., Xiao, Y. K., Peng, Z. C., An, Z. S., and He, X. X., 2000, Boron
 concentration and isotopic composition of halite from experiments and salt
 lakes in the Qaidam Basin: Geochimica Et Cosmochimica Acta, v. 64, no. 13,
 p. 2177-2183.
- Liu, X.-M., Wanner, C., Rudnick, R. L., and McDonough, W. F., 2015, Processes
 controlling δ⁷Li in rivers illuminated by study of streams and groundwaters
 draining basalts: Earth and Planetary Science Letters, v. 409, no. 0, p. 212 224.
- Lynch-Steiglitz, J., T.F. Stocker, W.S. Broecker and R.G. Fairbanks (1995), The
 influence of air-sea exchange on the isotopic composition of oceanic carbon:
 Observations and modeling: Global Biogeochemical Cycles, vol. 9, 4, p653665.
- Martinez-Boti, M. A., Foster, G. L., Chalk, T. B., Rohling, E. J., Sexton, P. F., Lunt,
 D. J., Pancost, R. D., Badger, M. P. S., and Schmidt, D. N., 2015a, PlioPleistocene climate sensitivity from on a new high-resolution CO₂ record:
 Nature, v. 518, p. 49-54.
- Martinez-Botì, M.A., Marino, G., Foster, G. L., Ziveri, P., Henehan, M. J., Rae, J. W.
 B., Mortyn, P. G. and Vance, D., 2015b, Boron isotope evidence for oceanic
 CO₂ leakage during the last deglaciation: Nature, v. 518, p. 219-222.
- McCorkle, D. C., Corliss, B. H., and Farnham, C. A., 1997, Vertical distributions and stable isotopic compositions of live (stained) benthic foraminifera from the North Carolina and California continental margins: Deep Sea Research Part I: Oceanographic Research Papers, v. 44, no. 6, p. 983-1024.
- Millot, R., Vigier, N., and Gaillardet, J., 2010, Behaviour of lithium and its isotopes
 during weathering in the Mackenzie Basin, Canada: Geochimica et
 Cosmochimica Acta, v. 74, no. 14, p. 3897-3912.
- Misra, S., and Froelich, P., 2012, Lithium Isotope History of Cenozoic Seawater:
 Changes in Silicate Weathering and Reverse Weathering: Science, v. 335, no.
 6070, p. 818-823.
- Ockert, C., Gussone, N., Kaufhold, S., Teichert, B.M.A., 2013, Isotope fractionation
 during Ca exchange on clay minerals in a marine environment: Geochimica et
 Cosmochimica Acta, v. 112, p. 374-388.
- 1479 Olsen, A., Ninneman, U.S., 2010, Large δ^{13} C gradients in the preindustrial North 1480 Atlantic revealed: Science, v. 330, p. 658–659.

r.greenop 26/7/2016 Deleted: 2 p 26/7/2016 19:36 Formatted: Font: (Default) Times New Roman, 12 pt Deleted: Boron isotope systematics in large rivers: implications for the marine boron budget and paleo-pH reconstruction over the Cenozoic areenop 26/7/2016 Deleted: Chemical Geology greenop 26/7/2016 19:36 **Deleted:** 190 greenop 26/7/2016 19: Deleted: no. 1-4, greenop 26/7/2016 19: Deleted: 123 greenop 26/7/2016 19:36

Deleted: 140

- Pälike, H., Lyle, M., Nishi, H., Raffi, I., Ridgwell, A., Gamage, K., Klaus, A., Acton,
 G., Anderson, L., Backman, J., Baldauf, J., Beltran, C., *et al.* 2012, A
 Cenozoic record of the equatorial Pacific carbonate compensation depth:
 Nature, v. 488, no. 7413, p. 609-614.
- Palmer, M. R., Pearson, P. N., and Cobb, S. J., 1998, Reconstructing past ocean pHdepth profiles: Science, v. 282, no. 5393, p. 1468-1471.
- Paris, G., Gaillardet, J., and Louvat, P., 2010, Geological evolution of seawater boron
 isotopic composition recorded in evaporites: Geology, v. 38, no. 11, p. 10351038.
- Park, H., and Schlesinger, W. H., 2002, Global biogeochemical cycle of boron:
 Global Biogeochemical Cycles, v. 16, no. 4, DOI: 10.1029/2001GB001766.
- Pearson, P. N., Foster, G. L., and Wade, B. S., 2009, Atmospheric carbon dioxide
 through the Eocene-Oligocene climate transition: Nature, v. 461, p. 11101113.
- Pearson, P. N., and Wade, B. S., 2009, Taxonomy and Stable Isotope Paleoecology of
 Well-Preserved Planktonic Foraminifera from the Uppermost Oligocene of
 Trinidad: Journal of Foraminiferal Research, v. 39, no. 3, p. 191-217.
- Pearson, P. N., and Palmer, M. R., 1999, Middle Eocene seawater pH and
 atmospheric carbon dioxide concentrations: Science, v. 284, no. 5421, p.
 1824-1826.
- Pearson, P. N., and Palmer, M. R., 2000, Atmospheric carbon dioxide concentrations
 over the past 60 million years: Nature, v. 406, no. 6797, p. 695-699.
- Pistiner, J. S., and Henderson, G. M., 2003, Lithium-isotope fractionation during
 continental weathering processes: Earth and Planetary Science Letters, v. 214,
 no. 1–2, p. 327-339.
- Pogge von Strandmann, P. A. E., Burton, K. W., James, R. H., van Calsteren, P.,
 Gislason, S. R., and Sigfússon, B., 2008, The influence of weathering
 processes on riverine magnesium isotopes in a basaltic terrain: Earth and
 Planetary Science Letters, v. 276, no. 1–2, p. 187-197.
- Pogge von Strandmann, P. A. E., Forshaw, J., and Schmidt, D. N., 2014, Modern and Cenozoic records of seawater magnesium from foraminiferal Mg isotopes: Biogeosciences, v. 11, no. 18, p. 5155-5168.
- 1523 Pogge von Strandmann, P. A. E., and Henderson, G. M., 2014, The Li isotope 1524 response to mountain uplift: Geology, doi: 10.1130/G36162.1.
- Rae, J. W. B., Foster, G. L., Schmidt, D. N., and Elliott, T., 2011, Boron isotopes and
 B/Ca in benthic foraminifera: Proxies for the deep ocean carbonate system:
 Earth and Planetary Science Letters, v. 302, no. 3-4, p. 403-413.
- Raitzsch, M., and Hönisch, B., 2013, Cenozoic boron isotope variations in benthic
 foraminifers: Geology, v. 41, no. 5, p. 591-594.
- Ridgewell, A., 2005, A mid Mesozoic revolution in the regulation of ocean
 chemistry: Marine Geology, v. 217, no. 3-4, p. 339-357.
- Ridgwell, A., Hargreaves, J. C., Edwards, N. R., Annan, J. D., Lenton, T. M., Marsh,
 R., Yool, A., and Watson, A., 2007, Marine geo-chemical data assimilation in
 an efficient Earth System Model of global biogeochemical cycling:
 Biogeosciences, 4, 87–104, doi:10.5194/bg-4-87-2007, 2007.
- Rose, E. F., Chaussidon, M., and France-Lanord, C., 2000, Fractionation of boron
 isotopes during erosion processes: the example of Himalayan rivers:
- 1538 Geochimica et Cosmochimica Acta, v. 64, no. 3, p. 397-408.

1539	Rose-Koga, E. F., Sheppard, S. M. F., Chaussidon, M., and Carignan, J., 2006, Boron	
1540	isotopic composition of atmospheric precipitations and liquid-vapour	
1541	fractionations: Geochimica et Cosmochimica Acta, v. 70, no. 7, p. 1603-1615.	
1542	Sanyal, A., Hemming, N.G., Hanson, G.N., Broecker, W.S., 1995, Evidence for a	
1543	higher pH in the glacial ocean from boron isotopes in foraminifera: Nature,	
1544	<u>373, p. 243-236</u>	
1545	Sanyal, A., Bijma, J., Spero, H., and Lea, D. W., 2001, Empirical relationship	
1546	between pH and the boron isotopic composition of Globigerinoides sacculifer:	
1547	Implications for the boron isotope paleo-pH proxy: Paleoceanography, v. 16,	
1548	no. 5, p. 515-519.	
1549	Schlitzer, R., Ocean Data View, 2016, http://www.awi-bremerhaven.de/GEO/ODV.	
1550	Seki, O., Foster, G. L., Schmidt, D. N., Mackensen, A., Kawamura, K., and Pancost,	r.greenop 12/8/2016 15:03
1551	R. D., 2010, Alkenone and boron-based Pliocene pCO ₂ records: Earth and	Deleted: 2010
1552	Planetary Science Letters, v. 292, no. 1-2, p. 201-211.	
1553	Shipboard Scientific Party, 1989. Site 758. In Peirce, J., Weissel, J., et al., Proc.	
1554	ODP, Init. Repts., 121: College Station, TX (Ocean Drilling Program), 359-	
1555	453. doi:10.2973/odp.proc.ir.121.112.1989	
1556	Shipboard Scientific Party, 1995. Site 926. In Curry, W.B., Shackleton, N.J., Richter,	
1557	C., et al., Proc. ODP, Init. Repts., 154: College Station, TX (Ocean Drilling	
1558	Program), 153–232. doi:10.2973/odp.proc.ir.154.105.1995	
1559	Shipboard Scientific Party, 1997. Site 999. In Sigurdsson, H., Leckie, R.M., Acton,	
1560	G.D., et al., Proc. ODP, Init. Repts., 165: College Station, TX (Ocean Drilling	
1561	Program), 131–230. doi:10.2973/odp.proc.ir.165.104.1997.	
1562	Sigman, D.M., McCorkle, D.C., Martin, W.R., 1998, The calcite lysocline as a	
1563	constraint on glacial/interglacial low-latitude production changes: Global	
1564	Biogeochem. Cycles, v. 12, no. 3, p. 409-427.	
1565	Simon, L., Lecuyer, C., Marechal, C., and Coltice, N., 2006, Modelling the	
1566	geochemical cycle of boron: Implications for the long-term δ^{11} B evolution of	
1567	seawater and oceanic crust: Chemical Geology, v. 225, no. 1-2, p. 61-76.	
1568	Smith, H. J., Spivack, A. J., Staudigel, H., and Hart, S. R., 1995, The boron isotopic	
1569	composition of altered oceanic crust: Chemical Geology, v. 126, no. 2, p. 119-	
1570	135.	
1571	Sosdian, S.M., Greenop. R., Lear, C.H., Foster, G.L., Hain, M.P, and Pearson, P.N.,	
1572	2015, Future ocean acidification could be unprecedented in the last 14 million	
1573	years: <u>in prep</u> .	
1574	Spero, H., Mielke, K., Kalve, E., Lea, D., and Pak, D., 2003, Multispecies approach	r.greenop 6/9/2016 13:46
1575	to reconstructing eastern equatorial Pacific thermocline hydrography during	Deleted: submitted to Nature
1576	the past 360 kyr: Paleoceanography, v. 18, no. 1,	
1577	doi:10.1029/2001GC000200.	
1578	Spezzaferri S, Kucera M, Pearson PN, Wade BS, Rappo S, Poole CR, et al., 2015,	
1579	Fossil and genetic evidence for the polyphyletic nature of the planktonic	
1580	foraminifera "Globigerinoides", and description of the new Genus Trilobatus:	
1581	PLoS ONE, v.10, no. 5, DOI:e0128108. doi:10.1371/journal.pone.0128108	
1582	Spivack, A. J., and Edmond, J. M., 1987, Boron isotope exchange between seawater	
1583	and the oceanic crust: Geochimica et Cosmochimica Acta, v. 51, no. 5, p.	
1584	1033-1043.	
1585	Takahashi, T., Sutherland S.C., Wanninkhof, R., Sweeney, C., Feely, R.A., et al.,	
1586	2009, Climatological mean and decadal change in surface ocean pCO_2 , and	
1587	net sea-air CO ₂ flux over global oceans: Deep-Sea Research II, v.56, p.554-	
1588	557.	

1591 1592 1593	Tipper, E. T., Galy, A., and Bickle, M. J., 2006a, Riverine evidence for a fractionated reservoir of Ca and Mg on the continents: Implications for the oceanic Ca cycle: Earth and Planetary Science Letters, v. 247, no. 3–4, p. 267-279.
1595	Tipper, E. T., Galy, A., Gaillardet, J., Bickle, M. J., Elderfield, H., and Carder, E. A.,
1594	
1595	2006b, The magnesium isotope budget of the modern ocean: Constraints from riverine magnesium isotope ratios: Earth and Planetary Science Letters, v.
1590	250, no. 1–2, p. 241-253.
1598	Tomascak, P. B., 2004, Developments in the Understanding and Application of
1599	Lithium Isotopes in the Earth and Planetary Sciences: Reviews in Mineralogy
1600	and Geochemistry, v. 55, no. 1, p. 153-195.
1600	Tyrrell, T., and Zeebe, R. E., 2004, History of carbonate ion concentration over the
1602	last 100 million years: Geochimica Et Cosmochimica Acta, v. 68, no. 17, p.
1603	3521-3530.
1604	Vengosh, A., Starinsky, A., Kolodny, Y., Chivas, A. R., and Raab, M., 1992, Boron
1605	Isotope Variations during Fractional Evaporation of Sea-Water - New
1606	Constraints on the Marine Vs Nonmarine Debate: Geology, v. 20, no. 9, p.
1607	799-802.
1608	Wimpenny, J., Colla, C. A., Yin, QZ., Rustad, J. R., and Casey, W. H., 2014,
1609	Investigating the behaviour of Mg isotopes during the formation of clay
1610	minerals: Geochimica et Cosmochimica Acta, v. 128, no. 0, p. 178-194.
1611	Wombacher, F., Eisenhauer, A., Böhm, F., Gussone, N., Regenberg, M., Dullo, W.
1612	C., and Rüggeberg, A., 2011, Magnesium stable isotope fractionation in
1613	marine biogenic calcite and aragonite: Geochimica et Cosmochimica Acta, v.
1614	75, no. 19, p. 5797-5818.
1615	You, C.F., Spivack, A. J., Smith, J. H., and Gieskes, J. M., 1993, Mobilization of
1616	boron in convergent margins: Implications for the boron geochemical cycle:
1617	Geology, v. 21, no. 3, p. 207-210.
1618	Zeebe, R. E., and Wolf-Gladrow, D. A., 2001, CO ₂ in seawater, equilibrium, kinetics,
1619	isotopes IN Elsevier oceanography series, Amsterdam, PAYS-BAS, Elsevier,
1620	XIII, 346 p. p.:
1621	Zeeden, C., Hilgen, F., Westerhold, T., Lourens, L., Röhl, U., and Bickert, T., 2013,
1622	Revised Miocene splice, astronomical tuning and calcareous plankton
1623	biochronology of ODP Site 926 between 5 and 14.4 Ma: Palaeogeography,
1624	Palaeoclimatology, Palaeoecology, v. 369, no. 0, p. 430-451.
1625	

1627 Figure Captions:

- 1628 Figure 1: The oceanic boron cycle. Fluxes are from Lemarchand et al. (2000) and
- 1629 Park and Schlesinger (2002). Isotopic compositions are from Lemarchand et al.
- 1630 (200<u>0), Foster et al., (2010)</u> and references therein.
- 1631 $\ \ Figure 2:$ A compilation of published $\delta^{11}B_{sw}$ records. Seawater composition
- 1632 reconstructed from foraminifera depth profiles (light blue squares and dark blue
- 1633 cross) from Pearson and Palmer (2000) and Foster et al. (2012) respectively,

31

r.greenop 26/7/2016 19:37 Deleted: 2

r.greenop 26/7/2016 19:37 Deleted: 2

1636	numerical modelling (green line), with additional green lines shows ± 1 ‰		
1637	confidence interval (Lemarchand et al., 200 ⁽¹⁾), benthic $\delta^{11}B$ (purple diamonds and		.greenop 6/9/2016 12:12 Deleted: dark
1638	dark purple line is using the fractionation factor of Klochko et al., 2006, light purple		.greenop 26/7/2016 19:37 Deleted: 2
1639	line using an empirical calibration) from Raitzsch and Hönisch (2013), and halites	Ŀ	
1640	(orange crosses) from Paris et al. (2010). The orange crosses in brackets were		
1641	discarded from the original study.		arranan 01/7/0016 10:06
1642	Figure 3: Schematic diagram showing the change in pH gradient with a 3‰ change in	E a	.greenop 21/7/2016 10:26 Deleted: All the published $\delta^{11}B_{sw}$ curves are djusted so that at $t=0$, the isotopic
1643	δ^{11} B for δ^{11} B _{sw} of a) 39.6‰ and b) 37.5‰. <u>Arrows highlight the different pH</u>	C	composition is equal to the modern (39.61 ‰).
1644	gradients. Note how a δ^{11} B difference of 3 ‰ is translated into different pH gradients		
1645	depending on the $\delta^{11}B_{sw}$. Calculated using B_T = 432.6 µmol/kg (Lee et al., 2010) and		
1646	α_B = 1.0272 (Klochko et al., 2006). (c) The pH change for a $\delta^{11}B$ change of 3 ‰ at a		
1647	range of different $\delta^{11}B_{sw}$.		
1648	Figure 4: Map of study sites and mean annual air-sea disequilibria with respect to		
1649	pCO ₂ . The black dots indicate the location of the sites used in this study. ODP Sites		.greenop 12/8/2016 15:02 Formatted: Line spacing: 1.5 lines
1650	758, 999, 926 and 761 used in this study are highlighted with water depth. Data are		
1651	from (Takahashi et al., 2009) plotted using ODV (Schlitzer, 2016).		
1652	Figure 5: Latitudinal cross-section through the Atlantic showing (a) pH variations;		.greenop 21/7/2016 10:13
1653	(b) the δ^{13} C composition. Data are plotted using Ocean Data View (Schlitzer <u>2016</u>).	I	Deleted: 4
1654	pH data are from the CARINA dataset (CARINA group, 2009) and the $\delta^{13}C$ data are		.greenop 6/9/2016 12:19 Deleted: 2001
1655	from the GLODAP data compilation (Key et al., 2004); (c) pH and $\delta^{13}C_{DIC}$		
1656	relationships in the modern ocean adapted from Foster et al., (2012). Because of		
1657	anthropogenic acidification and the Suess effect only data from >1500 m are plotted.		
1658	Also included in the plot are the data from a transect in the North Atlantic (from 0 to		.greenop 15/7/2016 12:36 Deleted: e
1659	5000 m) where the effects of anthropogenic perturbation on both parameters have		
1660	been corrected (Olsen and Ninneman, 2010).		
1661	Figure $\underline{6}$; $\underline{\delta}^{11}$ B _{planktic} , temperature and δ^{13} C _{DIC} estimates for the surface and deep		
1662	ocean through the last 23 million years. (a) $\delta^{11}B_{\text{planktic}}$ surface; (b) $\delta^{11}B_{\text{borate}}$ deep from		.greenop 21/7/2016 10:13 Deleted: 5
1663	benthic foraminifera (blue) from this study and (green) Raitzsch and Hönisch, (2013).		.greenop 21/7/2016 10:17
1664	The error bars show the analytical external reproducibility at 95% confidence; (c)		Deleted: δ ¹¹ B _{borate} .greenop 21/7/2016 10:17
1665	Mg/Ca based temperature reconstructions of surface dwelling planktic foraminifera;] / [Deleted: $\delta^{11}B_{borate}$
1666	(d) Deep water temperature estimates from Cramer et al. (2011); (e) $\delta^{13}C_{DIC}$ surface		.greenop 6/9/2016 12:34 Deleted: deep
1667	record; (f) $\delta^{13}C_{DIC}$ benthic record. Squares depict ODP Site 999, triangles are ODP		.greenop 15/7/2016 12:38 Deleted: calculated on paired measurements

1681	Site 758, diamonds are ODP Site 926, circles are ODP Site 761. Species are
1682	highlighted by colour: Orange are T. trilobus, purple G. ruber, red G. praebulloides,
1683	dark blue Cibicidoides wuellestorfi and light blue Cibicidoides mundulus. The two
1684	benthic-planktic pairs that were removed prior to smoothing are highlighted with
1685	arrows.
1686	Figure 7; The output from <u>GENIE</u> sensitivity analysis showing the warm-surface-to-
1687	<u>cold-deep ΔpH-to-$\Delta \delta^{13}$C relationship, A pre-industrial model setup was taken and</u>
1688	perturbations were made to alkalinity inventory, carbon inventory, Antarctic shelf
1689	fresh water flux (Sv), Atlantic-Pacific freshwater flux, S. Lim gas exchange (blocks
1690	air-sea gas exchange south of the stated latitude), remineralisation depth scale (m)
1691	and rain ratio – as described in the methods section. Blue circles depict the ΔpH -to-
1692	$\Delta \delta^{13}$ C relationship (where the colours reflect the CO ₂ level of each experiment) and
1693	red open circles show the root mean square of the regression (RMSE). The green
1694	stars are the ΔpH -to- $\Delta \delta^{13}C$ relationship for the control experiment conducted at
1695	292.67 ppm CO ₂ . The green (open) points show the RMSE for this control run.
1696	Inventories are dimensionless (1 is control). For the Atlantic-Pacific FWF 1 is
1697	equivalent to 0.32 Sv. The alkalinity and carbon inventory experiments are very
1698	extreme and inconsistent with geologic evidence.
1699	Figure &: The output from sensitivity analysis of the relationship between pH gradient
1700	and δ^{13} C gradient from the <u>13500</u> run CYCLOPS ensemble (see text for model
1701	details). Panel (a) shows the mean gradient when the result from all 18 ocean boxes
1702	are included in the regression. Panel (b) shows only the boxes from the low latitude
1703	ocean from all basins and (c) shows the regression from only North Atlantic low
1704	latitude boxes. Note the lower $\Delta p H / \Delta \delta^{11} B$ slope at the lower latitudes due to the
1705	effect of temperature.
1706	Figure 9: The pH gradient between surface and deep through time calculated from the
1707	δ^{13} C gradient and using a flat probability derived from the low latitude ensemble
1708	regressions from the CYCLOPS model. The modern pH gradients at each site are
1709	also plotted.
1710	Figure <u>10</u> ; The calculated $\delta^{11}B_{sw}$ from the benthic-planktic $\delta^{11}B$ pairs <u>using</u> a pH
1711	gradient derived from $\delta^{13}C_{\star}$ The uncertainty on each data point is determined using a
1712	Monte Carlo approach including uncertainties in temperature, salinity, δ^{11} B and the

04/7/0040 40:40
r.greenop 21/7/2016 10:13
Deleted: 6
r.greenop 17/8/2016 18:13
Deleted: of the relationship between pH
gradient and δ^{13} C gradient from GENIE
r.greenop 17/8/2016 18:13
Deleted: The gradient of a linear regression
for each experiment, with $\delta^{13}C$ and pH data taken from each grid square, is plotted.
r.greenop 17/8/2016 18:13
Deleted: gradient
r.greenop 5/9/2016 19:02
Deleted: data points (closed)
r.greenop 17/8/2016 18:15
Deleted:
r.greenop 17/8/2016 18:14
Deleted: gradient of the linear regression
r.greenop 17/8/2016 18:14
Deleted: All other sensitivity test indicate a
possible range from 0.195 to 0.205 for the
slope of the pH/ δ^{13} C regression.
r.greenop 21/7/2016 10:13
Deleted: 7
r.greenop 17/8/2016 18:09
Deleted: 13700
r.greenop 21/7/2016 10:13
Deleted: 8
r.greenop 21/7/2016 10:26
Deleted: the
r.greenop 21/7/2016 10:26
Deleted: whole ocean (blue) (panel (a) Fig.
7),
r.greenop 21/7/2016 10:27
Deleted: (green) (panel (b) Fig. 7) and low
latitude North Atlantic only (red) (panel (c)
Fig. 7) based
r.greenop 21/7/2016 10:13
Deleted: 9
r.greenop 26/7/2016 19:40
Deleted: assuming
r.greenop 26/7/2016 19:39
Deleted: (a)
r.greenop 26/7/2016 19:39
Deleted: (a) the modern pH (blue); (b)
r.greenop 26/7/2016 19:40
Deleted: (red)

1740	pH gradient (see text for details). Data are plotted as box and whisker diagrams	
1741	where the median and interquartile range as plotted in the box and whiskers show the	
1742	maximum and minimum output from the Monte Carlo simulations. The line of best	
1743	fit is the probability maximum of a LOWESS fit given the uncertainty in the	
1744	calculated $\delta^{11}B_{sw}$. The darker shaded area highlights the 68% confidence interval and	
1745	the lighter interval highlights the 95% confidence interval. The bottom panel shows	
1746	box plots of the mean and 2 standard error (s.e.) of 'binning' the individual $\delta^{11}B_{sw}$	r.greenop 26/7/2016 19:42 Deleted: The circles highlight the data points
1747	measurements into 8 Myr intervals. The middle line is the mean and the box shows	that were removed prior to LOWESS smoothing; (c)
1748	the 2 s.e. of the data points in that bin. The smoothed record is also plotted for	r.greenop 12/8/2016 12:31 Deleted: an expanded view of the smoothed
1749	comparison where the line of best fit is the probability maximum of a LOWESS fit	Deleted: an expanded view of the smoothed
1750	given the uncertainty in the calculated $\delta^{11}B_{sw}$. The darker shaded area highlights the	
1751	68% confidence interval and the lighter interval highlights the 95% confidence	
1752	interval. The black dot is the modern value of 39.61 ‰ (Foster et al., 2010),	r.greenop 26/7/2016 19:41
1753	Figure 11: The $\delta^{11}B_{sw}$ curve calculated using the variable pH gradient derived from	Deleted: curves for ease of comparison
1754	δ^{13} C. The median (red line), 68% (dark red band) and 95% (light red band)	between the variable pH gradient from $\delta^{13}C$ (red) and modern pH gradient (blue).
1755	confidence intervals are plotted. Plotted with a compilation of published $\delta^{11}B_{sw}$	r.greenop 21/7/2016 10:13 Deleted: 0
1756	records. Seawater composition reconstructed from foraminifera depth profiles (light	r.greenop 26/7/2016 19:39
1757	blue squares and dark blue cross) from Pearson and Palmer (2000) and Foster et al.	Deleted: a)
1758	(2012) respectively, numerical modelling (green line), with additional green green	
1759	lines shows ± 1 ‰ confidence interval (Lemarchand et al., 2000) and benthic $\delta^{11}B$	r.greenop 6/9/2016 12:38 Deleted: dark
1760	(purple diamonds and dark purple line is using the fractionation factor of Klochko et	r.greenop 26/7/2016 19:37
1761	al., 2006, light purple line using an empirical calibration) from Raitzsch and Hönisch	Deleted: 2 r.greenop 21/7/2016 10:28
1762	(2013). All the published $\delta^{11}B_{sw}$ curves are adjusted so that at t=0, the isotopic	Deleted: line
1763	composition is equal to the modern (39.61 ‰).	
1764	Figure 12; a) The $\delta^{11}B_{sw}$ curve from this study plotted with other trace element	
1765	isotopic records. On the $\delta^{11}B_{sw}$ panel the darker shaded area highlights the 68%	r.greenop 21/7/2016 10:13
1766	confidence interval and the lighter interval highlights the 95% confidence interval),	Deleted: 1 r.greenop 6/9/2016 12:39
1767	δ^{26} Mg _{sw} record from Pogge von Strandmann et al. (2014) (error bars are ± 0.28 ‰	Deleted: calculated using the variable pH gradient derived from $\delta^{13}C$
		r.greenop 6/9/2016 12:39
1768	and include analytical uncertainty and scatter due to the spread in modern <i>O. universa</i>	Deleted: (
1769	and the offset between the two analysed species), $\delta^{44/40}Ca_{sw}$ record from Griffith et al.	
1770	(2008) (error bars show 2 σ uncertainty) and $\delta^7 Li_{sw}$ record from Misra and Froelich	
1771	(2012) (error bars show 2 σ uncertainty). Blue dashed lines show middle Miocene	
1772	values, red dashed lines highlight the modern.	
	refues, for dusined miles infiling in the moderni.	

1789	Figure 13; Crossplots of the records of $\delta^{11}B_{sw}$ using the variable pH gradient derived		
1790	from $\delta^{13}C$ (error bars show 2 σ uncertainty) with $\delta^{44/40}Ca_{sw}$ from Griffith et al. (2008)	r.greenop 21/7/2016 10:13 Deleted: 2	
1791	(error bars show 2 σ uncertainty), $\delta^7 Li_{sw}$ from Misra and Froelich (2012) (error bars		
1792	show 2 σ uncertainty) and $\delta^{26}Mg_{sw}$ from Pogge von Strandmann et al. (2014) (error		
1793	bars are $\pm \ 0.28$ ‰ and include analytical uncertainty and scatter due to the spread in		
1794	modern O. universa and the offset between the two analysed species). The colour of		
1795	the data points highlights the age of the data points where red = modern and blue =		
1796	23 Ma.		
1797	Table 1: CYCLOPS model parameter values defining the ensemble of 13,500		
1798	simulations.		
1799	Table 2: Uncertainty inputs into the Monte Carlo simulations to calculate $\delta^{11}B$. The		
1800	sources of uncertainty are also added. All uncertainty estimates are 2σ .		
1801	Table 3: The average δ^{11} B, δ^{26} Mg, $\delta^{44/40}$ Ca and δ^{7} Li composition of major fluxes into	r.greenop 21/7/2016 10:13	
1802	and out of the ocean. Colour coding reflects the relative importance of each the	Deleted: 1	
1803	processes (darker shading reflects greater importance). The colour coding for boron is		
1804	based on Lemarchand et al. (2000) and references therein, lithium from Misra and		
	based on Lemarchand et al. (200 g) and references therein, numum from Misra and	r groopop 26/7/2016 10:37	
1805	Froelich (2012) and references therein, magnesium from Tipper et al. (2006b) and	r.greenop 26/7/2016 19:37 Deleted: 2	
1805	Froelich (2012) and references therein, magnesium from Tipper et al. (2006b) and	Deleted: 2	
1805 1806	Froelich (2012) and references therein, magnesium from Tipper et al. (2006b) and calcium from Fantle and Tipper (2014) and Griffin et al. (2008) and references		
1805 1806 1807	Froelich (2012) and references therein, magnesium from Tipper et al. (2006b) and calcium from Fantle and Tipper (2014) and Griffin et al. (2008) and references therein. The isotopic ratio of each process is: (a) Lemarchand et al. (2000) and	Deleted: 2 r.greenop 26/7/2016 19:37	
1805 1806 1807 1808	Froelich (2012) and references therein, magnesium from Tipper et al. (2006b) and calcium from Fantle and Tipper (2014) and Griffin et al. (2008) and references therein. The isotopic ratio of each process is: (a) Lemarchand et al. (2000) and references therein; b) Misra and Froelich (2012) and references therein; (c) Burton	Deleted: 2 r.greenop 26/7/2016 19:37	
1805 1806 1807 1808 1809	Froelich (2012) and references therein, magnesium from Tipper et al. (2006b) and calcium from Fantle and Tipper (2014) and Griffin et al. (2008) and references therein. The isotopic ratio of each process is: (a) Lemarchand et al. (2000) and references therein; b) Misra and Froelich (2012) and references therein; (c) Burton and Vigier (2012); (d) Tipper et al. (2006b); e) Wombacher et al. (2011); f) includes	Deleted: 2 r.greenop 26/7/2016 19:37	
1805 1806 1807 1808 1809 1810	Froelich (2012) and references therein, magnesium from Tipper et al. (2006b) and calcium from Fantle and Tipper (2014) and Griffin et al. (2008) and references therein. The isotopic ratio of each process is: (a) Lemarchand et al. (2000) and references therein; b) Misra and Froelich (2012) and references therein; (c) Burton and Vigier (2012); (d) Tipper et al. (2006b); e) Wombacher et al. (2011); f) includes dolomitisation; g) removal through hydrothermal activity; h) Griffith et al. (2008); i)	Deleted: 2 r.greenop 26/7/2016 19:37	
1805 1806 1807 1808 1809 1810 1811	Froelich (2012) and references therein, magnesium from Tipper et al. (2006b) and calcium from Fantle and Tipper (2014) and Griffin et al. (2008) and references therein. The isotopic ratio of each process is: (a) Lemarchand et al. (2000) and references therein; b) Misra and Froelich (2012) and references therein; (c) Burton and Vigier (2012); (d) Tipper et al. (2006b); e) Wombacher et al. (2011); f) includes dolomitisation; g) removal through hydrothermal activity; h) Griffith et al. (2008); i) Fantle and Tipper (2014) and references therein; j) dolomitisation may be an	Deleted: 2 r.greenop 26/7/2016 19:37	
1805 1806 1807 1808 1809 1810 1811 1812	Froelich (2012) and references therein, magnesium from Tipper et al. (2006b) and calcium from Fantle and Tipper (2014) and Griffin et al. (2008) and references therein. The isotopic ratio of each process is: (a) Lemarchand et al. (2000) and references therein; b) Misra and Froelich (2012) and references therein; (c) Burton and Vigier (2012); (d) Tipper et al. (2006b); e) Wombacher et al. (2011); f) includes dolomitisation; g) removal through hydrothermal activity; h) Griffith et al. (2008); i) Fantle and Tipper (2014) and references therein; j) dolomitisation may be an important component of the carbonate flux. Modern $\delta^{26}Mg_{sw}$ and $\delta^{11}B_{sw}$ from Foster	Deleted: 2 r.greenop 26/7/2016 19:37	
1805 1806 1807 1808 1809 1810 1811 1812 1813	Froelich (2012) and references therein, magnesium from Tipper et al. (2006b) and calcium from Fantle and Tipper (2014) and Griffin et al. (2008) and references therein. The isotopic ratio of each process is: (a) Lemarchand et al. (2000) and references therein; b) Misra and Froelich (2012) and references therein; (c) Burton and Vigier (2012); (d) Tipper et al. (2006b); e) Wombacher et al. (2011); f) includes dolomitisation; g) removal through hydrothermal activity; h) Griffith et al. (2008); i) Fantle and Tipper (2014) and references therein; j) dolomitisation may be an important component of the carbonate flux. Modern $\delta^{26}Mg_{sw}$ and $\delta^{11}B_{sw}$ from Foster et al. (2010), δ^7Li_{sw} from Tomascak (2004). The $\delta^{44/40}Ca$ presented here was	Deleted: 2 r.greenop 26/7/2016 19:37	

Page 3: [1] Deleted	r.greenop	26/07/2016 19:37
2		
Page 3: [1] Deleted	r.greenop	26/07/2016 19:37
2	1.greenop	20/07/2010 19:37
2		
Page 3: [1] Deleted	r.greenop	26/07/2016 19:37
2		
Page 3: [1] Deleted	r.greenop	26/07/2016 19:37
2		
Page 3: [2] Formatted	r.greenop	11/08/2016 14:29
Superscript		
Page 3: [2] Formatted	r.greenop	11/08/2016 14:29
Superscript		
Page 3: [2] Formatted	r.greenop	11/08/2016 14:29
Superscript		
Page 3: [2] Formatted	raroonon	11/08/2016 14:29
Superscript	r.greenop	11/08/2010 14.29
Superscript		
Page 3: [3] Deleted	r.greenop	11/08/2016 14:27
such that seawater is isotopic	ally heavier (39.61‰) than the i	inputs (which average at
10.4‰).		
····)·		
Page 3: [3] Deleted	r.greenop	11/08/2016 14:27
such that seawater is isotopic	ally heavier (39.61‰) than the i	inputs (which average at
10.4‰).		
Page 3: [3] Deleted	r.greenop	11/08/2016 14:27
such that seawater is isotopic	ally heavier (39.61‰) than the i	inputs (which average at
10.4‰).	. /	
10.7/00].		

Page 3: [4] Formatted	r.greenop	11/08/2016 14:38
Font:(Default) Times, 12 pt, Not Bold		
Page 3: [4] Formatted	r.greenop	11/08/2016 14:38
Font:(Default) Times, 12 pt, Not Bold	igiccitop	11/00/2010 1 1100
Tont.(Default) Times, 12 pt, Not Dold		
Page 3: [4] Formatted	r.greenop	11/08/2016 14:38
Font:(Default) Times, 12 pt, Not Bold		
		11/00/2010 14 25
Page 3: [5] Deleted	r.greenop	11/08/2016 14:35
Mg, Ca, Li, Sr		
Page 3: [5] Deleted	r.greenop	11/08/2016 14:35
Mg, Ca, Li, Sr	igiccitop	11,00,2010 1105
wig, Ca, Li, Si		
Page 3: [5] Deleted	r.greenop	11/08/2016 14:35
Mg, Ca, Li, Sr		
Page 3: [5] Deleted	r.greenop	11/08/2016 14:35
Mg, Ca, Li, Sr		
		11/00/2016 14 25
Page 3: [5] Deleted	r.greenop	11/08/2016 14:35
Mg, Ca, Li, Sr		
Page 3: [5] Deleted	r.greenop	11/08/2016 14:35
Mg, Ca, Li, Sr		
Page 3: [5] Deleted	r.greenop	11/08/2016 14:35
Mg, Ca, Li, Sr		
Page 3: [5] Deleted	r.greenop	11/08/2016 14:35
Mg, Ca, Li, Sr		
Page 3: [5] Deleted	raroonon	11/08/2016 14:35
Mg, Ca, Li, Sr	r.greenop	11/00/2010 14:33
wig, Ca, Li, Si		

Mg, Ca, Li, Sr

Page 3: [5] Deleted	r.greenop	11/08/2016 14:35
Mg, Ca, Li, Sr		
119, 04, 21, 51		
Page 3: [5] Deleted	r.greenop	11/08/2016 14:35
Mg, Ca, Li, Sr		
C		
Page 3: [5] Deleted	r greenon	11/08/2016 14:35
Page 3: [5] Deleted	r.greenop	11/08/2010 14:55
Mg, Ca, Li, Sr		
Page 3: [5] Deleted	r.greenop	11/08/2016 14:35
Mg, Ca, Li, Sr		
-		
Page 3: [5] Deleted	r.greenop	11/08/2016 14:35
Mg Ca Li Sr		

Mg, Ca, Li, Sr

Page 4: [6] Deleted r.greenop	08/06/2016 21:01
Yet brine-halite fractionation offsets of -20% to -30% and -5%	are reported from
laboratory and natural environments respectively casting doubt	over the validity of the
assumption that no fractionation occurs during halite formation	(Vengosh et al., 1992;
Liu et al., 2000). These fractionations and riverine input during	basin isolation will drive
the evaporite-hosted boron to low- $\delta^{11}B$ isotope values such that	the fluid inclusion record
likely provides a lower limit for the $\delta^{11}B_{\scriptscriptstyle sw}$ through time (i.e. δ^{11}	B_{sw} is heavier than the
halite fluid inclusions of Paris et al. (2010)). Nevertheless, evap	porites form from
modified seawater in isolated basins making them unlikely arch	ives of representative
ocean δ^{11} B.	

Page 4: [7] Deleted	r.greenop	11/08/2016 14:53
An alternative semi-empirical approach makes assumptions regarding the evolution of		
Cenozoic deep-ocean pH and a be	enthic δ^{11} B record to dete	ermine changes in $\delta^{11}B_{sw}$

Page 4: [8] Deleted	r.greenop	11/08/2016 14:56	
which can be converted to $\delta^{11}B_{sw}$ based on			

Page 4: [9] Deleted	r.greenop	18/07/2016 15:00
While this approach yields a c	qualitative independent check or	n other approaches (e.g.
halite inclusions, geochemical	l modeling), as a quantitative re	ecord of $\delta^{11}B_{sw}$ through time,
it has a number of drawbacks.	Firstly, some of the CO ₂ data u	used in the modeling
studiesis derived using the bo	ron isotope-pH proxy, leading t	to some circularity in the
methodology.Secondly, given	the structure in CO ₂ proxy reco	ords, the assumption that
surface ocean pH changed line	early through the Cenozoic is m	nost likely an
oversimplification (Beerling a	and Royer, 2011). Consequently	y, while this method may
shed some light on the evolution	ion of $\delta^{11}B_{sw}$ through time, it ca	nnot be subsequently used
to determine pH or atmospher	tic CO_2 from $\delta^{11}B$ of foraminife	eral calcite because the
$\delta^{11}B_{sw}$ record is itself based of	n assumptions of the secular evo	olution of pH and CO ₂ .

One of the big challenges of reconstructing a

Page 4: [10] Deleted	r.greenop	11/08/2016 14:59
record empirically is determining $\delta^{11}B_{sw}$		

Page 4: [11] Deleted	r.greenop	11/08/2016 15:00
One way to avoid using absolute pH reconstructions is to exploit the non-linear		
relationship between $\delta^{11}B$ and pH alongside estimated pH gradients in the ocean to		
constrain $\delta^{11}B_{sw}$.		

Page 4: [12] Moved to page 18 (Move #3) r.greenop	18/07/2016 12:14
Unfortunately, the applicability of this $\delta^{11}B_{sw}$ record (derived from $\delta^{11}B_{sw}$	¹ B data measured
using NTIMS) to $\delta^{11}B$ records generated using the MC-ICPMS is un	certain (Foster et al.,
2013). In addition, this $\delta^{11}B_{sw}$ record is determined using a fractional	tion factor of 1.0194
(Kakihana et al., 1977), whereas recent experimental data have show	n the value to be
higher (1.0272 \pm 0.0006, Klochko et al., 2006). Thirdly, given our un	nderstanding of the
δ^{11} B difference between species/size fractions (Foster, 2008; Heneha	in et al., 2013), the
mixed species and size fractions used to make the $\delta^{11}B$ measurement	s in that study may
have introduced some additional uncertainty in the reconstructed δ^{11}	B _{sw} . Consequently,
while the estimates from Pearson and Palmer (2000) show that the ra	tionale behind this

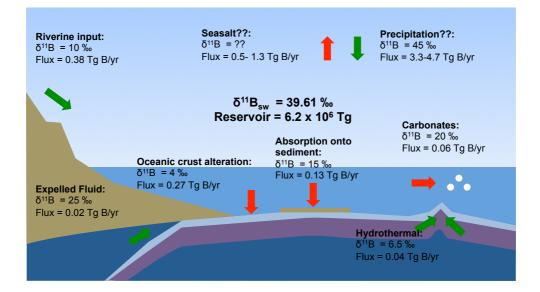
approach can yield useful $\delta^{11}B_{sw}$ estimates that may be qualitatively correct, the underlying measurements and some of the key assumptions have led to uncertainties in the record.

Page 16: [13] Deleted	r.greenop	15/07/2016 16:15
The slope of the pH- δ^{13} C relations	ationship simulated by our CYC	CLOPS model ensemble
across a range of perturbed s	tates is 0.2047 ($1\sigma = 0.0196$) (F	Fig. 7a, 8), in perfect
agreement with modern emp	irical data and our GENIE expe	eriments.Varying the
biogeochemical parameters (gas exchange, rain ratio and ren	mineralizing depth scale)
yields some change in the reg	gressed slope of the pH/ δ^{13} C rel	lationship due to decoupled
responses of pH and δ^{13} C, but	at this gradient remains well wit	thin the 0.2 +/- 0.05 range,
and a RMSE of 0.05 in the sp	patial relationship remains robu	st (Fig. 6). We take this as
evidence that the uncertainty	in the pH/ δ^{13} C relationship ass	sumed in our carbon
chemistry calculation is well	represented by a central value	of 0.2 with a 0.025 standard
deviation. Experiments at ve	ery high DIC or low alkalinity,	either of which yield high
atmospheric pCO_2 and low n	nean ocean pH, yield gradients	slightly outside the $0.2 + / -$
0.05 range, with an elevated	RMSE. This is probably associ	ated with the non-linearity of
the pH scale, modifying the	gradient for a very different pH	. It is to be emphasised that
such extreme decoupled char	nges in DIC and alkalinity are n	ot plausible within the
Cenozoic, and were only pos	sible in these simulations becau	use of the absence of
interactive sediments.		

The slope of the pH- δ^{13} C relationship simulated by our CYCLOPS model ensemble across a range of perturbed states is 0.2047 (1 σ = 0.0196) (Fig. 7a, 8), in perfect agreement with modern empirical data and our GENIE experiments. We take this agreement as evidence that the slope of the pH- δ^{13} C relationship is a feature of ocean biogeochemistry that is relatively conserved even if ocean carbon chemistry and circulation change drastically. For the purpose of calculating $\delta^{11}B_{sw}$ from our benthic/planktic foraminfera measurements we need to estimate the pH difference between the low latitude surface and deep ocean at the sample sites, most of which are in the subtropical North Atlantic. If we restrict our analysis of the CYCLOPS ensemble to only the low latitude surface boxes and the corresponding deep ocean boxes (i.e., Atlantic, Indian, South Pacific and North Pacific) the slope of the applicable pH- δ^{13} C relationship is 0.1797 ($1\sigma = 0.0213$) (Fig. 7b, 8), which is significantly less than the regression based on all 18 model boxes. Further, if only the Atlantic low latitude surface and deep ocean boxes are used to calculate the slope of the applicable pH- δ^{13} C relationship declines to 0.1655 ($1\sigma = 0.0192$) (Fig. 7c, 8). Thus, excluding the polar ocean and the ocean's mid-depth permanent thermocline from the analysis consistently yields a shallower slope of the pH- δ^{13} C relationship, with some evidence for water mass dependence also in the modern observations (Fig. 4). Here we calculate $\delta^{11}B_{sw}$ for all three estimates of the pH- δ^{13} C slope (global regression 0.201; low latitude surface and deep regression 0.1797; Atlantic low latitude surface to deep box gradients 0.1655) assuming a generous uncertainty of 0.05 (2 σ) in all cases, and we provide all three $\delta^{11}B_{ew}$ scenarios as an online supplement. Overall, the slope between pH and δ^{13} C is dependent on the competition between spatial variations in remineralized soft tissue, increasing the slope between pH and δ^{13} C, and seawater temperature, decreasing the slope between pH and δ^{13} C. The largest concentrations of remineralized soft tissue occur in the thermocline, suggesting that a relatively steep pH- δ^{13} C slope is appropriate for estimating the pH gradient from the δ^{13} C difference. However, when comparing surface to deep waters, as is done in this study, the full range of the temperature effect is expressed and a relatively shallow pH- δ^{13} C slope is appropriate. This is particularly true given that our samples are from the low latitude surface and the cold deep ocean. Since most of our measurements are from the subtropical Atlantic it is perhaps most appropriate to use the slope regressed from the low latitude surface and deep boxes from this ocean basin (i.e., $\Delta pH/\Delta \delta^{13}C =$ 0.1655; with $1\sigma = 0.025$) and we will focus on those calculations in the following discussion (Fig. 9).

Page 16: [14] Deleted	r.greenop	18/07/2016 11:18		
The individual $\delta^{11}B_{sw}$ estimates calculated using the modern pH gradient method vary				
from 34.9 ‰ to 42.2 ‰ (±	0.84-4.77 ‰) across the Neogene w	ith a predominance of		
higher values closer to the	modern and lowest values in the mid	ldle Miocene (Fig. 9).		
After smoothing is applied	to satisfy seawater B mass balance,	the long-term $\delta^{11}B_{sw}$ is		
determined as 37.5 ‰ at 23	³ Ma, decreases to a minimum of 37.	.17 ‰ at ~ 13 Ma (± 0.34-		

1.81 ‰), and subsequently increases gradually towards modern values through the late Miocene, Pliocene and Pleistocene (Fig. 9). The variability in the estimations of $\delta^{11}B_{sw}$ for each individual benthic/planktic foraminifera pair suggest that individual estimates of $\delta^{11}B_{sw}$ are sensitive to the different input parameters, particularly the assigned uncertainty in the pH gradient. However, by smoothing the record we effectively suppress error that is uncorrelated between individual benthic/planktic pairs of similar age and thereby focus on the effect of changes in $\delta^{11}B_{sw}$ that are correlated over multi-million year timescales.


Page 16: [15] Moved to page 17 (Move #2)r.greenop

18/07/2016 11:18

The variability in the estimations of $\delta^{11}B_{sw}$ for each individual benthic/planktic foraminifera pair suggest that individual estimates of $\delta^{11}B_{sw}$ are sensitive to the different input parameters, particularly the assigned uncertainty in the pH gradient. However, by smoothing the record we effectively suppress error that is uncorrelated between individual benthic/planktic pairs of similar age and thereby focus on the effect of changes in $\delta^{11}B_{sw}$ that are correlated over multi-million year timescales.

Page 17: [16] Deleted	r.greenop	18/07/2016 11:24

When using δ^{13} C gradients as predictors for the pH gradient the $\delta^{11}B_{sw}$ values calculated are broadly similar to the results with assumed constant pH gradient: $\delta^{11}B_{sw}$ varies from 34.1 ‰ to 42.3 ‰ (± 0.72-4.0 ‰) across the Neogene with the predominance of higher values closer to the modern with the lowest values in the middle Miocene (Fig. 9). However, when the individual $\delta^{11}B_{sw}$ estimates are smoothed, while the $\delta^{11}B_{sw}$ calculated using this method is similar to the constant pH gradient scenario through the late and middle Miocene (~ 37.5 ‰ ± 0.19-1.28 ‰), the subsequent increase occurs more rapidly and the $\delta^{11}B_{sw}$ record reaches modern values by ~5 Ma (Fig. 9). The variability in the estimations of $\delta^{11}B_{sw}$ for each individual benthic/planktic foraminifera pair suggest that individual estimates of $\delta^{11}B_{sw}$ are sensitive to the different input parameters, particularly the assigned uncertainty in the pH gradient. However, by smoothing the record we effectively suppress error that is uncorrelated between individual benthic/planktic pairs of similar age and thereby focus on the effect of changes in $\delta^{11}B_{sw}$ that are correlated over multi-million year timescales. Given the variability we observe in the δ^{13} C derived pH gradient, and the consistency between the modelled pH gradient using GENIE and CYCLOPS, we conclude using the benthic-to-planktic pH difference calculated using the δ^{13} C gradient is indeed an improvement over the assumption that pH gradients remained constant through time. Therefore, we recommend the use of the δ^{13} C-corrected $\delta^{11}B_{sw}$ moving forward and in the following discussion we will limit our attention to this record.

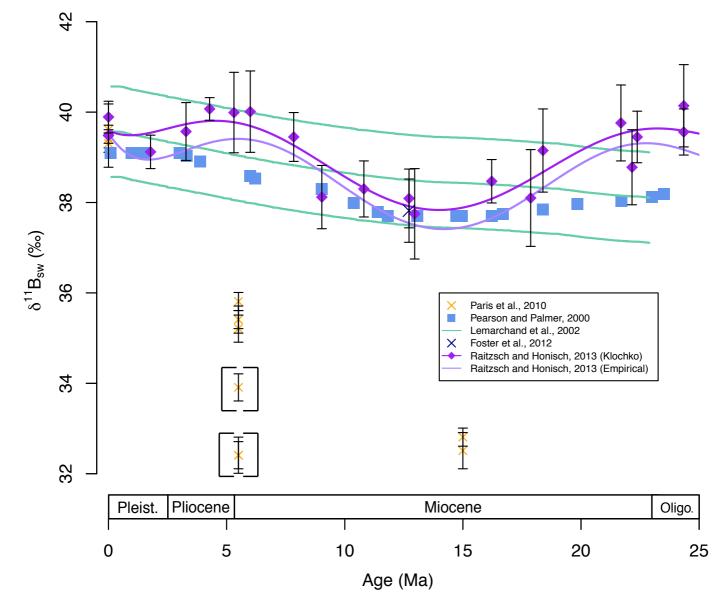
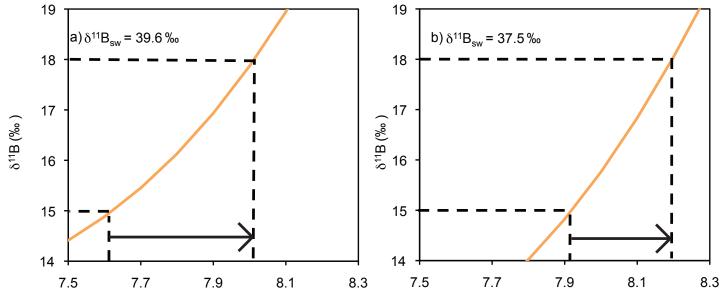
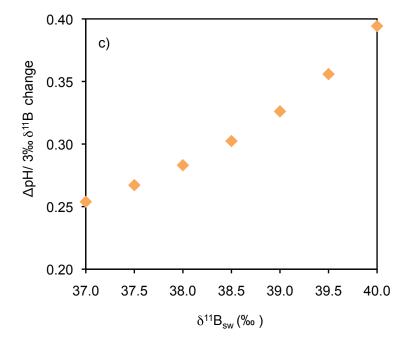




Figure 2

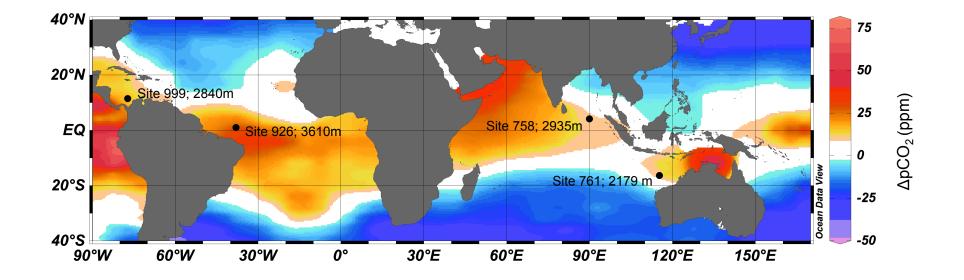


Figure 4

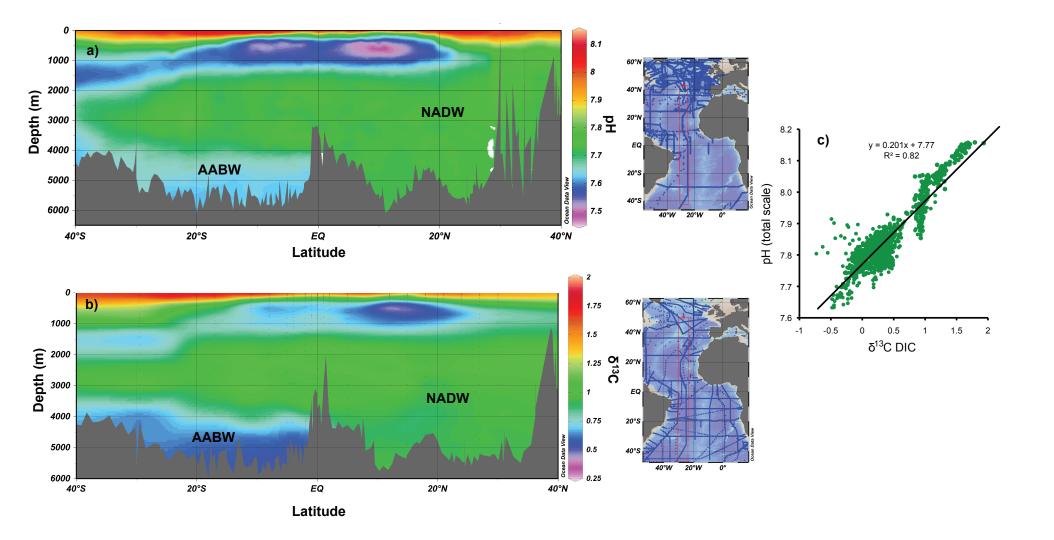
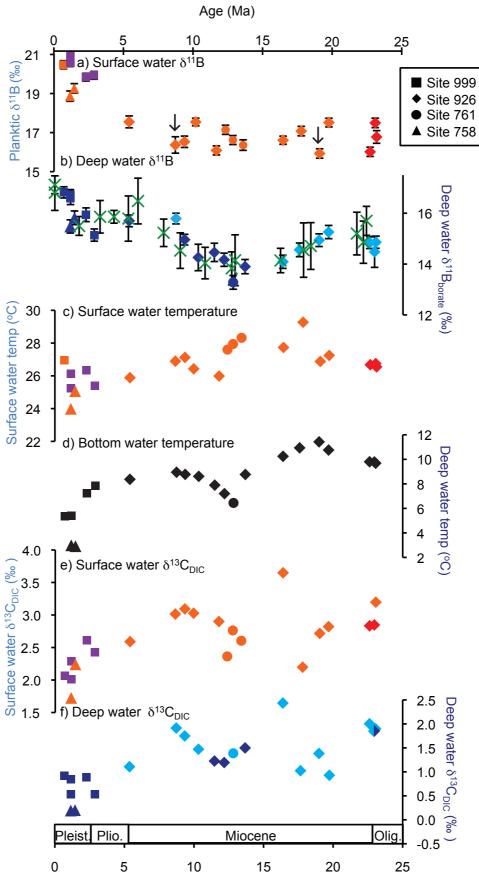
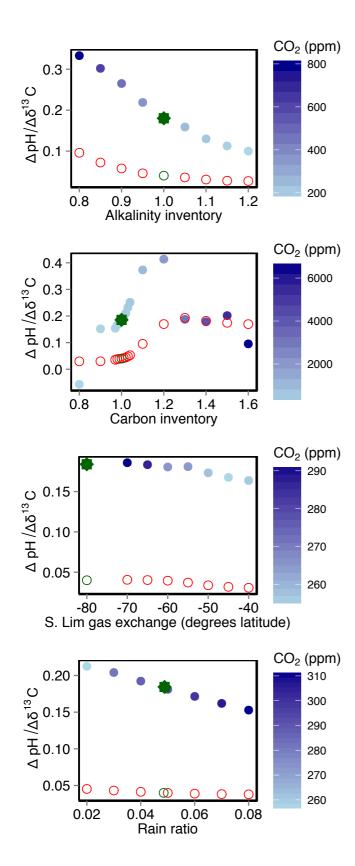
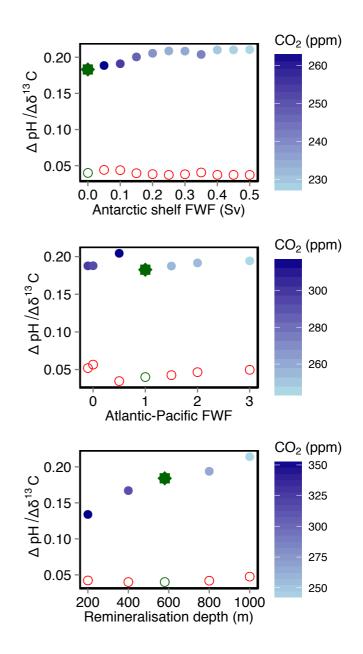





Figure 5

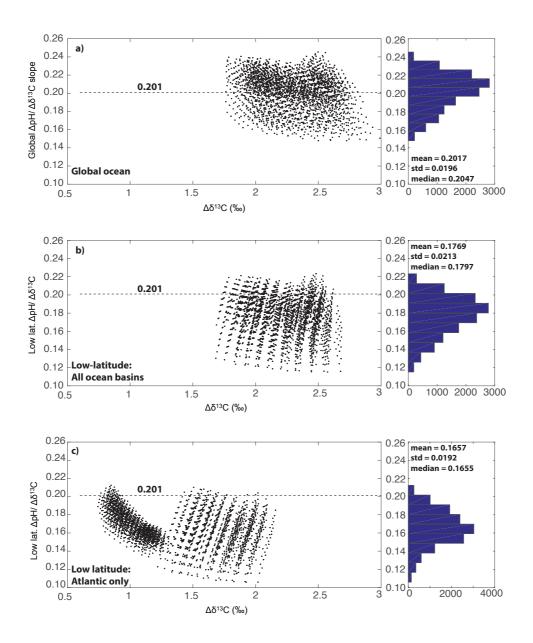


Figure 8

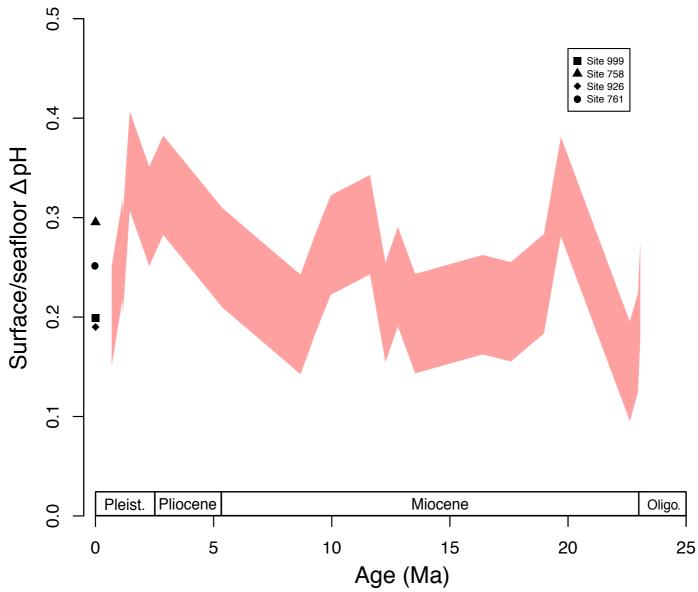
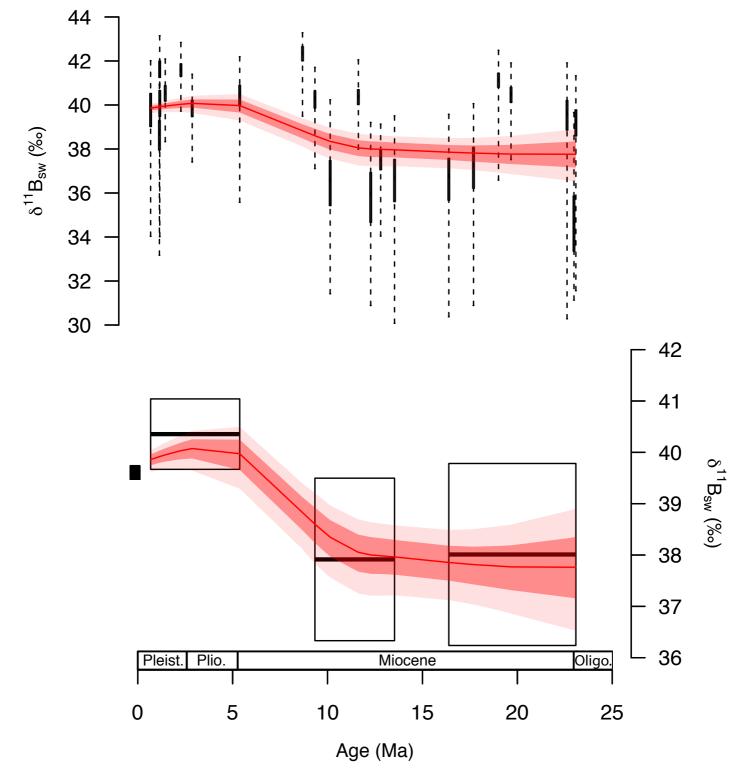
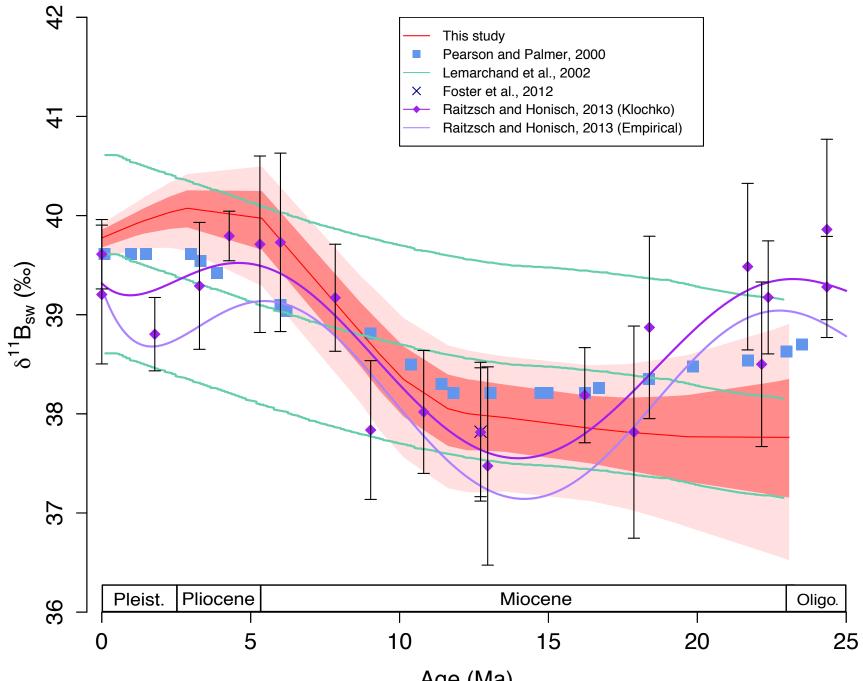
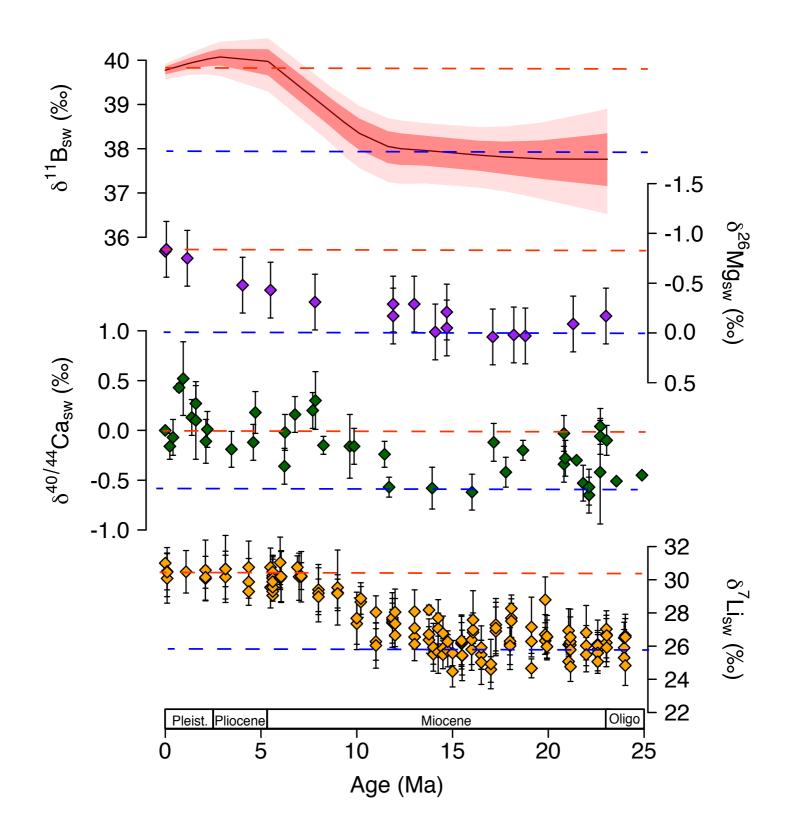
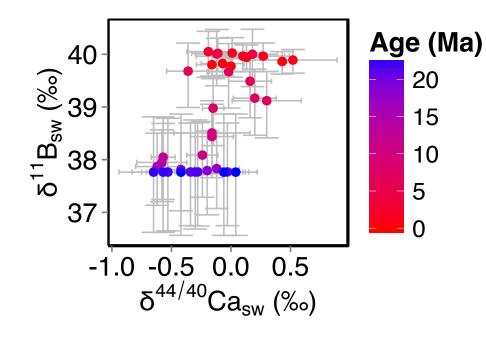
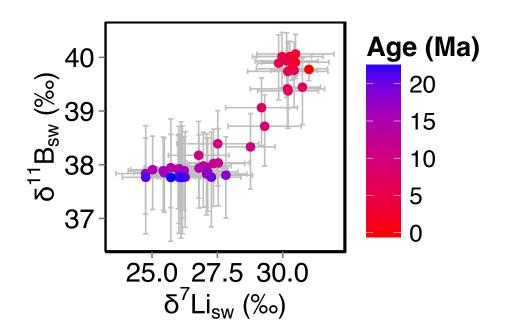


Figure 9


Figure 10



Age (Ma)

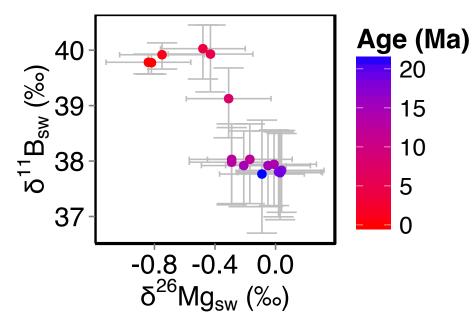


Figure 13

Parameter	Description	Values assumed
PAZ surface phosphate**	unutilized polar nutrient	1µM, 1.25µM, 1.5µM, 1.75µM, 2µM
PAZ vertical exchange**	bottom water formation	2Sv, 7.75Sv, 13.5Sv, 19.25Sv, 25Sv
SAZ surface phosphate**	unutilized polar nutrient	0.7µM, 0.825µM, 0.95µM, 1.075µM, 1.2µM
AMOC circulation scheme*	deep vs. shallow overturning	NADW, GNAIW
representative timeslice***	Age ([Ca²⁺]/CCD); calcium set outright; CCD set via riverine	0Myr (10.6mM, 4.65km), 9Myr (12.89mM, 4.4km) 11Myr (13.33mM, 4.9km), 16Myr (14.28mM, 4.7km), 18Myr (14.57mM, 4.25km), 20Myr (14.86mM, 4.7km)
	CaCO ₃ flux using inverse scheme	
atm. CO ₂ ****	set via silicate	200ppm, 300ppm, 400ppm, 500ppm, 600ppm,
-	weatherability	700ppm, 800ppm, 900ppm, 1000ppm

*= The six parameters assume 5, 5, 5, 2, 9 and 6 values, yielding 13,500 distinct parameter combinations

** = These parameters are intended to span the full range of ocean carbon cycling over late Pleistocence glacial-interglacial cycles, as describe in more detail in Hain et al. (2010)

*** = We selected representative timeslices based on local extrema in the CCD reconstruction of Pälike et al. (2012) and we combine these with appropriate reconstructed calcium concentrations based on Horita et al. (2002). These choices are intended to capture the range of long-term steady state conditions of the open system $CaCO_3$ cycle relevant to our study interval

**** = These atmospheric CO_2 levels are chosen to span a range wider than expected for the study interval. Following silicate-weatheringfeedback paradigm, long-term CO_2 is fully determined by the balance of geologic CO_2 sources and silicate weathering, whereby faster acting processes of the open system $CaCO_3$ cycle compensate relative to that CO_2 level. All else equal, high CO_2 levels, low calcium concentrations and deep CCD correspond to high bulk ocean carbon concentrations (Hain et al., 2015) with many of the individual simulations of this ensemble exeeding 4000µM DIC.

Table 2

Input parameter	Uncertainty applied	Source of uncertainty estimate	
Surface to sea floor ∆pH	Uniform +/- 0.05 pH units	Plausible range of $\Delta pH/\Delta \delta^{13}C$ in CYCLOPS and GENIE sensitivity tests; prediction error of linear $\Delta pH/\Delta \delta^{13}C$ regression in GENIE	
δ ¹¹ B measurement	0.15-0.61‰	Long-term external reproducibility	
Temperature	±2°C	Uncertainty in the Mg/Ca measurement and Mg/Ca-temperature calibration	
Salinity	±2 psu	In the absence of a salinity proxy this uncertainty is applied to cover variations through time.	
Seawater [Mg]	± 4.5 mmol/kg	following Horita et al., (2002)	
Seawater [Ca]	± 4.5 mmol/kg	following Horita et al., (2002)	

Table 3

Sources	Isotopic Ratio			
Oceanic Inputs	δ ¹¹ B _{sw} 39.61 ‰	δ ⁷ Li _{sw} 31 ‰	δ ²⁶ Mg _{sw} −0.83 ‰	δ ^{44/40} Ca _{sw} 0 ‰
Input from hydrothermal	6.5 ^a	8.3 ^b	N/A	-0.96 ^h
Fluid from accretionary prisms	25ª	15 ^b	N/A	N/A
Riverine Inputs	10 ^a	23 ^b	-1.09 ^d	-1.28 ^h
Groundwater	N/A	N/A	-0.82 ^d	-1.02 ⁱ
Outputs				
Precipitation into carbonates	20ª	29 ^c	-3.5 ^{d,e,f}	-1.15 ^{h,j}
Ocean crust alteration	4 ^a	15 ^b	-0.83 ^{d,g}	-1.2 ^h
Absorption onto sediment	15ª	15 ^b	??	N/A