

Interactive comment on "Variability of the Asian summer monsoon during the penultimate glacial/interglacial period inferred from stalagmite oxygen isotope records from Yangkou cave, Chongqing, Southwestern China" by T. -Y. Li et al.

T. -Y. Li et al.

river@ntu.edu.tw

Received and published: 10 April 2014

Dear Editor: Enclosed please find an electronic copy of our revised manuscript "Stalagmite-inferred variability of the Asian summer monsoon during the penultimate glacial/interglacial period" by Li et al. (CP-2003-170). We would like to submit it as an article to the special issue entitled "Western Pacific paleoceanography - an ocean history perspective on climate variability at orbital to centennial scales". The material in this submission includes: (1) main text, (2) six figures, and (3) one table. None of the material has been published or is under consideration elsewhere, including the

C3678

internet. We are pleased by the very positive and constructive nature of the reviews. We have made attempt to incorporate suggestions and the comments of the Editor, Dr. Mahyar Mohtadi. Please see the details of our implementation of the reviews in the attached file "response_to_review_comments-cp-2003-170.pdf". We have incorporated reviewers' suggestions and comments for modifying portions from ABSTRACT to CON-CLUSSIONS. The manuscript has, thus, been revised throughout. If this manuscript can be accepted, please consider arranging a good publication time. It will be much appreciated. Please accept our deep appreciation again for your assistance about this submission. We look forward to hearing from you. Sincerely, Chuan-Chou Shen Department of Geosciences, National Taiwan University No. 1, Sec. 4, Roosevelt Road, Taipei 106, Taiwan ROC. TEL: 886-2-3366-5878 FAX: 886-2-3365-1917 Email: river@ntu.edu.tw

Interactive comment on Clim. Past Discuss., 9, 6287, 2013.

国立台湾大学理學院地質科學系 106 金北市縣前禎時四夜一覧 Department of Gaosciences, National Taiwan University No. 1, Sec. 4, Roosevelt Road, Taipei 106, TAIWAN R.O.C. Tei + 888-2:33652918 Fax + 886-2:33636095

April 10, 2014

Editor of the Climate of the Past Editorial Office Climate of the Past European Geosciences Union Dear Editor:

Dura trans. Eachood phease find as electronic copy of our revised manuscript "Subagnite inferred variability of the Asian summer mension during the penultmane globalizationerglobal period" by Li c *ed.* (CP-2003)-170). We would like to submit it as an article to be expectial susce entited Visem Parking Paceboargeryles as no con-bisotry properties on climate variability at orbital to centernial scales". The material in this submission induces: (1) main struct (2) site figures, and (3) one tubb. None of the material has been published or is under consideration elsewhere, including the internet.

We are pleased by the very positive and constructive nature of the reviews. We have made attempt to incorporate suggestions and the comments of the Editor, Dr. Malyar Mohtali. Please see the details of our implementation of the reviews in the attached file "response, 12, every comment-re-2002-17, pdf". We have incorporated reviews'' suggestions and comments for modifying portions from ABSTRACT to CONCLUSIONS. The manaceript Ba, have here revied flowplant.

If this manuscript and, unay, ocen revised introgradual. If this manuscript can be accepted, please consider arranging a good publication time. It will be much appreciated. Please accept our deep appreciation again for your assistance about this submission. We look forward to hearing from you. Sincerely,

Thursday 1	h

Chuan-Chou Shen Department of Geosciences, National Taiwan University No. 1, Sec. 4, Roosevelt Road, Taipei 106, Taiwan ROC. TEL: 886-2-3366-5878 FAX: 886-2-3365-1917 Fmail: river@thut.edu.uk

Fig. 1.

C3680

- 1 Stalagmite-inferred variability of the Asian summer monsoon during 2 the penultimate glacial/interglacial period 3 4 T.-Y. Li^{1,2,3}, C.-C. Shen³^(h), L.-J. Huang³, X.-Y. Jiang⁴, X.-L. Yang¹, H.-S. Mii⁵, 5 S.-Y. Lee⁶, L. Lo³ 6
 ¹ Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of

 8
 Education; School of Geographical Sciences; Southwest University, Chongqing

 9
 400715, China

 ² State Key, Laboratory of Loess and Quaternary Geology, Institute of Earth

 1
 Environment, CAS, Xi'an 710075, China
 11
 12
 ³ High-Precision Mass Spectrometry and Environment Change Laboratory (HISPEC),

 13
 Department of Geosciences, National Taiwan University, Taipei 10617, Taiwan ROC

 14
 ⁴College of Geographical Science; Fujian Normal University, Fuzhou 350007, China
 ⁵ Department of Earth Sciences, National Taiwan Normal University, Taipei 11677, Taiwan ROC 15 16 ⁶ Research Center for Environmental Changes, Academia Sinica, Taipei 11529, Taiwan ROC 17 18 19 20 April, 10, 2014 revised to Climate of the Past: 21 Special issue of "Western Pacific Paleoceanography - An Ocean History 22 Perspective on Climate Variability at Orbital to Centennial Scales" 23 24 *Corresponding author: 25 C.-C. Shen: National Taiwan University, E-mail: river@ntu.edu.tw
 - 26 (Tel) 886-2-3366-5878; (Fax) 886-2-3365-1917. 27

Fig. 3.

C3682

Table 1. U-Th isotopic compositions and ²⁰ Th ages for subsamples of five Yangkou stalagmites on MC-ICP-MS at the HISPEC, NTU										
Subsample	Depth	2 ²⁴ U	¹⁰¹ Th	8 ²⁴ U	[²⁰ Th/ ²⁰ U]	[²⁰⁰ Tb/ ²⁰² Tb]	Age (kyr)	Age (kyr, BP)	δ ²³⁴ U _{initial}	
ID	(mm)	(ppb)	(ppt)	measured	activity'	(ppm)"	uncorrected	corrected"	corrected	
YK5.01	3.0	8730 +13	553.0 +7.1	2158 +21	1 0192 +0 0024	265626 +3445	179 706 +1325	179.643 +1375	158 5 +1 7	
YK5-02	24.0	7335 ±14	263.1 ±7.1	218.4 ±2.7	1.0235 ±0.0027	471128 ±12563	180,437 ±1600	180,375 ±1600	363.6 ±4.8	
YK5-03	57.0	4322.4 ±7.6	5997 ±17	192.9 ±2.3	1.0002 ± 0.0024	11903 ±39	181,192 ±1438	181,102 ±1438	321.9 ± 4.1	
YK5-04	79.0	5041 ±10	500.2 ±5.7	187.7 ±2.9	0.9997 ± 0.0026	166348 ±1928	183,234 ±1713	183,171 ±1713	315.1 ± 5.0	
YK5-05	88.0	5729.6 ±9.4	356.1 ±5.1	184.6 ±2.4	0.9986 ±0.0027	265267 ±3814	184,166 ±1611	184,103 ±1611	310.6 ±4.2	
YK5-06	103.0	5375.3 ±9.9	593.2 ±5.0	202.1 ±2.6	1.0161 ±0.0022	152028 ±1290	184,207 ±1499	184,143 ±1499	340.1 ±4.7	
VV 5 09	149.0	4760.2 28.8	137.6 ±3.8	201.8 ±2.3	1.0173 ±0.0023	282620 ±23827	183,081 ±1438	184,999 ±1436	249.1 ±5.2	
YK5.09	149.0	8808 +11	1103 7 +7 2	205.0 ±3.0	1.0239 ±0.0028	136699 +889	187,222 ±1841	187,139 ±1841	348.1 23.3	
YK5-10	188.0	12100 ±19	168.3 ±6.1	210.0 ±2.5	1.0368 ±0.0027	1230671 ±44610	189,876 ±1694	189,815 ±1694	359.2 ±4.7	
Stalagmite:	: YK12									
YK12-01	3.6	6262.6 ±4.1	3895 ±24	309.6 ±1.2	0.9620 ±0.0015	25540 ±164	133,762 ±462	133,690 ±462	451.8 ±1.9	
YK12-02	10.5	5016.7 ±2.5	12393 ±25	296.1 ±1.2	0.9590 ±0.0017	6410 ±17	135,884 ±510	135,777 ±511	454.7 ±1.8	
VK12-03	40.0	6384.1 ±3.8	1030 ±21	298.2 ±1.1	0.9798 ±0.0014	98334 21947	141,428 ±463	141,302 2403	441.8 ±1.7	
YK12-04	57.5	13314 ±13	1488 ±21	259.4 ±1.5	0.9840 ±0.0015	145382 ±2094	152.201 ±622	152.138 ±622	398.9 ±2.4	
YK12-06	78.0	11746.6 ±5.5	1425 ±24	253.54 ±0.90	0.9852 ±0.0013	134061 ±2272	154,298 ±485	154,235 ±485	392.1 ±1.5	
YK12-07	80.0	8830.3 ±5.3	38573 ±98	212.8 ±1.2	0.9796 ± 0.0027	3702 ±14	165,267 ±1071	165,120 ±1071	339.4 ±2.2	
YK12-08	92.0	7106.6 ±3.6	7546 ±25	199.70 ± 0.89	0.9823 ± 0.0014	15274 ±55	171,076 ±643	170,993 ±643	323.9 ± 1.5	
YK12-09	101.0	9513.1 ±6.5	4483 ±23	203.4 ±1.1	0.9976 ±0.0013	34954 ±182	175,795 ±717	175,725 ±717	334.3 ±2.0	
YK12-10	105.0	5118.6 ±6.7	2378 ±21	185.4 ±1.9	0.9924 ±0.0018	35265 ±317	181,021 ±1132	180,949 ±1132	309.3 ±3.3	
YK12-11 Stalarmite	109.5 VK23	6109.1 ±3.8	5/2 ±18	1/8.4 ±1.2	0.9875 ±0.0013	1/4125 ±5633	181,929 ±770	181,866 ±/70	298.4 ±2.1	
YK23-01	2.4	2893.2 ±2.3	13899 ±26	102.8 ±1.5	0.8935 ±0.0018	3070.9 ±8.0	172,790 ±1035	172,620 ±1035	167.6 ±2.4	
YK23-02	9.6	2608.9 ±1.7	13210 ±23	99.6 ±1.1	0.9008 ±0.0016	2937.3 ±7.1	177,700 ±946	177,525 ±947	164.5 ±1.9	
	Hiatus									
YK23-03	11.2	2705.2 ±1.3	1370 ±17	59.55 ±0.91	0.8799 ±0.0016	28683 ±355	187,327 ±1030	187,254 ±1030	101.1 ±1.6	
YK23-04	14.8	2541.1 ±1.2	10313 ± 20	60.06 ±0.89	0.8830 ±0.0015	3592.3 ±8.9	188,729 ±982	188,571 ±982	102.4 ±1.5	
VY22.05	Hiafus 16.9	1755 5 ±2.0	1265 ±14	22 5 +1 1	0.8622 ±0.0012	11096 ±161	102 472 +004	102 401 +004	561 ±1 9	
YK23.06	27.6	30847 +1 5	7354 +14	32 53 +0.92	0.8671 +0.0012	18764 +112	195 871 +932	195 791 +937	566 +16	
YK23-07	35.6	2208.7 ±1.3	2343 ±15	47.1 ±1.0	0.8848 ±0.0014	13768 ±89	197.538 ±1069	197.451 ±1069	82.2 ±1.8	
YK23-08	42.4	1917.04 ±0.90	4503 ±17	39.3 ±1.1	0.8795 ±0.0013	6182 ±25	199,294 ±1103	199,175 ±1103	68.9 ±1.9	
	Hiatus									
YK23-09	43.0	2720.4 ±1.5	1128 ± 14	21.23 ±0.90	0.8633 ±0.0013	34369 ± 430	200,953 ±1095	200,882 ±1095	37.5 ±1.7	
YK23-10	62.4	3355.3 ±2.2	698 ±23	16.2 ±1.0	0.8657 ±0.0014	68/53 ±2263	206,207 ±1217	206,141 ±1217	29.0 ±1.8	
Stalarmite	VK47	2202.0 21.3	899 ±19	13.0 ±1.1	0.8633 20.0013	339/0 2///	200,922 ±1340	206,839 21340	20.9 22.1	
YK47-01	118.8	812.37 ±0.81	6437 ±11	395.2 ±1.8	1.0173 ±0.0022	2120.0 ±6.0	130.186 ±610	129.991 ±612	570.7 ±2.8	
YK47-02	137.5	765.96 ±0.70	2997.5 ±7.6	398.9 ±1.8	1.0295 ±0.0019	4343 ±13	132,271 ±565	132,144 ±566	579.7 ±2.8	
Stalagmite:	: YK61									
YK61-01	13.6	3427.4 ±2.1	13736 ±25	295.8 ±1.2	0.9172 ±0.0019	3779 ±10	125,391 ±512	125,255 ±513	421.5 ±1.8	
YK61-02	15.5	3636.8 ±1.9	4502 ±12	2/5.4 ±1.2	0.9027 ±0.0013	12039 ±37	125,800 ±410	125,/15 ±411	393.0 ±1.8	
VK61.04	20.0	3974.8 22.4	1271.0 +8.9	201.5 ±1.2	0.8938 ±0.0013	41205 ±201	126,291 ±408	126,207 ±408	373.0 ±1.8 422.0 ±2.6	
YK61.05	22.4	1520.4 +2.4	3627 +33	340 2 +2 4	0.9619 ±0.0074	6658 +63	127,602 +716	127,496 +716	4878 +15	
YK61-06	26.0	2414.5 ±4.3	2217 ±29	315.2 ±2.4	0.9448 ±0.0027	16993 ±229	128.330 ±800	128,250 ±800	453.0 ±3.6	
YK61-07	28.3	4454.4 ±4.8	801.0 ±8.8	313.7 ±1.7	0.9452 ±0.0013	86784 ±959	128,698 ±470	128,633 ±470	451.4 ±2.5	
YK61-08	30.1	2434.4 ±2.3	657.4 ± 8.6	314.5 ±1.6	0.9479 ± 0.0012	57958 ±756	129,213 ±431	129,146 ±431	453.1 ±2.3	
YK61-09	40.8	3633.5 ±4.6	207 ± 25	302.5 ±2.1	0.9389 ±0.0019	271567 ±32442	129,373 ±635	129,309 ±635	436.1 ±3.2	
YK61-10	47.8	3140.5 ±3.0	152.3 ±7.0	305.6 ±1.6	0.9459 ±0.0013	370865 ±19563	130,518 ±452	130,455 ±452	441.9 ±2.3	
1801-11	e1.3 Hiatus	3420.3 ±0.0	3048 ±10	308.2 ±1.8	0.9302 ±0.0016	23311 ±67	131,400 ±346	131,393 ±546	443.9 ±2.7	
YK61-12	63.1	2307.3 ±1.8	1947.5 ±8.3	303.9 ±1.3	0.9801 ±0.0012	19171 ±84	139.776 ±445	139.699 ±445	451.0 ±2.0	
YK61-13	74.0	5853.2 ±7.4	3435 ±11	287.2 ±1.7	0.9743 ±0.0017	27409 ±90	142,087 ±626	142,014 ±626	429.2 ±2.7	
YK61-14	88.0	3614.8 ±7.1	352 ±20	321.2 ±2.9	1.0365 ±0.0027	175586 ±9727	151,405 ±1087	151,340 ±1087	492.7 ±4.7	
YK61-15	110.0	4705.3 ±8.5	672 ±16	320.3 ±2.6	1.0476 ± 0.0026	121199 ±2976	154,945 ±1061	$154,880 \pm 1061$	496.2 ±4.4	
YK61-16	130.0	5173.2 ±8.0	646 ±18	303.7 ±2.3	1.0495 ±0.0022	138661 ±3763	160,250 ±982	160,184 ±982	477.6 ±3.8	
YK61-17	137.8	6174.8 ±8.5	405.3 ±7.9	299.4 ±2.0	1.0514 ±0.0019	264459 ±5140	162,165 ±869	162,102 ±869	473.5 ±3.4	
YK61-18 VK61-10	167.8	4/bb.3 ±5.3	347.8 ±7.3	2/4.1 ±1.7 220.0 ±1.7	1.0478 ±0.0014	25/115 ±4998 26585 ±127	169,056 ±774	168,993 ±774	441.9 ±3.0	
1 601-19	103.8	2004.1 22.9	1077.4 19.4	207.0 ±1.7	1.04.58 20.0013	2000/ 2133	1/4,001 2837	174/10/ 283/	3072 229	
chemistry v	was perfe	med during 201	1-2012 (Shen et	at., 2003) and in	sorumentat analyses	on MC-IUP-MS (Sh	m et al., 2012).			
Analytical c	THOPS are	or of the mean								

 ${}^{a}\delta^{214}U = (|^{214}U|^{218}U|_{activity} - 1) \times 1000.$ ${}^{b}\delta^{214}U_{acced}$ corrected was calculated based on 216 Th are (T) i.e. δ^{21}

 20 Th²¹⁹U]_{adviv} = 1 - $e^{i_{210}T}$ + (δ^{210} U/1000)(λ_{210} (λ_{210} - λ_{210}))(1 - $e^{i_{210}-2_{210}T}$), where *T* is the age.

Decay constants used are available in Cheng et al. (2000). The degree of detrital ²³⁸Th contamination is indicated by the [²³⁸Th/²³²Th] atomic ratio instead of the activit

*Age [yr BP (before AD 1950)] corrections were made using an ²¹⁰Th/²¹²Th atomic ratio of 4 ± 2 ppm. Those are the values for material at secular conlibrium with the crostal ²¹²Th/²¹³U value of 3.8. The errors are arbitrarily assumed to be 50°.

Response to Review Comments...Li et al., CP-2013-170 Page 1

We are pleased by the very positive and constructive reviews. We have made every attempt to incorporate the comments/arguments. We believe that we have addressed all reviewers' comments. Please see the details of our implementation of the reviews below.

Points raised by reviewers and editor are shown in blue, Arial type, while our responses are shown in black, Times New Roman type.

Editor: Dr. Mahyar Mohtadi

E1 "First and foremost my apologies regarding the long delay of the review process. We had a large (double-digit) number of declined review invitations, possibly because of the liming of your submission right before the Christmas. When revising your manuscript, please address all the referees" comments in till and send a point-by-point response to their comments. I agree with both referees suggesting to remove the rather speculative discussion of the stalagnite 5 ⁶⁴ O forcing by tropical Pacific SST gradient, unless you find more convincing evidence for this hypothesis. Please also consider that your revised manuscript could be sent to the same referees for further advice, particularly in light of the referee #2 suggestions of expanding certain parts of the discussion on the express of the others. Hope you find these comments hepl."

Thank Dr. Mohtadi for handing with our case and summarizing issues raised by the reviewers. We have addressed all points, including comments, questions, and suggestions given by reviewers. Please consider our revised manuscript if this version can be accepted by your journal.

Fig. 5.

C3684