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Abstract:

Loess sequences have been intensively studied to characterize past glacial climates of
the 40-50° North and South latitude zones. Combining different approaches of
sedimentology, magnetism, geochemistry, geochronology and malacology allows the
general pattern of the climate and environment of the last interglacial-glacial cycle in
Eurasia and America to be characterized. Previous studies performed in Europe have
highlighted the predominance (if not the sole occurrence) of C3 vegetation. The
presence of C3 plants suggests a regular distribution of precipitation along the year.
Therefore, even if the mean annual precipitation remained very low during the most
extensive glacial times, free water was available for more than 2 months per year.
Contrarily, the 8'3C record of Surduk (Serbia) clearly shows the occurrence and
dominance of C4 plants during at least 4 episodes of the last glacial times at [28.0 - 26.0],
[31.4 - 30.0], [53.4 - 44.5] and [86.8 - 66.1] (in kyrs cal. B.P.). The C4 plant development

is interpreted as a specific atmospheric circulation pattern that induces short and dry
summer conditions. As possible explanation, we propose that during "C4 episodes”, the
Mediterranean Sea would have been under the combined influence of the following: i- a
strong meridional circulation unfavorable to water evaporation that reduced the
Mediterranean precipitation on the Balkans; and ii- a high positive North Atlantic
Western Russian (NAWR)-like atmospheric pattern that favored northerlies over
westerlies and reduced Atlantic precipitation over the Balkans. This configuration would
imply very dry summers that did not allow C3 plants to grow, thus supporting C4
development. The intra "C4 episode” periods would have occurred under less drastic
oceanic and atmospheric patterns that made the influence of westerlies on the Balkans
possible.
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1. Introduction

Loess deposits are important terrestrial sediment records that provide key data for
climate reconstruction and the interpretation of past glacial cycles (Kukla, 1977; Guo et
al, 2002). Combining multidisciplinary approaches (sedimentology, magnetic
properties, geochemistry, geophysics, geochronology, malacology, palynology) allows a
general pattern of climatic and environmental evolution in Eurasia and America to be
proposed.

In Western Europe, high-resolution study of the Nussloch loess sequence (Germany),
supported by a large set of luminescence (OSL, IRSL, TL) and #C dates, has allowed
correlation of the loess grain size variations and loess/paleosol alternation with the
Greenland ice-core dust record, which suggests a global connection between North
Atlantic and Western European atmospheric circulations and associated wind regimes
(Fuchs et al., 2012; Rousseau et al., 2007). The first attempt to model the impact of the
abrupt climate variations of the North Atlantic on dust emissions supports the
hypothesis that the North-Atlantic millennial-timescale variability is imprinted on
Western European loess profiles and points to changes of the vegetation cover as the
main factor responsible for the dust emissions, yielding material for millennial-scale
sedimentation variations (Sima et al., 2009). Among the multidisciplinary investigations,
a recent organic geochemistry study focused on the impact of these abrupt events in
terms of precipitation at the key section of Nussloch. Using inverse modeling of 813C and
vegetation, Hatté and Guiot (2005) showed a general glacial precipitation background of
200 mm.year! along the last glaciation punctuated by estimated increases of 100%
recorded during interstadial events.

A comprehensive pattern of past Western European mid-latitude atmospheric
circulation and interconnection is now emerging, but comparatively few similar high-
resolution data on past climate are available for Central Europe. Stratigraphical,
paleopedological and chronological studies (Antoine et al, 2009a; Fuchs et al,, 2008;
Galovi¢ et al,, 2009; Schmidt et al., 2010; Stevens et al,, 2011; Zech et al.,, 2009) in Serbia
have provided information that the Carpathian region and Western European
environments were under different atmospheric conditions that resulted in a drier
environment throughout the last climatic cycle (Antoine et al., 2009a; Markovi¢ et al.,
2008). This conclusion was based on grain-size and paleosol analyses, but a more
precise interpretation requires appropriate investigation. Indeed, the extent of this
dryness, the search for seasonality of the precipitation and the reconstruction of past
vegetation appear necessary for providing key elements for understanding the past
atmospheric circulation conditions in this area.

Such an issue could be addressed by an organic isotopic geochemistry study, as has
already been performed in Western Europe if properly conducted. Loess sequence is an
alternation of typical loess and paleosols. These two distinct facies must be considered
separately as they yield different types of information. European interglacial paleosols
are associated to several millennia of temperate forest vegetation, no or very weak
mineral accumulation, temperate humid climate and are the result of strong and
efficient pedogenesis forming organic soils that can reach up to 2 meters in depth.
(Finke, 2012; Finke and Hutson, 2008; Yu et al, 2013). Roots can penetrate the
underlying unaltered sediment (Gocke et al, 2010). By carefully cleaning the vertical
wall to remove all potential superficial modern vegetation which can also have laterally
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penetrating roots, and by conscientiously investigating the sediment to identify and to
avoid rhizolith tracks, contamination risks are greatly reduced. Nevertheless by
precautionary principle isotopic signal of soils and paleosols (including Bt horizon) and
its underlying 1-meter of sediment should be regarded only as support of climatic
trends not climatic quantitative information. Conversely typical glacial loess is a suitable
sediment for organic geochemistry studies. [t accumulates very quickly during the cold
oxygen isotope stage (OIS) and is associated with sparse vegetation and a weak
rhizosphere. The presence of centimeter-thick laminated structures recognized in most
of the typical loess (Derbyshire and Mellors, 1988; Lautridou, 1985; Schwan, 1986)
implies the absence of significant vertical disturbance and a good preservation of the
memory of the climatic conditions contemporaneous to the time of deposition.

The lack of conditions favorable to pedogenesis and the dry periglacial environment
favor the degradation of organic matter without distortion of the isotopic signal, making
typical loess suitable for organic geochemical study (Hatté et al, 1998). Indeed as
corroborated by the very low loess organic content, microbial degradation of the weak
and low energetic vegetal input in typical loess during glacial times, results in a near-
total mineralization of organic matter. This near-complete degradation does not induce
isotopic fractionation and the original isotopic signal is preserved. In contrary
flourishing vegetation associated to soils and paleosols provide a large amounts of
organic matter with a wide range of energetic value. In such an environment, microbes
select compounds of high energetic value at the expense of less easily degradable
compounds. This results in a selective degradation of organic matter compounds that
might bring in isotopic fractionation. In conclusion, the carbon isotopic composition
(813C) of organic matter preserved in typical loess sediments nicely reflects the original
isotopic signature of the vegetation and, therefore, represents an indicator of
paleoenvironmental conditions.

The isotopic signature of vegetation provides information on photosynthetic pathways
(C3 versus C4) (Farquhar et al, 1982; O'Leary, 1981) and, thus, on environmental
changes that are a prelude to the replacement of one vegetation type by another. Based
on physiological studies on plants and on the C4 versus C3 distribution, a replacement of
C3 by C4 plants occurs when the C3 plants can no longer develop because of severe
environmental changes, such as changes in altitude, temperature, precipitation and wind
along with their seasonal patterns. Ecological niche succession follows the rule of
"choice of the stronger". If potential niches of C4 and C3 plants overlap, the C3 plants
will prevail. Austin (1985) stated that the ecological niche of C4 plants is the potential
niche minus the C3 overlapping niche. C4 plants will expand when C3 plants disappear.
C3 plants need available water for at least 2-3 months, according to the species, to
complete a growth cycle. In contrast, most C4 plants can complete a growth cycle in less
than 2 months with available water (Paruelo and Lauenroth, 1996).

Working at the bulk (plant) scale justifies the use of empirical relationships linking
environmental conditions to plant isotopic signatures (concentration and isotopic
composition of atmospheric CO, water availability and, secondarily, temperature, soil
type and texture and insolation) previously established at this scale (Lloyd and
Farquhar, 1994) and not yet available at the molecular scale.

This study presents new geochemical data obtained from the Surduk loess sequence in
Serbia and proposes a new environmental scheme to better understand the past
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environmental conditions in the south of the Carpathian basin during the last glacial
cycle.

2. Location, Sampling and methodology

2.1 Location

The Surduk loess section is located on the right bank of the Danube River (45°04'N;
20°20'E, ~111 m asl) in the southeastern part of the Carpathian Basin ca. 30 km
northwest of Belgrade, Serbia (Figure 1), at the southern edge of the European loess
belt.

The area is characterized by the occurrence of thick loess-paleosol sequences that
mainly outcrop in quarries but also as high loess cliffs along the left bank of the Danube
River and at the confluence between the Danube and tributaries, including the Tisa
River east of the Titel Plateau (Fig. 1). Today, the site is mostly under a Mediterranean
climate influence, with winter occurring from November to February. The average
annual temperature is 10.9 °C. In January, the average temperature is -1 °C and in July it
is 21.6 °C. The annual rainfall is ca. 690 mm, and there are ca. 120 rainy days (Klein Tank
et al,, 2002). The area does not undergo very strong seasonality with dry summer
season and/or long and cold winter (Figure 2). This implies a region covered by plants
with a carbon C3 fixation pathway. Less than 2% of vascular plants in South-East Europe
are C4 plants (Pyankov et al., 2010).

2.2. Sampling

All stratigraphic studies and high-resolution samplings were carried out on a 20-m-high
vertical loess cliff over a period of 15 days. Due to stability and security problems, the
upper 3 m of the section was sampled in a trench excavated from the top above the
vertical profile. The work began with the careful cleaning (removal of weathered
material) of the whole section to provide a highly detailed stratigraphical profile (Fig. 1
stratigraphy). This cleaning step is crucial for organic geochemistry to prevent any
pollution by organic material, which can be found, according to the sediment texture, as
far as 0.5 m below the exposed surfaces. This material can be the product of bacterial
activity in the coarser sediment, nets of burrowing insects or the illuviation of organic
compounds in topsoil through cracks. Removal from at least 1 m below the vertical wall
reduces the contamination risk. Furthermore, measuring the nitrogen content of the
sampled sediment checks a posteriori for the absence of modern organic matter. As
nitrogen is mostly linked to amino acids that rapidly decrease with organic matter
degradation, a measurable level of nitrogen implies the input of recent organic matter
into the sediment.

The sampling methodology used in Surduk for the geochemistry was based on the
continuous column sampling (CCS) method developed by the team several years ago
when investigating West European loess sequences. This method consists of cutting a
continuous vertical column (#5-7-cm width) through the whole loess-paleosol
sequence, which is then sliced every 5 cm to produce 376 homogeneous samples of
sediment. The CCS method allows the geochemistry to be averaged every 5 cm,
preventing any gap between the different samples as usually occurs when taking a
succession of isolated samples. A single sample was subdivided into four for grain-size,
carbon content and 8'3C and 14C determination. This division allows the correlation of
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independent environmental proxies. More information on the CCS and on the Surduk
sampling is available in Antoine et al. (2009b) and Antoine et al. (2009a), respectively.

Sediment sampling is performed while preventing contact with any organic material,
which means no hand contact with the sample at any time and no contact with paper or
any potential pollutant, including smoking. Samples are preserved in zipper PE plastic
Minigrip® bags with no VOC emission. We chose to sample a large amount of sediment
(approximately 50 g), even though only some 100 mg is necessary for geochemical
analysis. This process "dilutes” any potential contamination that would still have
subsisted after all the precautions we took. Following this protocol is absolutely
necessary for the quality requirement of the investigation of sediment with such a low
amount of organic carbon (typically 0.1%wt) (Gauthier and Hatté, 2008).

2.3. Geochemistry methodology

The sediment samples were dried at low temperature as soon as possible to ensure safe
storage, as recommended by Gauthier and Hatté (2008). After being sieved at 250 pum to
remove stones and being homogenized, the sediment then underwent a soft leaching
process to remove carbonate using pre-combusted glass beakers, HCl 0.6 N at room
temperature, ultra-pure water and drying at 50°C. The samples were then crushed in a
pre-combusted glass mortar for homogenization prior to carbon content and 6!3C
analysis. The handling and chemical procedures are common precautions employed
with low-carbon-content sediments.

Organic and carbonate content.

Two different carbon measurements were performed for every sediment sample: total
carbon for the bulk sediments and organic carbon for the leached sediments.
Approximately 15 to 20 mg of sediment was weighed in tin cups for measurement (with
a precision of 1 pg). The sample was combusted in a Fisons Instrument NA 1500
Element Analyzer, and the carbon content determined using the Eager software. A
standard was inserted every 10 samples. The inorganic carbon content in the bulk
sediment was calculated by assuming that mineral carbon exists only as CaCOs. The
results are reported in %weight of carbonate/bulk sediment and in %weight of organic
carbon/bulk sediment.

Carbon isotopic signature.

Analysis was performed online using a continuous flow EA-IRMS coupling, that is, a
Fisons Instrument NA 1500 Element Analyzer coupled to a ThermoFinigan Delta+XP
Isotope-Ratio Mass Spectrometer. Two home internal standards (oxalic acid, 813C = -
19.3% and GCL, 813C = -26.7%) were inserted every five samples. Each home standard
was regularly checked against international standards. The results are reported in the d
notation:

o13C = (Rsample / Rstandard - 1) *1000

where Rsample and Rstandara are the 13C/12C ratios of the sample and the international
standard, Vienna Pee Dee Bee (VPDB), respectively. The measurements were at least
triplicated to the representativeness. The external reproducibility of the analysis was
better than 0.1%, typically 0.06%. Extreme values were checked twice.
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2.4. Geochronology methodology

IRSL dating
Ten samples were taken for infrared stimulated luminescence dating (IRSL) using

234 | copper cylinders (+ 4 cm diameter), which were hammered into the loess section to
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avoid any contamination by light-exposed material. Additional material was taken from
the 30-cm surrounding of every IRSL sample for dose rate determination. The sample
preparation of the polymineral fine grain fraction (4-11 pm), the luminescence
measurements and the dose rate determination are explained in detail in Fuchs et al.
(2008).

14C dating

Based on the 8!3C results, 15 samples were selected for #C dating. The *C activity
evaluation was performed using AMS physical measurements taken at the Australian
ANSTO (ANUA numbers), the NSF-Arizona-AMS-Lab (AA numbers) and the French
LMC14 (SacA numbers) facilities. The CO; gas was prepared using three different
protocols chosen according to the type of sediment. Hatté et al.’s (2001c) (HCI 0.6 N,
NasP207 0.1 M and HCI 1 N at room temperature) was applied for typical loess sediment,
whereas either Hatté et al.’s (2001b) (HC1 0.6 N, Na4sP207 0.1 M, K2Cr407 0.1 M/H2S04 2 N
at room temperature) protocols were applied to sediment extracted from gleys under N;
flow to avoid possible incorporation of modern CO: during alkali treatment by
adsorption on Fe?*.

All 1#C measurements were converted to calendar ages using Calib 6.0, which includes
the IntCal09 calibration (Reimer et al., 2009).

3. Results

3.1. Geochronology

All geochronological data are reported in Tables 1 and 2 and are shown with their
stratigraphic position in Figure 3. Within errors, the 1*C and IRSL dates are in good
agreement. Some classical discrepancies remain only because #C and luminescence
dating do not characterize the same event. 14C dating estimates the time elapsed since
the death of the plant that trapped the dust, while luminescence estimates the time
elapsed since the grains to be dated were without the influence of sunlight. Both
chronologies cannot be directly compared, especially for recent times during which
external parameters that are at the origin of the discrepancy may be larger than the
uncertainties of the physical measurement (Fuchs et al., 2008).

The largest discrepancy between organic radiocarbon and mineral luminescence
chronologies occurs between a 400- and 600-cm depth (Figure 3), where the organic
chronology has a relatively uniform sedimentation rate. The mineral IRSL would
indicate a rupture in the sedimentation at the onset of the major loess accumulation.
This discrepancy may be the result of the intrinsic nature of both chronologies:
vegetation at the origin of the organic matter used for the analysis of the C chronology
was present all along this interval, whereas mineral accumulation occurred by pulses
(Sima et al, 2009). The organic chronology is thus smoother than the mineral
chronology. Nevertheless, the shift is approximately 9 kyrs, and smoothing cannot be the
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only explanation. Another explanation could be an IRSL underestimate of sample BT141
for reasons so far unknown.

Although the intent of the chronological framework is to place the organic geochemical
signal in time, we privileged the 14C dating to draw an outline that should encompass the
most likely chronological organic framework of the sequence (Figure 3).

We thus face a very high accumulation during the Middle Pleniglacial with 600 cm (from

1050 to 450, ¢em depth) as an imprint of 10 Kkyrs (between 37 and 27 Kyrs)

corresponding to an average sedimentation rate of 1.7 mm.yr-1. This pattern appears to |

be unusual, as the highest sedimentation rates are generally observed in European loess
during the Upper Pleniglacial (+ OIS 2) and upper Middle Pleniglacial (OIS 3) (Fuchs et
al., 2008).

3.2. Geochemistry

All geochemical data are presented in Figure 4. The organic carbon and carbonate
contents are both within the classical ranges observed throughout European loess
sequences. These contents respectively vary between 0.2%wt and 20%wt, with
approximately 4%wt of organic carbon maximum for modern soil associated to the
lowest carbonate content of approximately 8%wt. The lowest organic content
(0.06%wt) corresponds to the highest carbonate content (40%wt) during the offset of
the penultimate glacial period. Typical values of the last glacial periods are 0.15%wt and
20%wt, respectively.

The 613C signature in Surduk varies from -25.1%o for the roots of the modern soil to -
22.4%o at a 445-cm depth. Such a scheme is outside the current pattern measured in
Western Europe, where isotopic values are always lighter than -23.5%o. The heaviest
O13C record during the last glacial time in the Nussloch (Germany, Upper Rhine Valley),
Villiers-Adam (France, Ile-de-France), Bettencourt-Saint-Ouen and Saint-Saufflieu
(France, Picardy) loess sequences are -23.5%o, -23.9%o, -24.1%0 and -24.1%o,
respectively (Hatté, 2000; Hatté et al., 1998).

The isotopic organic record of the Achenheim sequence (France, Alsace) is not
considered here, as it was perturbed by both periglacial features and inadequate sample
preservation; its highest recorded value was -23.1%o0 (outside the periglacial
perturbation) (Hatté et al., 1998). Likewise, we do not consider the -16.9%0 values
obtained by Pustovoytov and Terhorst (2004) in Schattenhausen near Nussloch in some
tundra gley horizons, which inexplicably have the lightest §13C in typical loess.

The Surduk 8'3C record differs from the other European loess geochemical records not
only by the heaviest isotopic episode reaching -22.4%o at a 445 cm depth (ca. [28.0 -
26.0 kyr, cal BP) but also by three other episodes of heavy 8!3C values recorded at 675

'

cm (-22.8%o, ca. [31.4 - 30.0 kyr cal BP,), 1240 cm (-22.6%o, ca. [53.4 -44.5 kyr cal BP])

and a plateau between 1535 and 1500 cm at -22.85% (ca. [86.8 - 66.1 kyr BP]).

Carbon isotope fractionation by C3 plants depends on the atmospheric CO2
concentration and isotopic composition and on the humidity level (Farquhar et al., 1989;
O'Leary, 1981). As a consequence the current 6'3C range for all modern C3 plants of [-
31; -24%o] (Deines, 1980) might have been shifted towards less negative value during
glacial arid periods. Based on a mechanistic vegetation model that simulates carbon

Christine Hatté 4/3/13 16:54
Supprimé: 2

Christine Hatté 23/3/13 12:23

\

Christine Hatté 23/3/13 12:24

Supprimé: to 10.5

Christine Hatté 23/3/13 12:24
Christine Hatté 23/3/13 12:24

Christine Hatté 23/3/13 12:24

Christine Hatté 4/3/13 16:54

Supprimé: 3

Christine Hatté 23/3/13 12:24

Christine Hatté 23/3/13 12:24

Christine Hatté 4/3/13 14:37

Christine Hatté 23/3/13 12:24

Supprimé: 30.0 -

Christine Hatté 23/3/13 12:25

Supprimé: 44.5 -

Christine Hatté 23/3/13 12:25

Christine Hatté 24/2/13 23:20
Supprimé: cal




336
337
338
339
340
341
342
343
344
345
346
347
348

349
350
351
352
353
354

355
356

357
358
359
360
361
362

363
364
365
366
367
368
369
370
371
372

373
374
375
376
377
378
379

isotopic fractionation of vegetal biome, Hatté et al. (2009) showed that isotopic niches of
dwarf shrub tundra and shrub tundra, the expected biomes during glacial times, shifted
from [-32; -28%o0] under present conditions to [-31; -26.5%0] under glacial times
(assuming 220ppm of CO2z). Thus, if values lighter than approximately -23.5%0 were
interpreted as exclusively resulting from the degradation of C3 plants (Hatté et al,
2001a), those of -22.4%o to -22.85%o likely derive from the degradation of combined C4
and C3 plants. Furthermore, C4-derived organic carbon decomposes faster than its C3
counterpart in mixed C3/C4 environments (Wynn and Bird, 2007) leading to a shift
towards more negative values of the sediment organic 813C by comparison with the
plant mixture §13C. This might be of importance in typical loess environment where
mineral accumulation rates are high. Therefore, the presence of C4 plants can also be
invoked for the events recorded at 825 cm (-23.1%0) and at 1200 cm (-22.9%0) that
occurred during the [32.9 - 30.7 cal kyr] and [50.4 - 42.0 cal kyr] intervals respectively.

C4/C3 plant mixture does not imply that both plants cohabited. Plants with both
photosynthetic pathways can have occurred successively during the period represented
by the sampling interval, i.e., over ca. 250 years (in the case of the -22.4%o value). As the
paleoprecipitation reconstruction by inverse modeling of BIOME4 was only validated for
C3 plants (Hatté and Guiot, 2005), no quantitative paleoprecipitation can be estimated
from the 813C signal.

4, Discussion

4.1. General last climatic cycle trend

The geochemical records clearly match the classical pattern of the last climatic cycle,
with a higher organic carbon content and the lowest 83C during the equivalent to OISs
5, 3 and 1. The carbonate content follows the same pattern, with a lower carbonate
content for warmer episodes (OIS 5, 3 and 1) as the result of carbonate leaching during
pedogenesis.

According to both the organic chronology and the 83C record, Surduk’s last interglacial
and early glacial periods cover more than 2 m, from a depth of ca. 1850 to 1600 cm
(Figure 3, units 14 to 12). The Upper Pleniglacial covers the upper part of the sequence
from 825 cm to the upper top, the uppermost meter being crossed by a few deep root
tracks down to 200 cm from the Holocene humic topsoil horizon (Figure 3, units 3 to 1).
The boundary between the Lower and Middle Pleniglacial is more difficult to establish.
Fuchs et al. (2008) and Antoine et al. (2009a) placed the limit at approximately 1300 cm
(Figure 3, boundary between units 10 and 9), whereas the organic record would push
the climatic pejoration, the equivalent of OIS 4 (boundary between units 8 and 7), to
1150 cm at the offset of the heaviest §13C values.

Aside from the isotopic excursions toward heavy values, the Surduk loess sequence
remains roughly within the same 613C range as other European loess sequences. This
result implies drastic climatic conditions along the last glacial cycle that favored C3
plants for most of the time. The expected level of precipitation should likely be
approximately 200-300 mm.year! with respect to other loess sequences, and the C3
predominance leads to free meteoritic water distributed along the warm season for
most of the last glacial period. The field observation did not provide evidence of a direct
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effect of precipitation on the loess deposits through any drainage characteristics. We
must consider that vegetation captured all the precipitation.

4.2. Excursions toward C4 plants and climatic significance.

Occurrences of C4 plants are recorded at [26.0-28.0], [30.0 - 31.4], [44.5-53.4], and
[66.1-86.8] in kyrs cal. BP. Based on physiological studies and on niche theory (Austin,
1985), C4 plants expand when C3 plants disappear. Pyankov et al. (2010) explicitly
described the C4 taxonomic distribution in Europe and its relation to climatic
parameters. They summarized their discussion by stating that “the abundance of total
C4 dicotyledons including C4 Chenopodiaceae is correlated with precipitation and
aridity but not temperature, whereas the abundance of total C4 monocotyledons, C4
Poaceae and C4 Cyperaceae is correlated with temperature and aridity but not
precipitation.” Today C4 dicotyledons and C4 Chenopodiaceae represent about 65-75%
of the C4 plants in the Southeastern and Central Europe, i.e. in the present Surduk
geographical region and in the likely modern analog region of past Surduk vegetation.
This allows us to consider that C4 dicotyledons and C4 Chenopodiaceae were likely the
most abundant C4 plants and that their emergence was linked to water availability. So
that, C4 plants expand when there are less than 2 months of available water to allow C3
plants to achieve a complete growing cycle. Available water means "free" liquid water.
Snow and frozen water are not available for plant uptake. The occurrence of C4 plants
during at least 4 episodes during the last glacial in Surduk led to the persistence of
climatic conditions that were unfavorable to C3 development.

Three potential scenarios can be proposed to describe the climatic conditions relative to
the heavy 813C episodes: i- a short and dry summer with less than 2 months of free
meteoritic water during the plant growth cycle; ii- a snowy summer that does not bring
free water that would have been directly assimilated by plants; iii- temperatures less
than 0°C for 8-9 months a year, which would make the permafrost thaw too late and the
soil too hard to allow C3 plant roots to penetrate; or a combination of iii with i or ii. In
any case, the Surduk results provide evidence of a very strong climatic seasonality that
has never been recorded in Western Europe.

Based on the climate reconstructions that derive from European palynological record
covering the Last Glacial Maximum, temperatures less than 0°C for 8-9 months are very
unlikely, even for anterior periods. Indeed, the summer temperature, even during this
extreme time, is 6 to 10°C less than the pre-industrial period (Jost et al., 2005; Leng et
al,, 2012; Lézine et al,, 2010; Peyron et al., 1998). With a reference summer temperature
of ca. 20°C (modern summer value), the LGM summer temperature should have been 10
to 14°C. However, these reconstruction methods were based on assumptions which are
not all valid. First, any past pollen assemblage is assumed to be well approximated by
the modern analog, but glacial assemblage lack good modern analogues. As example,
modern analogues for glacial steppe are missing as they are found today in Central Asia
under milder winter and warmer summer. Second, plant-climate interactions are
assumed to remain constant throughout time. Implicitly this assumes that these
interactions are independent of changes in atmospheric CO; and of daylight, whereas a
number of physiological and palaeoecological studies (Cowling and Sykes, 1999;
Farquhar, 1997; Polley et al, 1993) have shown that plant-climate interactions are
sensitive to atmospheric CO2 concentration and sun exposure. Even considering these
restrictions, it is very unlikely that summer temperatures differed by more than 10°C
with these reconstructions. Considering a sinusoidal temperature pattern along the year
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with the highest temperatures in summer and the coldest in winter, and even
considering a very strong seasonality that would have been represented by a sharp
sinusoid, pollen reconstructed summer temperature cannot be associated with more
than 4-6 months of below 0°C temperatures. Furthermore according to Hatté et al.
(2009), ecological niche under low CO; concentration at equivalent latitude for biomes
expected for glacial periods yields mean annual temperatures lowered by 10-15°C with
respect to the reference point set at 9.5°C, i.e. mean annual temperatures of -5 to 0°C.
Such a range cannot be associated to more than 6 months of temperature lower than
0°C. The third hypothesis can thus be ruled out.

Repetitive snowy summers would have been recorded by a specific sedimentological
feature (niveo-aeolian laminations), but the feature was not observed here (Antoine et
al,, 2009a). The second hypothesis can thus be ruled out as well.

The remaining hypothesis suggests dry (and short) summers for times associated with
heavy 813C, which is consistent with malacological studies. To the north (Miseluk
(Markovic¢ et al, 2004) and Petrovaradin (Markovi¢ et al., 2005)) and south (Ruma
(Markovic et al., 2006) and Irig (Markovi¢ et al., 2007)) of Fruska Gora mountain, i.e. 30-
50 km west of Surduk, the hygrophilous Succinella oblonga, which is ubiquitous in the

loess north of the Alps under it form "elongata", was not identified contrary to, very
abundant steppe taxa, such as Granaria frumentum, Pupilla triplicata, Chondrula tridens
and Helicopsis striata. These taxa are rarely found in Western European loess series
(Moine et al., 2005, 2008, 2011; Rousseau et al.,, 1990) and are more or less frequent in
Central Europe north of the Alps (Frank, 2006; Lozek, 1964), in the Pannonian Basin
(Siimegi, 2005), though they are not as common as in the Balkans. In Cirikovac and
Klenovnik, about 80 km south-east of Surduk, on the western flank of a north-south
elongated relief, similar general observations have been recorded with some differences.
S. oblonga is poorly represented in Cirikovac, and among steppe taxa only C. tridens and
G. frumentum are abundant, P. triplicata and H. striata being absent (Mitrovi¢, 2007).
However, we must keep in mind that only a single taxa has been sampled in these last
two sites. Other identified species suggest a resemblance with more humid and woody
steppe vegetation from Ruma and Irig north of the Fruska Gora mountain. Furthermore,
fauna from Pozarevac brickyard, a few kilometers north of Cirikovac, indicates even
drier environment than in Irig for example (Jovanovic, 2005; Jovanovi¢ et al., 2006).

n-Alkane investigations performed for the Crvenka loess-paleosol (North Serbia)

sequence show that grasses dominated the vegetation cover during the whole last
glacial cycle (Zech et al,, 2009). However Zech et al. (2009) underlined several periods
with presence of trees based on corrected n-alkane distribution. The applied correction
derives from modern observation of n-alkane distribution in vegetation and in the
associated litter and topsoil where they evidenced a modification of the original
vegetation n-alkane distribution in litter consecutively to degradation that conceals the
trees percentage in the original vegetation ratio. Middle paleosol complex likely has
undergone similar degradation effect but the corrected ratio of trees in typical loess may
be overestimated as vegetal organic matter degradation was quite different during
glacial times. It is conceivable that as a result of the very drastic conditions and of the
weak vegetal input, the original n-alkane distribution was better preserved in typical
loess than in middle paleosol (high over-even-odd predominance stated by authors in
typical loess, i.e. L1Lx units) and thus loess n-alkane distribution does not require high
correction. This said, the possible occurrence of some trees in protected areas during
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the C3 plants interval remains. Few dwarf trees in open grassland, as currently found
today in Greenland, may have grown in Surduk area throughout these periods.

Combining the specifications of malacological, organic geochemical and isotopic
geochemical investigations yields strong vegetation dynamics during the Middle and
Late Pleniglacial, with C4 episodes highlighted by isotopic geochemistry and short
excursions toward mosaic or even forest vegetation elements during C3 plant periods,
as indicated by the sub-domination of forest taxa at Petrovaradin during the Late
Pleniglacial (Markovi¢ et al., 2005) and a few trees (likely dwarf) during glacial periods,
as indicated by peaks toward high C31/C27 n-alkane ratios at Crvenka (Zech et al.,
2009). Isotopic signatures alone that remain within the range of C3 plants for both C3
grassland and forest cannot evidence these excursions toward close vegetation.
However, the occurrence of periods with C3 plants interspersed with C4 episodes is also
suggested by palynological investigations that show arboreal vegetation (with likely
dwarf trees) at some times of the last glaciation in Romania (~300km north of Surduk)
(Willis et al., 2000; Willis and van Andel, 2004).

4.3. Possible climatic pattern to explain C4 episodes

The Balkan climate is under the combined influence of the Atlantic Ocean and the
Mediterranean Sea, as both contribute to regional precipitation. An explanation of the
summer precipitation (C4 plants growing season) decline over this part of the eastern
Mediterranean basin can be found in both modern meteorological patterns and past
climate studies.,

Such an example is related to the Heinrich Events (HE). Sierro et al. (2005) showed that
HE interrupted the antiphase relationship in deepwater formation between the North
Atlantic and Mediterranean because of a large injection of fresh water from melting
icebergs at the entrance to the Mediterranean. Lower salinities of Mediterranean surface
water resulted in a slowdown of western Mediterranean deepwater overturn, even
though cold sea surface temperatures (SSTs) and a drier climate should have resulted in
enhanced deepwater. A similar but less pronounced pattern of cold SSTs was revealed in
the Eastern Mediterranean, where catastrophic arid episodes were connected with
Heinrich Events as a result of cold water input in the Eastern Mediterranean Basin,
which reduced evaporation and precipitation on the continent (Bartov et al., 2003). The
contrast between the strongly reduced SSTs in the western basin and the much less
reduced SSTs in the Eastern Mediterranean basin was enhanced during the Heinrich
Events and favored strong meridional circulation. In the Carpathians, this regime
resulted in less precipitation from the Mediterranean Sea. The precipitation was
even lower for periods that lagged behind the HE or during equivalent Mediterranean
meridional circulation-favoring situations.

Another example related to the Last Glacial Maximum (LGM) can be found based on
Alpine evidence and SST reconstructions. Several studies (Florineth and Schliichter,
2000; Kithlemann et al, 2009; Kiihlemann et al, 2008) show that the LGM
Mediterranean atmospheric pattern consisted of an amplified meridional winter
circulation. This pattern would result in a northward extension of the Azores High
toward Iceland or Greenland, blocking the moisture supply by the westerlies. The
situation was further enhanced by expansion and intensification of the Siberian High in
winter and spring during glacial times. The most common glacial situation on the
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Balkans was thus a replacement of the wet westerlies by this blocking situation that was
more frequent than that of today. The northward displacement of the polar jet in
summer allowed westerlies over Western Europe but less and less precipitation from
west to east. This situation resulted in lower precipitation brought by westerlies over
the Carpathians and even lower precipitation for periods under the influence of an
intense Siberian High. As cold Pleistocene winds move closer to the ground, they are,
consequently, more influenced by the topography than during warm periods. The
Carpathians can thus deflect original weak westerlies towards N/NW direction (Sebe et
al,, 2011). This is in agreement with previous investigations performed in the same area.
Based on mineral geochemistry investigation on Stari Slankamen loess sequence (Figure
1), Buggle et al. (2008) show that loess originated from alluvial sediments of the Danube
and of weathering products of the Carpathian mountain drained by the Tisza and the
Drava rivers. They therefore favored a meteorological pattern with strong influence of
N/NW winds. This scenario is in agreement with the enhancement in the frequency of
storms from the N-NW, as suggested by Antoine et al. (2009b) based on a
sedimentological study and corroborates the possible predominant dust deposition
direction proposed by Markovi¢ et al. (2008) for Surduk area based on loess thickness
investigation. It also fits with the 850hPa winds reconstructed by Rousseau et al. (2011)
and Sima et al. (2013).

An explanation for the occurrence of Surduk "C4 episodes” can be proposed by looking
at modern meteorological patterns and, more closely, at the patterns that are rarely
recorded today but could have occurred during glacial times.

The Mediterranean climate is associated with oscillations in sea level pressure, the well-
known North-Atlantic Oscillation (NAO), oscillation, which mostly impacts the Western
part of the Mediterranean basin, and the East Atlantic/West Russia mode (EAWR) that
plays a key role in the Eastern Mediterranean precipitation. The EAWR is based on two
main anomaly centers that today are located over the Caspian Sea and Western Europe.
This mode occurs today from fall to springtime. During the high EAWR periods,
northerly winds predominate over the eastern Mediterranean region. Positive phase, of
the pattern js characterized by negative-pressure anomalies throughout western and
southwestern Russia and positive-pressure anomalies over northwestern Europe.
During the EAWR positive phases, drier than normal conditions are found today in a
large eastern region of the Mediterranean Basin (Josey et al., 2011; Krichak and Alpert,
2005). A study by Krichak and Alpert (2005) clearly showed dry and cold northerlies
over the Balkans during a high phase (positive EAWR), leading to dry conditions.
Transposed to glacial conditions with the Fennoscandian ice sheet covering the north of
Europe, such a circulation pattern would bring very cold and dry air masses over the
Balkans. A high positive EAWR mode would have resulted in very cold and very dry
summer conditions in the Balkans.

In the present day climate, a high positive EAWR mode can persist several consecutive
months, as happened from the winter of 1992/1993 until May 1993. If, during particular
intervals of the glacial period, this mode extended throughout the summer, the result
would have been very cold and very dry conditions in the Balkans with a duration long
enough to hinder the development of C3 plants and allow the development of C4 plants.

Put together, these studies suggest a climatic schema that fits with the occurrence of the
"C4 episodes". During the four episodes (26.0-28.0, 30.0 - 31.4, 44.5-53.4 and 66.1-86.8
kyrs cal. B.P.), the Mediterranean Basin was dominated by strong meridional oceanic
circulation with low evaporation from the Eastern basin and a high positive EAWR mode
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reducing the influence of westerlies and favoring northeasterlies, both leading to dry
and cold summer conditions over the Balkans (Figure 5, panel b).

Others periods of the glacial record with C3 plant dominance would then be associated
with lower meridional Mediterranean circulation to a weaker EAWR mode and/or a less
intense Siberian High, allowing westerlies to access the Balkans (Figure 5, panel a). This
situation, which predominanted during the last glaciation could also be connected with
the N/NW winds indicated by mineral geochemical (Buggle et al, 2008) and
sedimentological (Antoine et al., 2009a) tracers as cold Pleistocene winds moved closer
to the ground and consequently more influenced by the topography than during warm
periods. The Carpathians can thus deflect original westerlies ("wet" winds) towards
N/NW direction (Sebe etal., 2011).

5. Conclusion

Geochemical records of the Surduk loess sequence show similarities with other
European loess sequences. The loess organic matter 413C record evidenced dry and/or
cold climatic conditions during glacial times with high 613C values and less drastic
conditions during interglacial periods with low 813C. Nevertheless, and in contrast to all
European loess sequences recorded along the last climatic cycle, with widespread C3
plant dominance, the organic 813C record of Surduk is the only glacial record with
several unquestionable records of C4 plants.

This finding suggests a past atmospheric circulation schema over Europe with a focus on
Balkan areas. The whole glacial period would be associated with a strong meridional
Mediterranean circulation responsible for a low evaporation rate and with an
atmospheric situation unfavorable to the influence of westerlies over the Balkans. This
situation would have been enhanced during at least four episodes (26.0-28.0, 30.0-31.4,
44.5-53.4 and 66.1-86.8 kyrs cal. B.P.) under a high positive EAWR-like atmospheric
mode that even reduced the Mediterranean evaporation and westerlies in favor of
northerlies over the Balkans. This climatic configuration would have led to short and
very dry summer conditions unfavorable to C3 plant development and, therefore, would
have allowed the development of C4 plants.
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878 Table and figure captions
879  Figure 1: Location of the Surduk loess sequence. Other series relevant to this study and
880 | mentioned in text are also shown.

881 | Figure 2: Modern annual precipitation distribution in Europe and focus on Surduk.
882 | Upper and lower left panels are for modern cumulative precipitation of February to May
883 | (panel upper left), June to September (panel upper right) and October to January (panel
884 | lower left). Scale is in mm. Note that the Surduk region (black cross) does not undergo
885 | dry summer season. Focus on Surduk area (lower right) with the 1946-2006 average
886 | precipitation (histogram) and high (orange line) and low temperature recorded in
887 | Cortanovci (45°09'N, 20°01'E), the closest meteorological station from Surduk.

888 | Figure 3: Stratigraphy and age model of the Surduk loess sequence. Red diamonds are
889  for IRSL dating; the error margin encompasses the 1 sigma variation range (Fuchs et al.,

890  2008). Blue squares represent Calib 6.0 calibrated #C dating (Reimer et al., 2009); the Supprimé: 2
891  error margin encompasses the 2 sigma variation range. The open symbol represents the

892 >53,000 #C conv. year, for which we only have a minimum age. The dotted lines

893 represent an age model envelope that should very likely encompass the chronology of

894 | the loess organic accumulation. Major stratigraphic units are 14: Saalian loess, 13-12:

895 | Basal soil complex, 11-10: Lower loess, 9-4: Middle soil complex, 3-2: Upper loess, 1:

896 | Top soil (Antoine et al.,, 2009a).
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897 | Figure 4: Geochemical data of the Surduk loess sequence. The stratigraphical description

898 is from Antoine et al. (2009a). Blue, green, orange and violet curves represent grain
899  sizes greater than 63 pum in %, organic carbon content in %wt, carbonate content in % Supprime: 3

900 wt and 8'3C of loess organic matter in %o vs PDB, respectively. All data are presented

901 versus depth. On the right axis, a non-linear time-scale is presented based on IRSL and

902 | 14C dates. Horizontal bars highlight C4 episodes. Major stratigraphic units are: unit 14:

903 | Saalian loess; units 13-12: Basal soil complex; units 11-10: Lower loess; units 9-4:
904 | Middle soil complex; units 3-2: Upper loess; unit 1: Top soil (Antoine et al., 2009a).

905 | Figure 5: Atmospheric pattern explaining C3 and C4 episodes. Upper panel: atmospheric

906  pattern effective during C3 episodes; Surduk is under a weak but effective influence of
907  westerlies, allowing the more than 2-3 months of available water required for the C3 Supprime: 4

908 growth cycle. Lower panel: atmospheric pattern that prevailed during the C4 episodes;

909  Surduk is under the strong influence of dry and cold northerlies, leading to less than 3

910 months of available water. Red arrows are from Kiihlemann et al. (2009) and violet
911 | arrows are from Krichak et al. (2005) and Josey et al. (2011),,
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912 | Table 1: Chronological data of the Surduk loess sequence: IRSL age determinations Supprimé: . (i)
913 | (Fuchs et al,, 2008). The two first columns are for sample identification; columns 3 to 5

914 | are for U, Th and K contents; columns 6 and 7 are for effective dose rate and equivalent

915 | dose rate; last columns are for IRSL estimated age (+1 sigma). Further information in

916 | Fuchsetal. (2008).

917 | Table 2: Chronological data of the Surduk loess sequence: 14C dating. The specificity of* Christine Hatté 23/3/13 23:18
918  the chemical treatment prior to COz evolvement and the 14C activity measurement is
919 provided in a reference column. The #C results are shown as conventional *C and Christine Hatté 4/3/13 15:43
920 calibrated 14C ages based on the Calib6.0 calibration (Reimer et al., 2009), for which

921 | minimum, maximum and median ages are given,, Christine Hatté 23/3/13 23:18
Supprimé: .




