

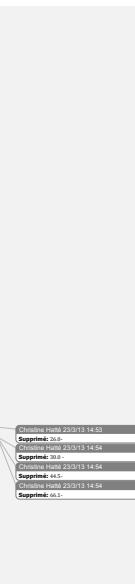
Interactive comment on “Excursions to C₄ vegetation recorded in the Upper Pleistocene loess of Surduk (Northern Serbia): an organic isotope geochemistry study” by C. Hatté et al.

C. Hatté et al.

christine.hatte@lsce.ipsl.fr

Received and published: 4 April 2013

see attached doc


Please also note the supplement to this comment:

<http://www.clim-past-discuss.net/9/C344/2013/cpd-9-C344-2013-supplement.pdf>

Interactive comment on Clim. Past Discuss., 9, 187, 2013.

C344

1 Excursions to C₄ vegetation recorded in the Upper Pleistocene loess
2 of Surduk (Northern Serbia): an organic isotope geochemistry study
3
4
5 Hatté Christine [1], Gauthier Caroline [1], Rousseau Denis-Didier [2,3], Antoine Pierre
6 [4], Fuchs Markus [5], Lagroix France [6], Marković Slobodan B. [7], Moine Olivier [4],
7 Sima Adriana [2]
8 [1] Laboratoire des Sciences du Climat et de l'Environnement, CEA-CNRS-UVSQ, F-91198
9 Gif-sur-Yvette, France
10 [2] Laboratoire de Météorologie Dynamique, UMR CNRS-ENS 8539, F-75231 Paris,
11 France
12 [3] Lamont-Doherty Earth Observatory of Columbia University, NY Palisades, USA
13 [4] Laboratoire de Géophysique, CNRS-Univ. Paris 1, F-92195 Meudon, France
14 [5] Department of Geography, Jönköping University Génér, D-35390 Gleeser,
15 Germany
16 [6] Institut de Physique du Globe de Paris, Sorbonne Paris Cité, Univ Paris Diderot, UMR
17 7154 CNRS, F-75005 Paris, France
18 [7] Chair of Physical Geography, University of Novi Sad, Novi Sad, Serbia
19
20
21 **Abstract:**
22 Loess sequences have been intensively studied to characterize past glacial climates of
23 the 40–30° North and South latitudes zones. Combining different approaches of
24 sedimentology, magnetism, geochemistry, geochronology and malacology allows the
25 general pattern of the climate and environment of the last interglacial-glacial cycle in
26 the Balkans to be reconstructed. The paleoenvironmental patterns are
27 highlighted by the predominance (if not the sole occurrence) of C₃ vegetation. The
28 presence of C₃ plants suggests a regular distribution of precipitation along the year.
29 The presence of C₄ plants suggests a more irregular precipitation with very low during the most
30 extensive glacial times. Free water was available for more than 2 months in winter.
31 Contrarily, the δ¹³C record of Surduk (Serbia) clearly shows the occurrence and
32 dominance of C₄ plants during at least 4 episodes of the last glacial times at [28.0–26.0],
33 [24.0–22.0], [19.0–17.0] and [14.0–12.0] cal. kyr. The last one is the most intense.
34 is interpreted as a specific atmospheric circulation pattern that induces short and dry
35 summer conditions. As possible explanation, we propose that during “C₄ episodes”, the
36 Mediterranean Sea would have been under the strong influence of the North Atlantic, i.e. a
37 strong meridional circulation that would have water evaporation and reduced
38 Mediterranean precipitation on the Balkans; and ii- a high positive North Atlantic
39 Western Russian (NAWR)-like atmospheric pattern that favored northerlies over
40 the Balkans. The presence of C₄ plants during the last glacial times at Surduk
41 imply very dry summers that did not allow C₃ plants to grow, thus supporting C₄
42 development. The intra “C₄ episodes” periods would have occurred under less drastic
43 oceanic and atmospheric patterns that made the influence of westerlies on the Balkans
44 possible.

Fig. 1.

C345