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Abstract. Paleoclimate time series are often irregularly sam-
pled and age uncertain, which is an important technical
challenge to overcome for successful reconstruction of past
climate variability and dynamics. Visual comparison and
interpolation-based linear correlation approaches have been5

used to infer dependencies from such proxy time series.
While the first is subjective, not measurable and not suitable
for the comparison of many datasets at a time, the latter in-
troduces interpolation bias, and both face difficulties if the
underlying dependencies are nonlinear.10

In this paper we investigate similarity estimators that could
be suitable for the quantitative investigation of dependen-
cies in irregular and age uncertain time series. We compare
the Gaussian-kernel based cross correlation (gXCF, Rehfeld
et al., 2011) and mutual information (gMI, Rehfeld et al.,15

2013) against their interpolation-based counterparts and the
new event synchronization function (ESF). We test the ef-
ficiency of the methods in estimating coupling strength and
coupling lag numerically, using ensembles of synthetic sta-
lagmites with short, autocorrelated, linear and nonlinearly20

coupled proxy time series, and in the application to real sta-
lagmite time series.
In the linear test case coupling strength increases are iden-
tified consistently for all estimators, while in the nonlinear
test case the correlation-based approaches fail. The lag at25

which the time series are coupled is identified correctly as
the maximum of the similarity functions in around 60-55%
(in the linear case) to 53-42% (for the nonlinear processes)
of the cases when the dating of the synthetic stalagmite is
perfectly precise. If the age uncertainty increases beyond 5%30

of the time series length, however, the true coupling lag is
not identified more often than the others for which the simi-
larity function was estimated. Age uncertainty contributes up
to half of the uncertainty in the similarity estimation process.
Time series irregularity contributes less, particularly for the35

adapted Gaussian-kernel based estimators and the event syn-
chronization function. The introduced link strength concept
summarizes the hypothesis test results and balances the indi-
vidual strengths of the estimators: while gXCF is particularly
suitable for short and irregular time series, gMI and the ESF40

can identify nonlinear dependencies. ESF could, in particu-
lar, be suitable to study extreme event dynamics in paleocli-
mate records. Programs to analyze paleoclimatic time series
for significant dependencies are included in a freely available
software toolbox.45

1 Introduction

Time series are often used to assess the properties of the pro-
cesses that generated them, in climate science (Rehfeld et al.,
2011) but also in many other scientific fields ranging from50

ecology (Lhermitte et al., 2011) to astrophysics (Scargle,
1989). Time series similarity measures quantify the degree of
statistical association and are, particularly in the geoscientific
context, often equated with Pearson correlation (Chatfield,
2004). They help to identify the strength of dependencies be-55

tween climate processes and potential lead/lag relationships.
For modern-day weather stations, both daily temperature and
the time of observations are logged precisely. To identify re-
lationships between distant weather evolution, time series of
temperature anomalies can be compared. Paleoclimate data60

are crucial to investigate climate inter-relationships beyond
the instrumental record. Paleoclimate time series are, how-
ever, more challenging than the data sources in other disci-
plines: Neither observation time nor the climatic variable are
known precisely. Both have to be reconstructed, resulting in65

irregular and age uncertain time series, because variability in
the growth of the archive impacts on the temporal resolution
of the resulting proxy time series (Fig. 1). The dependency
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of reconstructed paleoclimate time series, and its relationship
to global or external forcing, is often inferred from similar-70

ities, coinciding maxima/minima or trends, between graphi-
cal visualizations of the time series (for example in Zhang
et al., 2008; Cheng et al., 2012; Sinha et al., 2011; Zhang
et al., 2011). Visual comparison is, however, inherently sub-
jective, can not be quantified and tested in a hypothesis test75

and will not suffice with the growing number of paleocli-
matic datasets available.

Fig. 1: Illustration: Assume that the climatic processes Y is
driven by process X at a given lag. They are sampled by a
paleoclimate proxy archive (X) and an automatized measure-
ment device (Y), resulting in corresponding time series. A
typical task in paleoclimate data analysis is to estimate the
strength of statistical association between such time series,
the delay time can hint towards physical driving mechanisms.

Standard statistical techniques, such as estimating the
Pearson correlation (XC), can not readily be applied when
the sampling of the time series is irregular. XC is, in princi-80

ple, computed by taking the arithmetic mean over the prod-
ucts of coeval, centralized and standardized observations and
reflects the goodness of a linear fit to the scatterplot of the
data. If the two time series to be correlated are irregular, co-
eval observations are only given in the special case that both85

time series have the same timescale. In practice, this would
arise only if, for example, two proxies were measured on
the same samples. In the general case the irregularity pre-
cludes the direct computation. Interpolating the time series
to a regular coinciding timescale, however, results in a loss90

of high-frequency variability and a spectral bias towards low
frequencies (Schulz and Stattegger, 1997). In a comparison
of correlation analysis techniques the Gaussian-kernel-based
Pearson correlation was identified as a reliable and robust es-
timator for irregular time series (Rehfeld et al., 2011). How-95

ever, relationships in the climate system are not always lin-
ear, and therefore not necessarily identifiable by linear tech-
niques such as Pearson correlation. This is not a problem in
the geosciences alone, and similarity measures that can cap-
ture nonlinear inter-relationships exist. Mutual Information100

(MI), an entropy-based measure, has been used to investi-

gate nonlinear dependencies of processes from observations
(Donges et al., 2009; Runge et al., 2012; Hlinka et al., 2013).
In this measure, the joint and marginal distributions of pro-
cesses X and Y are evaluated. Its advantage is that it is model-105

free and able to quantify nonlinear dependencies, but it is
symmetric, MI(X,Y)=MI(-X,Y), and more difficult to quan-
tify as the quantification bias changes considerably for differ-
ent sample sizes and estimator techniques (Khan et al., 2007;
Kraskov et al., 2004). It has been adapted and tested for ir-110

regular and autocorrelated time series (Rehfeld et al., 2013)
in a Gaussian-kernel-based variant. Both MI and XC depend
on the notion of a scatterplot between the data. An alterna-
tive, especially in the analysis of extreme events, could be
found in the measure of Event Synchronization (ES, Quian115

Quiroga et al., 2002), which is not based on the available time
series, but the relative timing of distinguished events in two
time series. Originally conceived for neurophysiological sig-
nals, it has become a popular measure to investigate depen-
dencies in precipitation time series (Malik et al., 2010, 2011;120

Rheinwalt et al., 2012), but it has not been tested for its suit-
ability on short and autocorrelated time series. In its original
form it provides a measure for the strength of synchroniza-
tion and for the direction of a potential coupling between the
processes generating the events, but not for the lag of the po-125

tential coupling. Although stated differently in the original
paper, ES does not require regular observation intervals.
A number for an individual correlation coefficient can be
interpreted, when its level of significance is determined as
well. For the usually short and autocorrelated paleoclimatic130

time series, this can be done by bootstrapping the result
(Mudelsee, 2002), or by testing the similarity for mutually
uncorrelated surrogate time series with similar autocorrela-
tion properties (Rehfeld et al., 2011, 2013). The values of the
different estimators, however, can not be compared directly,135

as they vary on different scales. In this paper we evaluate the
impact of age uncertainty and time series irregularity on the
accuracy of the estimators.
Furthermore we propose the concept of a link strength, to
summarize the hypothesis test results of different estimators.140

If no outcome is significant, it is zero, if three out of five
employed estimators yield a significant similarity, the link
strength is 3

5 and if all tests for null correlation were rejected
the link strength is equal to unity. The advantage of this ap-
proach lies in its robustness due to the different estimators,145

and in the easy consideration of uncertain datasets. If the un-
certainty of the time series can be modeled, for example us-
ing the Monte Carlo techniques in age modeling software
such as StalAge (Scholz and Hoffmann, 2011) or COPRA
(Breitenbach et al., 2012), it can be incorporated in the link150

strength considerations in a straightforward manner.
In this paper we will investigate how well each of these es-
timators identify the strength and the delay time of actual
coupling between paleoclimatic processes from irregular and
age uncertain time series. First we review the similarity mea-155

sures (XC, MI), and develop a Event Synchronization Func-
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tion (ESF) based on the concept of ES. We simulate artifi-
cial stalagmites with linearly and nonlinearly coupled proxy
time series based on autoregressive (AR) and threshold-
autoregressive (TAR) models. Using these and the stalagmite160

time series from Dandak (Sinha et al., 2007; Berkelhammer
et al., 2010) and Wanxiang (Zhang et al., 2008) cave we in-
vestigate how the similarity estimators perform for irregular,
age uncertain and autocorrelated time series, and how they
are impacted by age uncertainty.165

2 Methods

In this section we first give necessary definitions for time se-
ries and similarity measures, and derive the ESF and the link
strength concept.

2.1 Time series170

Time series are a collection of measurements of specific
properties of an dynamical process, together with the time
when the observation (or measurement) took place. The in-
dividual data points of the series are often regarded as obser-
vations of processes, which may be deterministic, stochastic,175

or a combination of both. In classical time series analysis the
observation times of the process Xt are expected to be reg-
ular and certain, and the observation values to be measured
exactly.
In contrast to this, for irregular time series no unique sam-180

pling rate can be defined, and the observation times cannot
be directly related to an index anymore, but have to be given
explicitly for each measurement.

Definition 1 (Irregular time series) An irregular time se-
ries x(t) = (ti,xi) is defined by its observation times ti and185

the respective observations xi, where i= 1, . . . ,N . The two
vectors have a common lengthNx, with tx1 < t

x
2 < · · ·< txNx

as observation times.

In the following we focus on the age uncertain paleocli-
mate proxy time series for which a growth model of the190

archive has been combined with point-wise age information,
for example from uranium/thorium measurements. Input data
to this age modeling are (i) a dating table with its entries con-
taining depths, associated age estimates and their uncertain-
ties, usually given as standard deviations, and (ii) the proxy195

observations.

Definition 2 (Dating table) A dating table D =
(Di,T i,σTi)i=1,...,Ndat

contains Ndat point-wise age
estimates T i taken at depths Di and their corresponding
age standard deviations σTi

.200

Definition 3 (Proxy observation series) Proxy observation
series Xd = (dj ,xj) are given for j = 1, . . . ,Nobs measure-
ment depths dj and proxy measurements xj .

For paleoclimate archives, the ages at few depths are esti-
mated, with some uncertainty. Age models are then created to205

interpolate from these few dates to a time axis for the proxy
time series, which is sampled much more densely in depth
than the dating table. Thus, an age model is defined here as
one potential depth-age relationship ti(zi) out of the possi-
ble ensemble of age models T. For Monte Carlo (MC) age210

modeling, whole ensembles of age models, T are created,
sampling the probability space inherent in the dating table
(cf. def. 2). By convention, usually the most likely age model
is selected as the time axis for proxy time series (Breitenbach
et al., 2012; Scholz and Hoffmann, 2011). Finally the dating215

table is combined with the proxy observation series using a
single age model to form a time-uncertain time series.

2.2 Estimating similarity of irregular time series

Similarity measures reflect statistical properties of time se-
ries, which may not reflect the same climatic parameters. Dif-220

ferent estimators focus on different characteristic properties
related to the distributions of the observations, we summarize
them in Table 1.

Assume that the processes X and Y generated time series
x(t) and y(t). These processes, and the time series, are simi-225

lar if, for example, coeval minima or maxima were observed.
Comparison can then give information about functional re-
lationships between processes underlying time series: Given
that two processes X and Y are not independent, there may
either be a causal relationship or they are both driven by a230

global common driver, or there are unobservable intermedi-
ate processes, as illustrated in Fig. 2. A significant similarity
estimate may therefore arise for such physical reasons - or as
a false positive of the statistical test. If a transfer function be-
tween these two processes exists in a form of Yt = F(Xt+`),235

this results in a repetition of a pattern, though maybe dis-
torted, that occurs in Xt at t0 and in Yt at a time t= t0 + `
later. A similarity estimator can help identify F and quan-
tifies the similarities in the contemporary evolution of two
time series:240

Definition 4 (Similarity estimator) A similarity estimator
S = F ((tx,x)(ty,y)) reflects the similarity between x(t)
and y(t) to a numeric value in an interval [a,b], S : x(t)×
y(t)→ [a,b].

For most similarity measures a=−1, b= 1 is considered,245

but for different estimators different bounds exist. Here we
only require that the relationship between true dependency
and estimated similarity is monotonically increasing, which
is what we test for artificially generated time series. If the
delay time ` in the transfer function is nonzero, a similar-250

ity function gives the similarity between two time series for
increasing delay:
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Table 1: Properties, parameters and references of the similarity estimator algorithms for irregularly sampled time series devel-
oped and tested in this paper.

Estimator
(Abbr.)

Quantif. property Parameter choice References

1 (gXCF) Gaussian-kernel-based XCF
(goodness of linear fit to
scatterplot)

h= 0.25 Rehfeld et al. (2011);
Babu and Stoica (2010)

2 (iXCF) interpolation + Pearson correla-
tion (goodness of linear fit to
scatterplot)

∆t= max(∆tx,∆ty) e.g. Rehfeld et al. (2011),
basics for example in
Chatfield (2004)

3 (gMI) Gaussian-kernel-based MI (rel.
non-randomness in joint vs.
marginal distribution)

h= 0.5, τ = 3 Rehfeld et al. (2013), ba-
sics for example in Cover
and Thomas (2006)

4 (iMI) interpolation + MI (rel.
non-randomness in joint vs.
marginal distribution)

∆t= max(∆tx,∆ty),
nbins = 10

Rehfeld et al. (2013), ba-
sics for example in Cover
and Thomas (2006)

5 (ESF) Relative timing of extreme
events

q = 0.8 here, based on Quian
Quiroga et al. (2002);
Malik et al. (2010)

Fig. 2: Significant similarities between the time series at two locations, X and Y, can arise from a) direct physical coupling, b)
a teleconnection, c) a common driving mechanism or d) by chance as false positives.

Definition 5 (Similarity function) A similarity function
S(`) gives the estimated similarity over different lag times `:

S(`) = S(`·∆t) = f ((tx,x),(ty + `·∆t,y))) (1)255

The spacing of the lag vector is uniform and depends
on the mean time resolution of the time series: ∆t=
max(∆tx,∆ty). To indicate that we are focusing on bivari-
ate similarity we also use the alternative notation S(X,Y )
which does not explicitly refer to the possible lags.260

Similarity measures as required in this context should be
symmetric, reflexive, translation and scale invariant (Batyr-
shin et al., 2012). The estimators presented here fulfill these
requirements.

2.2.1 Kernel-based estimators for Pearson correlation265

Pearson correlation is defined as the mean over co-eval prod-
ucts of standardized observations (Chatfield, 2004). For ir-

regular time series the inter-sampling time intervals vary
and the classical definition cannot be applied. Rehfeld et al.
(2011) tested different correlation estimators for irregular270

time series and found that a Gaussian-kernel based estimator
performed best. In the definition of the correlation function
ρ̂(k∆t) at the lag k∆t,

ρ̂(k·∆t) =

∑Nx

i=1

∑Ny

j=1xiyjbk(tyj − txi )∑N
i=1

∑N
j=1 bk(tyj − txi )

, (2)

the kernel bk(tyj − txi ) weights those products higher whose275

time lag lies closer to k∆t:

bk(d) =
1√
2πh

e−|d|
2/2h2

, (3)

where h= ∆t/4 or 0.25 for the rescaled time axis, txi =

torig
i /∆x

t , and d denotes the distance between the product
inter-observation time and the desired lag, d= tyj−txi −k∆t,280
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k denotes the lag index. The standard width parameter h is
chosen to result in a main lobe width of ∆t, the mean sam-
pling interval or common sampling period in the bivariate
case. Note that the observations have to be standardized to
zero mean and unit variance before the analysis.285

2.2.2 Kernel-based estimators for mutual information

Mutual information I(X,Y ) = Ixy is a measure of the de-
pendency (linear or nonlinear) between two random vari-
ables, X and Y . This measure from information theory can
be interpreted as the uncertainty reduction in variable X ,290

given that Y was observed. It is symmetric, i.e. relationships
of opposite sign but the same association strength, correla-
tion and anti-correlation, give the same MI. By definition, the
measure yields a null result if, and only if, the two random
variables, in this case time series of observations, are inde-295

pendent (Kraskov et al., 2004; Cover and Thomas, 2006).
While more complex estimators exist (e.g. Kraskov et al.,

2004), the simplest estimator is

Îxy =
∑
x,y

px,y log
px,y
pxpy

, (4)

where px,y is the two-dimensional joint probability density300

function of the variables X and Y and px resp. py are the
one-dimensional probability distributions of X resp. Y . The
unit of measurement of MI depends on the logarithm chosen
in the estimator: it is measured in bits, if the logarithmic base
2 is chosen, and in nats for the natural logarithm.305

In case of irregular sampling, however, the bivariate obser-
vation set (Xt,Yt) at regular observation points t that is re-
quired for a scatterplot are not available. In standard inter-
polation procedures, both (tx,x) and (ty,y) would be re-
sampled to obtain a bivariate set of observations with regular310

observation time intervals, (tr,xr,yr). This is undesirable
for paleoclimate records a) because every interpolation rou-
tine involves an assumption on the dynamics of the underly-
ing process, and this is difficult to justify for climate data and
b) it reduces the observable variability in the process (Schulz315

and Stattegger, 1997; Stoica and Sandgren, 2006; Babu and
Stoica, 2010).

There are two main points where this problem can be
addressed: Either by reconstructing bivariate observations
while avoiding variance reduction as much as possible or by320

a modification of the joint distribution, for example by intro-
ducing weights proportional to the sampling time-distance
similar to the Gaussian-kernel based XC (Rehfeld et al.,
2011). For MI the latter is difficult to achieve. But follow-
ing the former solution, the probabilities required for Eq. 4325

are straightforward to derive from relative frequencies.
Algorithmically, this can be described as follows:

1. A local reconstruction of the signal is performed by es-
timating for each point i in the time series X = (tx,x)
a corresponding observation from Y = (ty,y), by es-330

timating a local, observation-time weighted mean ylrj
around a time point txi in Y ,

ylrj =

Ny∑
i=1

bk(d)yi , (5)

with the Gaussian-kernel based local weight bk(d) de-
fined as in Eq. 3. For MI the standard deviation of the
Gaussian weight function is set to h= 0.5. If there are
less than five observations yi available in a time window
±3∆t around txi this reconstruction is not performed.
Repeating this for each time point j = 1, . . . ,Nx in X
one obtains a new, bivariate set of observations

Y x = (txi ,xi,y
lr
i ) .

2. Afterwards the procedure is repeated by stepping
through tyj , which yields

Xy = (tyj ,x
lr
j ,yj) .

3. The local reconstruction Y x and the original observa-
tions Y are then concatenated into one series Y r =335

{Y ∪Y x} combining locally reconstructed and original
observations. Similarly, a time seriesXr = (X∪Xy) is
obtained.

4. Based on this set of bivariate observations (Xr,Y r) the
joint density of X and Y can be estimated using stan-340

dard binning estimators for MI.

The reconstructed set of bivariate observations can also be
used to construct Gaussian-weighted scatterplots, where the
size of the marker reflects the amount of weight placed on
the reconstructed observation (cf. Figs. 4b and 5b). MI is dif-345

ficult to estimate in practice, first and foremost because of
the large bias effects produced in the inference of the joint
and marginal probabilities. Elaborate algorithms have been
devised to improve this (described, for example, in Kraskov
et al., 2004; Papana and Kugiumtzis, 2009; Roulston, 1999),350

but no straightforward solution to this has been found yet. We
have tested several algorithms and finally resorted to the most
simple equidistant binning estimator (Kraskov et al., 2004),
due to its computational efficiency and simplicity. Bias ef-
fects are predominantly tied to the temporal sampling and355

length of the time series due to the occurrence of empty bins.
Thus, if necessary, we can estimate and subtract the bias us-
ing uncorrelated processes with the same observation times
as in X and Y . However, for the use as a similarity measure
comparable to XCF and ES in the context of paleoclimate360

networks we only require that the estimated MI be propor-
tional to the actual association strength. For bivariate nor-
mally distributed and linearly correlated X and Y MI is by
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definition proportional to their estimated correlation coeffi-
cient r2xy ,365

Ixy =−1

2
log(1− r2xy) , (6)

and can, by inversion of this equation, be scaled to the
positive range of the correlation coefficient so that Î ∈ [0,1]
(Nazareth et al., 2007). The expected value for mutual in-
formation of these processes at the lag of coupling is then370

given by MI(X(t),Y (t+ l)) =−0.5log(1− r2xy). For the
evaluation of the joint and marginal distributions, nbins = 10
equidistant bins were employed. In principle, the number of
bins should be adapted to the respective length of the time
series involved, to reduce bias effects from empty bins.375

2.2.3 Event Synchronization function

The concept of event synchronization (ES) was introduced
by Quian Quiroga et al. (2002). The motivation behind the
development was to obtain a simple, fast method that quan-
tifies the synchronization between time series where certain380

events can be distinguished. The primary application was fo-
cused on neurophysiological signals (Quian Quiroga et al.,
2002; Kreuz et al., 2009), but it later was also applied for
the investigation of rainfall patterns in the Asian Monsoon
domain (Malik et al., 2010, 2011; Rheinwalt et al., 2012).385

The main idea behind ES is that two time series are syn-
chronized, if events in time series x occur close in time to
events in time series y. Considering the temporal order of
the events, e.g. if an event in y occurred before one in x,
it is also possible to infer which process is leading. In the390

following we will define the Event Synchronization Func-
tion, ESF, further developing the ES concept (Quian Quiroga
et al., 2002; Malik et al., 2010).

Given two time series (tx,x) and (ty,y) that represent ob-
servations of autocorrelated stochastic processes, events are395

given by the set of observations that are considered extreme,
in that their observation value lies above or below the q/2
resp. (1− q/2) percentiles of the distributions of x and y.
The actual value of the observation at the event points is not
relevant for the further analysis. Once the events are defined,400

only the observation times are considered in the event time
vectors t∗x and t∗x. Next a temporal threshold τ is defined to
evaluate the relationship between the events inX and Y with
a maximum separation time:

τ = max
(
∆tx,min(∆t∗x,∆t

∗
y)/2

)
. (7)405

Here, ∆tx is the mean sampling rate of X , and ∆t∗x and
∆t∗y are the inter-event times in X and Y , respectively.

Subsequently, the co-occurrence of events in X and Y is
counted and summed for all events as

C(X|Y ) =

Nx∑
l=1

Ny∑
m=1

Jxylm , (8)410

where Nx and Ny , respectively, give the total numbers of
events in X and Y . The counter variable Jxylm is defined as

Jxylm =


1 if 0< txl − tym <+τ

1/2 if txl − tym = 0

0 otherwise.

(9)

C(Y |X) is obtained by exchanging X vs. Y in the above
expression, and combining both,415

Qxy =Qxy(X,Y ) =
C(X|Y ) +C(Y |X)√

Nx,Ny
(10)

gives the strength of the event synchronization and

qxy =
C(X|Y )−C(Y |X)√

Nx,Ny
(11)

the direction of the association. Unless double-counting
of events occurs, these are normalized to 0≤Q≤ 1 resp.420

−1≤ q ≤ 1. Q= 1 corresponds to completely synchronous
occurrence of events in X and Y , and q = 1 implies that all
events in Y precede those in X .

For the previous studies (Quian Quiroga et al., 2002; Malik
et al., 2010, 2011) local definitions of the temporal threshold425

τ were used, preventing, in most cases, events from being
double-counted, and adapting it to the local inter-event rate.
The chosen definition of τ is motivated by the fact that, to
be able to compare the results for ES to those obtained from
MI and XCF, a similarity function over the delay is needed.430

Thus, the delay τ cannot allowed to be arbitrarily large or
small, as in Malik et al. (2010); Quian Quiroga et al. (2002).

The ESF is obtained by shifting the observation times of
time series X according to the desired lag,

ES(k∆t) =Qxy((tx−k∆t,x),(ty,y)). (12)435

which, using the delay time τ from Eq. 7, makes it possible
to use the ESF as a similarity function.

2.3 An approach to similarity assessment of time-
uncertain time series

Age uncertainty is a key obstacle to be overcome for a com-440

prehensive understanding of past Earth system dynamics.
To investigate the potential dependency structure of paleo-
climate processes X and Y as they are reflected in natural
archives, the contribution of age uncertainty to the uncer-
tainty of the similarity S(X,Y ) is important.445

Thus the aim is to estimate the distribution p(S(X,Y)) of
similarity for given datasets X and Y , where

X =
[
Dx = {Dx,T x,σTx},Y d = {dx,x}

]
and (13)

Y =
[
Dy = {Dy,T y,σTy},Xd = {dy,y}

]
, (14)
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both input datasets consist of a dating table (Def. 2) D with450

dating depth vector D, the corresponding estimated ages T
and their uncertainties σTy and a set of proxy measurements
Xd resp. Y d (Def. 3), visualized as step 1 in Fig. 3. The
smoothing resulting from the size of the samples in depth
direction, σD, is assumed to be negligible here. The input455

proxy measurements are mapped to observation times in the
age modeling process. In general, algorithms to assess simi-
larity between time series are not capable of processing prob-
ability distributions or confidence intervals instead of single-
ton values, neither for the observation times nor for the mea-460

surement values.
For Pearson correlation, an analytical approach to propa-

gate the uncertainty around the input data into the correlation
estimate is possible. However, Pearson correlation alone is
insufficient to characterize similarity between paleoclimate465

time series in general and in the context of paleoclimate net-
works. Therefore a Monte-Carlo based approach based on
time series ensembles which are obtained via age modeling
is used here, to keep the flexibility regarding similarity esti-
mators:470

1. In a first step the input datasets X and Y are processed.
The monotonicity of the depth control variables, d and
D is checked.

2. A Monte-Carlo simulation for the uncertain age esti-
mates in the dating table is performed: Nens ages are475

drawn from N (TXi ,σTX
i

) and N (T Yj ,σTY
j

), respec-
tively, for all i= 1, . . . ,NX

dtg pointwise age estimates
corresponding to j = 1, . . . ,NY

dtg entries in the dating ta-
ble. This results in dating matrices X̂ and Ŷ with Nens
columns containing the sampled ages. If no distribution480

of ages is otherwise given the ages are expected to be
Gaussian distributed with the given standard deviation.

3. The age estimates in each column and X̂ (Ŷ) are in-
terpolated to the depths of the proxy observations: T =
interp(D,X̂,d) which results in a matrix of recon-485

struction observation times T. We used conventional
linear interpolation of the ages in COPRA. Thus we
obtain an ensemble of possible age-depth relationships
{T,d} and an ensemble of proxy time series {T,x}.

4. Each of the members of the ensemble of proxy time490

series is used as an input to the similarity statistic
S(X,Y ). This results in a distribution of estimates
p(S(X̂,Ŷ)).

5. Analysis of distribution S(X̂,Ŷ): Apart from inspec-
tion of mean, variance and skewness of this distribution,495

a hypothesis test can be conducted, comparing S(X̂,Ŷ)
with a distribution obtained from suitable surrogate time
series S(X̂∗,Ŷ∗).

This approach is general in the sense that it is independent of
the specific functionF([X̂,Ŷ]) that maps the uncertain input500

to some output estimate. Apart fromF = S,F may represent
any bivariate statistic, and with minor modification is also
applicable to calculate the influence of sampling uncertainty
on univariate statistics, like the autocorrelation coefficients
or persistence times (Rehfeld et al., 2011; Mudelsee, 2002).505

Bivariate similarity assessment is often concerned with es-
timation of a potential coupling strength α (hinting towards
the same process of origin) and/or the lag of coupling ` for
model-building. For Pearson correlation, the ratio of shared
vs. total variance between two linearly correlated processes510

at a given lag `, S(`), is given in the maximum of the cross-
correlation function. While the relation to the overall vari-
ance of the processes does not necessarily hold by defini-
tion for other similarity measures, they, too, will observe the
maximum of their similarity function max(Ŝ), at the lag of515

coupling `.

2.3.1 Synthetic data

‘True’ growth histories for two synthetic stalagmites SS1
and SS2 and according climate histories are obtained via
simulation. These pseudo-archives are then ‘dated’, and cor-520

related pseudo-proxy for the climate histories are ‘sampled’.
Then the age modeling procedure is performed and its out-
put is fed into similarity estimation. Finally, we assess how
much of the similarity that was originally present in the cli-
mate history is still recognizable significantly, considering525

the uncertainties. The test strategy is illustrated in Fig. 3.

2.3.2 The synthetic stalagmite

A synthetic (or: virtual) stalagmite is grown for the sensitiv-
ity analysis. The main parameters controlled are

– the growth rate λ in mm
year ,530

– the total length of the stalagmite (in mm),

– the type of accumulation (linear growth, or growth mod-
eled via randomly distributed accumulation rates).

A growth rate of µ(λ(z)) = 1mm/yr is chosen. Lin-
ear growth may be a reasonable first order approxima-535

tion (Telford et al., 2004), but microscopically, the growth
rates of natural archives archive vary. Therefore, Gamma-
distributed accumulation times are drawn for each depth
zi = {0, ...,Z}mm of the stalagmite, with the sampling time
step mean µ(λ(z)) determined by the desired growth rate540

and shape and scale parameters α and β as Γ(α,β) =
Γ(α,µ(λ(z))/α). This way, the mean sampling rate can be
kept constant, even when the irregularity of the sampling dis-
tribution is changed (Rehfeld et al., 2011). The cumulative
sum of the accumulation times then give the ‘true’ ages of545

the archive at the depths zi: ttruei (zi) =
∑i
j=1λi.



8 Rehfeld and Kurths: Similarity estimators

Fig. 3: How much age uncertainty is allowed to still enable reliable similarity estimation? Artificial stalagmites with increasing
standard deviations of the ages are evaluated.

2.3.3 The simulated climate history

We attach each synthetic stalagmite SS1 and SS2 to a cli-
mate history. The climate/pseudo-proxy simulation is based
on the assumption that SS1 lies in an area whose climate550

is controlling that around SS2, through a teleconnection or,
for example, by being situated downstream of the same mon-
soon branch (cf. 2. We simulate climate variability using two
different coupling schemes, one linear, one nonlinear, to in-
vestigate how the proposed methods perform.555

Linearly coupled AR(1) processes

Assuming that the archive SS2 samples the same climate
variability as SS1, in the same way though at a later time,
we model such a causal sequence using coupled AR(1) pro-
cesses. Then, the true proxy history of climate as recorded in560

SS1 is given by

X(ttruei ,zi) = φX(ttruei−1 ) +σεεi, (15)

and it determines part of the proxy history of SS2:

Y (ttruei ,zi) = αX(ttruei−` ) +σξξi. (16)

Here, ε and ξ are additional Gaussian white noise whose565

variances σε and σξ are scaled such that the variances of X
and Y are equal to unity. α ∈ [−1,1] is the coupling strength
between SS1 and SS2 and φ the autocorrelation of SS1.
Since there is no autocorrelative term in Yt the true similarity
S(X,Y ) is equal to the cross correlation: S(X,Y ) = ρxy =570

α (Rehfeld et al., 2011).

Nonlinear Threshold-AR(1) processes

Let us assume that SS1 samples climate variability in a
certain place, and this can be modeled as in Eq. 15. Then

the climate variability in another place, where SS2 is lo-575

cated, could be controlled in a nonlinear manner: The pro-
cesses are negatively correlated, similar to Eq. 16 with α < 0.
If, however, a threshold in the climate system is exceeded,
X(t)> τ , the correlation changes and might even become
positive. Such a multi-scale behavior can be modeled using580

Threshold-AR-processes (TAR, Tsay, 1989), which are sim-
ilar to the regime-dependent AR models Zwiers and Storch
(1990) used to model the behavior of the Southern Os-
cillation. Assume that the negative coupling α below the
thresholdτ , here τ = 0, for X(t− 1) 6 τ turns into a posi-585

tive correlation, with the same magnitude, for X(t− 1)> τ .
Then the proxy history of SS2 can be modeled as

Y (ttruei ,zi) = ακX(ttruei−` ) +σ(ttrue)ξi , (17)

where the κ=−1 if X(t− 1) 6 τ and κ= 1 when X(t−
1)> τ . For convenience, the variance of the innovation term590

ξ is scaled such that the overall variance of Y is equal to
unity in both cases.

2.3.4 ‘Dating’ of the synthetic stalagmite

Mimicking the real life situation, the true growth history of
the synthetic stalagmite, z(ttrue) is, in the following, inacces-595

sible. The stalagmite is subjected to dating along its depth.
The dating table contains the for the dating depths D, the
estimated age at these depths, T j , the proxy measurement
sample width σD and the age uncertainty σT .

In real life, the stalagmite would be dated using radio-600

metric dating techniques based on Uranium-Thorium (Sinha
et al., 2007; Dykoski et al., 2005; Breitenbach et al., 2012)
or radiocarbon (Yadava et al., 2004; Webster et al., 2007),
yielding an estimate of T (zj) at a few points. The corre-
sponding dating uncertainty, in reality dependent on many605
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factors from initial isotope concentrations, overall age of the
core, dating technique to lab and contamination (Fairchild
and Baker, 2012), often lies between 0.1 to 0.5% of the age
for stalagmites, but may be considerably higher.

For the synthetic stalagmites, dating ‘samples’ are taken at610

equidistant depths Dj and the center points of the assumed
age distribution are taken directly from the true age-depth
relationship. The age uncertainty, however, is modeled as in-
creasing proportionally with age, as p·T j . p here denotes the
(im-)precision of the dating and is varied in the following615

numerical experiments.

2.3.5 Age modeling for SS1 and SS2

Age modeling aims at reconstructing the ‘true’ depth-age re-
lationship that is inaccessible in real paleoclimate archives.

Based on the synthetic stalagmite dating tables Dx and620

Dy for SS1 and SS2, the ‘observation times’ for the proxy
observationsXd and Y d, tx and ty , are constructed by inter-
polation from the known ages (see Eq. 13). In Monte-Carlo
based numerical frameworks such as StalAge (Scholz and
Hoffmann, 2011) or COPRA (Breitenbach et al., 2012), an625

ensemble of age models T = {tk,zk}k=1,...,Nens is created,
which, in their entirety, reflect the age uncertainty of the esti-
mated depth-age relationship. Based on this ensemble of age
models, the uncertainty in the similarity estimates can be in-
ferred, as is visible in Fig. 3.630

In summary, the test plan is thus as follows:

1. Simulate a growth history z(t) of a synthetic stalag-
mite of length Z mm, corresponding to a ‘true’ age-
depth relationship ttruei (zi), resp. zi(ttrue). For this,
assume gamma-distributed growth and an accumulation635

rate λ= 1mm/year. Z can be varied to study the influ-
ence of changing time series length.

2. Simulate proxy histories {T ,x}SS1 and {T ,y}SS2 ac-
cording to the true growth history using coupled autore-
gressive processes (cf. Eqs. 16 and 17). Forget the true640

growth history.

3. Sample the true growth history at the dating depths and
infer corresponding uncertainties.

4. Create Nens surrogate dating tables for SS1 and SS2
with increasing uncertainty of the ages according to the645

(im)precision p, i.e. an ensemble of dating tables.

5. Assess if the estimates S(X̂,Ŷ) are statistically signif-
icant for the given uncertainty, and how they are influ-
enced by sampling heterogeneity and time uncertainty.

The core of the COPRA algorithm is used for MC simu-650

lations. Nens = 2000 MC iterations are used to sample the
probability space and linear interpolation is employed to in-
fer ages between point estimates of the age at depth.

3 Tests on synthetic stalagmites

We evaluate the performance of the different estimators de-655

scribed in Sect. 2, for which parameter choices and refer-
ences are given in Table 1.

3.1 Characterization of linear proxy dependency

We first consider the linear dependency case, where the
proxy history of SS1 is linearly correlated with that of660

SS2 a lag time ` later. We chose a length for the stalagmite
of L= 100mm for which we expect the time series to
be roughly 100 years long (cf. Sect. 2.3.2) and linearly
correlated, as in Fig. 4a. For each test 100 time series
were generated from AR1 processes (cf. subsection 2.3.3),665

where process Y is coupled to process X at an intrinsic
lag ` and with a coupling strength α. The autocorrelation
parameter was set to φ= 0.8, the coupling lag to `= 5
and the coupling parameter to α= 0.6. For such stochastic
processes, the true similarity function is single-peaked, with670

its peak height determined by α, and its location on the
lag-axis by the coupling lag `. The time series are irregular,
therefore a direct scatterplot of the data is not possible.
Fig. 4b shows a weighted scatterplot where the time series
have been reconstructed using Gaussian weights, as for the675

MI estimation in Sect. 2.2.2.

The tests were guided by two questions: Do the similarity
estimators reflect the actual similarity (here: the coupling
strength at lag `, α) truthfully and monotonically? And, how680

well do they identify the lag of coupling ` as the maximum
of the similarity function?
To answer the first question we fix the imprecision at zero (at
the dating points) and vary the coupling strength by setting
the parameter α in Eq. 16 to values from 0.1 to 1. The results685

are given in Fig. 4c. The expected value of the similarity,
αest, and the variance of the estimate are computed from
the mean and standard deviations of the estimated αest,i for
100 realizations for each value of the coupling parameter.
Each of the similarity measures returns estimates whose690

expectation values increase monotonically with the actual
similarity, αtrue in Eq.16, except for the ESF, which has a
single reversal which may be due to the low number of MC
realizations (100) for each point in this diagram.

695

In practical data analysis, the potential lag and strength of
(primary) coupling, identified as the maximum of the similar-
ity function is of interest (e.g. for model-building). If no age
uncertainty exists at the dating points, the maximum of the
similarity function correctly identified in 50-60% of the en-700

semble cases. When time-scale uncertainty exists in the time
series, this becomes difficult quickly (Fig. 4d). When the per-
centage has dropped to 1

n`
≈ 0.05, where n` is the number of

lags for which S(`) has been estimated, the maxima of the
similarity functions are perfectly uncorrelated. This limit is705
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Fig. 4: Testing the similarity measures: for linearly coupled AR time series (cf. Eq. 16) from two synthetic stalagmites, SS1 and
SS2, we give the sample time series (a) and the Gaussian weighted scatterplot (b). We check the monotonicity of the estimators
with increasing coupling strength (c) and how often the maximum of the similarity function correctly coincides with the lag of
coupling (d).

approached as an imprecision of more than 10% is reached.
Increasing imprecision contained in the time series also re-
sults in increasing estimation error (i.e. RMSE, root mean
square error) for the similarity at the lag of coupling, S(`)
(results not shown). When the stalagmite length is increased710

the time series length increases and both the RMSE and the
false identification rate decrease for all estimators.

3.2 Nonlinear dependencies

For the nonlinear TAR model, the time series in Fig. 5a are
not straightforward to compare visually as the linearly cou-715

pled ones in Fig. 4a. The weighted scatterplot for these time
series in Fig. 5b shows the two different slopes of the pos-
itive and negative correlation regimes above and below the
threshold value of zero.

The comparison of true vs. estimated coupling strength α720

in Fig. 5c shows no monotonous behavior for the linear cor-
relation measures and no overall increase of their expected
similarity estimates with the coupling strength. The MI esti-
mators retain a monotonic increase, starting from a consider-
able bias value, while the ESF increases monotonically, but725

does not show consistent similarity estimate increases until

the coupling strength is rather large. The monotonicity and
linearity of the response for gMI, iMI and ESF improve con-
siderably when the time series are chosen longer, i.e. with a
length of 200 or more (results not shown).730

In the identification of the maximum lag the Gaussian MI
succeeds most often for imprecisions up to 2.5%. For more
imprecise datasets the ESF remains stable, while the other
measures perform worse and worse. The linear estimators,
gXCF and iXCF do not identify the maxima correctly, nei-735

ther the coupling strength, nor the lag of coupling.

3.3 Error source attribution

Age uncertainty has a considerable impact on the accuracy of
similarity estimates, as we have shown in the previous sec-
tion. But to what extent can this impact be attributed to short740

length of the time series, or the time series irregularity that
results from the increasing age uncertainty? The uncertainty
around the ages in the dating table is, in Monte-Carlo-based
age-depth modeling, reflected by drawing different ‘dates’
from distributions around these ages for each MC realiza-745

tion. These realizations will therefore have different partial
slopes between any date Di and Di+1. This corresponds to
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Fig. 5: Testing the similarity measures for nonlinear threshold-AR time series (cf. Eq. 17). For caption please refer to Fig. 4.
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Fig. 6: Attribution of the uncertainty to its sources for (a) the linear CAR model and (b) the nonlinear TAR model: General
(estimator) error in red, error introduced via irregular sampling (orange) and additional error due to the age uncertainty (yellow).
The source-dependent RMSE was averaged over the second through to fifth imprecision levels given in Fig. 4d and 5d, as these
correspond to the error levels most likely found in real world studies. Errorbars indicate the associated standard deviation. For
event synchronization the RMSE is lower for irregular than regular sampling, folding the irregular part of the bar backwards.
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different estimated growth rates for the individual segments
of the synthetic core. At a proxy sampling rate over depth
that is constant, this will lead to uneven observation times750

for the time series which correspond to the MC realizations,
and this irregularity increases with the age uncertainty. The
RMSE of S(`) is, however, also dependent on the irregular-
ity of the time series, as it was shown for both XCF and MI
previously (Rehfeld et al., 2011, 2013).755

To separate these sources of uncertainty, M = 2000 real-
izations of coupled climate histories, as defined in 2.3.2, were
generated in three different ways: age uncertain, irregularly
and regularly sampled. The age uncertain ensembles were
the direct product of the age modeling efforts, as in the pre-760

vious sections and with same parameter settings (φ= 0.8,
α= 0.9, `= 5) For the irregular dataset the proxy histories
were re-generated with the true coupling strength on the ir-
regular timescales of the age modeling output. To assess the
impact of regular sampling, regular time series of the same765

length, average temporal spacing and coupling scheme were
also simulated. We evaluated the performance of the different
estimators for the different sampling schemes at increasing
dating imprecision using the root mean square error (RMSE)
of the estimators for the target coupling parameter α:770

RMSE(αest) =

√
var(αest) + bias(αest)

2
, (18)

where bias(αest) = αtrue−αest.
We did this separately for each sampling scheme to ob-

tain the RMSEreg, the ‘baseline’ RMSE for each estimator
under regular sampling, RMSEirreg for the irregularly sam-775

pled ensembles and the RMSEau for the age uncertain en-
semble. Coupling strength, autocorrelation and time series
length were fixed to the same values for the three different
sampling schemes. To improve the comparability for the MI
estimators the bias offset was estimated from mutually uncor-780

related time series with the same autocorrelation and length
and subtracted prior to the conversion to the XCF scale.

Based on the assumption that the RMSE should increase
from regular to irregular to age uncertain time series,

RMSEreg < RMSEirreg < RMSEau ,

the ‘baseline’ contribution is estimated from regular time
series as RMSEreg, the additional contribution from time
scale irregularity as RMSEirreg−RMSEreg and the addi-785

tional RMSE of the age uncertain time series’ similarity as
RMSEau−RMSEirreg.

The results, averaged over the realistic imprecision values
(the 2nd-5fth points in Fig. 4d and 5d), are given in Fig. 6.

Ideally the RMSE should of course be as small as possi-790

ble. For the linear (CAR) case in Fig.6a the smallest RMSE
is observed for the ESF and the gXCF, the largest - by far
- for the interpolation-based iXCF. While the regular (esti-
mator) bias is low for the correlation estimators, the contri-
bution of increasing irregularity of the time series sampling795

(due to the uncertain inputs) is non-negligible particularly for
the interpolation-based cases. The age uncertainty alone ac-
counts for additional, but generally smaller, error. While a
large amount of the uncertainty of the interpolation-based
estimators, iMI and iXCF, is due to sampling irregularity,800

ES has a large RMSE for regular time series, which is even
higher than that for regular to slightly irregular time series.
Therefore the contribution of irregular sampling to the cu-
mulative uncertainty, as depicted in Fig. 6a, is negative, thus
improving the estimation efficiency!805

In the nonlinear (TAR) case the picture is quite different.
The correlation-based estimators are not able to tell the cou-
pling strength, regardless of the sampling scheme. The gMI
estimator ranks lowest, with a lower uncertainty contribution
from irregular sampling compared to the iMI estimator. The810

ESF, again, improves its accuracy when the time series are
irregular. The overall error level is higher than for the linear
case.

3.4 The link strength concept

Each of the tested similarity estimators comes with differ-815

ent underlying assumptions, estimator bias and variance, and
they refer to different properties of the time series: the good-
ness of a linear fit to the joint distribution (XCF), the sharp-
ness of the joint vs. the marginal distributions (MI) or the
relative positions of extreme points, or events, in the time se-820

ries (ES).

Fig. 7: The link strength concept: For each similarity estima-
tor, significant results result in a link between the time series.
The sum of these links determine the strength, or weight, of
the link.

Therefore direct results obtained from the different esti-
mators are difficult to compare, and they respond to cou-
pling strength increases differently (Figs. 4c and 5c). The
MI estimates, to this end, have to be converted to the XCF825

scale and thus are bound to the interval [0,1], not [−1,1] as
for XC. This, together with the substantial and non-negative
bias, induces a different proportionality between the actual
coupling and the inferred association strength. Inferred ES,
on the other hand, increases nonlinearly, but monotonically,830

with the coupling.
The main use of similarity measures is to assess the associ-

ation strength between dynamics of processes. This can only
be interpreted properly, if the significance of this estimate is
known. To unify the results obtained from different similarity835
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estimators we propose to use a link strength p(X,Y ), to ho-
mogenize and summarize the results obtained for individual
similarity measures.

The link strength p(X,Y ) for two observed time series X
and Y is defined as the relative frequency of significant esti-840

mates from the Nsim employed estimators Si:

pqsim(X,Y ) =

∑Nsim

i=1 Pi(X,Y )

Nsim
, (19)

as illustrated in Fig. 7. The link strength of the individual es-
timators, P qi (X,Y ) is recorded on a binary scale:

P qi (X,Y ) =


1 if Si symmetric and Sxy

i > Shi,xy
i

1 if Si asymmetric and(
Sxy
i > Shi,xy

i

)
|
(
Sxyi < Slo,xy

i

)
,

0 otherwise ,

(20)845

and here Shi/lo refer to the critical values of a hypothesis
test, the null hypothesis being that both X and Y are au-
tocorrelated, but mutually uncorrelated, Gaussian distributed
stochastic processes. The significance q determines the crit-
ical values Shi,xy

i and Slo,xy
i which are obtained from the850

qhi = 1−0.5q and qlo = 0.5q quantiles of surrogate similarity
estimates Si(X∗,Y ∗).

Independent AR(1) surrogate time series X∗ and Y ∗ are
generated on the same time axes as X and Y according to
Eq.15. The individual AR(1) persistence time for actual pale-855

oclimate data can be obtained using an efficient least-squares
fitting algorithm (Rehfeld et al., 2011; Mudelsee, 2002). The
link strength can be extended to incorporate age uncertainties
by computing the similarities for Nmc realizations of an age
model and adding a second summation over these in Eq. 19.860

4 Application to real stalagmite data

Now after having ensured the efficacy of the estimators using
synthetic datasets, we apply the estimators to real-world sta-
lagmite datasets from India, (the Dandak cave δ18O record
originally published in Sinha et al., 2007), and China (the865

Wanxiang record, Zhang et al., 2008). Comparisons of these
datasets have been performed by Berkelhammer et al. (2010)
and Rehfeld et al. (2011). Thirteen U/Th dates constrain the
age model of the Dandak cave record, 19 are available for the
Wanxiang cave record. Age modeling was performed on the870

full proxy datasets, comprising of 1875 and 703 oxygen iso-
tope measurements over depth and using the COPRA algo-
rithm with 1000 realizations (Breitenbach et al., 2012). The
time series were cut to the overlapping time period from AD
600-1550 and detrended by subtracting the long-term mean.875

Berkelhammer et al. (2010) determined an averaged corre-
lation of 0.27 for 50-year overlapping time windows, while
Rehfeld et al. (2011) found a lag zero correlation coefficient
of 0.290 and 0.295 for iXCF and gXCF, respectively. This
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Fig. 8: Estimated lag zero similarities and link strength be-
tween the Dandak and Wanxiang cave records for the over-
lapping time period. The results for the age uncertain ensem-
bles are given in the dark blue histograms. The red solid line
refers to the mean of these estimates, the light blue stem to
the results for the mean timescale. The dashed lines refer to
the respective confidence intervals.
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correlation was found to be significant to the 95%-level in880

the two-sided test for zero correlation, the null hypothesis
being that the time series are autocorrelated but mutually un-
correlated.

Does this correlation persist, when the age uncertainties
are considered in the analysis? We estimated the similarities885

for the two records considering all five estimators of Tab. 1
and for the original records as well as the results from age
modeling, and give the results in Fig. 8. The histograms of
similarity estimates for 100 realizations of the age models
show a considerable spread. The mean similarity (indicated890

by the solid red line in Figs. 8a and 8b) for the correlation
estimators is higher than that of the 95% quantile of the sur-
rogate distribution, and the mean gMI estimate is close to
the critical value. The median link strength is equal to 0.4. In
contrast, the original age models published by Berkelhammer895

et al. (2010) and Zhang et al. (2008) yield significant results
for all estimators except the ESF, resulting in an overall link
strength of 0.8.

When we compute the similarities using the COPRA en-
sembles for the more sparse Dandak δ18O time series pub-900

lished earlier (Sinha et al., 2007) the outcome is quite differ-
ent - the link strength is only 0.2.

5 Discussion

Age uncertainty clearly affects all estimators of similarity for
time series, and it is an illusion that it would be possible to905

mitigate the effects of uncertainty on the time axis for any
type of analysis depending on observation times. Even if the
observation – or accumulation – time of a grown archive is
known precisely at some depths, an observation time recon-
struction from age modeling requires an assumption on the910

accumulation behavior which, necessarily, will be wrong to
some extent, as stochasticity and irregularity in the growth
will always be present. This is a fact not challenged by the
choice of a different interpolation routine, e.g. to a contin-
uous cubic spline, which is often preferred by geoscientists915

(Breitenbach et al., 2012; Scholz and Hoffmann, 2011). On
the positive side, and although counter-intuitive, incorporat-
ing (small) age uncertainty in the analysis might even im-
prove the estimate when a deterministic (thus: necessarily
wrong) assumption on the growth of the archive is made.920

A low imprecision of 0-0.5% or an age uncertainty of ap-
proximately 1-2 years over a period of 200 years results in
minimal relative estimation error and maximal confidence
on the similarity peak position for the time series similarity
functions Ŝ. If a similarity analysis for real-world datasets925

covering a time span of 100 000 years was desired, this would
amount to an ‘allowed’ age error of 500 years at a mean time
series resolution of 500 years, which is a lower than what
is usually found (Taylor et al., 2004). Thus, the resolution
desired in the analysis is necessarily dependent on age un-930

certainty – only if that is lower, or comparable, an analysis of

such short time series with full consideration of age uncer-
tainties is feasible. One way to achieve higher certainty could
be the incorporation of layer-counted ada in the agemodeling
process, for example for annually laminated archives (Breit-935

enbach et al., 2012).
The similarity estimators tested show different behavior,

dependent on the signal type. The correlation-based estima-
tors perform better for the linear coupling scheme, but fail
for the nonlinear processes.940

The gXCF and iXCF error split is dominated by the age
uncertainty as the largest source of error in the linear CAR
case. Both have small baseline bias for regular sampling.
gXCF estimates coupling strength more effectively, however,
for both age uncertainty and irregular sampling contributions945

of iXCF are significantly larger due to interpolation effects.
In the nonlinear coupling scheme there is little difference
whether the time series is regular, irregular or age uncertain
– the correlation-based methods can not capture such type of
dependencies.950

gMI and iMI perform badly on the first glance in the lin-
ear CAR case, as their baseline bias for regular sampling
RMSE is large. However, one needs to take into account that
the RMSE is determined by both variance and bias – and
that MI estimation, especially using binning estimators, is al-955

ways associated with a significant positive bias, particularly
for short time series. This bias, however, decreases with in-
creasing time series length. If a direct comparison of MI and
XC estimates is desired, this bias should be subtracted from
the MI estimate prior to scaling it to the correlation scale. In960

the nonlinear TAR case the Gaussian-kernel-based version
has the lowest overall RMSE.
The ESF, originally intended for the analysis of event se-
ries, performs well and has the lowest total RMSE, followed
closely by gXCF, in the linear test case. There, its baseline965

RMSE dominates the RMSE split, and the RMSE for irregu-
lar sampling is lower than that for regular sampling. This is
similar for the nonlinear processes. One reason for this might
be that, for irregularly sampled time series of the same mean
observation time distance, the number of observations spaced970

closely together is higher, which might increase the chances
to find multiple events spaced closely together, resulting in
effective double-counting of events. The comparably small
contribution from age uncertainty in the linear test indicates,
that neither the relative nor the absolute observation time dis-975

tance between the time series are crucially important to the
measure. Thus, it is quite a robust similarity measure with re-
spect to age uncertainty and comparable to gXCF for linear
coupling and gMI for nonlinear coupling, which both ulti-
mately depend on the notion of simultaneous observations.980

Although the irregularity of the time series is rather
low (the inter-sampling-time distribution is narrow and
close to normally distributed) the estimators that do not
require the time series to be sampled regularly perform
better than the interpolation-based records, which confirms985

the previous finding (Rehfeld et al., 2011, 2013) that large
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sampling irregularity (i.e. the presence of gaps) leads to
large interpolation bias, where the adapted estimators gXCF
and gMI are particularly suitable. We have applied the
similarity estimators to investigate the similarities between990

the Dandak and Wanxiang cave records. We find that the
link strength aptly summarizes the results of the similarity
significance tests: The time series are quite likely to be
correlated, but age uncertainty blurs the results. There are
several other parameters which can have a critical impact995

on the analysis: The choice of the significance level for link
strength estimation, the detrending width and the respective
resolution of the time series. The dependence of the results
on the detrending parameter (Fig. 9) illustrates the time-scale
dependence of the analysis: A small detrending width W1000

results in a high-pass-filter and very low linkstrengths, large
W yields high similarity on larger timescales. This indicates
that the paleoclimatic records are more clearly associated
at centennial to multi-centennial timescales than at decadal
timescales, which are more impacted by age uncertainty.1005

A higher temporal resolution of proxy measurements im-
proves the accuracy of the estimators, particularly for the
data-demanding MI estimators. Bootstrapping of the time
series to successively lower lengths could be used to test the
robustness of the estimators against such effects.1010
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Fig. 9: Sensitivity of the link strength result for the origi-
nal records of Berkelhammer et al. (2010) and Zhang et al.
(2008) to changes in the detrending parameter W of a
Gaussian-kernel detrending and the significance level in the
hypothesis test.

We have only considered five similarity estimators, gXCF,
iXCF, gMI, iMI and ESF, here, but this could be expanded
for other concepts, for example based on (cross-)recurrence
plots (Romano et al., 2005; Marwan et al., 2007; Marwan,1015

2002; Lange, 2011), recurrence networks (Feldhoff et al.,
2012), convergent cross-mapping (Sugihara et al., 2012) or
distance measures (Lhermitte et al., 2011). The notion of
a link strength, instead of XC, MI or ES values, makes it
straightforward to extend the analysis to a whole ensemble1020

of time series, be it from age modeling or out of a database
of paleoclimate records. If age uncertainty does not impact
the cross-similarity, the link strength will not drop substan-
tially. The actual value of the link strength can be interpreted
in terms of a “degree of confidence”: If the value is close1025

to the significance level, a relationship cannot be concluded
with confidence. If the link strength is close to one, all the
estimators return significant similarity estimates and a simi-
larity can be deduced with certainty.
In the future it could be evaluated whether p-values from1030

the the surrogate tests can replace the binary thresholding
for the link strength metric to improve the sensitivity of the
link strength estimate. The ESF alone, however, could be par-
ticularly suitable for the analysis of extreme events since it
does not place strong restrictions on the time series beyond1035

stationarity, and performs particularly well for irregular time
series.

The NESToolbox containing scripts and programs for the
similarity analysis of age uncertain time series in Matlab and
the open source software Octave are available with this pa-1040

per. We also include a function to simulate age uncertainties
that arise for archives for which the chronology is based on
layer counting, trees, ice cores or laminated sediments, so
that these, too, can be investigated using the methods pre-
sented in this paper.1045

6 Conclusions

In this paper we have investigated similarity estimators that
do not require regular sampling in time and can capture lin-
ear (gXCF) and nonlinear (gMI and ESF) relationships. We
found that interpolation to regular spacing of the observation1050

times results in worse estimates. By contrast, the adapted es-
timators are more efficient in the presence of sampling time
irregularity and cope with age uncertainty better. Table 1
gives a comprehensive overview over the similarity estima-
tors, parameter choices and further references. gXCF and1055

ESF perform particularly well if the relationship is linear,
but the correlation estimator fails in the presence of nonlin-
ear coupling, where the ESF and gMI are better suited to
infer dependences. The significance of results from differ-
ent estimators and under varying time series length and sam-1060

pling can be unified using the concept of a link strength. It
combines similarity estimators and significance tests and is
given by the relative frequency of positive significance tests
and could be especially useful in the analysis of large paleo-
climatic datasets where it is infeasible to check each pair of1065

time series for similarity individually. We have shown that
age uncertainty is the largest contributor to estimation error
for time series similarity, and for a reliable of similarity func-
tion shape and coupling structure, the time scale imprecision
should be as low as possible. When it exceeds 5% of the1070

time series length coupling phenomena on time-scales close
to the sampling resolution can not be deduced any longer.
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While time series irregularity can be well addressed by the
use of the adapted estimators, age uncertainty can not, and
should therefore be reduced as much as possible by measur-1075

ing more ages, improved dating techniques or the use of ad-
ditional temporal information from layer-counting (Breiten-
bach et al., 2012) where possible. These are, in essence, good
news, because the irregular growth of the archives cannot be
reversed, but measurement devices can be optimized.1080

Acknowledgements. The authors thank Norbert Marwan, Jobst
Heitzig, Bedartha Goswami and Sebastian Breitenbach for help-
ful comments and discussion, and Franziska Lechleitner for assis-
tance with data pre-processing. We thank Ashish Sinha for pro-
viding us with the depth data for the Dandak cave stalagmite and1085

Richard Telford and an anonymous reviewer for their constructive
feedback. This work has been financially supported by the Fed-
eral Ministry for Education and Research (BMBF) via the Pots-
dam Research Cluster for Georisk Analysis, Environmental Change
and Sustainability (PROGRESS). The NESToolbox containing soft-1090

ware tools to handle irregularly sampled datasets can be found on
tocsy.pik-potsdam.de/nest.php.

References

Babu, P. and Stoica, P.: Spectral analysis of nonuniformly sampled
data – a review, Digital Signal Processing, 20, 359–378, doi:10.1095

1016/j.dsp.2009.06.019, 2010.
Batyrshin, I., Sheremetov, L., and Velasco-Hernandez, J. X.: On

axiomatic definition of time series shape association measures,
in: Operations Research and Data Mining ORADM 2012 work-
shop proceedings, edited by Villa-Vargas, U., Sheremetov, L.,1100

and Haasis, H.-D., pp. 1–12, National Polytechnic Institute, Mex-
ico City, 2012.

Berkelhammer, M., Sinha, A., Mudelsee, M., Cheng, H., Edwards,
R. L., and Cannariato, K.: Persistent multidecadal power of the
Indian Summer Monsoon, Earth and Planetary Science Letters,1105

290, 166–172, doi:10.1016/j.epsl.2009.12.017, 2010.
Breitenbach, S. F. M., Rehfeld, K., Goswami, B., Baldini, J. U. L.,

Ridley, H. E., Kennett, D. J., Prufer, K. M., Aquino, V. V., As-
merom, Y., Polyak, V. J., Cheng, H., Kurths, J., and Marwan, N.:
COnstructing Proxy Records from Age models (COPRA), Cli-1110

mate of the Past, 8, 1765–1779, doi:10.5194/cp-8-1765-2012,
2012.

Chatfield, C.: The analysis of time series: an introduction, CRC
Press, Florida, US, 6th edn., 2004.
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Kurths, J., and Paluš, M.: Reliability of Inference of Directed Cli-
mate Networks Using Conditional Mutual Information, Entropy,
15, 2023–2045, doi:10.3390/e15062023, 2013.1140

Khan, S., Bandyopadhyay, S., Ganguly, A., Saigal, S., Erickson, D.,
Protopopescu, V., and Ostrouchov, G.: Relative performance of
mutual information estimation methods for quantifying the de-
pendence among short and noisy data, Physical Review E, 76,
1–15, doi:10.1103/PhysRevE.76.026209, 2007.1145
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