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To :

Denis-Didier Rousseau Editor of Climate of the Past
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Dear Denis,

Many thanks for organizing the review procedure. Please, find, as attached files, a
revised version of our manuscript cp-2013-42 entitled :

North-south palaeohydrological contrasts in the central Mediterranean during the
Holocene: tentative synthesis and working hypotheses

Below, into the window Supplement, we have attached a pdf file including the revised
version with corrections indicated in bold type, and into the window Figures, the revised
version of Figures.

We endeavoured to revise our manuscript according to comments of the two referees
as follows.

Remarks of Referee 1

In response to remark A of the Referee 1, we have completely deleted the mention of
MRCAI (Zhao et al., 2010) from the text and from Figures 6 and 7.

According to remark B of the Referee 1, we have completed the text by adding indica-
tion about the season considered for the changes in insolation (e.g. summer insolation
maximum).

The phrase pointed out by the Referee 1 (remark C) on page 1906 l. 25 has been
completed.

Remarks of Referee 2

1. The referee 2 is right : both the winter and the summer precipitation decreased at
Pergusa after 4500 cal BP. However, as extensively discussed in Magny et al. (2012c),
the quantitative estimates show that the summer precipitation was more affected by
the climate drying than the annual and the winter precipitation. Thus, the mid- to late
Holocene transition corresponds to a mean lowering by ca 10-8% for annual and win-
ter precipitation whereas the decrease in wetness reaches more than 30% in summer.
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This progressively leads to a stronger seasonal contrast in precipitation, typical of the
current Mediterranean climate of the region. The text has been completed accord-
ingly. Regarding the Accesa data, the quantitative estimates suggest millennial trends
towards drier (wetter) conditions in winter (summer) since ca 7500 cal BP. On a centen-
nial scale, winter and summer appears to effectively show opposite oscillations except
for the interval ca 5500-4500 cal BP due to an effect of the local vegetation (peak of
Cyperaceae ; Peyron et al., 2011).

2. In the introduction of section 4 (page 1924), in addition to the NAO, we have actu-
ally mentioned possible influences of other atmospheric circulation patterns over the
Mediterranean such as EAWR or North Sea-Caspian. However, we have focussed our
discussion on the NAO which is often considered as the main circulation pattern for
the North Atlantic zone and associated areas for the present days as well as for the
Holocene period. Moreover, the examination of the possible impact of other (important)
circulation patterns needs to present and discuss additional records from other key re-
gions in Eurasia. So, given the present length of the paper, we have chosen to focus
on the NAO. However, in response to the remark of the Referee 2, we have added a
sentence to the conclusions and to the abstract to clearly mention the need to develop
an exploration of the possible influences of other circulation patterns in explaining the
apparent complexity of Holocene palaeoclimatic data from the Mediterranean area.

3. In response to the remark 3 of the Referee 2, we have clearly refered on page
1910 l. 5-7 to apparent contradictions between isotope records versus lake-level and
glacial records with references where the reader may find more extensive discussions.
Additional references have been included to provide further examples of such apparent
contradictions.

4. In response to remark 4 of the Referee 2 about the interest of model simulations,
we have completed the text on page 1928 by a reference to a paper by Gaetani et
al. (2011) published in a peer-reviewed journal (GRL) and based on sensitivity experi-
ments. Moreover, on page 1929, we refer to a paper by Lézine et al. (2011, QSR) which
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clearly mentions model experiments to show how the presence of remnant ice-sheets
may have been responsible for a southward shift of the atmospheric general circula-
tion. In addition, the present paper (a bit long as it is !, see comment by the Referee 1)
will be followed by a further paper more specifically centred on model experiments in
combination with palaeoclimatic data.

5. In response to remark 5 of the Referee 5, we have checked and completed the
figures to clearly indicate the proxy used for every record. For the comfort of the reader,
we have chosen to show specific maps in Figures 8 and 9 instead a unique map with
all data locations. In addition, we have revised Figure 2 to present not only the sites
studied within the project LAMA, but also sites used for inter-regional comparisons in
the central Mediterranean and in west-central Europe.

Finally, please, note that there an additional co-author : Elena Ortu.

We hope that this revised version will meet your expectations.

Yours sincerely Michel

Please also note the supplement to this comment:
http://www.clim-past-discuss.net/9/C1194/2013/cpd-9-C1194-2013-supplement.pdf

Interactive comment on Clim. Past Discuss., 9, 1901, 2013.
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