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Abstract

The aim of this study is to investigate climate changes and human activities under the
lens of palynology. Based on a new high-resolution pollen sequence (PG2) from Lago
di Pergusa (667 m a.s.l., central Sicily, Italy) covering the last 6700 yr, we propose a
reconstruction of climate and landscape changes over the recent past in central Sicily.5

Compared to former studies from Lago di Pergusa (Sadori and Narcisi, 2001), this
work provides a reconstruction of the evolution of vegetation and climate over the last
millennia in central Sicily, indeed completing previous results with new data which is
particularly detailed on the last 3000 yr.

Joint actions of increasing dryness, climate oscillations, and human impact shaped10

the landscape of this privileged site. Lago di Pergusa, in fact, besides being the main
inland lake of Sicily, is very sensitive to climate change and its territory was inhabited
and exploited continuously since the prehistory. The lake sediments turned out to be a
good observatory for the natural phenomena occurred in the last thousands of years.

Results of the pollen-based study are integrated with changes in magnetic suscepti-15

bility and a tephra layer characterization. The tephra layer was shown to be related to
the Sicanians’ event, radiocarbon dated at 3055±75 yr BP (Sadori and Narcisi, 2001).

We performed palaeoclimate reconstructions by MAT and WA-PLS. Palaeoclimate
reconstructions based on the core show important climate fluctuations throughout the
Holocene. Climate reconstruction points out four phases of cooling and enhanced wet-20

ness in the last three millennia (2600–2000, 1650–1100, 850–550, 400–200 cal BP).
This appears to be the evidence of local responses to global climate oscillations during
the recent past.

1 Introduction

In the present-day debate, concerning possible effects of the on-going climate change,25

the understanding of biological responses to past climate variations assumes a great
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interest. Open questions remain on local responses to global climate changes during
the recent past and possible evolution under future climate forcing (IPCC, 2007; Giorgi
and Lionello, 2008). Palaeoclimate reconstruction gives a basis for predicting and lim-
iting the effects of global warming on local vegetation and climate in highly sensitive
areas.5

Although the high interest for the understanding of climatic and environmental evo-
lution under Mediterranean conditions, due to the scarcity of sites suitable for palaeoe-
cological analyses there are only a few works that retrace the vegetation and climate
history of south-central Mediterranean. Besides, they underline an important spatial
variability of landscapes and local responses to climate changes (de Beaulieu et al.,10

2005; Carrión et al., 2010a, b; Magny et al., 2012). In this context, understanding re-
sponses to climate changes in Sicily, the largest Mediterranean island, is particularly
interesting, as its central geographic position in the Mediterranean Basin makes it a
key region for the understanding of Holocene climates and environments. Important
and expected differences are found in Sicily itself, in particular, between the inland and15

the coast (Noti et al., 2009; Sadori and Narcisi, 2001; Tinner et al., 2009). Sicily was
inhabited since the Palaeolithic and interactions between climate changes and human
activities have to be expected. It is clear that in such sites a close relationship between
humans and their environment exists, but the way individuals or groups adapt to or
impact on their environment (or do both) must be considered on a different scientific20

base, case by case (Mercuri et al., 2011; Sadori et al., 2010).
In particular, Lago di Pergusa is, both for geographic location and human history, in

a crucial and privileged position to study the landscape changes occurred since pre-
history.

This peculiarity is mainly due to the strong seasonality and the heterogeneity of its25

climate (Zampino et al., 1997), the high rate of biodiversity and endemism (Brullo et
al., 1995, 1996; Di Pasquale et al., 1992; Quezel et al., 1993), the long human history
(Bernabò Brea, 1961) and the progressive aridification of last millenaries recorded in
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former studies (e.g. Frisia et al., 2006; Magny et al., 2011, 2012; Pérez-Obiol and
Sadori, 2007; Sadori and Narcisi, 2001).

2 Study area

Lago di Pergusa is located in central Sicily, Southern Italy (37◦31′ N, 14◦18′ E), at
667 m a.s.l. (Fig. 1a). The study site features were already described (Sadori and Nar-5

cisi, 2001 and therein references) and are hereafter summarized. The lake (surface
area 0.5 km2, catchment ca. 7.5 km2) occupies an endorheic basin with catchment
composed by Pliocene marine (sandstone, claystone) deposits, solely fed by rainfall
and groundwaters and has experienced strong lake-level variations imputed to evap-
otranspiration. This phenomenon made it very sensitive to seasonal and long-term10

climatic variations. At present the lake level surface is controlled.
Climate in the area of Pergusa is cooler and moister than along the coasts, with

annual precipitation between 500–700 mm and mean annual temperature of 13.4 ◦C
(Enna weather station). Archive data from three meteorological stations show that pre-
cipitation decreased during the second half of last century. The lake is particularly15

vulnerable to climate changes, lying at present at the border of three areas with dif-
ferent aridity indices (Fig. 1b, Duro et al., 1997). The lacustrine vegetation (Fig. 1c,
Calvo et al., 1995) before the water body regulation of last years, consisted in several
concentric belts: an external belt (Fig. 1c, a), some meters wide, of almost only Phrag-
mites australis (Cav.) Trin., an inner discontinuous belt (Fig. 1c, b) of halophilous plants20

characterized by Juncus maritimus Lam., and an internal ephemeral zone directly de-
pending on the lake-level fluctuations and constituted by halophilous and seasonal
plant communities (c, d, and e belts), mainly characterized by chenopods as Atriplex
latifolia Wahlenb. (belt c), Suaeda maritima (L.) Dumort. (belt d) and Salicornia pat-
ula Duval-Jouve and many nytrophilous Asteraceae, both Asteroideae and Cichori-25

oideae (belt e).The lake is at present surrounded by open landscapes dominated by
xerophytic grasslands (Pignatti, 1994) and crop cultures, often abandoned. The only
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traces of natural vegetation are represented by rare trees of Quercus virgiliana (Ten.)
Ten., Quercus ilex L., Quercus pubescens Willd., Quercus suber L. and Rhamnus
alaternus L.

Human activity is documented in central Sicily since the Palaeolithic Age (Tusa,
1992). Traces from the Eneolithic Age, besides others, are found in the nearby site5

of Cozzo Matrice, located on a hill at the edge of the catchment of the lake and active
also during Greek times (Touring Club Italiano, 1989). In the close surroundings of the
lake (Fig. 1d) the Bronze and Iron Age periods are well documented (Bernabò Brea,
1961; Giannitrapani and Pluciennik, 1999; Tusa, 1992). Diodorus Siculus (Library of
History, V, 6, 2–4) reported that the area of Pergusa around 3000 yr ago was first set-10

tled by Sicanians, then by Siculis. Greeks, Siracusans and Carthaginians alternated in
the territory. Under the Romans, Enna (Castrum Hennae) became a rich and important
centre for wheat trade and remained so also under the Byzantines and the Arabs.

3 Methods

3.1 The sediment core15

A 6.26 m long sediment record (composed core PG2) was retrieved from Lago di Per-
gusa (Fig. 1a) in 2006 with a UWITEC coring platform with a percussion piston coring
technique. Particular care was paid to recover and store the top decimetres with a grav-
ity corer. Twin cores were retrieved, and segments were extracted and stored at 4 ◦C at
the University of Franche-Comte (France).20

Magnetic susceptibility (MS) was measured in the cores at 5 mm resolution with
a Geotek multi-sensor core logger (Gunn and Best, 1998). MS was measured on
split cores with the MS2E1 surface-scanning sensor from Bartington Instruments,
which was adapted for fine-resolution volume magnetic-susceptibility measurements
(Vannière et al., 2004). These analyses allow us to establish stratigraphic correlations25
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useful for constructing the master sequences (PG2), guaranteeing complete records
without any gaps or redundancies.

3.2 Dating

Plant macrofossils were not visible to the naked eye, so several sediment samples
were processed to find plant macroremains suitable to be radiocarbon dated. Four5

plant samples (two seed samples ascribed to Scirpus sp. and two wood fragments)
have been selected for AMS radiocarbon analysis.

A tephra layer, highlighted by magnetic susceptibility, was morphologically and geo-
chemically analyzed. The sediment was washed, filtered, dried and then embedded
in epoxy resin and screened for glass shards fragments using scanning electron mi-10

croscopy (SEM). Energy-dispersive-spectrometry (EDS) analyses of glass shards and
scoriae fragments were performed using an EDAX-DX micro-analyser mounted on a
Philips SEM 515 at the Dipartimento di Scienze della Terra, University of Pisa, em-
ploying a 20 kV acceleration voltage, 100 s live time counting, 2100–2400 shots per
second, and ZAF correction. To avoid alkali loss, especially Na, a window spot was15

used (usually with side ca. 10 µm). Performance of the instrument is extensively dis-
cussed elsewhere, especially in comparison with wave dispersion spectroscopy (Caron
et al., 2010; Cioni et al., 1997; Marianelli and Sbrana, 1998; Sulpizio et al., 2010; Vogel
et al., 2009), indicating comparable performances on major elements, and will not be
discussed further. To perfectly compare our data with those obtained by Sadori and20

Narcisi (2001), the tephra layer found in core PRG1 was re-sampled and re-analyzed.

3.3 Pollen analysis

Pollen extraction from the sediment samples followed Goeury and de Beaulieu (1979).
300 terrestrial pollen grains were counted on average under a transmitted light mi-
croscope at a magnification of 400X. Pollen grain identification was based on pho-25

tographs (Reille, 1992, 1995, 1998) and on the reference collection of Laboratoire
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Chrono-Environnement (Franche-Comté University, France). Pollen percentages were
calculated on the basis of total arboreal and non-arboreal terrestrial pollen grains.

3.4 Climate reconstruction

Climate reconstructions inferred from pollen data are based on two different ap-
proaches: the modern analogue technique “MAT” (Guiot, 1990), based on a compari-5

son of past assemblages to modern pollen assemblages, and the weighted average-
partial least square method “WA-PLS” developed by ter Braak and Juggins (1993)
which requires a real statistical calibration. The MAT has been used in a number of
studies focusing Mediterranean regions (e.g. Desprat et al., 2013; Peyron et al., 2011,
2012; Pross et al., 2009) and the WA-PLS has recently been successfully tested in10

Mediterranean regions (Finsinger et al., 2010; Peyron et al., 2012), showing its reliabil-
ity in linking modern pollen data to climate in the Italian area (Finsinger et al., 2007).
More details on these two methods are given in Peyron et al. (2012). For the MAT
and the WAPLS, we use the modern pollen dataset developed by Dormoy et al. (2009)
restricted to the Mediterranean area (longitude: −10 to 40◦, latitude: 30 to 45◦) and con-15

taining 1146 samples. The number of selected analogues was 8 (MAT) and the number
of components taken was 2 (WA-PLS), based on the results of the cross-validations
(leave-one-out and bootstrap). As another validation test, we have distinguished two
distinct subsets in the modern pollen database by applying a random samples selec-
tion. This step produced two modern datasets, each containing 573 samples that were20

used respectively for the training and the validation of transfer functions based on WA-
PLS and MAT methods. Statistical processing and transfer functions were performed
using R, especially packages “rioja” (http://www.r-project.org/) and “bioindic” (CEREGE
Website).
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4 Results

4.1 The core and its chronology

Visual core description was carried out. From bottom core to 310 cm the sediment
consists of olive grey to brownish mottled silty clay. The upper part of the core is com-
posed of greyish silty clay and dark to very dark silty clay alternating with silty and5

sandy laminae. Some gradational contacts have been identified. Oxydised spots and
very dark levels are present. Bioturbation and shell fragments occur at the bottom of
the core. Variations in the sediment density were also highlighted by magnetic sus-
ceptibility analyses (Fig. 2). The magnetic susceptibility trend shows the presence of
ashes dispersed in less than 10 cm of sediment of the composite core (between 46510

and 475 cm), corresponding to the tephra between 47–53 cm in the core section 01-C2.
In correspondence with the ashes, magnetic susceptibility peaks at 53 (the mean SI of
the record is 2.9). The tephra comprises principally dark, brown, blocky fragments. Two
types of fragments can be distinguished: the rarest, is characterized by a few spheri-
cal or ovoid vesicles and a prevailing glassy matrix, whereas the most common type15

is characterized by a crystalline groundmass mostly composed by plagioclase, and to
a lesser extent by pyroxene and rarely by olivine. Ti-Fe oxides are also present. In
this second type, glass is usually interstitial or can be absent. This makes the analy-
ses particularly complex, producing a dispersion of chemical data of the glassy matrix
(Table 1). Compositionally, a single-shard ranges principally from mugeritic and ben-20

moreitic field, partially straddling the photephritic compositions.
The tephra characteristics and its chemical composition perfectly match with those

determined by Sadori and Narcisi (2001), and particularly with the new set of data
produced for comparison (Fig. 3, Table 1). As extensively discussed by Sadori and
Narcisi (2001) the features of the tephra at Lago di Pergusa are similar to that from25

the Etna Volcano eruption, which was strong enough to make ashes reach the Balkans
(Sulpizio et al., 2010; Wagner et al., 2008), and which was dated to 3150±60 yr BP by
radiocarbon on charred material from the top of the eruption (Coltelli et al., 2000). In
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core PRG1 Sadori and Narcisi (2001) obtained an age of 3055±75 yr BP just below
the tephra layer.

The four radiocarbon ages obtained from macroremains are consistent with the ra-
diocarbon age available for the tephra (Sadori and Narcisi, 2001) and were used to
elaborate an age/depth model based on linear interpolation (Fig. 2, Table 2).5

Calculations were done using the program Clam (Blaauw, 2010), which calibrated
the 14C and tephra-inferred dates following IntCal09 (Reimer et al., 2009). The new
core PG2 covers the last 6700 calendar years. Figure 2 shows that the sedimentation
rate of core PG2 was lower in the deeper part of the core and that it increased since
3000 cal. BP appearing “constant” until present-day. Ages are expressed as calendar10

years BP (cal BP) unless differently stated.

4.2 Pollen results

A total of 123 pollen and spore types (including 35 tree and shrub taxa and 75 herbs)
were identified. Due to the high sedimentation rate of the last 3000 yr, a quite good
detail is obtained for the period, with an average of a sample every 6 cm (i.e. a temporal15

resolution of ca. 50 yr). Data from core PG2 are shown in Figs. 4 (arboreal and non
arboreal taxa) and 5 (“ecological groups” and total concentration).

Pollen Zone 1 (PZ1): 6.26–5.7 m (ca. 6730–5375 cal BP). The bottom of the se-
quence is radiocarbon dated to 5780±40 yr BP. AP % are between 60 and 80 %, pollen
concentration ranges from 19 000 to 135 000, and the number of taxa from 27 to 37. De-20

ciduous and evergreen oak (Quercus) pollen (both peaking at 40 %), olive-tree (Olea)
and elm (Ulmus) between 5 to 10 %, beech (Fagus) and hazel (Corylus) at less than
5 % are the main taxa. Arboreal pollen is dominant in this pollen zone and Poaceae
do not represent more than 20 % of the total pollen. Among herbaceous taxa, cerealia,
Ranunculaceae, Chenopodiaceae, Plantago, Rumex, m Artemisia, Cichorioideae un-25

diff., Apiaceae, Asteroideae undiff. and Labiatae are recorded as a continuous signal,
with percentages higher than 1 %, since the bottom of the core.
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Pollen Zone 2 (PZ2): 5.7–4.7 m (ca. 5375–3150 cal BP). The Sicanian’s tephra layer,
radiocarbon dated at 3055±75 yr BP in core PRG1 was detected between ca. 465
and 475 cm. AP % are between 30 and 65 %, pollen concentration ranges from 12 000
to 110 000, and the number of taxa from 28 to 45. The transition to this pollen zone is
marked by an abrupt decrease of AP % from 80 to 50 %, involving both oak pollen types5

(from >30 % to <5 %) and a relative increase of Poaceae (ca. 10 to 30–40 %), becom-
ing dominant from this zone to the top of the sequence; several herbs (in particular
Chenopodiaceae, Plantago, Ranunculaceae, Apiaceae, Asteroideae undiff., Artemisia)
show a slight increase. Undifferentiated cereals and Secale are currently recorded from
this zone up to top core. Papaver and Centaurea cyanus pollen grains are recorded10

at the end of the zone. The zone is also characterized by the continuous presence of
Cyperaceae (more than 1 %). Pollen percentages of dominant taxa (Quercus decid-
uous and evergreen types and Poaceae) show important and rapid variations within
this zone; Olea and Ulmus show low percentages but also slight variations. Fagus and
Quercus cf.suber are recorded continuously.15

Pollen Zone 3 (PZ3) is split into two subzones. AP % are between 45 and 65 %,
pollen concentration ranges from 16 000 to 85 000, and the number of taxa from 26 to
52. Pollen subzone 3a (PZ3a: 4.7–4.5 m; ca. 3150–3000 cal BP). AP % are between 50
and 65 %. This short zone is characterized by the sudden increase of Olea to ca. 20 %,
while both Quercus dominant pollen types decrease as well as Ulmus. Poaceae and20

Chenopodiaceae decrease,while other herbs do not show significant changes. Pollen
subzone 3b (PZ3b: 4.5–4 m; ca. 3000–2600 cal BP). AP % are between 45 and 60 %.
Olea, dominating the previous subzone, shows a strong decrease. It seems first re-
placed by Quercus ilex type and Pistacia, then by Quercus pubescens type. Ephedra
fragilis is continuously present from this zone to the top of the diagram. Poaceae also25

tend to increase despite many rapid variations. Among other herbs, Chenopodiaceae
do not show significant changes.

Pollen zone 4 (PZ4): 4–3 m (ca. 2600–1885 cal BP). AP % are between 20 and 45 %,
pollen concentration ranges from 9200 to 76000, and the number of taxa from 32 to
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46. The top of this zone is radiocarbon dated to 1961±33 BP. An important further
opening of the wood is found, tree pollen suddenly drops from 50 to 25 %, showing
a decrease in both mesophilous (deciduous oaks and elm) and Mediterranean taxa
(evergreen oaks, olive). Two shrub taxa show increase, namely Pistacia and Ephedra
fragilis. A strong increase in anthropogenic pollen is worthy of mention. Poaceae are5

mainly between 25 and 35 %, showing many rapid variations. It is important to note
the increase of Chenopodiaceae, first matching the one of Cichorioideae, and Aster-
oideae undiff. A consistent peak of Cichorioideae (20 %) just preceeds a slight expan-
sion of Cyperaceae, becoming more important towards the top of the diagram. The end
of the zone is marked by an abrupt peak of Chenopodiaceae (40 %).10

Pollen Zone 5 (PZ5): 3–2 m. It is split into two subzones. AP % are between 20
and 45 %, pollen concentration ranges from 10 000 to 45 000, and the number of taxa
from 33 to 48. Pollen subzone 5a (PZ5a): 3–2.7 m; ca. 1885–1620 cal BP): A slight
recover of AP (>45 %), mainly due to evergreen Quercus (5 to 20 %), and followed by
a slight expansion of Quercus pubescens type, marks the transition to this new zone.15

Poaceae show a decrease at the beginning of this zone together with other herbs. An-
thropogenic taxa show a decrease too. Pollen subzone 5b (PZ5b: 2.7–2 m; ca. 1620–
1000 cal BP): it is mainly characterized by a lowering of arboreal taxa to 20 %, Pistacia
included, and the correspondent increase of Poaceae and anthropogenic taxa. The
slight but meaningful expansion of Secale is worthy of mention. Urticaceae show the20

start of a continuous curve. The zone ends with a peak of Chenopodiaceae.
Pollen Zone 6 (PZ6): 2–0.4 m (ca. 1000–170 cal BP). The bottom of this zone is

radiocarbon dated to 1032±30 yr BP. AP % are between 25 and 50 %, pollen con-
centration ranges from 3700 to 23 000, and the number of taxa from 34 to 53. This
zone is characterized at its bottom by a phase of increase for both oak-types, followed25

by an increase of Poaceae, the dominant taxon. The zone ends with an expansion
of evergreen Quercus (5 to 30 %) following an increase of deciduous Quercus and of
Chenopodiaceae. Anthropogenic taxa seem to be less important than in the previous
two zones.
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Pollen Zone 7 (PZ7): 0.4 m to surface (ca. 170 cal BP to present). AP % are around
40 %, pollen concentration ranges from 3400 to 5300, and the number of taxa from 40
to 43. The recovery of Olea (<5 to 20 %), continuous percentages of cultivated trees
(Juglans, Castanea) and percentages of 5 % of Juniperus characterize this last zone.
It is also to note an increase in cerealia, Plantago, and anthropogenic taxa as a whole.5

5 Discussion

5.1 Comparison between PG2 and PRG1 cores

The PRG1 core records the last 12 000 yr in 456 cm, while the new core, PG2, spans
ca. 6700 yr in 626 cm. Comparison of the two cores (Fig. 6) shows that they record simi-
lar vegetation dynamics, but also important differences in the temporal resolution of the10

last 3 millennia, confirming that a hiatus/es or a strong reduction in the sedimentation
rates must be present in the upper part of core PRG1, as supposed by Sadori and Nar-
cisi (2001). The fall of Quercus ilex and Olea (at ca. 425 cm in PG2 and at ca. 100 cm
in PRG1), followed by a peak of Quercus pubescens and a slight expansion of Pistacia
can be easily found in both cores, while the peaks of Quercus ilex and of Chenopodi-15

aceae recorded in PG2 are not detected in PRG1. Considering the chenopods vege-
tation belts that formed in case of lake level lowering (Calvo et al., 1997, Fig. 1c) the
possibility that PRG1 was taken in a periodically emerged part of the lake is advanced.
Repeated lake body reductions can explain why the last 2500 yr are recorded in 4 m of
sediment in PG2, while this same period was entirely recorded in the upper 70 cm of20

the PRG1 core.

5.2 Vegetation history: climate versus human forcing

The pollen diagrams (Figs. 4 and 5) show, from bottom to top, a tendency to forest
opening. Changes in forest canopy such as opening can be interpreted either as due to
aridification and/or temperature decrease or to (human) forest clearance. It is clear that25
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environments such as the Pergusa one are highly vulnerable and that minor climatic or
human changes can provide the ignition of a never-ending drying process.

Except for the bottom of the PG2 pollen sequence (PZ1), which records a forested
landscape around the site, the upper zones (PZ 2 to 7) show the evolution of an open
landscape dominated by Poaceae and characterized also by many other herbs. In this5

environment, two possibilities for understanding the Poaceae expansions have to be
considered. Poaceace could have either formed vast grasslands or a hydrophylous
vegetation belt around the lake itself, or both. In the first case there is a clear indication
of forest opening (either human or climate induced), in the second only a climatic clue.
The position of the PG2 core, neither marginal nor central in the lake like the previ-10

ous PRG1 core (Sadori and Narcisi, 2001) would in fact register water body reductions
(a Phragmites belt closer to the lake centre would mean increasing Poaceae percent-
ages in the diagram) and expansions. We also have to consider that a reduction of
precipitation would cause both a forest opening and the lowering of the lake level and
that this climate change could have been enhanced by a strong land-use (forest clear-15

ance, cultivation, pasture). A clear human impact can be seen in the diagrams (Figs. 4
and 5) only since 2600 cal BP (zone 4), while before, since around 3700 yr BP, there is
evidence of human presence.

As a matter of fact prehistoric populations did not change the landscape on a broad
scale and a widespread human impact is found only since the Roman period in Mediter-20

ranean environments (Mercuri et al., 2012; Roberts et al., 2011; Sadori, 2013; Sadori et
al., 2004, 2011) and hardly detectable before the Bronze Age, when a number of peri-
lacustrine settlements in the Italian peninsula were present, and the Terramare culture
bloomed in the Po plain (Cremaschi et al., 2006; Mercuri et al., 2006, 2012) prob-
ably because water in that period became a less available resource (Sadori et al.,25

2004; Magny et al., 2009, 2011; Zanchetta et al., 2012a).
Two arguments (Sadori and Giardini, 2008) are used to explain this lack of evidence

and delay in proofs coming from pollen records of the Mediterranean basin: natural
vulnerability to climate change (forest clearance is not just produced by humans) and
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botanical issues (many anthropogenic indicators are indigenous and some others are
often hard to distinguish from other plants).

Many edible plants such as cereals, pulses and fruit trees are in fact native to
Mediterranean regions and their pollen grains, often not identifiable at a satisfying tax-
onomic level, are found during the whole Holocene and even before in the pollen dia-5

grams. An exemplification can be made with cereal pollen type, which includes pollen
of both cultivated and spontaneous cereals as well as of other grasses (Andersen,
1978). Secale (rye) is a cereal with a distinct pollen grain, distinguishable from that of
other cereals. At present two species are found in the Italian flora (Pignatti, 1982): one
is the cultivated S. cereale, the other is S. stricta, a Mediterranean mountain species10

native to Sicily (and of some central and southern Italian regions), named mountain or
wild rye and growing from 600 to 1700 m a.s.l. Pollen grains of the two species cannot
be distinguished. Plantago lanceolata, a synanthropic herb whose finding is attentively
taken into account as evidence of human presence in central Europe, has pollen grains
that cannot be distinguished from those of other Plantago species indigenous in Italy15

(Reille, 1992).
Under this light it is not certain at all that the increase of herbs recorded at 5400 cal

BP is due to forest clearance. Also the presence of Secale since 4900 cal BP cannot be
taken as an evidence of cultivation, even if the presence of a Copper age site, Cozzo
Matrice, is documented at the edge of Lago di Pergusa catchment (Fig. 1d). A differ-20

ent scenario is found since ca. 3700 cal BP, when Secale and companion species of
crops, like Papaver and Centaurea cyanus, as well as Linum and Vitis are found. Since
3200 cal BP an important and abrupt spread of Olea is of note. Wild olive-tree (Olea
europea var. oleaster ) is regarded as autochthonous in Sicily and requires a typical
Mediterranean climate characterized by summer aridity with an average annual tem-25

perature of 14–20 ◦C and precipitation varying between 300 and 1000 mm yr−1 (Pignatti
and Nimis, 1995). The cultivated olive tree (Olea europea) is now found in the whole
area colonized by the evergreen oak-forests, but the wild natural olive-tree is typical
of the warmest areas of Mediterranean. It is then difficult to consider as natural the
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findings of more than 20 % of Olea pollen at Pergusa, knowing that these percentages
are comparable to the ones that were found at Gorgo Basso (Tinner et al., 2009), on the
western coasts of Sicily, during the phases of wild olive-tree maximum development.

Even if the more obvious interpretation of pollen data points to human action as the
main cause of olive expansion occurring at Pergusa between 3200 and 2800 cal BP, we5

have to consider that increased temperature and decreased precipitation might have
favoured (or allowed) the spread of thermophilous and less moisture-demanding taxa.
Cichorioideae and Asteroideae, strongly increasing since 3200 cal BP with abundant
Chenopodiaceae and overwhelming Poaceae could in fact have formed the ephemeral
vegetation belts occurring when the lake level decreased (Sect. 2, Fig. 1c) for a water10

shortage and a change towards drier climate conditions. In this case Cichorioideae and
Asteroideae should not be considered as anthropic indicators (Figs. 4 and 5), but as
dryness ones. Also mesophilous arboreal taxa like elm and deciduous oaks decrease in
correspondence with the spread of olive. Olea decline is followed by a rapid succession
of short increase in oaks, but it also coincides with the spread of Pistacia trees/shrubs15

and an increase of Ephedra fragilis (ca. 2800 cal BP), in parallel with the definitive
decline of deciduous Quercus. These elements support the hypothesis of a transition
at 3200 cal BP from mixed oak-forests to Mediterranean inland-forests infiltrated by
typical scrub or “macchia” taxa, a sort of pioneer vegetation. The fact that Pistacia is
found in both Pergusa sequences but it is never more than 5 % supports the hypothesis20

of more thermophilous and drier conditions around the site, or of intense grazing, but
not the onset of the Mediterranean “macchia”.

Based on the order of these events, the record suggests a successional dynam-
ics following a human-induced perturbation of the local vegetation, whose effect might
have amplified the aridification phase reconstructed in Sicily over the last three millen-25

nia by lake level oscillations (Magny et al., 2011, 2012). Stable isotope curves from
previous cores from Lago di Pergusa (Sadori et al., 2008; Zanchetta et al., 2007)
clearly show that the more arid period of the Holocene is found after 3000 cal. BP.
The speleotheme portion from ca. 3600 to ca. 2800 cal BP from Grotta Carburangeli,
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a cave in northern Sicily (Frisia et al., 2006), shows lower oxygen and carbon isotope
values than in the early Holocene and a small peak centered at ca. 3100 yr BP. The
stalagmite stopped to grow after 2800 cal BP, suggesting enhanced dryness. An in-
crease of Olea pollen soon before 3000 cal BP is found in Adriatic cores and in Italian
continental ones (Combourieu-Nebout et al., 2013; Di Rita and Magri, 2009; Mercuri5

et al., 2012, 2013), indicating that this was a rather general change in the Mediter-
ranean landscape. The exploitation of olive in Greece during the Bronze Age has been
documented by both macroremains and pollen (Kouli, 2012). Presence of olive stones
is documented at the early Iron Age archaeological site of Selinunte, southwestern
Sicily (Stika et al., 2008), some centuries later than the pollen spread of Pergusa. No10

evidence of this step was found at Gorgo Basso (Tinner et al., 2009), inside the natu-
ral area of distribution of Olea europea, but we have to consider that Lago di Pergusa
lies in a privileged position to observe past land-use, in a zone widely and strongly
exploited in the Bronze Age (Fig. 1d).

At Lago di Pergusa the deterioration of climate conditions accompanies the evolution15

of human activities that become stronger over the last 2.5 millennia. Pollen indicators of
cultures (Secale, Linum, Vitis) are found as a continuous signal over the last millennia.
Moreover, herbaceous taxa found nowadays in the lacustrine vegetation belts in the
case of water decrease, are quite important.

5.3 Climate reconstruction20

Table 3 shows that the reliability of both methods is good, in particular for the recon-
struction of summer precipitation and winter temperature. Quantitative climate recon-
structions for PG2 were performed for annual temperature and precipitation, and sum-
mer/winter temperature and precipitation (Fig. 7). Values of the seasonal temperature
and precipitation parameters are expressed as anomalies and thus can be compared25

with the results obtained from PG1 core (Peyron et al., 2012) and with the reconstruc-
tion of temperatures of the warmest/coldest month for South-Western Europe (Davis
et al., 2003). It is clear that although similarities exist, there are distinct differences
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between methods. The most important difference between methods occurs over the
last 3000 yr (Fig. 7) with more marked changes using the MAT. These strong oscilla-
tions can be due to human impact and to the fact that MAT is more sensitive than WA-
PLS, particularly when the variability of modern pollen spectra is highly due to human
impact. For the last 3000 yr, the amplitude of the changes reconstructed with the MAT5

needs to be interpreted with caution. However, if high criticism was often addressed
to the reliability of modern pollen data for the reconstruction of climate, given that hu-
man impacts may influence these modern pollen samples, our pollen-based climate
reconstructions appears to show solid results and a consistent trend through time.

Despite differences in the reconstruction of the amplitude of changes, both meth-10

ods underline a clear climate trend towards aridification and warming over the last 3
millennia. This trend was interrupted by several phases characterized by cooling and
moisture. A first cooling phase is reconstructed between 2600 and 2000 cal BP, which
corresponds to a maximum of precipitation. Other phases of cooling and moisture are
found at 1650–1100, 850–550, 400–200 cal BP.15

Enough precipitation should have been available in the ancient Greek site of Mor-
gantina, nearby Pergusa, as a public fountain was fed only by rainy water in the 4th
cent. BC (Malcolm Bell, personal communication, 31 January 2013). It is interesting to
note what happened in other Mediterranean sites: the lake level at lake Malik (Alba-
nia) is medium/high between 2600 and 2000 cal BP (Fouache et al., 2010) and at lake20

Accesa (central Italy) between ca. 2800 and 2000 cal BP (Magny et al., 2007). Most
importantly this period roughly coincides with the highest phase of the lake level and
the amount of precipitation (2500–2140 cal BP) in southern Spain as reconstructed
in Zoñar Lake (Mart́ın-Puertas et al., 2009). Stable isotope records from lake Shkodra
(Albania) show the wettest period of the last 4500 cal BP at ca. 2500–2000 cal BP25

(Zanchetta et al., 2012b). The first two phases of cooling (2600–2000, 1650–1100 cal
BP) chronologically comprehend the last two periods of the Calderone glacier expan-
sion (Giraudi et al., 2011). A general correlation is found with climate trends recon-
structed in Morocco (Cheddadi et al., 1998) and with the phases of more important
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erosional activity in Tunisia (Marquer et al., 2008), which seems well correlated with
phases of precipitation increase that we reconstruct in Sicily.

These arguments support the hypothesis that landscape changes recorded at Per-
gusa over the recent past were mainly related to climate stress more than to human
impact on vegetation.5

6 Conclusions

In order to assess the degree of human-environment interactions there is the urgent
and unavoidable need to carry out scientific investigations on natural archives linked
to human history like Lago di Pergusa. Lago di Pergusa turned out to be a privileged
observatory for climate changes and human activity, even if the two signals cannot be10

easily distinguished only by pollen. This is not a negative issue at all, but a positive
one. Failure to consider the complex interactions between humans and their environ-
ment could have lead either to an environmentally deterministic view of socio-cultural
change or to a complete neglect of possible environmental impact on human action
and history.15

Our data show that the first phase of opening of forests recorded in the core lasted
for more than two millennia, from ca. 5400 to ca. 3200 cal BP, a period characterized
by frequent though slight vegetation changes. A strong change of the environment
occurred around 3200 cal BP, when an expansion of Olea is found. After 2700 cal BP
human impact is uncontested and overlapped a natural change. We were in fact able20

to get two different, mixed and hard to disentangle, clues from pollen, signalling both a
climatic and a human impact.

A solution to come over from this impasse was to use present-day lacustrine veg-
etation studies, climate reconstructions from pollen using different methods and other
proxies from the same site and from nearby sites. Preliminary data from isotope anal-25

yses of the sediments (Zanchetta et al., 2013) show several anomalies between δ18O
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and δ13C curves and the vegetation changes, probably to correlate with periods of
intense land exploitation.

The important fluctuations of vegetation around Lago di Pergusa seem to be mostly
dependent from climate variations even over the recent past, but cannot be regarded
as totally independent from human activities.5

Our climate reconstruction is inevitably influenced by human-induced changes of the
landscape and the amplitude of the reconstructed changes might be overestimated in
our work. However, our results are consistent with former works from various sites all
around the Mediterranean basin, which were based on independent proxies.

Our data underlines a synergy between human activities and climate in shaping the10

landscape in Sicily in the recent past. We also propose that climate had an effect on
human activities, which could have been oriented towards the culture of olive-trees in
the Sicilian inlands, during a period of climate conditions favorable to its spread.

Climate reconstruction points out four phases of cooling and enhanced wetness in
the last three millennia (2600–2000, 1650–1100, 850–550, 400–200 cal BP). They15

are consistent with other climate proxies from the Mediterranean area, once more indi-
cating that a close relation existed between climate and human history.
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Carrión, J. S., Fernández, S., Jiménez-Moreno, Fauquette, S., Gil-Romera, G., González-15
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de l’Academie des Sciences de Paris, 316, 21–26, 1993.

Reille, M.: Pollen et spores d’Europe et d’Afrique du Nord, Laboratoire de Botanique Historique
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Table 1. Lago di Pergusa. Chemical data for the tephra layer from core PG2 (this paper) and
PGR1 (Sadori and Narcisi, 2001). Samples from PRG1 were newly analysed.

K2O+ K2O/
SiO2 TiO2 Al2O3 FeOtot MnO MgO CaO Na2O K2O P2O5 ClO Total Na2O Na2O

PG2-2 54.59 2.40 17.53 7.31 0.32 2.07 4.49 5.82 4.54 0.55 0.38 100 10.36 0.78
PG2-3 53.81 1.78 17.67 8.26 0.05 3.09 5.67 5.15 3.77 0.5 0.25 100 8.92 0.73
PG2-4 52.47 1.95 16.65 9.84 0.19 3.42 7.38 4.76 2.59 0.52 0.23 100 7.35 0.54
PG2-5 52.09 1.94 16.58 9.74 0.17 3.36 5.94 5.27 4.20 0.48 0.23 100 9.47 0.80
PG2-6 52.86 1.90 17.31 9.09 0.16 3.22 6.16 4.20 4.74 0.58 0.18 100 8.54 0.80
PG2-7 51.86 1.95 16.98 10.34 0.17 3.42 7.24 4.61 2.82 0.38 0.23 100 7.43 0.61
PG2-9 52.47 2.07 16.46 9.56 0.35 3.43 6.48 5.06 3.57 0.34 0.21 100 8.63 0.71
PG2-10 52.81 1.97 16.73 9.80 0.21 3.52 6.94 4.49 2.88 0.43 0.22 100 7.37 0.64
PG2-11 52.92 2.21 16.19 9.97 0.32 2.95 6.60 5.10 3.04 0.42 0.28 100 8.14 0.60
PG2-12 53.21 2.12 16.78 9.81 0.38 3.29 4.16 5.14 4.40 0.41 0.30 100 9.54 0.86
PG2-13 51.98 2.11 16.53 10.06 0.26 3.55 6.36 4.74 3.73 0.52 0.16 100 8.47 0.79
PRG1-1 55.56 2.04 16.72 9.16 0.19 3.42 6.17 4.88 4.20 0.51 0.15 100 9.08 0.86
PRG1-2 55.56 2.44 16.23 8.58 0.10 2.22 3.63 5.31 4.98 0.78 0.17 100 10.29 0.97
PRG1-3 55.19 2.12 16.53 9.46 0.07 2.60 4.53 4.36 3.97 0.44 0.46 100 8.6 0.86
PRG1-5 52.31 2.00 16.72 8.84 0.20 3.18 6.30 5.47 4.36 0.45 0.17 100 9.83 0.80
PRG1-6 52.84 2.01 16.31 9.95 0.10 3.25 6.27 4.86 3.71 0.46 0.24 100 8.57 0.76
PRG1-6b 52.99 2.16 16.07 10.2 0.27 3.33 6.45 4.47 3.42 0.42 0.22 100 7.89 0.76
PRG1-7 52.94 1.90 16.94 9.2 0.28 3.56 6.74 5.18 2.65 0.40 0.21 100 7.83 0.51
PRG1-8 52.53 2.18 16.55 9.77 0.31 3.47 7.19 4.66 2.76 0.38 0.20 100 7.42 0.59
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Table 2. Lago di Pergusa (core PG2). AMS radiocarbon dates.

Laboratory code Material Depth (cm) 14C yr BP Calendar age BP (2σ)

Poz-36022 wood 36 130±30 57–151
Ua-42145 seeds 194 1032±30 911–988
Ua-42146 seeds 302–310 1961±33 1863–1989
Poz-36023 wood 618 5780±40 6485–6670
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Table 3. Lago di Pergusa. Climate reconstructions inferred from pollen data based on the mod-
ern analogue technique “MAT” (Guiot, 1990) and the weighted average-partial least square
method “WA-PLS” developed by ter Braak and Juggins (1993).

Climatic parameter WA-PLS (2 components) MAT (8 analogous)

Apparent Performance r2 RMSE r2 RMSE

Winter T (◦C)
Summer T (◦C)
Tann (◦C)
Winter Prec (mm/season)
Summer Prec (mm/season)
Pann (mm yr−1)

0.5674
0.5085
0.5778
0.3105
0.5799
0.4255

2.8169
2.7423
2.5040
77.57
48.555
169.84

0.724
0.6861
0.7225
0.5401
0.8232
0.6098

2.2510
2.1922
2.0308
63.379
31.509
140.02

Empirical validation r2 RMSE r2 RMSE

Winter T (◦C)
Summer T (◦C)
Tann (◦C)
Winter Prec (mm/season)
Summer Prec (mm/season)
Pann (mm yr−1)

0.5505
0.5267
0.5716
0.2512
0.5815
0.3695

3.7689
3.3858
3.3719
74.0907
67.2396
191.0206

0.6916
0.5842
0.6673
0.4817
0.797
0.5815

3.8203
3.5166
3.4569
79.956
70.438
197.11
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Fig. 1. Lago di Pergusa: (a) Location map of cores PG2 and PRG1. The ellipsis roughly marks
the lake perimeter when core PRG1 (Sadori and Narcisi, 2001) was sampled. (b) Aridity map of
Sicily and selected mean annual precipitation for three selected meteorological stations (from
Duro et al., 1997, redrawn). (c) Sketches of lacustrine vegetation: A. maximum lake level, B.
minimum lake level. Dominant taxa of the lacustrine vegetation concentric belts: a – Phrag-
mites australis, b – Juncus maritimus, c – Atriplex, latifolia d - Suaeda maritima, e – Salicornia,
f – Chara; g – microbial mat (from Calvo et al., 1995, modified). 1d. Main archaeological
sites around Lago di Pergusa: 1 – Case Bastione (Neolithic Age, Copper Age); 2 – Realmese
(Bronze Age, Iron Age); 3 – Malpasso (Iron Age); 4 – Calcarella (Bronze Age, Iron Age); 5 –
Enna (Copper Age, Bronze Age, Greek period, Middle Ages); 6 – Cozzo Matrice (Copper Age,
Greek period); 7 – Riparo di Contrada S. Tommaso (Bronze Age); 8 - Monte Giulfo (Greek pe-
riod); 9 – Capodarso (Copper Age, Bronze Age, Greek period); 10 – Rocche (Greek period);
11 – Montagna di Marzo (Greek period); 12 – Rossomanno (Greek period, Middle Ages); 13
– Morgantina (Greek and Roman periods); 14 – Contrada Gaspa (Roman period); 15 – Con-
trada Runzi (Roman period); 16 – Canalotto (Middle Ages) (from Sadori and Giardini, 2008,
modified).
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Fig. 2. Lago di Pergusa: PG2 core. Lithology, Uncalibrated Volume susceptibility, linear interpo-
lation of AMS calibrated dates. A thin black layer, observed in the section 01-C2, corresponds
to the ash event dated in PRG1 at 3055±75 yr BP (Sadori and Narcisi, 2001).
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Fig. 3. Lago di Pergusa: total Alkaly vs Silica diagram (Le Bas et al., 1986) for tephra in Pergusa
cores (PRG1 and PG2).
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Fig. 4. Lago di Pergusa: pollen percentage diagram.
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Fig. 6. Lago di Pergusa: comparison between pollen diagrams PG2 (this work) and PRG1
(Sadori and Narcisi, 2001). The diagram portions comprehended between the dotted lines
probably cover the same time interval.
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Fig. 7. Pollen-based climate reconstructions for the Pergusa PG2 with special attention to re-
constructions of temperature and precipitation seasonality. Climate values are estimated using
two methods: the Modern Analogues Technique (MAT), and Weighted Average Partial Least
Squares regression (WAPLS). Warmest and coldest month temperatures (◦C) are plotted to-
gether with the seasonal precipitation (winter = sum of December, January, February precip-
itation, and summer = sum of June, July, August precipitation, in mm) values. A comparison
between PG2 (this study) and the reconstruction of temperatures of the warmest/coldest month
(anomalies) for South Europe (Davis et al., 2003) is also shown.
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