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Abstract

We present a description of the theoretical framework and “best practice” for using
the paleo-climate model component of the Coupled Model Intercomparison Project
(Phase 5) (CMIP5) to constrain future projections of climate using the same models.
The constraints arise from measures of skill in hindcasting paleo-climate changes from5

the present over 3 periods: the Last Glacial Maximum (LGM) (21 thousand years be-
fore present, ka), the mid-Holocene (MH) (6 ka) and the Last Millennium (LM) (850–
1850 CE). The skill measures may be used to validate robust patterns of climate
change across scenarios or to distinguish between models that have differing out-
comes in future scenarios. We find that the multi-model ensemble of paleo-simulations10

is adequate for addressing at least some of these issues. For example, selected bench-
marks for the LGM and MH are correlated to the rank of future projections of precipita-
tion/temperature or sea ice extent to indicate that models that produce the best agree-
ment with paleoclimate information give demonstrably different future results than the
rest of the models. We also find that some comparisons, for instance associated with15

model variability, are strongly dependent on uncertain forcing timeseries, or show time
dependent behaviour, making direct inferences for the future problematic. Overall, we
demonstrate that there is a strong potential for the paleo-climate simulations to help
inform the future projections and urge all the modeling groups to complete this subset
of the CMIP5 runs.20

1 Introduction

The Coupled Model Intercomparison Project (Phase 5) (CMIP5) is an ongoing coor-
dinated project instigated by the Working Group on Coupled Modelling (WGCM) at
the World Climate Research Programme (WCRP) and consisting of contributions from
over 25 climate modeling groups (and over 30 climate models) from around the world25

(Taylor et al., 2012). Multiple experiments are being coordinated, including historical
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simulations for the 20th Century (starting from 1850), future simulations following mul-
tiple Representative Concentration Pathways (RCPs) and crucially, for the first time
in CMIP, three sets of paleo-climate simulations for the Last Glacial Maximum (LGM)
(21 K Before Present (BP)), the Mid-Holocene (MH) (6 K BP) and the Last Millennium
(850–1850 CE). The paleo simulations are also part of the Paleoclimate Model Inter-5

comparison Project (Phase 3) (PMIP3) initiative.
The CMIP5/PMIP3 paleo-simulations are true “out-of-sample” tests in that none of

the models have been “tuned” to produce better paleo climates. This is not necessarily
unwise (see Schneider von Deimling et al. (2006) for an example), but would complicate
some of the potential analyses. Because the same models are being used for both10

past and future simulations, this dataset is a unique resource for research into the
connections between model skill and model predictions, and has the potential to greatly
improve assessments of future climate change.

There were many uncertainties in climate projections highlighted in the IPCC AR4
(Meehl et al., 2007). Many of these, such as the future of sub-tropical rainfall, El15

Niño/Southern Oscillation (ENSO) changes, potential declines in the North Atlantic
meridional circulation, the fate of Arctic sea ice, etc. have important regional impacts.
Reducing these uncertainties in the projections could have significant real world con-
sequences for both adaptation and mitigation strategies. The three main classes of
prediction uncertainty relate to: the choice of scenario, internal variability (sometimes20

described as initial condition uncertainty), and the imperfections in the model (or struc-
tural uncertainty) (Hawkins and Sutton, 2009). Scenario uncertainties inevitably grow
in importance with time particularly after about 30 yr due to the time-scales associated
with economic change, CO2 residence time and ocean thermal inertia. Initial condition
uncertainty is globally important on scales of a few years (and longer at smaller spa-25

tial scales) but predictability is fundamentally limited by the chaotic dynamics of the
atmosphere and upper ocean. Thus at the multi-decadal time-horizon, reducing and/or
better characterizing structural uncertainty is the only way to reduce overall uncertainty.
These structural uncertainties (given a specific scenario of future emissions and other

778

http://www.clim-past-discuss.net
http://www.clim-past-discuss.net/9/775/2013/cpd-9-775-2013-print.pdf
http://www.clim-past-discuss.net/9/775/2013/cpd-9-775-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/


CPD
9, 775–835, 2013

Using paleo-climate
comparisons to
constrain future

projections in CMIP5

G. A. Schmidt et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

drivers) arise from a combination of model divergence – i.e. a large spread in model
predictions given the same future scenario, and model inadequacy – i.e. models that
are collectively either incomplete, inaccurate or are missing processes or feedbacks.
The first effect is explicit (though not completely explored) in the multi-model ensemble,
while the second is implicit and needs to be assessed independently.5

Observations provide the means to potentially test the models and reduce these
uncertainties, but unfortunately, instrumental records of useful data targets are few
(essentially limited to situ networks of temperature and rainfall prior to the satellite
era), and perhaps more importantly, changes in the recent past are relatively small
compared to projections for the future. Furthermore, the majority of skill metrics in10

historical (20th Century) simulations do not constrain future projections: models that
are either good or bad at simulating some aspect of modern climate – the climatology,
seasonal cycle, or interannual variability – often give essentially the same spread of
future projections (Santer et al., 2010; Knutti et al., 2010). Paleo-climate changes from
the present offer a substantially larger signal and although paleo-climate records are15

often affected by substantial noise and difficulties in interpretation (Schmidt, 2010), the
most robust reconstructions can provide a crucial test of model performance wider than
the range of the 20th Century climates.

There has been much evaluation of paleo-climate simulations via earlier incarnations
of PMIP, as well as many individual studies (see the review by Braconnot et al., 2012,20

and references therein). However, there has been a lack of analyses that quantitatively
link future simulations or forecasts with skill or sensitivity in the paleo-climate simu-
lations (though see Hargreaves et al., 2012b, for an example). Partly this is because
(prior to CMIP5) paleo-simulations were not done with exactly the same versions of
the models being used for future projections and partly through a lack of suitable skill25

metrics for paleo-climate change. This paper is therefore specifically not focused on
understanding paleo-climate change for its own sake but rather is meant as a guide to
the appropriate theoretical framework for quantitatively linking past and future that can
be applied to data from the CMIP5 archive.

779

http://www.clim-past-discuss.net
http://www.clim-past-discuss.net/9/775/2013/cpd-9-775-2013-print.pdf
http://www.clim-past-discuss.net/9/775/2013/cpd-9-775-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/


CPD
9, 775–835, 2013

Using paleo-climate
comparisons to
constrain future

projections in CMIP5

G. A. Schmidt et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

For clarity in the rest of the text, we define the term “ensemble” to denote the full
multi-model database of results across all scenarios (which here encompasses all pa-
leoclimate, historical, idealized and future projection simulations). The future projec-
tions used here consist of the four RCP scenarios (rcp26, rcp45, rcp6, rcp85) (future
possibilities that roughly produce radiative forcing at the year 2100 relative to 2000 of5

2.6, 4.5, 6.0, and 8.5 Wm−2, respectively) along with idealised simulations have been
included to provide clean comparisons across models (such as 1 % increasing CO2
simulations, the response to an abrupt increase to 4×CO2, atmosphere-only simula-
tions etc.). For ease of reference, we will use CMIP5 to refer to the entire database,
including the PMIP3 simulations. Specific model simulations are referred to by their10

name in the CMIP5 database (i.e. rcp85, past1000, PIcontrol etc.), while the scenarios
or periods when are referred to more generally using a standard abbreviation or name
(e.g. the LGM, MH, RCP 4.5).

The scope of the paper is as follows: Sect. 2 discusses theoretical frameworks for
dealing with the multi-model ensemble, issues arising from the use of paleo-proxy data15

and the use of data-synthesis products; Sects. 3 and 4 discuss specific examples of
skill metrics that may have predictive power in future simulations by showing robust
behaviour across paleo and future experiments, or discriminate between future projec-
tions. Sect. 5 presents some exploratory analysis of additional potentially useful met-
rics that either diverge over time or are too sensitive to important uncertainties; Sect. 620

concludes and discusses the potential for further work in this area. We list the models
that we have used in analyses in this paper, along with the specific experiments and
simulation IDs, in Table 1.
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2 Methodologies

2.1 Palaeoclimate reconstructions

Many of the problems in dealing with reconstructing climate from paleodata are specific
to the type of record, the time period and resolution concerned – for instance, annually
resolved tree rings have issues distinct from lower resolution ocean sediment or pollen5

records. (e.g. Kohfeld and Harrison, 2000; Ramstein et al., 2007; Jones et al., 2009;
Harrison and Bartlein, 2012). There are however a number of general issues that affect
the use of such data for model evaluation, including the potential for multiple climate
controls on a given record, the scale over which they are representative, the need
to quantify (and take into account) reconstruction uncertainties, and the sparse and10

uneven site coverage.
Records used for palaeoclimate reconstructions are in general influenced by several

different aspects of climate as well as, potentially, non-climatic factors. For instance,
oxygen or hydrogen isotopes from ice cores, carbonates or organic matter are phys-
ically meaningful variables, but do not necessarily have a one-to-one stationary re-15

lationship with temperature or precipitation (e.g. Werner et al., 2000; Schmidt et al.,
2007; Masson-Delmotte et al., 2011). Vegetation, in addition to being influenced by
several aspects of seasonal climate, is directly influenced by the atmospheric CO2
concentration (Prentice and Harrison, 2009). There are several approaches that have
been adopted to overcome this type of problem: the use of multi-proxy reconstruction20

techniques, forward modeling of the system within a climate model or using climate-
model output (see an example related to coral carbonate isotopes in Sect. 5.1), and
model inversion or data assimilation. Multi-proxy reconstructions rely on the idea that
different types of record will be sensitive to different aspects of climate, and that pool-
ing the information from each of these records therefore provides a more robust re-25

construction of any specific climate variable. In the sense that forward modeling (and
by extension model inversion techniques) are based on physical and or physiological
knowledge of the given system, the use of these approaches may be a more robust
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way of dealing with the non-stationarity issue – however, as with climate models, the
results are constrained by the quality of the models and the degree to which the sys-
tem is well-understood (see for example the discussion of CO2 fertilisation in Denman
et al., 2007).

The scale over which a record is representative can be a major issue in comparing5

paleodata and model output. All types of records are responding to local conditions,
and for basic meteorological variables it is rare for a record to be representative for
spatial scales of more than 50–100 km (though many records, such as tropical ice core
δ18O, may have strong correlations to climate further afield; e.g. Schmidt et al., 2007).
Comparisons at these scales often require some form of dynamical or statistical down-10

scaling of model output, though there are many associated issues (Wilby and Wigley,
1997). Alternatively, up-scaling reconstructions (for instance, through the use of grid-
ding) can often reveal large-scale patterns that models could be expected to resolve,
although this requires a sufficiently dense network of sites. Recent developments in-
clude the use of cluster analysis to classify types of model behaviour and to determine15

cohesive regions for comparison with the large-scale patterns in the observations (e.g.
Bonfils et al., 2004; Brewer et al., 2007; Harrison et al., 2013).

Paleoclimate reconstructions are usually accompanied by estimates of measurement
or statistical uncertainty. However, in past practice these uncertainties were rarely prop-
agated into large-scale synthetic products (except in terms of non-quantitative quality20

control measures, see e.g. COHMAP, 1988) and even more rarely taken into account
when the reconstructions were used for model evaluation. However, quantitative mea-
sures of uncertainty have been included in more recent palaeoclimate syntheses (e.g.
MARGO, 2009; Bartlein et al., 2011) and the use of fuzzy-distance measures (Guiot
et al., 1999) provides an explicit way to take account data uncertainties in data-model25

comparisons. It is worth noting that model-data differences cannot be expected to be
smaller than the data uncertainties themselves.
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2.2 Paleo-modelling issues

There are two particular issues that are more problematic in paleoclimate simulations
than, for instance, simulations of the 20th Century: model drift and forcing uncertainty.
The issue of coupled climate model drift arises because of the long (∼ thousands
of years) time required to bring the deep ocean into equilibrium in coupled ocean-5

atmosphere models. In some cases, insufficient spin-up time may have been allowed
before specific experiments are started. While drift also affects transient historical sim-
ulations, the relatively large forcings in the 20th Century mean that residual drift is
usually a small component of the transient response. For simulations of the last millen-
nium though, the forcings are much smaller, and drift in the early centuries of the simu-10

lation will be a larger fraction of the modelled change (Osborn et al., 2006; Fernández-
Donado et al., 2012). One proposal to deal with this is via a correction using the drift
in the control simulation (i.e. calculating a smooth trend and removing it from the per-
turbed simulation prior to analysis). While this works well for temperature, it is not very
good for variables that exhibit threshold behaviour such as sea ice extent or precipita-15

tion. In practice, this issue needs to be assessed for each proposed comparison.
Secondly, there are important uncertainties in the forcings used for the paleoclimate

experiments. This is also true for aerosols in the 20th Century simulations, for instance,
but such issues are more prevalent in paleo-simulations. For example, both the mag-
nitude of solar or volcanic forcing over the last millennium, and the size and height of20

ice sheets at the LGM are sources of major uncertainty. In the last millennium exper-
iments, multiple forcing choices were proposed (Schmidt et al., 2011, 2012), but few
groups have attempted (as yet) to comprehensively explore all the options, and this is
also true for uncertainties associated with other time periods. If an insufficient range of
different forcings is tested, it is plausible that mismatches between observations and25

simulations may be wrongly attributed to the model (or observations), when in fact they
was related to a mis-specified forcing (e.g. Kageyama et al., 2001).
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It should also be noted that multi-model ensembles are not a controlled sample from
a well-defined distribution of plausible simulations. Models are necessarily incomplete
and there are common biases that have more to do with the state of computational
technology than physics (for instance, poor or non-existent resolution of ocean ed-
dies). Multi-model ensemble means can be informative and will generally outperform5

individual models (Annan and Hargreaves, 2011), but care must be taken to assess
the suitability of each included model and weighting of individual models needs to be
well justified (Knutti et al., 2010).

2.3 Approaches to comparing reconstructions and simulations

There has been a gradual evolution in the approaches for comparing reconstructed10

changes and simulations from essentially qualitative graphical comparisons of model
output and reconstructions of the corresponding climatic variables (e.g. Braconnot
et al., 2007) to more quantitative approaches that measure model- data mismatch via
some “metric” or distance function (e.g. Sundberg et al., 2012; Izumi et al., 2013).
Metrics based on correlations or RMS differences between fields of modern data15

and model output have been commonly used in model evaluation (e.g. Taylor, 2001;
Schmidt et al., 2006; Gleckler et al., 2008). These methods provide opportunities for
both inter- and intra- generational model comparisons (Reichler and Kim, 2008; Harri-
son et al., 2013).

Focusing on the collective performance of the ensemble as a whole, Hargreaves20

et al. (2011) tested the ability of the PMIP2 ensemble to represent the Last Glacial
Maximum in terms of its “reliability”; defined as the adequacy of the ensemble, consid-
ered in probabilistic terms, in predicting the changes documented in the paleo-climate
archives during that interval. The concept of “skill” as adopted in the numerical weather
prediction community is also useful as a quantitative test of model performance: that is,25

does a model produce a more accurate prediction (match to the paleo-climate record),
than that which would be achieved by a simple null hypothesis? (Hargreaves et al.,
2012b). While many studies have focused on time-slice or time-series comparisons,
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nothing precludes comparing the simulations and paleo-record in the frequency do-
main. Recent work, has looked at the fluctuations in forcings and data as a function
of timescale, and in principle, these fingerprints could also be useful (Lovejoy and
Schertzer, 2012).

2.4 Linking past and future5

There are two main ways in data-model comparisons can be used as a guide to the
future – either as a validation of a robust relationship across models and scenarios,
or as a method to discriminate between different models. A prerequisite for the latter
example is that the metric chosen actually correlates to future outcomes within the
ensemble. If this is not the case, then the metric is orthogonal to the spread in the10

projections and cannot be used to constrain it. Even when such a relationship is found,
we need to consider whether it is physically meaningful to be confident that it has not
arisen either though chance due to a small sample size or as an artifact of the model
or the experimental design. While connections may in principle be highly complex, it is
natural as a first step to consider whether a correlation exists between past and future15

behaviour in the same diagnostic. The search for useful metrics (in this sense) using
modern data has generally been disappointing (Knutti et al., 2010), although there have
been a small number of cases where apparently meaningful relationships have been
found (Boe et al., 2006; Hall and Qu, 2009; Fasullo and Trenberth, 2012). It is notable
that the first two examples relate future climate changes to externally-forced changes20

in the modern climate (relating to decadal trend, and seasonal range, respectively),
rather than using metrics based on the climatological mean state alone. This lends
support to our working hypothesis that past variations seen in paleoclimate simulations
might also be informative about the future as well as increasing understanding about
the past.25

Where a credible relationship between past and future is found, there is a range of
methods that can be applied to use observations to constrain future predictions (Collins
et al., 2012). One method, applied by both Boe et al. (2006) and Hall and Qu (2009),
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is to take the observational estimate, and use the relationship (often linear) embodied
in the correlation of model output to project this value into the future. An attractive fea-
ture of this approach, beyond its simplicity, is that it readily allows extrapolation of the
observed relationship in the case where the true value is suspected of lying outside
the model range. An alternative approach, which has been widely applied to perturbed5

physics ensembles is more explicitly Bayesian, considers the ensemble as a probabilis-
tic sample. For the prior, equal weight is typically assigned to each ensemble member.
Probabilistic weights are then calculated for each member of the ensemble, according
to their performance in reproducing the observations. This weighted ensemble now rep-
resents the posterior estimate of future change. This method uses the model spread10

as a prior constraint, which depending on one’s viewpoint, and the specific case in
question, may be considered either a strength or weakness of this approach. These
and other methods are discussed in more detail in Collins et al. (2012).

3 Robust metrics

In this section we highlight physically-based correlations between key metrics that show15

similar patterns in the paleo-climate runs and in future projections (or more idealised
scenarios). With evaluation via the paleo-climate record, these metrics can be consid-
ered robust, and thus provide contingent predications of one variable given a potential
change in the other.

3.1 Patterns of regional climate change vs. global means20

The main climate forcings for the LGM are the lower concentrations in atmospheric
greenhouse gases and the presence of Laurentide and Fenno-Scandinavian ice-sheets
in the northern extratropics. The ice sheets have a strong local albedo effect (e.g. Bra-
connot et al., 2012) but also affect the mid-latitude large-scale atmospheric circulation
due to the associated change in topography (e.g. Pausata et al., 2011; Rivière et al.,25
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2009; Laı̂né et al., 2009). However, away from this perturbation for the atmospheric
radiative budget and for the atmospheric dynamics, we expect that the greenhouse
gas forcing would be the main forcing for the LGM climate change. There could then
be a relationship between LGM climate change and future climate change for a given
model, which could be useful in testing the ability of climate models in reproducing5

regional climate change relative to the global change.
Figure 1 shows the results comparing the mean annual surface air temperature

change over a region compared to the global mean change for the abrupt 4xCO2,
1pctCO2 and lgm CMIP5 simulations across a suite of models. We have considered
the tropics (land+oceans) and the tropical oceans, which have been used previously in10

perturbed physics ensemble studies (Schneider von Deimling et al., 2006; Hargreaves
et al., 2007), East Antarctica, for which the temperature change is shown to scale with
global temperature change for the LGM and the CMIP3 2xCO2 and 4xCO2 changes
(Masson-Delmotte et al., 2006a,b) and the well documented mid-latitude region of the
North Atlantic and Europe.15

For the tropics, for land and ocean points as well and ocean points only, Fig. 1 shows
that the relationship between the regional and global temperature change exists for the
1pctCO2 and abrupt 4xCO2 anomalies, and is consistent across these two experi-
ments. Such a relationship also exists for the LGM, but the slope is clearly lower than
for the increased CO2 experiments. Furthermore, the models which simulate the small-20

est warming for increased CO2 are not those which simulate the smallest cooling for
LGM (and similarly for the models with the largest warmings and coolings). The re-
gional vs. global temperature change relationship appears more consistent between
LGM and increased GHG forcings for East-Antarctica and, surprisingly, over the North
Atlantic/Europe region. However, for the tropics, rankings of the models according to25

their cooling for LGM and warming for 1pctCO2 and abrupt 4xCO2 are not consistent.
This shows that either the impact from the lower GHG concentrations are not symmet-
ric compared to those for increased GHG concentrations, or that the ice-sheet remote
impact extends to the tropics (Laı̂né et al., 2009).
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3.2 Land-ocean contrasts

Model results have consistently shown that for the LGM, the continents cooled more
than the ocean (e.g. Braconnot et al., 2007, 2012; Laı̂né et al., 2009), while, in a sym-
metric manner, predictions for future climate show a stronger warming over land than
over the oceans (e.g. Sutton et al., 2007; Drost et al., 2011). The ratio between cooling5

over land and cooling over the ocean for the LGM tropics was ∼1.3 in the PMIP1 com-
puted sea surface temperature (SST) simulations (Pinot et al., 1999), a result close to
the ratio of ∼1.5 found for the PMIP2 fully coupled LGM experiments (Braconnot et al.,
2012) and conspicuously close to the 1.5 ratio found by Sutton et al. (2007) for future
climate.10

This relationship also holds in the most recent CMIP5 simulations (Fig. 2) not only for
the tropics but also for the well-documented region of the North Atlantic and Europe,
consistent with the LGM data. It is worthwhile to note that this pattern was previously
used to highlight the inconsistency in an earlier compilation of tropical LGM sea surface
temperatures (Rind and Peteet, 1985). We conclude that these relationships are indeed15

robust, although they appear imperfectly understood (Lambert et al., 2011).

3.3 Regional extremes

Extreme climate events such as heatwaves and cold spells can have long lasting im-
pacts on society or ecosystems (IPCC SREX, 2012). The development of such events
spans days to a few weeks, so that they are largely intra-seasonal by nature (Senevi-20

ratne et al., 2012). In such a context, the generally linear relationship between recon-
structions and actual climate can be strongly distorted. Hence, since extreme events
are by definition rare, large numbers of examples are required to get good statistics.
Simulations of the past millennium offer a promising tool to investigate modeled ex-
tremes since they sample a large range of possible cases. The strongest limitation for25

an application of this method to paleoclimatic data has been the necessity of dealing
with daily data in order to capture behavior that is non-Gaussian and the need for proxy
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data that record extreme variables (Jomelli et al., 2007). However, if we can demon-
strate the robustness of the relationships between short and longer term statistics over
long periods of time, and/or their dependence on external forcings, we can potentially
predict the behavior of temperature extremes in the future.

The statistical analyses of (daily) temperature hot extremes of the 20th century have5

shown that temperature is generally a bounded variable, for which the upper bound can
be computed from the statistical parameters of extremes (Parey et al., 2010a,b). Diag-
nostic studies focusing on the probability distribution of temperature and precipitation
extremes are often based on the application of Extreme Value Theory (EVT), though
simpler metrics have also been used (e.g. Hansen et al., 2012). EVT describes the10

behavior of the probability distribution near the tails, and allows one to compute return
levels for return periods that are longer than the period of observation (Coles, 2001).
It has been applied to meteorological observations (Parey et al., 2010a), reanalysis
data (Nogaj et al., 2006) and model simulations (Kharin et al., 2005, 2007) in order to
quantify trends of extremes.15

It has also been shown that the extremes of hot and cold temperatures are correlated
with mean temperatures over the northern extra-tropics (Yiou et al., 2009). Until now,
few models had provided daily output of temperature or precipitation on multi-century
timescales (Jansen et al., 2007). However, with increasing storage capacity, daily reso-
lution data is becoming more common and was requested for simulations in the CMIP520

archive (Yiou et al., 2012).
In the extra-tropics, seasonal summer heatwaves are generally preceded by

droughts in the Winter-Spring seasons (Fischer et al., 2007; Vautard et al., 2007) with
a mechanism that involves a positive feedback between sensible heat fluxes, evapo-
transpiration and temperature (Schår et al., 1999) and this has also been found in25

global and regional models for future projections (Seneviratne et al., 2006, 2010; Que-
sada et al., 2012). A useful statistical metric to connect winter-spring precipitation and
summer temperature is quantile regression. Ordinary least-squares regression focuses
on the mean values of variables to be connected but by setting a threshold based on
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high (or low) quantiles of the variable to be predicted, one can build regression coeffi-
cients conditional to high (or low) values of this variable (Koenker, 2005). We illustrate
this diagnostic in Fig. 3, by computing the quantile regression for 90th and 10th quan-
tiles of the summer hot day frequency and winter-spring precipitation frequency in the
IPSL-CM5A-MR historical simulation and the E-OBS gridded dataset (Haylock et al.,5

2008). The quantile regression slopes illustrate the asymmetry of the precipitation or
temperature dependence for hot or cool summers in Western Europe (Hirschi et al.,
2011; Mueller and Seneviratne, 2012; Quesada et al., 2012; Seneviratne and Koster,
2012).

The general picture is that a dry winter/spring tends to favor a hot summer. But while10

wet winter-spring conditions are generally followed by cool summers (small spread be-
tween low and high quantiles), dry winter-spring conditions can be followed by cool
summers as well as heatwaves (large spread between low and high quantiles), be-
cause the genesis of heatwaves can be broken in just a few days, due to fast variations
of the synoptic atmospheric circulation (Hirschi et al., 2011; Quesada et al., 2012). This15

feature has been tested on CMIP3 and some CMIP5 simulations for the present and
A2/rcp85 scenarios. It was shown that the seasonal predictability of large European
heatwaves decreases under warmer conditions, although their frequency increases
(Quesada et al., 2012).

There have been many studies compiled by historians focusing on European heat-20

waves in recent centuries and their impacts on society (Le Roy Ladurie, 2004, 2006;
Barriendos and Rodrigo, 2006; Camuffo et al., 2010). Hence, using a metric to cap-
ture heatwave dynamics is a promising approach to investigate major heatwaves that
struck Europe during the last millennium, and to explore the relationship between sum-
mer temperature and winter-spring precipitation preconditioning, with different climate25

forcings, especially land use, though this remains a work in progress.
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4 Discriminating metrics

In this section we highlight metrics for which we have paleoclimate information that
serve to discriminate between models that show different behaviours in future projec-
tions (or more idealised scenarios).

4.1 Rainfall change in South America5

Projections of precipitation change in South America have a large spread in the CMIP3
archive (Meehl et al., 2007). In future projections, most models simulate a dipole of
precipitation change in Northern South America, but the sign of this dipole depends on
the model. If this feature is an intrinsic response in each model to a forcing, it might be
possible to evaluate the dipole response in the paleo-climate simulations.10

We define the precipitation dipole as the annual-mean precipitation averaged over
0◦–8◦ N–60◦ W–50◦ W minus the annual-mean precipitation averaged over 5◦ S–15◦ S–
45◦ W–35◦ W. Over the 16 models examined here, the models that have the 5 lowest
values for rcp85-piControl precipitation dipole change are classified as group 1; those
with the 5 highest values are classified as group 3, and the remainder, in group 2. The15

group 1 models simulate drier Guyana, Venezuela and Colombia, and wetter Nordeste
and Eastern Brazil, associated with a Southward shift of the Inter-Tropical Convergence
Zone (ITCZ). The group 3 models simulate a wetter Venezuela and drier Eastern Brazil,
associated with a Northward shift of the ITCZ.

Figure 4 shows a strong link between precipitation changes in the future and pre-20

cipitation changes in the MH. Models in group 1 show a dipole in the MH which is
similar to the dipole they simulate in the future, with a strong Southward shift of the
ITCZ. In contrast, models of group 3 show instead a broadening of the ITCZ in the
MH. Therefore, paleo-proxies of precipitation along the South American coast could
help determine which group of models is the most realistic in the MH, and, by ex-25

tension, which simulation of future change has greater credibility (Silva Dias et al.,
2009) The Prado et al. (2013) paleo-data synthesis for South America suggests drying
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everywhere except over Northeastern Brazil, a pattern that is most consistent with that
simulated by the group 1 models.

To gain confidence in such a paleo-constraint, we need to understand the physical
processes that explain the common behavior between past and future. This prelimi-
nary analysis will not fully answer this question, but it does illustrate how to make use5

of the wealth of past, future and idealized CMIP5 simulations. Table 1 shows a se-
lection of correlations between precipitation changes and other model features. First,
in the future climate, shifts in the ITCZ seem to be associated with shifts in the SST
dipole in the Atlantic: models that shift the ITCZ the most southwards are those with
the strongest warming south of the Equator relative to the rest of the Atlantic. ITCZ10

shifts in response to SST dipoles are expected (e.g. Kang et al., 2008). However, this
relationship does not seem to hold for the MH to PI change. Second, the atmospheric
component of the model also appears to play a key role. Some of the different model
behaviors can be seen in amipFuture simulations, where all models are forced by the
same pattern of SST warming. In addition, much of the different model behaviors can15

already be seen in sstClim4xCO2 simulations, where a quadrupling of CO2 is imposed
with SST held constant. This is consistent with the fast response to CO2 being an
important component of the total precipitation response in global warming (e.g. Bala
et al., 2009). Models that decrease precipitation over Northern South America in the
projections and in the MH are those that decrease precipitation over this region under20

4×CO2. They also happen to be the models with the strongest land surface warming in
response to both 4×CO2 and to MH forcing. Therefore, the different groups of models
show different precipitation response to SST changes, orbital forcing and to 4×CO2,
but the response shows similarity between all these different forcings and within each
model group. This suggests that common mechanisms are involved in the precipitation25

response to all forcings, and that this is representative of each individual model. Finally,
it is worth noting that models in group 3 often show the most significant “double ITCZ”
problem in the Atlantic, an obvious, and persistent, common model bias.
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4.2 LGM constraints on climate sensitivity

The LGM has been a prime target for assessments of climate sensitivity since it is
a quasi-stable period with significant climate differences from today, with reasonably
well-known boundary conditions and sufficient data to reconstruct large-scale climate
shifts (e.g. Lorius et al., 1990; Edwards et al., 2007; Köhler et al., 2010; Schmittner5

et al., 2011; PALAEOSENS, 2012).
We can apply the methods described in Sect. 2 to estimate of the equilibrium climate

sensitivity based on the CMIP5 LGM simulations. We use an ensemble of opportu-
nity consisting of 7 models which participated in the PMIP2 experiment, together with
4 CMIP5 models for which sufficient data are available (at time of writing). Estimates of10

the climate sensitivities of these models were obtained from a variety of sources and
were derived using a range of methods. For the PMIP2/CMIP3 models, sensitivity was
generally calculated using a slab ocean coupled to the atmospheric component (Meehl
et al., 2007), whereas in CMIP5, the most readily available estimates use a regression
based on a transient simulation (Andrews et al., 2012). These estimates are not per-15

fectly commensurate, with some models reporting a 10 % difference in the two meth-
ods (Schmidt et al., 2013). Some of the PMIP2 models used for the LGM simulations
may also differ from the equivalent CMIP3 versions for which the sensitivity estimates
were made. Thus, the values used here may be somewhat inconsistent and imprecise,
although we expect the uncertainty arising from these sources to be modest in compar-20

ison to the range of values represented across the ensemble. The boundary conditions
for the LGM simulations are essentially unchanged between PMIP2 and CMIP5 (save
for changes in the shape of the imposed ice sheets), allowing us to consider these ex-
periments as broadly equivalent (though there are some systematic biases, Kageyama
et al., 2012). Limitations in the boundary conditions (such as the exclusion of dust25

and vegetation effects) may, however, introduce additional bias and uncertainty into
our result, which we do not attempt to account for here. For these and other reasons
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discussed below, these results should be considered as a proof of concept rather than
conclusive.

The LGM was associated with a large negative radiative forcing anomaly with respect
to the pre-industrial including substantially lower concentrations of greenhouse gases
(e.g. Köhler et al., 2010). However, the ensemble does not show an expected negative5

correlation between climate sensitivities and their globally averaged LGM temperature
anomalies (over the full 100 yr of simulation output) (Fig. 5a, see also Crucifix, 2006).
There is a strong negative correlation in the tropics, most strongly in the latitude band
10◦ S–30◦ N (Fig. 5b) (Hargreaves et al., 2012a). The correlation is weaker at higher
latitudes where the feedbacks in response to large cryospheric changes may be very10

different to those exhibited in a future warmer climate. There is also a strong positive
correlation in the southern ocean (i.e., colder LGM anomalies are linked with lower
sensitivity), possibly due to a large range of biases in the control climate (Fig. 5c).
The correlation of piControl temperatures to sensitivity points to the Arctic and the
southern oceans as regions where base climatology impacts sensitivity, probably via15

cloud effects (see Trenberth and Fasullo, 2010, for a discussion). The strong negative
correlation (r = −0.8) between the LGM temperature anomalies in the latitude band
10◦ S–30◦ N, and the climate sensitivities of the models (Fig. 6), is physically plausible,
since this region is far from the cryospheric and sea ice changes of the LGM, and the
forcing here is dominated by the reduction in greenhouse gas concentrations.20

If we assume that the correlation with tropical temperatures provides a valid con-
straint on the real climate system, we can use this correlation to project an observa-
tional estimate of the past change onto the future, as in Boe et al. (2006). Recently, An-
nan and Hargreaves (2012) generated a new estimate of LGM temperature changes,
based on a combination of several multiproxy data sets, and the ensemble of PMIP225

models. The method does not depend on the magnitude of changes estimated by the
models, but only their spatial patterns. Using the resulting estimate of LGM tempera-
ture change in this latitude band of −2.2±0.7 ◦C (at 90 % confidence), the predicted
value for climate sensitivity arising from the correlation is 2.7 ◦C, with a 90 % interval of
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1.2–4.1 ◦C calculated by Monte Carlo sampling, but this range is somewhat sensitive
to the reconstruction uncertainties.

For a more explicitly Bayesian approach, we initially assign equal probability to each
model in the ensemble. This choice can be questioned, given both the range of model
complexities, and also the possible inter or intra-generational similarities between mod-5

els of related origins (Masson and Knutti, 2010). However, quantifying these issues is
far from straightforward, so we make our choice for reasons of practicality and in order
to demonstrate the utility of the overall method. A standard kernel density estimation
based on the ensemble leads to the prior distribution presented as the green curve in
Fig. 7, which has a 90 % range of 1.7–4.9 ◦C and a mean of 3.4 ◦C. The observationally-10

derived estimate of tropical temperature gives rise to the natural likelihood function
L(M |O) = P (O|M) from which the weights are calculated (where O represents the ob-
servations, M the model simulation, L(M |O) the likelihood of the model result given the
observed data, and P (O|M) the probability of the observations assuming that the mod-
els are correct). The posterior distribution is shown in red, the bulk of which has been15

shifted to lower values with the mean reducing to 2.8 ◦C. Its 90 % probability range has
only moved slightly, however, to 1.6–4.7 ◦C. The reason for the upper limit here remain-
ing high is that the highest sensitivity model in the ensemble has been assigned a fairly
large weight since it matches the reconstructions well. The small size of the ensemble
means that this approach is rather sensitive to the presence or absence of particular20

models in the ensemble.
The two approaches differ considerably in their use of the model ensemble. In the

latter case, the ensemble is directly used as a prior estimate, which therefore imposes
quite a strong constraint on climate sensitivity even before these observational con-
straints are used. The former method may be considered as roughly equivalent to us-25

ing a prior that is uniform in the observed variable (here tropical temperature), although
this approach is rarely presented in explicitly Bayesian terms. Despite the different as-
sumptions and approaches, these methods both generate rather similar estimates for
the climate sensitivity – both assigning highest probability towards the lower end of the
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model range. The ranges are comparable with other paleo-climate derived estimates
of 2.3–4.8 ◦C (68 % confidence interval, PALAEOSENS, 2012) but, given the small en-
semble size and possible naı̈vety of the assumptions made here, these estimates may
not be robust and need to be tested using a larger ensemble.

4.3 Arctic Sea ice sensitivity constraints from the mid-Holocene5

The rate and pattern of Arctic sea ice change in the future is of key scientific interest due
both to the surprisingly rapid changes currently occurring and the large spread in model
estimates in, for instance, the onset of summertime “ice-free” conditions (Stroeve et al.,
2012; Massonet et al., 2012).

Recent studies (Mahlstein and Knutti, 2012; Abe et al., 2011) have demonstrated that10

biases in sea ice volume have a strong impact on the simulated responses to radiative
perturbations, and that there maybe a possibility to discriminate among models based
on interannual modes of variability. The mid-Holocene simulations (driven mainly by
changes in orbital forcing) may provide a orthogonal test of Arctic sea ice sensitivity.
MH insolation changes imply that NH summers were warmer than summers today15

(see Kutzbach, 1981, and many subsequent papers). Paleo-data from the circum-Arctic
region indicates that this warmth was accompanied by reductions in sea ice extent at
least during some months of the year (Dyke and Savelle, 2001; de Vernal et al., 2005;
McKay et al., 2008; Funder et al., 2011; Polyak et al., 2010; Moros et al., 2006).

The CMIP5 MH simulations (Fig. 8) consistently show decreases in sea ice extent20

from August through to November. Changes in winter months are not coherent across
the models, though these changes are not well characterised in the paleo-data either.
There is a relationship (Fig. 9) between the size of the anomaly at the MH and in fu-
ture projections, presumably reflecting the underlying sensitivity of the sea ice model
and Arctic climate in general (see also O’ishi and Abe-Ouchi, 2011). This correlation25

exists despite the variations in the cause of the ice loss (summer insolation versus
greenhouse-gas-related forcing). Although, the small size of the ensemble raises ques-
tions of robustness of the relationships, it should be possible to use the MH ice extent
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anomaly to estimate the likely loss in future projections. However, it may also be pos-
sible to use more specific or local diagnostics to compare to a wider proxy network for
a similar constraint (Tremblay et al., 2013).

5 Exploratory metrics and limitations

In this section we provide examples of where the paleo-climate information is ambigu-5

ous, or where connections seen in paleo-climate changes do not translate into the
future for some reason. This may be related to forcing ambiguities, climate-change re-
lated divergence, or potentially, a misunderstanding of the dominant processes. While
these examples are not directly informative about the future, they illustrate how the
limitations of our outlined approaches can be explored in ways that illuminate key un-10

certainties.

5.1 20th-century changes in tropical Pacific climate

The response of the tropical Pacific Ocean to anthropogenic climate change is un-
certain, partly because we do not fully understand how the region has responded to
anthropogenic influences during the 20th century. Instrumentally based estimates of15

SST do not depict an internally consistent view (Deser et al., 2010), and model simu-
lations similarly disagree regarding the 20th-century trend (Thompson et al., 2011).
Understanding trends in the tropical Pacific is particularly challenging because the
instrumental record is sparse even for the early 20th Century and long-term in situ
measurements of SST are uncommon. High-resolution paleoclimate records, particu-20

larly the large network of tropical Pacific coral δ18Ocalcite records, can be used in con-
junction with the observational record and help interpret tropical climate trends. These
proxy records respond to the combined effects of SST and the isotopic composition
of seawater (δ18Osw) (which is strongly correlated to sea surface salinity, SSS) and
can reveal changes on longer time scales. To address the limitations of each individual25
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archive, Thompson et al. (2011) proposed using a forward-modeling approach to gen-
erate synthetic coral records (i.e., pseudocorals) from observational and climate model
output and test whether these pseudocorals are in agreement with the network of coral
δ18Oc observations. If they agree with the δ18Oc records, then the causes of change
in the region may be inferred, while disagreement may reveal key uncertainties in the5

data.
The coral δ18O model from Thompson et al. (2011) calculates isotopic variations as

a function of SST and SSS, with an SST-δ18Oc slope of −0.22 ‰ ◦C−1 and the SSS-
δ18Osw slope varying by region (LeGrande and Schmidt, 2006). When driven with his-
torical SST and SSS data, this simple model of δ18Oc was able to capture the spatial10

and temporal pattern of ENSO and the linear trend observed in 23 Indo-Pacific coral
records between 1958 and 1990 (Thompson et al., 2011). The observed trends were
driven primarily by warming at the coral sites, though SSS trends were responsible for
approximately 40 % of the shared δ18Oc trend. These results not only indicate a signif-
icant SSS trend in the tropical Pacific, but also the importance of δ18Osw in simulating15

the observed δ18Oc.
However, pseudocoral records calculated from CMIP3 historical simulations did not

reproduce the magnitude of the secular trend, the change in mean state, or the change
in ENSO-related variance observed in the coral network from 1890 to 1990. Similarly
large discrepancies are present between CMIP5 simulations and the observations,20

with none of the individual CMIP5 pseudocoral networks producing trends as strong
as in the observed 20th Century coral records. While the observational coral network
suggests a reduction in ENSO-related variance and an El Niño-like trend over the 20th
century, CMIP3 and CMIP5 simulations vary greatly on both points.

The differences between observed and GCM-derived δ18Oc trends may stem from25

the simplicity of the forward model for δ18Oc, bias in the coral records, and/or errors
in the GCM SST and SSS fields. In particular, the potential role of non-climatic trends
in δ18Oc and the magnitude and spatiotemporal pattern of the δ18Osw-SSS relation-
ship needs to be further investigated. Preliminary tests with data from isotope-enabled
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coupled control simulations (LeGrande and Schmidt, 2011) support a minor role for
short term isotope variability, though it remains to be seen if longer-term trends in the
20th Century simulations are important. Previous work has highlighted potential biases
in simulated salinity fields as a potential source of the observed-simulated discrepancy
(Thompson et al., 2011, 2012). For example, CMIP3 and CMIP5 simulations display5

weak and spatially heterogeneous SSS trends, such that the magnitude of the δ18Oc
trend in CMIP3 and CMIP5 simulated pseudocorals is indistinguishable from the trends
observed in individual centuries of an unforced control run (Fig. 10, upper panel). We
also find that the trends in mean state and change in ENSO-related variance within
the basin are highly variable among the CMIP5 models, and even between ensemble10

members of the same model. On the other hand, while pseudocorals, modeled from the
new SODA 20th-century reanalysis of SST and SSS, display greater agreement with
the observed coral trends, two recent versions of this product disagree regarding the
relative contribution of SST and SSS. These results suggest that more work is needed
to constrain the magnitude of the observed 20th-century salinity trend throughout the15

tropical Pacific Ocean.
Despite the disagreement among models and runs regarding the change over the

20th Century, the CMIP5 projections converge upon a more El Niño-like (e.g. warmer
eastern equatorial Pacific) mean state change by 2100 under RCP 4.5 (with only one
model suggesting the opposite), consistent with the CMIP3 projections (Meehl et al.,20

2007). However, the models still disagree about the change in ENSO-related variance.
Further, there is no clear relationship between the magnitude of the simulated 20th-
century δ18Oc trend and the projected future δ18Oc trend in the CMIP5 ensemble
(Fig. 10, lower panel). This suggests that an agreement of the simulated 20th-century
change in the tropical Pacific with that of the observational coral network would not be25

a reliable indicator of future trends.
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5.2 Spectra and fluctuation analyses

As mentioned above, there is no restriction on what kind of variables, means, variances
or higher-order statistics can be used in these analyses. In this section we highlight
two analyses in the frequency domain that demonstrate the important role of relatively
uncertain forcings in assessing skill.5

In Fig. 11, we show the maximum-entropy method (MEM) spectra (using 30 poles)
for the NH mean land surface temperature over 8 last-millennium simulations with the
GISS-E2-R model that were run with different combinations of plausible solar, volcanic
and land use forcings (Schmidt et al., 2011, 2012). The spectra are similar for mod-
els that have the same volcanic forcing, and significantly different when the volcanic10

forcing is derived from a different dataset or where there is no volcanic forcing at all.
Specifically, interannual to multi-decadal variability is much larger when volcanoes are
imposed, and the larger the volcanic forcing, the greater the variability, with the largest
response in simulations using the Gao et al. (2008) reconstruction, compared to the
Crowley et al. (2008) reconstruction. In contrast, the difference between two different15

solar forcings (Vieira et al., 2011; Steinhilber et al., 2009) is not detectable in this met-
ric. (Note that the implementation of the Gao et al., 2008, volcanic forcing in these
simulations was mis-specified and gave roughly twice the expected radiative forcing.
Although part of the increase in variance seen here was unanticipated, given the un-
certainties in specifying the forcing, the exercise is useful in highlighting the role of the20

forcings in determining variance.)
Another analysis in the spectral domain is one focused on power law scaling (Lovejoy

and Schertzer, 1986). Several scaling studies of GCMs demonstrate that they gener-
ally simulate the statistics (including spectral scaling exponents) reasonably well up to
≈10 yr scales (e.g. Fraedrich and Blender, 2003; Zhu et al., 2006; Rybski et al., 2008;25

Lovejoy and Schertzer, 2012; Vyushin et al., 2012). This already gives us confidence in
the decadal scale responses of GCM. However, tests at lower frequencies will depend
on solar and volcanic forcings as well as the possible impacts of slow processes such
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as deep ocean or land-ice dynamics which are currently missing or perhaps poorly
represented in the models.

Following Lovejoy et al. (2012), we calculate the Root Mean Square (RMS) fluctua-
tion as a function of time-scale, from months to centuries, for the NH land temperatures
using the same eight runs of the GISS-E2-R model used above for the period 1500–5

1900 CE. Since simulations are strongly clustered according to changes in the volcanic
forcing used (Fig. 11), for simplicity we averaged over the three GRE and three CEA
volcanic and the two no-volcanic runs.

For comparison, we show the mean of the same metric from three multiproxy recon-
structions (Huang, 2004; Moberg et al., 2005; Ljundqvist, 2010). The multiproxy aver-10

age is processed with and without the 20th Century to indicate the importance of that
period for the scaling behaviour – in all cases the variance in the multi-decadal to cen-
tury scale is greatly enhanced by the recent anthropogenic trend. These curves show
fluctuations decreasing with scale over the low frequency weather regime (months to
decades) but increasing in the climate regime (decades to centuries).15

The comparison with the GISS-E2-R simulations is illuminating. First, we note that
at the decadal scale, the sign of the all the slopes changes. However, the simulations
vary in the opposite direction from the data: first growing and then decreasing with
scale. Only the volcano-free runs (bottom) qualitatively follow the reconstructions by
first decreasing and then increasing with scale. When compared to the surface data20

and multiproxy reconstructions we see that at ∼10 yr, the simulations have variance
that is too large while at longer scales (> 100 yr) the variance is too small.

These results demonstrate clear mismatches in behaviour between the models’ sim-
ulated variance at different scales and the inferred variability from multi-proxy recon-
structions. However, there are strong sensitivities to the (uncertain) external forcing25

functions, precluding a straightforward attribution of the mismatch to potentially mis-
specified forcings, missing mechanisms, insufficient “slow” variability or data problems
in the reconstructions.
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5.3 Hydroclimate divergence

Distinct from temperature, hydroclimate variability can be quantified using a range of
variables, including precipitation, soil moisture, lake levels, or other synthetic indices
(e.g. Nigam and Ruiz-Barradas, 2006). Most models provide output for these diagnos-
tics, but often these variables are not available directly from paleo-climate archives,5

creating a challenge when conducting model-data comparisons. However, calibrations
of networks of precipitation sensitive tree ring widths have been used to reconstruct the
Palmer Drought Severity Index (PDSI) in North America and Asia over the Common Era
(Cook et al., 2004, 2010). PDSI is calculated using temperaturederived estimates of the
evapo-transpiration and precipitation, and nominally represents a normalized index of10

soil moisture, with negative values indicating drought and positive values indicate wet-
ter than normal conditions. There are many outstanding issues with using variations of
the index globally to assess drought, in definition and availability and quality of inputs
and sensitivity (e.g. contrast Sheffield et al., 2012; Dai, 2012). However, we focus here
on the question of how well does this index, if derived from GCM output, reflect actual15

model soil moisture and whether this relationship changes over time.
From two GCMs (GISS-E2-R and MIROC-ESM), we calculated PDSI using model

temperature and precipitation (the Thornthwaite method) and compared this index
against the standardized (zero mean, unit standard deviation, over the 1850–1950 pe-
riod, 10 yr smoothing) total column soil moisture model output for the Central Plains of20

North America (105◦ W–90◦ W; 32◦ W–48◦ W) (Fig. 13). Prior to the start of the indus-
trial period in 1850, PDSI and soil moisture track each other closely in both models
(GISS-E2-R: r = 0.82; MIROC-ESM: r = 0.50). Beginning near the middle of the twen-
tieth century, however, the two indices begin to diverge dramatically. In one model
(GISS-E2-R) the correlation weakens considerably (r = 0.33), while in the other model25

(MIROC-ESM) the sign of the correlation actually reverses (r = −0.29).
PDSI changes over the twenty–first century indicate severe and unprecedented

drought, in contrast to the model soil moisture trends, which indicate a modest shift
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towards drying (GISS-E2-R) or even wetter conditions over the coming decades
(MIROC-ESM). The reason for this divergence is in the treatment of evapotranspira-
tion (ET) in the model soil moisture versus in the PDSI (Thornthwaite) calculation. In
this PDSI calculation, temperature is used as a proxy for the energy available while in
the GCMs the soil energy and moisture budgets are calculated directly using explicit5

physical models. In reality, Thornthwaite ET becomes increasingly decoupled from tem-
perature as the temperature increases, a factor reflected in the model soil moisture but
not in the PDSI index. For time periods with strong transient forcing in temperature
(e.g., the late twentieth century and into the future), our analysis suggests that the
usefulness of PDSI for diagnosing drought and hydroclimate trends is limited. This10

suggests caution should be used when trying to convert projected variables to those
defined from the paleoclimate record.

6 Conclusions and recommendations

In this paper, we have focused the opportunities provided by inclusion of “out-of-
sample” paleo-climate experiments within the CMIP5 framework, and specifically how15

measures of skill in modelling paleo-climate change might inform future projections of
climate change.

We have shown that some relationships are robust across the ensemble of models,
simulations and paleo-data (Sect. 3) and furthermore that there are skill measures that
are well correlated to the simulated magnitude of future change, thus allowing the likely20

magnitude of future changes to be constrained (Sect. 4). However, there is a need for
caution because of the limitations with models, the experimental setup used in CMIP5,
or with the paleo-climate data itself (Sect. 5).

Our examples suggest that there are some general requirements for attempts to
use the paleo-climate simulations to quantitatively constrain future projections. Each25

example makes use of a specific target (or targets) from a paleo-climate reconstruction
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of change, defines a metric of skill that quantifies the accuracy of the modeled changes
and assesses the connection to a future prediction. We recommend that ideally:

– paleo-data targets be spatially representative synthesis products with well-
characterised uncertainties,

– the chosen metrics shouqld be robust to uncertainties in external forcing,5

– the chosen metrics should not be overly sensitive to the model representation of
key phenomena, and are within the scope of the modelled system,

– any relationship between the targets in the past and the future predictions should
be examined, and not simply assumed.

Under these conditions, the likelihood of a significant constraint is much greater.10

We underline the need for paleo-simulations to be performed with models that are
also being used for future projections and that model diagnostics are commensurate
(see also Schmidt, 2012). Although the robustness of some of our analyses is limited by
the small number of paleo-simulations currently available in the CMIP5 database, we
hope that the demonstration of their potential to address questions relevant to the future15

should encourage other modeling groups to complete and archive these simulations.
There are also important lessons here for the paleo-data community. Our analyses

rely heavily on the use of synthesis data products, for instance the MARGO dataset for
the LGM (MARGO, 2009), pollen-based reconstructions for the Mid-Holocene (Bartlein
et al., 2011), multi-proxy reconstructions of hemispheric temperature (e.g. Moberg20

et al., 2005), or gridded tree-ring based reconstructions of PDSI for the last mil-
lennium (Cook et al., 2010). Such products are invaluable, but there is a need for
increased transparency of included uncertainties and continued expansion e.g. see
Müller et al. (2011) for sea ice extent. Increasing model complexity, for instance by
including a carbon cycle, fire models or online tracers such as water isotopes, necessi-25

tates the creation of new syntheses (e.g. charcoal records: Daniau et al., 2012; or sea
surface carbonate isotopes: Oppo et al., 2007).
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The periods and experiments chosen in paleo-climate experiments are far more lim-
ited than the number of interesting features in the paleo-climate record. The three pe-
riods selected for CMIP5 were chosen on the basis of their relative maturity (the exis-
tence of prior sets of experiments, already tested issues, existing data syntheses), but
additional periods are also potentially useful – the mid-Pliocene (2.5 million yr ago), the5

8.2 kyr event, the last interglacial, the peak Eocene etc. (see Schmidt, 2012 for justifi-
cations). Some of these periods are already being examined in a coordinated fashion
(e.g. Haywood et al., 2012, and Dolan et al., 2012, for the Pliocene), and it is to be
hoped that more will be started. Further expansion of the model experiments will in-
creasingly produce higher frequency diagnostics (daily and sub-daily variations), and10

perturbed physics ensembles, to better characterise the model structural uncertainty.
Both of these expansions will create possibilities for more, and better, tests of model
performance. In the meantime, there is already a huge scope for more informative
comparisons that can be made using the existing databases.
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Table 1. List of models, institutions and experiments used in the analyses in this paper. Ex-
periment names use the CMIP5 database shorthand, and run numbers are the “rip” coding for
each experiment.

Model Name Model Institution Experiments Run numbers

ACCESS-1.0 CSIRO (Commonwealth Scientific and Industrial Research Organisation, Aus-
tralia), and BOM (Bureau of Meteorology, Australia)

Historical r1i1p1

BCC-CSM1 Beijing Climate Center, China Meteorological Administration, China piControl r1i1p1
midHolocene r1i1p1
rcp85 r1i1p1

CanESM2 Canadian Centre for Climate Modelling and Analysis, Canada historical r[1-5]i1p1
rcp45 r[1-5]i1p1

CNRM-CM5 Centre National de Recherches Météorologiques / Centre Européen de Recherche
et Formation Avancée en Calcul Scientifique, France

piControl r1i1p1

historical r[1-10]i1p1
midHolocene r1i1p1
lgm r1i1p1
1pctCO2 r1i1p1
abrupt4xCO2 r1i1p1
rcp45 r1i1p1
rcp85 r1i1p1

CSIRO-Mk3-6-0 Commonwealth Scientific and Industrial Research Organisation in collaboration
with the Queensland Climate Change Centre of Excellence, Australia

piControl r1i1p1

historical r[1-10]i1p1
midHolocene r1i1p1
rcp45 r[1-10]i1p1
rcp85 r1i1p1

EC-EARTH EC-Earth consortium piControl r1i1p1
historical r7i1p1
midHolocene r1i1p1
rcp45 r[1,2,6-9,11,12,

14]i1p1
rcp85 r1i1p1

FGOALS-g2 LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences; and
CESS, Tsinghua University, China

piControl r1i1p1

midHolocene r1i1p1
rcp85 r1i1p1

GFDL-CM2.1 NOAA Geophysical Fluid Dynamics Laboratory, US historical r1i1p1
GFDL-ESM2G NOAA Geophysical Fluid Dynamics Laboratory, US piControl r1i1p1

historical r1i1p1
midHolocene r1i1p1
rcp85 r1i1p1

GFDL-ESM2M NOAA Geophysical Fluid Dynamics Laboratory, US piControl r1i1p1
historical r1i1p1
midHolocene r1i1p1
rcp85 r1i1p1

GISS-E2-H NASA Goddard Institute for Space Studies, US piControl r1i1p1
historical r[1-5]i1p[12]
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Table 1. Continued.

Model Name Model Institution Experiments Run numbers

GISS-E2-R NASA Goddard Institute for Space Studies, US piControl r1i1p1, r1i1p141
historical r1i1p[12], r[45]i1p3
past1000 r1i1p12[1-8]
midHolocene r1i1p1
lgm r1i1p15[01]
1pctCO2 r1i1p1
abrupt4xCO2 r1i1p1
rcp45 r[1-5]i1p1
rcp85 r1i1p1

HadCM3 Hadley Center, UK Met. Office, UK historical r[1-10]i1p1
HadGEM2-CC Hadley Center, UK Met. Office, UK piControl r1i1p1

historical r1i1p1
midHolocene r1i1p1
rcp45 r1i1p1
rcp85 r1i1p1

HadGEM2-ES Hadley Center, UK Met. Office, UK piControl r1i1p1
historical r1i1p1
midHolocene r1i1p1
rcp45 r[1-3]i1p1
rcp85 r1i1p1

INM-CM4 Institute for Numerical Mathematics, Russia piControl r1i1p1
historical r1i1p1
midHolocene r1i1p1
rcp45 r1i1p1
rcp85 r1i1p1

IPSL-CM5A-LR Institut Pierre-Simon Laplace, France piControl r1i1p1
historical r[1-4]i1p1
midHolocene r1i1p1
lgm r1i1p1
1pctCO2 r1i1p1
abrupt4xCO2 r1i1p1
rcp45 r[1-4]i1p1
rcp85 r1i1p1

IPSL-CM5A-MR Institut Pierre-Simon Laplace, France piControl r1i1p1
historical r1i1p1
midHolocene r1i1p1
rcp45 r1i1p1
rcp85 r1i1p1

MIROC-ESM Japan Agency for Marine-Earth Science and Technology, Atmosphere and Ocean
Research Institute (The University of Tokyo), and National Institute for Environ-
mental Studies, Japan

piControl r1i1p1

midHolocene r1i1p1
lgm r1i1p1
past1000 r1i1p1
1pctCO2 r1i1p1
abrupt4xCO2 r1i1p1
rcp85 r1i1p1
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Table 1. Continued.

Model Name Model Institution Experiments Run numbers

MIROC5 Atmosphere and Ocean Research Institute (The University of Tokyo), National In-
stitute for Environmental Studies, and Japan Agency for Marine-Earth Science and
Technology, Japan

piControl r1i1p1

historical r1i1p1
midHolocene r1i1p1
rcp45 r[1-3]i1p1
rcp85 r1i1p1

MPI-ESM-P Max Planck Institute for Meteorology, Hamburg, Germany piControl r1i1p1
historical r1i1p1
past1000 r1i1p1
lgm r1i1p1
midHolocene r1i1p1
1pctCO2 r1i1p1
abrupt4xCO2 r1i1p1
rcp85 r1i1p1

MPI-ESM-LR Max Planck Institute for Meteorology, Hamburg, Germany piControl r1i1p1
historical r[1-3]i1p1
rcp85 r1i1p1

MRI-CGCM3 Meteorological Research Institute, Tsukuba, Japan piControl r1i1p1
midHolocene r1i1p1
lgm r1i1p1
1pctCO2 r1i1p1
abrupt4xCO2 r1i1p1
rcp85 r1i1p1

NCAR-CCSM4 National Center for Atmospheric Research, US piControl r1i1p1
midHolocene r1i1p1
lgm r1i1p1
1pctCO2 r1i1p1
abrupt4xCO2 r1i1p1
rcp45 r1i1p1
rcp85 r1i1p1

NCAR-CESM1 National Center for Atmospheric Research, US historical r[5-7]i1p1
NorESM1-M Norwegian Climate Centre, Norway piControl r1i1p1

historical r[1-3]i1p1
midHolocene r1i1p1
rcp45 r1i1p1
rcp85 r1i1p1
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Table 2. Correlation of different variables with future precipitation change in the RCP 8.5
scenario. Precipitation changes are defined as in Fig. 4: annual-mean precipitation averaged
over 0◦–8◦ N–60◦ W–50◦ W minus annual-mean precipitation averaged over 5◦ S–15◦ S–45◦ W–
35◦ W; SST dipole changes are defined as the annual-mean change in SST averaged over
3◦ N–15◦ N–50◦ W–20◦ W minus the annual-mean change in SST averaged over 3◦ S–15◦ S–
30◦ W–20◦ W (see boxes on Fig. 4b). Land surface warming is the annual-mean warming aver-
aged over 15◦ S–0◦–70◦ W–50◦ W. The double ITCZ index is defined as the annual-mean pre-
cipitation averaged over the Southern branch (7◦ S–3◦ S–35◦ W–20◦ W) minus the annual-mean
precipitation averaged over the Northern branch (7◦ N–3◦ N–35◦ W–20◦ W).

Variable correlation (r) No. of models p-value

midHolocene-piControl: ∆ precip 0.93 9 0.0001
rcp85-piControl: ∆ SST dipole 0.67 16 0.002
midHolocene-piControl: ∆ SST dipole −0.08 9 Not significant
amipFuture-amip: ∆ precip 0.78 5 0.06
sstClim4xCO2-sstClim: ∆ precip 0.92 7 0.002
sstClim4xCO2-sstClim: ∆ SAT (land) 0.71 8 0.024
midHolocene-piControl: ∆ SAT (land) 0.73 9 0.013
double ITCZ index in piControl −0.66 16 0.003
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Fig. 1. Average regional temperature changes vs. global temperature changes for the glacial (in
blue, the pre-industrial – LGM difference is shown), years 120 to 140 of the 1pctCO2 simulations
(in yellow, in comparison to piControl) and the years 100 to 150 of the abrupt 4xCO2 simulations
(in red, in comparison to piControl). For the bottom plots, the model averages are taken only
from grid-boxes that correspond to proxy data sites within the defined region (reconstruction
range shown in blue shading). Definition of the regions: Tropics: 23◦ S–23◦ N, North Atlantic
Europe: 45◦ W–45◦ E, 30–50◦ N, East Antarctica: 5◦ W–165◦ E, 70–80◦ S. The results have been
computed for all models in the database on 23 July 2012 for which there were results for the
lgm, piControl, 1pctCO2 and abrupt4xCO2 simulations. Reconstructions are from the MARGO
(2009) and Bartlein et al. (2011).
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Fig. 2. Average surface air temperature change, compared to piControl, over land compared
to over the oceans for the North Atlantic and Europe region (45◦ W–45◦ E, 30◦–50◦ N) and the
tropics (23◦ S–23◦ N). LGM – piControl in blue, 1pctCO2 – piControl in orange, abrupt4xCO2
– piControl in red. For the latter 2 periods, the averages have been computed over the same
years as Fig. 1 above. The results have been computed for all models in the database on 23
July 2012 for which there were results for the lgm, piControl, 1pctCO2 and abrupt4xCO2. The
grey lines indicate the 1 : 1.5 ratio in both plots. Reconstructions are as in Fig. 1.
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Fig. 3. Illustration of quantile regressions between the percentage of summer hot days in Eu-
rope (i.e. exceeding the 90th quantile of daily mean temperature in June-July-August) and the
precipitation frequency anomaly with respect to the mean in winter-spring (January to May). The
precipitation frequency is computed over southern Europe (36◦ N to 46◦ N) and is defined as
the percentage of days with precipitation exceeding 0.5 mm. The quantile regressions are com-
puted for the 10th and 90th quantiles of the hot day frequency, following Quesada et al. (2012).
(a) shows the quantile regression for Western Europe from the EOBS dataset (Haylock et al.,
2008) between 1950 and 2011 where each point represents a year. (b) is for the “historical”
simulation (1960–2008) of the IPSL-CM5A-MR model (Dufresne et al., 2013). Both panels
show a widening of the quantile regression for low values of precipitation frequency, indicating
a consistency of the model simulation with observations.
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Fig. 4. (a) Relationship between the precipitation dipole change from pre-industrial to future cli-
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to mid-Holocene. Only those models within each group that had both rcp85 and midHolocene
data available at the time are plotted, other models that provided only rcp85 data are listed for
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3 (right). Contours show corresponding SST changes. The boxes over land and ocean show
the areas used in the dipole definitions.
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Fig. 6. Using LGM Tropical temperature as a constraint on climate sensitivity. Cyan and blue
dots represent PMIP2 and CMIP5 simulations. Linear correlation and predictive uncertainty
range are plotted as solid and dashed blue lines respectively. Small red dots represent a Monte
Carlo sample from the estimated proxy-derived observational value, mapped onto the climate
sensitivity.

828

http://www.clim-past-discuss.net
http://www.clim-past-discuss.net/9/775/2013/cpd-9-775-2013-print.pdf
http://www.clim-past-discuss.net/9/775/2013/cpd-9-775-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/


CPD
9, 775–835, 2013

Using paleo-climate
comparisons to
constrain future

projections in CMIP5

G. A. Schmidt et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

0 2 4 6 8

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Climate sensitivity estimated through weighting of the PMIP models

Climate Sensitivity

Pr
ob

ab
ilit

y

!! !! ! !!! ! !!

Fig. 7. Climate sensitivity estimated through weighting of the PMIP models. Cyan and blue
dots represent PMIP2 and CMIP5 simulations. Green curve shows prior distribution of climate
sensitivity (based on equal weighting of the models). Red curve shows posterior distribution,
after weighting according to match to the LGM tropical temperature. Vertical bars indicate 5–
95 % ranges.

829

http://www.clim-past-discuss.net
http://www.clim-past-discuss.net/9/775/2013/cpd-9-775-2013-print.pdf
http://www.clim-past-discuss.net/9/775/2013/cpd-9-775-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/


CPD
9, 775–835, 2013

Using paleo-climate
comparisons to
constrain future

projections in CMIP5

G. A. Schmidt et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

a) 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
 10 
 11 
 12 
 13 
 14 
 15 
 16 
 17 
b) 18 
  19 
 20 
 21 
 22 
 23 
 24 
 25 
 26 
 27 
 28 
 29 
 30 
 31 
 32 
 33 
 34 
 35 
c) 36 
 37 
 38 
 39 
 40 
 41 
 42 
 43 
 44 
 45 
 46 
 47 
Figure 8: Sea-ice extent in CMIP5 models in 106 km2. a) 30-year mean seasonal cycle for the 48 
historical period (1870-1900, b) the anomaly in sea ice extent for the period 2036-2065 in RCP 8.5, 49 
and c) the anomaly at the mid-Holocene 50 Fig. 8. Sea-ice extent in CMIP5 models in 106 km2. (a) 30-yr mean seasonal cycle for the

historical period (1870–1900), (b) the anomaly in sea ice extent for the period 2036–2065 in
RCP 8.5, and (c) the anomaly at the mid-Holocene.
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2 

 3 
Figure 10: Upper panel: Magnitude of the trend in δ18Oc (‰/decade, computed from a simple linear 4 
regression through the trend PC) in corals (far left), Simple Ocean Data Assimilation (SODA) 20th-5 
century reanalysis (Carson and Giese, 2008; Giese and Ray, 2011; Compo et al., 2011), a 500-year 6 
control run from GFDL CM2.1 (Wittenberg, 2009), and the CMIP3 and CMIP5 multi-model 7 
ensembles. In each case, δ18Oc was modeled from SST and SSS (1), SST only (2), and SSS (3). Lower 8 
Panel: Magnitude of the δ18Oc trend (‰/decade, computed from a simple linear regression through the 9 
trend PC) over 1890-1990 in pseudocorals modeled from CMIP5 historical simulations and over 2006-10 
2100 in the RCP 4.5 projections where numbers in parenthesis indicate the number of runs in the historical 11 
and RCP4.5 ensemble, respectively. 12 
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Fig. 10. Upper panel: Magnitude of the trend in δ18Oc (‰/decade, computed from a simple
linear regression through the trend PC) in corals (far left), Simple Ocean Data Assimilation
(SODA) 20th-century reanalysis (Carson and Giese, 2008; Giese and Ray, 2011; Compo et al.,
2011), a 500-yr control run from GFDL CM2.1 (Wittenberg, 2009), and the CMIP3 and CMIP5
multi-model ensembles. In each case, δ18Oc was modeled from SST and SSS (1), SST only (2),
and SSS (3). Lower Panel: Magnitude of the δ18Oc trend (‰/decade, computed from a sim-
ple linear regression through the trend PC) over 1890–1990 in pseudocorals modeled from
CMIP5 historical simulations and over 2006–2100 in the RCP 4.5 projections where numbers
in parenthesis indicate the number of runs in the historical and RCP4.5 ensemble, respectively.
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Fig. 11. Spectra from an ensemble of LM simulations using the same model but driven with
different sets of forcings compared with Ljundqvist (2010), Mann et al. (2008) and Moberg
et al. (2006) reconstructions. The clustering of simulations is driven entirely by changes in the
volcanic forcing dataset used, with the simulations with the most decadal and multi-decadal
variability using the Gao et al. (2008) reconstruction. Only in the examples where no volcanic
forcing is used at all is the impact of different solar forcing reconstructions detectable. Spectra
derived using MEM with 30 poles, from 850 to 2005, after correction for control run drift using
a loess low-frequency estimate derived from the control run. Key abbreviations: Land use: Pnz
(Pongratz et al., 2008), Kap (Kaplan et al., 2011); Solar: Krv (Vieira et al., 2011), Stn (Steinhilber
et al., 2009); Volcanic: Gao (Gao et al., 2008), Crw (Crowley et al., 2008).
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Fig. 12. RMS fluctuations of instrumental and paleoclimate reconstructions compared to sim-
ulations of the Northern Hemisphere land temperature for the period 1500–1900. GRE, CEA
refer to GISS-E2-R simulations using the Gao et al., (2008), and Crowley et al. (2008) re-
constructions of volcanic forcing. The multiproxy reconstruction used is an average of three
NH estimates, and the RMS fluctuations are separately shown for the periods 1000–1900 and
1000–1980.
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Fig. 13. Standardized anomalies for PDSI and soil moisture in two models (GISS-E2-R and
MIROC-ESM) using a past1000 simulation, and a historical+rcp85 continuation. For reference,
the tree-ring based reconstruction is plotted (dashed-line) (Cook et al., 2010), though this would
not be expected to line up exactly with the model simulations. All data smoothed with a 10-yr
running mean.
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