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Abstract

Since 21000 yr ago, the oceans have received large amounts of freshwater in pulses
coming from the melting ice sheets. A specific event, known as meltwater pulse 1A
(MWP-1A), has been identified in sea-level and temperature proxy records as respon-
sible for the increase of ~20m in sea level in less than 500 yr. Although its origin and
timing are still under discussion, MWP-1A seems to have had a significant impact on
several components of the climatic system. The present work aims to elucidate these
impacts on the water mass distribution of the South Atlantic Ocean through the analy-
sis of a transient simulation of the climate evolution from the Last Glacial Maximum to
Present Day using a state-of-art CGCM, the National Center for Atmospheric Research
Community Climate System Model version 3 (NCAR CCSM3). Results show that the
freshwater discharge associated with the timing of MWP-1A was crucial to establish the
present thermohaline structure associated with the North Atlantic Deep Water, mark-
ing the transition between a shallower and a deeper Atlantic Meridional Overturning
Circulation.

1 Introduction

The last deglaciation, triggered by increasing summer insolation in the Northern Hemi-
sphere (NH) nearly 21 thousand years ago (ka), was marked by several meltwater
discharge episodes resulting from ice sheet retraction. A major meltwater discharge
registered on sea level records (Fairbanks, 1989; Deschamps et al., 2012) occurred
around 14 ka resulting from massive loss of ice from the ice sheets into the ocean
(Weaver et al., 2003; Peltier and Fairbanks, 2006; Hanebuth et al., 2009), which was
responsible for ~20m of sea level rise in less than 500yr. This event is known as
meltwater pulse 1A (MWP-1A).

The origins of MWP-1A has been discussed in the last decades and is still subject
of controversial debate. Much of the controversy surrounding the origin of MWP-1A is
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related to its Northern Hemisphere source. It is suggested by several authors that this
freshwater input came solely from the Laurentide Ice Sheet (LIS) over North Amer-
ica, ruling out any contribution from the Southern Hemisphere (SH) (Fairbanks, 1989;
Peltier, 1994, 2005; Peltier and Fairbanks, 2006; Bentley et al., 2010; Mackintosh et al.,
2011; Anderson et al., 2013). On the other hand, several studies support the idea of
a significant freshwater contribution from the Antarctic Ice Sheet (AIS) (Clark et al.,
1996, 2002; Kienast et al., 2003; Weaver et al., 2003; McManus et al., 2004; Bassett
et al., 2005, 2007; Carlson, 2009; Stenni et al., 2010; Bethke et al., 2012; Carlson
et al., 2012; Deschamps et al., 2012; Gregoire et al., 2012). In fact, some of these
later studies discuss that the idea of MWP-1A generated only in the Northern Hemi-
sphere would be inconsistent with proxy data evidence. MWP-1A originating only from
the Northern Hemisphere would not be physically plausible due to the necessary melt-
ing rates needed to account for the sea level rise records (Clark et al., 1996; McManus
et al., 2004; Stanford et al., 2006; Praetorius et al., 2008). The modeling study of Carl-
son et al. (2012) attributes about 37 % of the LIS mass loss contribution to MWP-1A,
which suggests that a significant fraction of its origin could come from the AlS.

Seidov et al. (2001) and Weaver et al. (2003) suggested that meltwater discharges
near the location of deep water formation in one hemisphere may lead to the strength-
ening of the ocean circulation in the other hemisphere. The main players on the lower
and upper limbs of the Atlantic Meridional Overturning Circulation (AMOC) are the
Antarctic Bottom Water (AABW) and the North Atlantic Deep Water (NADW). So, when
freshwater enters the North Atlantic, for example, the NADW formation rate decreases.
In order to maintain the deep water input into the world ocean, more AABW is pro-
duced, which would lead to a shallower AMOC in the North Atlantic. This scenario is
what is believed to have happened at the Last Glacial Maximum (LGM, ~ 21 ka) when
the deep Atlantic was flooded with extremely salty AABW (Marchitto et al., 2002; Curry
and Oppo, 2005) and the AMOC was shallower than today (Lippold et al., 2012; Zhang
et al., 2012). According to chemical proxy evidence, the AABW water does fill most
of the Atlantic basin and a NH-origin water, the Glacial North Atlantic Intermediate
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Water (GNAIW) penetrates only to the mid-depths of the Atlantic Ocean, much shal-
lower than the NADW (Duplessy et al., 1988; Boyle and Leach, 1995; Yu et al., 1996;
Curry and Oppo, 2005; Lynch-Stieglitz et al., 2006; Marchitto and Broecker, 2006). Af-
ter the Younger Dryas, at ~ 11.7 ka, there is evidence of the strengthening of the NADW
(Jouzel et al., 1995; Hughen et al., 1998; Weaver et al., 2003).

In this study, these aspects of Atlantic Ocean’s deep circulation are evaluated within
the results of a transient simulation of the last 21 000yr, which prescribes several
meltwater pulses as identified by sea level records (including a MWP-1A with 75 %
of its freshwater coming from AIS). This simulation is an extension for the Holocene
of the DGL-A experiment described in Liu et al. (2009). It is our hypothesis that the
present day circulation pattern of the South Atlantic Ocean was established approxi-
mately at the onset of the Holocene (11 ka). Therefore we will investigate the impacts of
the freshwater discharge associated with MWP1-A, assuming contributions from both
Hemispheres, on the structure of the NADW in South Atlantic Ocean.

2 Data and methods

The results of a paleoclimate transient simulation using the Community Climate System
Model version 3 (CCSMS3) are used in this study. CCSM is a global coupled model
developed by the National Center for Atmospheric Research (NCAR). The simulation
experiment analyzed is referred to as TraCE-21K. It was run from 21 ka to Oka (He,
2011) and it is the extended version of the DGL-A experiment discussed in Liu et al.
(2009). It should be noted that the model air temperature, when compared to the GISP2
ice core reconstructions (Alley, 2000) show very good agreement (Liu et al., 2009).
A brief description of TraCE-21K setup is given as follows.

The oceanic component has 25 vertical levels and a spatial resolution of 3.6° lon-
gitude and variable latitude (finer resolution of ~ 0.9° in the equator). Initial conditions
were established from LGM simulation results from Otto-Bliesner et al. (2006) and tran-
sient concentrations of greenhouse gases (CO,, CH, and N,O) were adopted from
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Joos and Spahni (2008). The coastlines and ice sheets volume variability followed
ICE-5G database (Peltier, 2004).

Several meltwater schemes were tested in sensitivity experiments (He, 2011), but
just the ones that resulted in similar values compared to proxy data were chosen for
TraCE-21K. He (2011) derived the meltwater forcing based on the records of sea level
rise (Clark et al., 2002; Peltier, 2004) and geological indicators of ice sheet retreat and
meltwater discharge (Licciardi et al., 1999; Clark et al., 2001, 2002; Clark and Mix,
2002; Carlson, 2009; Carlson et al., 2012; Obbink et al., 2010). The rates of meltwater
discharge in the model are shown in Fig. 1.

In TraCE-21K, MWP-1A is prescribed from 14.35 to 13.85ka leading to the abrupt
inversion within the BA period: the Older Dryas event (Stanford et al., 2006; Liu et al.,
2009). However, this timing may be late according to recent findings that constrain
MWP-1A between 14.65 and 14.31 ka (Deschamps et al., 2012), making it simultane-
ous with the Bolling warming, although the causality relations are still under debate.

The meridional heat transport through a section of the Atlantic basin was calculated
as in Bryan (1962):

Q; = //cp,oevdxdz (1)

Where Q; is the meridional heat transport, Cp is the sensible heat of seawater, p is
seawater density, v is the meridional velocity and 6 is the potential temperature. The
meridional salt transport was calculated in the same way, simply substituting ¢,0 by S,
where S is the salinity of seawater.

Here, we define the NADW as being a tongue-like signal of maximum salinity around
2500 m depth in vertical profiles across all longitudes spanning the Atlantic basin ex-
tending from the northern high latitudes into the Southern Ocean. The thermohaline
signature of NADW was analyzed for the South Atlantic (0-30° S), where this water
mass is well defined.
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3 Results and discussion

The ocean model results are examined with respect to the AMOC through meridional
heat and salt transport time series. In contrast with the other oceans, where the heat is
generally transported from the equator to the poles, the meridional heat transport in the
South Atlantic is directed northward. This happens because the upper branch of the
AMOC carries warm surface layer waters northward to compensate the great amount
of heat loss in the Nordic Seas thus making the South Atlantic circulation studies in-
strumental to fully understand Earth’s climate system. The heat transport anomaly (with
respect to the mean) for the South Atlantic (0-30° S) is shown in Fig. 2 (purple line).
It oscillates around the mean of +0.23 PW. Since positive values indicate northward
transport, positive anomalies coincide with warm periods in the Northern Hemisphere.
A sharp increase of the northward heat transport at ~ 14.7 ka (which resulted in the
Bolling-Allerod (BA) warming in the north Liu et al., 2009) is evident.

Negative meridional heat transport anomalies are associated with the Northern
Hemisphere cooling relative to the Heinrich 1 (H1) and Younger Dryas (YD) events,
while temperature increases in the Southern Hemisphere as in Liu et al. (2009). Af-
ter 11 ka, the heat transport values increase slowly towards the mean. From 11 ka to
Oka, the northward heat transport experiences a long period with little variability. After
the mid-Holocene (~ 6 ka) there is a noticeable stable equilibrium in the heat trans-
port between Northern and Southern Hemisphere, at the same time that the meltwater
pulses are shutdown in the simulation. The relationship between TraCE-21K merid-
ional heat transport with the meridional salt transport anomalies (where the mean is
-7.58 x 106 kgs'1) (Fig. 2, green line) shows an out-of-phase behaviour between the
two time series. This is best observed through the dispersion diagram in Fig. 3. It shows
that the correlations between heat and salt transport are high before and after the BA
warming period (circles with a correlation coefficient (r) of —0.99, and triangles with
r = —0.93, respectively). During the transition (from approximately 14.7 ka to 12.9ka)
the correlation falls (but is still significant; Fig. 3, crosses with r = —0.79).
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The different slopes of the circles and triangles clusters in Fig. 3 indicate that, overall,
the transport exhibit two regimes: a large heat transport and small salt transport before
BA and a small heat transport and large salt transport especially after YD (greenish to
reddish tones). It is interesting to notice that heat transport is higher at LGM than at
modern times, although the temperatures today are far superior than the glacial ones.
This strengthens the hypothesis that the AMOC was stronger at 21 ka (Shin et al., 2003;
Clauzet et al., 2007), which would explain the large quantity of heat being transported
northward. Salt transport, on the other hand, was only consistently positive after the YD
period. At glacial times the source of salt for the Atlantic was the salty AABW spanning
almost the entire basin from its formation region up to high latitudes of the northern
hemisphere. Figures 2 and 3 suggest that northern sources of salty water masses
should appear after the YD. The mean potential temperature (6) vs. salinity (S) for
the TraCE-21K model results is shown in Fig. 4a averaged between 30° S and 0° from
the LGM (blue dots) to Oka (red dots). It can be observed that there is a shift of the
curve towards lower salinities throughout the entire water column, which is expected
given all the freshwater entering the Atlantic Ocean in the last 21 000 yr. Not so obvious,
however, are the changes in the shape of the 8-S curve for the different periods: the 6—
S curve at 21 ka is representing only two deep water masses, while the modern curve
(Oka) presents the three main Atlantic Ocean deep water masses (AAIW, NADW and
AABW, as indicated in Fig. 4a). The water type that specifies the NADW characteristics
(salinity maximum at ~ 2500 m) does not appear until the early Holocene.

The absence of the NADW during the glacial period is consistent with proxy records
(Adkins et al., 2002). 6-S plots considering the same latitudinal interval for the South
Atlantic, averaged for 21, 15, 14.1, 13 and Oka (before, during and after the MPW-1A)
are shown in Fig. 4b. It is clear that the deep salinity maximum characteristic of the
NADW within the South Atlantic starts to develop only after MWP-1A (6—S diagram at
13 ka, pink curve). These changes become evident when examining the vertical profiles
of salinity along the Atlantic Ocean for the different climatic periods (Fig. 5). The NADW-
like water mass tongue with high salinity values appears only from 11 ka around 2000
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m depth (Fig. 5f—g). Before MWP-1A, the water column was strongly stratified below
1500 m (Fig. 5a—c).

Figure 5 shows that the vertical salinity changes are not homogeneous. The im-
pact of the freshwater discharge associated with the simulated MWP-1A does not only
impact in reducing the entire water column salinity but also changes the water mass
configurations along the Atlantic Ocean. At the LGM the deep ocean was very salty
(Fig. 5a) when massive volumes of freshwater were stored in the ice sheets. Atthe LGM
there was increased sea ice formation and associated brine rejection in the Southern
Ocean (Shin et al., 2003). The sea ice formation was intensified largely by the lower at-
mospheric CO, concentration (Liu and Milliman, 2004). As a result, the glacial Atlantic
Ocean was much more stratified than today (Adkins et al., 2002; Zhang et al., 2012). At
about 19 ka, instability of northern ice sheets led to an abrupt discharge of icebergs in
the North Atlantic, which is the signature of the H1 event (Denton et al., 2010). During
this event, the meltwater input associated with icebergs led to a weaker convection in
the north (He et al., 2013) and the total ocean heat transport to north is diminished
(as shown in Fig. 2) consistent with Seidov et al. (2001). The main consequences are
a decrease in air temperature in the NH and a rise in the SH (Fig. 1 in Liu et al., 2009)
which is referred to as the bipolar seesaw. A freshening between ~ 500-2500 m in the
water column (Fig. 5b) is also observed.

When the H1 meltwater discharge was interrupted, the North Atlantic circulation was
reinforced. The resulting strengthening of the AMOC and its overshoot possibly trig-
gered the BA abrupt warming in the north at about 14.7ka (Liu et al., 2009), repre-
sented by the abrupt increase of the heat transport anomaly as shown in Fig. 2 (purple
line). The model MWP-1A (largest peak in Fig. 1) occurs mostly in the Southern Ocean
between 14.35 and 13.85ka. A freshwater source in the Southern Ocean will gener-
ate a salinity anomaly throughout the entire water column that will spread to all other
ocean basins (Stouffer et al., 2007) mostly in the bottom layers. This can be observed
in Fig. 5c—d. We also see in Fig. 5d a high salinity region centered at 30° N confined
within the upper layers. This is what is thought here as the precursor of the NADW
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water type source. The water in this high salinity pocket has relative high tempera-
tures (not shown), which maintains its density lower than that necessary for sinking.
As a result, the formation of the deep water in the North Atlantic is not observed.
The intrusion of freshwater in the North Atlantic during Heinrich O at Younger Dryas
(around 12 ka) makes the salty pocket disappear through mixing at the same time that
the salinity anomaly that originated from the freshwater input from the southern source
for the model MWP-1A continues to spread over the Atlantic basin (Fig. 5e). As soon
as the meltwater discharge from the North Atlantic is interrupted around 11.7 ka, the
heat transport towards the north is re-established. At this time, the high salinity pocket
centered around 30° N (~ 500 m) reappears in the vertical profile (Fig. 5f). The South-
ern Ocean deep and bottom waters at this moment are much fresher than at 13ka
due to mixing of MWP-1A discharge throughout the water column. The salinity barrier,
which was responsible for the high stratification, is eroded and the dense water that
was confined to the surface layers can finally sink. This is when the features of the
modern NADW first appear in the deep ocean since the LGM (salty tongue at Fig. 5f)
marking the birth of NADW as we know it today. We can compare this same structure
with the one presented in Fig. 5g, which stands for O ka (1950). Also, Fig. 5g shows
that the model succeeded in representing the three main modern water masses that
are observed in the profile obtained with observed data from the World Ocean Circu-
lation Experiment (WOCE) seen in Fig. 5h. The differences between the two profiles
(Fig. 5g and h) can be explained by the low spatial resolution of the model.

The TraCE-21 model results are consistent with the idea of a weaker NADW during
YD, discussed by several studies based on proxy-data (Boyle, 1987; Hughen et al.,
1998; McManus et al., 2004; Piotrowski et al., 2005; Praetorius et al., 2008; Roberts
et al., 2010). Furthermore, through 231 Pa/23°Th ratio analysis, Negre et al. (2010) dis-
cuss that the modern Atlantic circulation was only established during the Holocene,
which is also consistent with the evolution of the salinity-based water mass structure
presented in Fig. 5. The establishment of the NADW as the main southward component
of the AMOC preceded the change in the overturning circulation geometry. The AMOC
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became deeper (Lippold et al., 2012), meridional heat transport became more stable
and the NADW becomes the main salt exporter across the Atlantic Ocean. Hence, the
steep triangle cluster on Fig. 3 is explained: a smaller variability on the heat transport
northwards and larger salt transport southwards in the Holocene.

4 Conclusions

This study examines the evolution of the South Atlantic Ocean salinity distribution rel-
ative to the NADW since the LGM, considering several meltwater pulses recorded in
sea-level proxy data, through the analysis of the results of the first transient paleo-
climate numerical simulation from the LGM to Present Day (PD). After evaluating the
water mass distribution in the South Atlantic Ocean, it is concluded that the NADW, as
we know today, was established at the onset of the Holocene (i.e. 11 ka), playing an im-
portant role on the heat and salt transport stabilization during that period. Results show
a salinity barrier generated at the LGM by Southern Ocean deep salty waters that pre-
vents the deep NADW formation in its Northern Hemisphere origin. Zhang et al. (2012)
discussed the importance of this stratification relative to the spatial configuration and
strength of the AMOC.

Therefore, much of the PD structure of the NADW occurs because of the impact
of the freshwater discharge associated with the timing of the MWP-1A, which in this
model is predominantly of Southern Ocean origin. This geographical source guaran-
tees that the freshwater released spreads over the global ocean unlike the meltwater
pulses from the North Atlantic, which are mostly constrained around their source region
(Stouffer et al., 2007). In other words, if MWP-1A had occurred only within the northern
ice sheets the resulting freshening would occur mostly at the surface, which hinders the
NADW formation process. Furthermore, it is important to remember that these conclu-
sions apply for the period starting at LGM, which means that a similar form of the PD
NADW could have existed before. Using isotopic analysis, Frank et al. (2002) showed
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that a water mass of NH origin was present in the Southern Ocean between 14 and 3
millions of years ago, but was progressively reduced since then.

Other studies point out that the source of Antarctic meltwater at ~ 14 ka could be
from the western side of the continental ice sheet (Weaver et al., 2003; Deschamps
et al., 2012). Today, trends of reduced ice cover have been observed at the same
location (Thomas et al., 2004; Jacobs et al., 2011; Joughin and Alley, 2011). Could this
ice sheet melting change NADW properties again in the future?
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Fig. 1. Meltwater discharges from the Northern (red line) and Southern (blue line) Hemisphere
(1 mkyr‘1 = 1m of equivalent global sea level rise per thousand year = 0.0115 Sv) (He, 2011).
The shaded areas represent the main climatic events in the last deglaciation: Last Glacial Max-
imum (LGM), Heinrich event 1 (H1), Bolling-Allerod (BA), Younger Dryas (YD) and Holocene.
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