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Abstract

We present a Bayesian model for estimating the parameters of the VS-Lite forward
model of tree-ring width. The scheme also provides information about the uncertainty
of the parameter estimates, as well as the uncertainty of VS-Lite itself. By inferring VS-
Lite’s parameters for synthetically-generated ring-width series at several hundred sites5

across the United States, we show that the Bayesian algorithm is skillful and robust to
climatic nonstationarity over the interval tested. We also infer optimal parameter val-
ues for modeling observed ring-width data at the same network of sites. The estimated
parameter values cluster in physical space, and their locations in multidimensional pa-
rameter space provide insight into the dominant climatic controls on modeled tree-ring10

growth at each site.

1 Introduction

Forward models of the physical or biological processes by which climate variability is
imprinted on natural archives provide important tools for understanding such “prox-
ies” as recorders of climate (Evans et al., 2012). The VS-Lite model (Tolwinski-Ward15

et al., 2011) provides one such forward model for the climate controls on tree-ring width
chronologies. Under this model, just four parameters determine a simulated chronol-
ogy’s response to mean monthly air temperature and monthly model-simulated soil
moisture. These parameters connect the local climatology to the modeled controls on
growth and the climatic signal contained in the simulated chronology. Thus, in order to20

use VS-Lite to study the relationship between climate and proxies in the real world, an
objective method for choosing the model parameters for any particular site or region is
necessary.

Ideally, parameterization should be based on a first-principles understanding of the
science represented by the model. The growth response parameters in the VS-Lite25

model are loosely interpretable as temperature and soil moisture thresholds above
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which growth begins or is no longer sensitive to climatic fluctuations, respectively. This
interpretation is consistent with the well-established biological Law of the Minimum
(Taylor, 1934), expressed in dendrochronology by the idea that tree growth is deter-
mined by the most limiting factor (Fritts, 2001). However, it is debatable whether each
of these VS-Lite parameters have directly measurable analogs in the natural world.5

Recent physiological studies have advanced the scientific community’s understanding
of climatic thresholds for xylogenesis (e.g. Rossi et al., 2007; Deslauriers et al., 2008),
but the results are not well-enough developed or catalogued across tree species or cli-
mate regimes to be generalizable to all forward model runs. Even if they were, it is not
clear how measurable quantities in the real world are related to vastly simplified model10

quantities. In particular, VS-Lite operates using monthly data, while the cellular-level
processes it is intended to mimic vary at daily and shorter timescales. Minimum and
optimum parameters therefore represent a simplification that may be inferred from, but
not be strictly interpretable as, biophysical limits on cambial activity itself. Given the
limited ability of direct observations to constrain the model parameters, it is necessary15

to estimate VS-Lite’s parameters numerically using monthly climate inputs, observed
ring-width series, and partial knowledge of the model error structure. At sites where VS-
Lite is believed to provide a reasonable intermediate complexity proxy system model
for tree-ring width variations, such a parameter estimation procedure can improve upon
the characterization of errors arising from the model’s incomplete representation of the20

proxy system.
Two general approaches to numerical parameterization of forward models of tree-

ring growth have been explored in the literature. The first is presented by iterative local
schemes that optimize the fit of simulated model quantities to their observed counter-
parts under changing parameter combinations. In the iterative scheme of Fritts et al.25

(1999), for example, one model parameter is changed at a time in a search over a con-
tinuous region of parameter of space for the set of parameters producing optimal model
fit. Modern computing power makes such schemes possible to run at many locations,
but the approach does not account for potential interactions between parameters. The
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scheme may also locate a local optimum in parameter space but miss information, in-
cluding other optima, provided by a more global search. A second class of approaches
attempts to avoid this last pitfall by running growth models at a preselected, discretized
set of parameter combinations believed to cover the entire physically plausible regions
of parameter space (e.g. Misson et al., 2004; Misson, 2004; Tolwinski-Ward et al.,5

2011). The single combination which produces the best match of modeled outputs to
its observed counterparts is deemed optimal (e.g. Misson et al., 2004; Misson, 2004;
Tolwinski-Ward et al., 2011). This parameterization method is only practical where the
number of parameters to be constrained by the available data is relatively small. Both
local and global previous parameterization schemes have the shortcoming that they10

provide only point estimates of optimal parameters, and their results do not include
any information about model sensitivity to the parameter choices. In addition, while the
ranges of the parameters included in the search space are generally chosen through
consideration of physically plausible bounds on their values, the search algorithms lack
any more sophisticated use of science-based understanding of where the most likely15

parameter values lie.
Here we present and test a Bayesian statistical scheme to infer parameter estimates

for VS-Lite. The scheme is computationally efficient, combines expert prior information
about scientifically reasonable values for the parameters, and automatically provides
information pertaining to model sensitivity to parameter choices. The method also au-20

tomatically safeguards against over-tuning of inferred parameters in cases where the
data series are either very short or very noisy. Code for the scheme is freely avail-
able with the VS-Lite v2.2 model at the National Oceanic and Atmospheric Admin-
istration (NOAA) Paleoclimatology software library (http://www.ncdc.noaa.gov/paleo/
softlib/softlib.html). We test the skill of the parameterization approach in an idealized25

experiment using synthetically-generated tree-ring width data. As an application of the
method to observed ring-width chronologies, we also present a graphical method for
interpreting the fitted model parameters in terms of climatic controls on tree-ring growth
at each site.
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2 Model, data, and methods

2.1 Summary of VS-Lite and parameters

A complete description of the VS-Lite model is given by Tolwinski-Ward et al. (2011).
However, we briefly summarize the basic structure of the model and its parameteri-
zation here. VS-Lite is a substantially simplified, monthly time-step version of the full5

Vaganov-Shashkin model of tree-ring growth (Vaganov et al., 2006, 2011). At its core,
VS-Lite is a parsimonious representation of the Principle of Limiting Factors with re-
spect to monthly temperature and soil moisture, and with growth modulated by insola-
tion. In its current version (version 2.2), insolation is determined from site latitude, and
soil moisture is determined from monthly temperature and precipitation via a simple10

leaky bucket model (Huang et al., 1996). Non-dimensional scaled growth responses
gT (m,y) and gM (m,y) to monthly time-step temperature and soil moisture content,
respectively, are key to determining the extent of simulated growth at each modeled
timestep, indexed by the month-year pair (m,y). These responses have the piecewise
linear forms15

gT (m,y) =


0 T (m,y) ≤ T1;
T (m,y)−T1

T2−T1
T1 ≤ T (m,y) ≤ T2;

1 T2 ≤ T (m,y)
(1)

and

gM (m,y) =


0 M(m,y) ≤M1;
M(m,y)−M1

M2−M1
M1 ≤M(m,y) ≤M2;

1 M2 ≤M(m,y)
(2)

20

The parameters T1 and M1 thus represent thresholds in temperature and soil moisture
content below which growth cannot occur, while T2 and M2 are thresholds above which
growth is insensitive to climatic variability. The overall monthly growth rate is given

619

http://www.clim-past-discuss.net
http://www.clim-past-discuss.net/9/615/2013/cpd-9-615-2013-print.pdf
http://www.clim-past-discuss.net/9/615/2013/cpd-9-615-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/


CPD
9, 615–645, 2013

Bayesian parameter
estimation for

tree-ring model

S. E. Tolwinski-Ward
et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

by g(m,y) = min{gT (m,y),gM (m,y)}, to mimic the Principle of Limiting Factors (Fritts,
2001) that the more limiting environmental variable controls growth. The simulated
annual-resolution ring-width series result from taking an inner product of these overall
growth rates with estimates of mean relative monthly insolation derived from trigono-
metric functions of latitude. Thus, the climatic variable that tends to produce lesser5

values in its growth response function controls the modeled climate signal contained
in the simulated proxy series. The relationship of the parameter values T1,T2,M1,M2
to the model’s climate inputs is therefore critical in determining which variable gets
“recorded” by the synthetic trees.

We model the residuals between modeled and observed ring-width chronologies as10

independent and identically-distributed Gaussian white noise, which fits the model er-
rors at the sites studied in this paper better than noise with AR(1) or AR(2) temporal
structure. The error variance σ2

W (where the subscript W denotes that this is the vari-
ance of error associated with the model estimate of tree-ring width W ) may be viewed
as a fifth model parameter. Its value provides information about the model uncertainty15

causing misfit between simulated and observed tree-ring width indices.

2.2 Approach to model parameter estimation

We follow a Bayesian approach to calibrating the model parameters. Let θ denote the
vector of model parameters we would like to estimate, W (T ,P ) the vector of observed
ring-width data, which depends on vectors of monthly temperature and precipitation20

data covering the same interval in time as the ring width data. The Bayesian paradigm
allows inference on the parameters via the posterior distribution π(θ |W (T ,P )) of the
parameters given the climate and ring width data. The posterior is obtained in terms of
the likelihood f (W (T ,P )|θ ) of the ring-width data given the climate and the parameters,
as well as a prior distribution π(θ ) on the parameters via Bayes’ law:25

π(θ |W (T ,P )) ∝ f (W (T ,P )|θ )π(θ ) (3)
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Given the likelihood and prior parameter models, Markov Chain Monte Carlo tech-
niques produce an ensemble of draws from the posterior distribution (Gilks et al.,
1996), from which estimates of the parameters and their associated uncertainties can
be made.

The deterministic VS-Lite model plus stochastic error provides the likelihood in5

Eq. (3). A forward modeling study comparing observed ring-width chronologies to sim-
ulations using VS-Lite at 277 sites across the continental United States suggested that
independent and identically-distributed Gaussian noise provided a reasonable fit to the
model residuals (Tolwinski-Ward et al., 2011). Thus the likelihood model is given by
a multivariate normal with mean given by the deterministically-simulated ring-width se-10

ries, and covariance matrix σ2
W I . For our problem, then, the components of θ are given

by VS-Lite’s growth response parameters and the variance associated with model un-
certainty:

θ = (T1,T2,M1,M2,σ2
W )′ (4)

15

Note that in its current version, VS-Lite also requires several parameters of the Leaky
Bucket model of soil moisture. We do not estimate those here, as the soil moisture
model may be viewed as an ancillary component of VS-Lite that may be replaced by
a more sophisticated hydrological model or direct measurements of soil moisture. In
effect, our current approach transfers the uncertainty associated with these parameters20

to uncertainty in the soil moisture response parameters M1 and M2.
In modeling the prior distribution of the parameters, we first make the assumption

that each parameter is independent of the others. This assumption allows us to model
their joint prior distribution as the product of individual prior models for each. We put
relatively broad but informative priors on the growth response parameters, with shapes25

and supports consistent with current scientific understanding of tree growth responses
to temperature and moisture.

Of the four growth response parameters, the literature provides the most information
about T1, the threshold temperature for growth to begin. The physiological experiments
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of Körner and Hoch (2007) at a montane site in Switzerland indicate that mean sea-
sonal soil temperatures below 6–7 ◦C will not permit growth. An assessment of root
and air temperatures at a few dozen treeline sites by Körner and Paulsen (2004) give
a value of 6.7 ◦C±0.8 ◦C for this growth threshold, and histological measurements and
analyses of Rossi et al. (2007) and Deslauriers et al. (2008) for conifers in the Alps give5

a range of 5.8–8.5 ◦C. Hoch and Körner (2009) found that two montane conifer species
maintained cambial activity even when grown at 6 ◦C. Körner (2012) inferred a global
mean treeline isotherm near 6 ◦C and cessation of growth at 5 ◦C (Körner, 2008). 0 ◦C is
the theoretical limit below which plant tissue formation cannot occur (Körner, 2012). We
thus chose to model the temperature threshold for growth by T1 ∼ β(9,5,0,9), a four-10

parameter beta distribution with first and second shape parameters 9 and 5 supported
on the interval [0,9]. This choices puts the mode of the pdf at 6 ◦C, assigns zero prob-
ability below freezing 0 ◦C or above 9 ◦C, and places 90 % of the total probability in the
interval (3.8 ◦C,7.5 ◦C) (see blue curve in Fig. 1a).

The biologically-based information available about T2, the threshold above which15

growth is no longer sensitive to temperature variations, is more uncertain. Vaganov
et al. (2006) give a default value of 18 ◦C for the full Vaganov-Shashkin model based
on a few intensive case studies at a limited number of Russian tree-ring sites, but use
a value of 15 ◦C in an example model run, demonstrating the range of uncertainty as-
sociated with this parameter. The analogous parameter in the TreeRing2000 model20

has a default value of 23 ◦C (Fritts et al., 1999). Data shown by Williams et al. (2011)
suggests a broad plateau where ring width in Alaskan Picea glauca ceased increasing
with June and July means temperature between approximately 10 ◦C and 13 ◦C, de-
pending on site hydrology. On the other hand, Garfinkel and Brubaker (1980) showed
no change in the regression of ring width on temperature in the same species even at25

temperatures approaching 15 ◦C. Carrer et al. (1998) inferred a lower optimal summer
temperature threshold of 13 ◦C for Picea abies and 16 ◦C for Larix decidua. Although
this information sheds some light on the threshold for sensitivity to temperature, the ma-
jority of these studies are based on empirical data at monthly to seasonal time scales,
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as opposed to direct studies of cambial activity in response to temperature. To reflect
the uncertainty inherent in the wide range of these estimates, as well as uncertainty
in their direct applicability as parameter estimates in VS-Lite, we model the prior by
T2 ∼ β(3.5,3.5,10,14). This choice limits probability mass to the interval (10 ◦C,24 ◦C),
and distributes probability symmetrically about a mean of 17 ◦C with a standard devia-5

tion of 2.5 ◦C (blue curve, Fig. 1b).
Very little biologically-based information is available to constrain either moisture pa-

rameter. We use the default parameters developed by Vaganov et al. (2006) to define
broad priors on M1 and M2. Default values for M1, interpretable as soil wilting point, are
0.02 v/v (Vaganov et al., 2006) and 0.01 v/v (Fritts et al., 1999). The latter source also10

sets a moisture optimum at 0.109 v/v, so the value of M1 should certainly fall well below
this value. We set the prior mean at 0.035 with standard deviation of 0.02 v/v, with no
probability mass outside of (0 v/v,0.1 v/v), by letting M1 ∼ β(1.5,2.8,0,0.1) (blue curve,
Fig. 1c). The default for M2 is 0.8 of typical soil saturation levels, and the Leaky Bucket
model of soil moisture employed by VS-Lite never allows soil to be saturated to a value15

more than 0.75 v/v. We set M2 ∼ β(1.5,2.5,0.1,0.4). This gives the prior a mean of
0.25 v/v, standard deviation of 0.1 v/v, and nonzero probability on (0.1 v/v, 0.5 v/v) (blue
curve, Fig. 1d).

The prior for the model noise σ2
w is inverse gamma with shape and scale parameters

5 and 10, respectively. The inverse gamma distribution is a common choice for the prior20

of the variance of a Gaussian process, since it is a conjugate prior; that is, the posterior
distribution also has an inverse gamma distribution. The conjugacy feature simplifies
the sampling. The shape and scale parameters are chosen to make the prior both
broad and vague, with a mean of 2.5 and a variance around 2.1, to limit the influence
of our prior choice on the inferred value of σ2

w .25

The posterior distribution (Eq. 3) is sampled using a Metropolis-Hastings algorithm
embedded within a Gibbs sampler, which is a standard Markov Chain Monte Carlo ap-
proach (Chib and Greenberg, 1996). To check for convergence, we run three chains
with 4000 iterations each after a burn-in period of 1000 iterations. In the rare case that
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the R-hat statistic (Gelman and Rubin, 1992) indicates the MCMC has not converged,
we re-run the sampler with a greater number of iterations until the sampler has con-
verged. The autocorrelation functions of the MCMC chains indicate that at most sites,
autocorrelation in the parameter sampling chains is no longer significant past a lag of
twenty. We conservatively subsample every fiftieth value of each of the three chains5

to ensure independence of samples, resulting in a collection of 240 samples for each
parameter value at each site.

The ensemble output may be used in several different ways. First, point estimates
from the posterior ensemble, such as the posterior median, may be used as calibrated
parameter values that optimize the fit between model simulated ring width data and10

a target ring width series, given fixed input climate data. However, the posteriors con-
tain additional information beyond point estimates. Their spread indicates the uncer-
tainty in the parameter estimates, as well as the degree to which the climate and target
ring-width data inform the parameter values. Hence a measure of the model sensitivity
to each parameter may also be gleaned from the posterior spread. The Monte Carlo15

ensemble of parameter values may also be used to run modeling studies where ac-
counting for the effect of parameter uncertainty is important for interpretation of the
results.

2.3 Experimental design

We perform our study using estimates of monthly temperature and precipitation from20

the 4km×4 km-resolved gridded Parameter-Elevation Regressions on Independent
Slopes Model (PRISM) data product (Daly et al., 2008). We use the mean of the
monthly maximum and minimum temperature fields as well as the accumulated pre-
cipitation field, and neglect the inherent PRISM measurement and model error. The
climate product is used at the grid cells co-located with 277 sites associated with ob-25

served tree-ring width chronologies across the continental United States. These sites
form the subset of chronologies used in a multi-proxy hemispheric temperature recon-
struction by Mann et al. (2008) that also overlap with the PRISM data from 1895–1984.
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The choice of this 90-yr interval represents a balance between the availability of
proxy observations and climate data. All the associated chronologies are freely avail-
able online on the NOAA Paleoclimate Reconstructions Network/Proxy Data webpage
(http://www.ncdc.noaa.gov/paleo/pubs/pcn/pcn-proxy.html).

2.3.1 Pseudoproxy experiment (PPE)5

To evaluate the skill of the Bayesian parameter estimates, we perform a variation on
so-called “pseudoproxy experiments” (PPE) (Smerdon, 2012) using synthetically gen-
erated tree-ring width data. At each site, we first do a preliminary run of the Bayesian
scheme described above using the observed chronologies and estimates of observed
climate data for the entire interval 1895–1984. The posterior medians from this step10

parameterize regionally-realistic tree growth responses to climate, and we use them
as our PPE parameter targets. We next run the VS-Lite model over the same interval
using the target parameter set and PRISM climate estimates to produce 277 synthetic
ring-width series. Finally, we estimate the known target parameters using the Bayesian
scheme. We condition on the known climate data and pseudoproxy ring-width data,15

use the interval 1955–1984 to estimate the growth response parameters, and the inter-
val 1925–1954 to estimate the model noise σ2

W . The data from 1895–1924 are withheld
to compute estimates of the model noise in an interval independent from the one used
to tune the growth response parameters. This PPE is designed as a test of our pa-
rameter calibration scheme over a realistic range of tree responses to climate, but in20

an idealized model world where the VS-Lite model perfectly describes the process by
which climate is transformed into noise-free tree-ring width chronologies. The skill of
the algorithm measured in such a PPE thus provides an upper bound on its skill in
real-world scenarios.

Comparing the growth parameter posterior distributions to the known targets allows25

us to quantify the skill of the estimation scheme. The numerics return N = 240 draws
from the posterior distribution, so we compute Monte Carlo estimates of the root-mean-
square error and bias in the pseudoproxy context using the “true” target value of each
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(scalar) parameter θ:

RMSE ≈

√√√√ 1
N

N∑
n=1

(θ̂n −θ)2 (5)

Bias ≈ 1
N

N∑
n=1

(θ̂n −θ) (6)

The extent to which the prior and posterior distributions differ indicates the degree to5

which the climate, ring-width data, and the VS-Lite model structure constrain the value
of each parameter. To quantify this “Bayesian learning” at each site, we examine the
ratio of posterior to prior variance. Parameters whose posteriors are well-constrained
by the data will have much smaller posterior variance than prior variance, while param-
eters that are not well-constrained will have posteriors that resemble their priors, and10

hence variance ratios close to one. Finally, the parameter σ2
W characterizes the model

skill in simulating the data, and so must be checked for artificial skill. We compare the
posterior median of this parameter to the median of the prior updated by the variance
of the residuals obtained by running VS-Lite in the independent validation interval with
the estimated growth response parameters.15

To evaluate the sensitivity of the parameter estimation scheme to the choice of prior
distributions, the pseudoproxy experiment described above is also performed with uni-
form prior distributions. The supports of these uniform priors are chosen to be the same
as that for the literature-informed four-parameter beta priors described in Sect. 2.2 for
T1, T2, and M1. For M2, a uniform distribution with the same lower bound on its support20

as the four-parameter beta prior is used, but the upper bound is extended slightly out
to 0.6 v/v. The uniform prior is a standard noninformative choice against which to check
the sensitivity of posterior results to more complicated priors (see Gelman et al., 2003,
Sect. 6.8). The posteriors derived under the four-parameter beta priors informed by the
literature are compared with those derived using the uniform priors.25
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2.3.2 Observed proxy experiment (OPE)

We also calibrate the VS-Lite model parameters using the PRISM data and the ob-
served tree-ring width chronologies at each of the 277 network sites to perform an
observed proxy experiment (referred to hereafter by the acronym OPE). We condition
the growth response parameter estimates on the data for the interval 1955–1984 and5

the model noise σ2
W on the data from 1925–1954. We withhold the 1895–1924 data to

independently validate the estimate of model noise.
We take the posterior medians as point estimates of each parameter, and look at

their spatial distribution across the experimental domain. As in the PPE case, we also
look at the ratio of posterior to prior variance to assess Bayesian learning, and compare10

the OPE estimates of the model uncertainty σ2
W in calibration and validation intervals to

check for robustness in the estimate of model skill. In the case of parameter calibration
using real data, the parameters are unknown, and so we cannot compute RMSE or
bias. Instead, we seek to interpret the fitted parameters in terms of the climate con-
trols on growth at each site. We first classify each site as having growth which is either15

temperature-limited, moisture-limited, or as having mixed climatic controls. To do so,
we run the VS-Lite model at each site with the parameters’ posterior medians and
examine the growth response functions during June, July, and August, when insola-
tion is at its peak and allows the bulk of modeled growing to occur. We compute the
proportion of summer months over the entire simulation in which the growth response20

to soil moisture (temperature) is strictly less than the growth response to temperature
(soil moisture). If the modeled proportion is significantly more than the null hypothesis
of half, than the site is classified as M-limited (T-limited). Sites for which the propor-
tion cannot be statistically distinguished from 0.5 are classified as mixed-control sites.
We then examine the structure of the parameter point estimates in multi-dimensional25

parameter space for each class of sites.
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3 Results

3.1 Pseudoproxy experiment (PPE) results

A plot of prior and posterior distributions of the four growth response parameters and
the model uncertainty parameter for one representative site in the network is shown in
Fig. 1. A set of such posterior distributions exists for every site in the experimental net-5

work. We compute statistics of these distributions to assess the skill of the parameter
calibration method as described in Sects. 2.3.1 and 2.3.2.

Both posterior bias and root-mean-squared error tend to be on the order of 20 % or
less of the length of the prior interval for estimates of the parameters T1, T2, and M2
(Fig. 2a, b, d). Only posteriors of the parameter M1 tend to be systematically biased,10

with probability mass generally lower than the targets (Fig. 2c) due to prior probability
mass generally favoring the lower half of the the prior support and targets that tend
toward the upper end. Root-mean-squared error and bias for this parameter ranges up
to 40 % of the length of the prior intervals. While the posterior distributions of M1 tend
to exhibit greater RMSE and bias than those of the other parameters, these posteriors15

also have greater variance, and hence greater uncertainty. This result is shown by the
comparatively large value of RMSE at values of bias close to zero. The large posterior
variance of the M1 posteriors is also evident in a plot of the ratio of posterior to prior
variance, which is close to one at all sites for this parameter (Fig. 3, bottom-left panel).
This ratio varies by location for both temperature threshold parameters T1 and T2, and20

tends to be close to zero at most sites for the parameter M2 (Fig. 3 remaining panels).
Comparisons of parameter estimates using the literature-based priors to those based

on uniform priors show that the sensitivity of the parameter estimates to the prior dis-
tribution depends on both the site and the specific parameter in question (results not
shown). At sites where the model is highly sensitive to any of VS-Lite’s growth re-25

sponse parameters, the choice of prior model has little influence on the posterior mean
and variance. Meanwhile, the prior model influences parameter estimates heavily at
sites where the parameter in question has little effect on modeled growth.
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3.2 Observed proxy experiment (OPE) results

The point estimates of the VS-Lite parameters in the observed proxy experiment, given
by the posterior medians, tend to cluster in space (Fig. 4). In particular, the estimated
values of T2 tend to occupy the lower end of the prior support in the West. The spatial
structure of M1 is also notable, with values tending to fall near the upper end of the5

prior for arid and semi-arid sites in the West. Point estimates of M2 are close to the
upper end of the prior range nearly uniformly across space.

The spatial distribution of Bayesian learning, parameterized by the ratio of posterior
to prior variance, does not exhibit any notable spatial structure for T1 and T2. Rather,
the sites where the estimates of these parameters are influenced most heavily by the10

data are scattered throughout the experimental domain (Fig. 5). Estimates of M1 are
influenced very little by the data constraints almost uniformly across the experimental
domain, while estimates of M2 are influenced heavily by the data everywhere, indicating
high model sensitivity to this parameter.

The size of the estimated model uncertainty parameter σ2
W is comparable across the15

calibration and validation interval in both the synthetic and observed data experiments
(Fig. 6). Although the sites with the greatest values of σ2

W in the OPE show greater
differences between calibration and validation interval estimates, note that these es-
timates are also more uncertain, since higher medians for inverse-gamma posteriors
also implies higher variance. Finally, the model uncertainty is generally much greater20

in the OPE than in the PPE, with the median value of validation-interval σ2
W point esti-

mates at 1.43 in the former case, and only 0.56 in the latter.
The point estimates of the parameters cluster in anomaly-parameter space according

to the sites’ classifications as temperature-limited, moisture-limited, or mixed-control
sites (Fig. 7). The estimated values of T1 fall below the mean local JJA temperature25

(not shown); in other words, the mean summer temperatures all fall above the threshold
for nonzero growth at every site. Data at sites classified as temperature-sensitive con-
strain all estimates of T2 to values above the mean local summer temperature. Summer
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temperature variations therefore influence modeled growth at these sites. Sites clas-
sified as moisture-limited or as having mixed controls tend to have values of T2 that
fall below local summer mean temperatures; thus temperature variability will have less
of an effect on modeled growth. The results for the moisture parameters are similar.
All sites have calibrated values of M1 falling below the climatological mean soil mois-5

ture content, so that there is enough moisture for modeled growth to occur across the
experimental domain in summer. Calibrated values of M2 are greater than local climato-
logical mean soil moisture for all sites classified as moisture-limited, but mixed-control
and temperature-limited sites tend to have values of M2 that fall below the climatologi-
cal summer mean.10

Given that the parameter estimates of the lower thresholds T1 and M1 fall below
mean summer climatological values at all sites, the distribution of the anomaly point
estimates in T2 ×M2 space contains the most information about the modeled climate
controls on growth (Fig. 7). In the second quadrant of such a plot (defined by anomaly-
T2 = T ′

2 < 0 and anomaly-M2 =M ′
2 > 0) one would expect sites where moisture gen-15

erally limits summer growth, since climatological temperatures tend to fall above the
optimal temperature growth limit, but soil moisture tends to fall below its optimal growth
limit. Most of the sites whose parameterizations end up in this quadrant are in fact clas-
sified as moisture-limited by our classification scheme. The fourth quadrant (T ′

2 > 0,
M ′

2 < 0) would seem to define a region of parameter space describing temperature-20

limited growth, and indeed the sites whose estimated parameters are in this quadrant
are nearly all classified this way. The sites that fall within quadrant III are exclusively
mixed-control sites, as one would expect for locations where trees are sensitive to both
variations in summer moisture and temperature variability.

The modeled climate controls on growth break the continental United States into25

roughly three regions. In both the pseudoproxy and observed proxy experiments, the
Northwest contains mainly temperature-controlled sites (red markers in quadrant IV of
Fig. 7), moisture-controlled sites fill the West and Midwest (blue markers in quadrant II
of Fig. 7), and mixed-control sites are most common in the Southeast and along the
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eastern seaboard (green markers in quadrant III Fig. 7). This pattern is generally con-
sistent with our knowledge of the climate sensitivity of the North American tree-ring
network (e.g. Meko et al., 1993).

4 Discussion

The Bayesian inference scheme is skillful in recovering the known parameters used to5

create pseudoproxy ring-width series. Although real-world analogs to the pseudoproxy
target model parameters may not be known, the skill in the pseudoproxy context sup-
ports the notion that the approach will estimate parameters that optimize VS-Lite’s fit
to observed tree-ring width chronologies. The results of the PPE and OPE are highly
similar in terms of their spatial distributions of the modeled controls on growth, as well10

as the model sensitivities to the growth response parameters. These correspondences
support the applicability of pseudoproxy experiment results to studies using observed
proxy data.

In addition to point estimates of the parameters, the spread of the posterior distri-
butions also provide measures of the estimation uncertainty and the model sensitivity15

to the parameters. This is a novel feature among parameter estimation schemes for
forward models of tree-ring width. Previous studies either performed simple sensitivity
analysis by varying one parameter at a time over a limited region of the parameter
space (Evans et al., 2006; Anchukaitis et al., 2006), or else not at all (Fritts et al., 1999;
Misson, 2004; Misson et al., 2004). We find that the VS-Lite model is generally least20

(most) sensitive to the value of M1 (M2), as the ratio of posterior to prior variance is very
close to one (zero) at all sites in both pseudoproxy and observed proxy experiments
(Figs. 3 and 5). The model sensitivity to the temperature thresholds T1 and T2 depends
on the particular site.

Our sensitivity analysis indicates that the shape of prior distributions are of little con-25

sequence for parameter-site combinations where a high degree of learning occurs,
indicating high model sensitivity to the parameter in question. At such locations, the
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resulting parameter estimates could be viewed as hypotheses for field studies aiming
to provide observed physiological evidence either supporting or refuting the inferred
values. By contrast, at sites at which the model is insensitive to a given parameter, the
posterior inference is determined almost entirely by the prior model. Defaulting to the
prior when the data contain little information is a standard feature of Bayesian analy-5

sis and underscores the importance of careful prior elicitation based on all available
scientific evidence. This situation may occur when the data are very noisy, when the
model is insensitive to the parameter in question, or when the length of the data series
is limited. In the particular case that the data series is too short to inform the parame-
ter value, the Bayesian approach can be viewed as automatically safeguarding against10

over-tuning the estimated parameters. This feature is ideal for parameter estimation to
the degree that one has faith in the representation of the underlying science and its
inherent uncertainty reflected in the prior distributions. Note that our publicly-available
code includes flexible options for users to define their own priors, should new informa-
tion from future field studies of tree growth render the default set of priors described15

here obsolete.
The choice of finite support or range is another component of prior specification

that may heavily influence the posterior inference, as in the case of the parameter M2
at most sites in this study. The posterior distributions of this parameter at most sites
show high probability mass toward the upper bound of the compact prior support (see20

Fig. 1 and bottom right panel of Fig. 4), indicating that the data alone imply values
of this parameter above the region allowed by the prior. However, the upper limit of
the prior represents a physical constraint on biological thresholds for optimal moisture
conditions for plant growth, as excessive soil moisture values may become detrimental
to plant growth (Kozlowski, 1984). Given that the modeling of soil moisture within VS-25

Lite is known to be simplistic (Tolwinski-Ward et al., 2011), we believe the posteriors
here represent an objective compromise between the data and prior knowledge of the
parameter, given the uncertainty of VS-Lite.
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Posterior estimates of σ2
W computed during the parameter calibration are of similar

size to those measured in an independent validation interval (Fig. 6), indicating that the
algorithm provides a reasonable estimate of VS-Lite’s uncertainty. The skill of the tuned
model fit to data might be expected to degrade for periods with mean climatic condi-
tions that differ greatly from those of the parameter calibration interval. However, the5

PRISM data do display some temperature trends and induce low-frequency modeled
soil moisture variability over the period used in this study. The result that the calibration
and validation interval model uncertainties are comparable shows that the parameter
optimization is robust to at least the type of nonstationarity present in the PRISM data
set (Fig. 6). A comparison of the typical size of σ2

W in the pseudoproxy experiment to10

that in the observed proxy experiment provides a sense of the size of model error that
can be attributed to parameter uncertainty as opposed to other sources. The differ-
ences between the model output and target synthetic ring-width in the pseudoproxy
experiments is completely accounted for by the variability of VS-Lite associated with
parameter uncertainty. Symbolically, we can write this as σ2

WPPE
= σ2

WPARAM
. The model15

residuals in the OPE can be attributed to both parameter uncertainty and other sources,
such as processes unresolved by VS-Lite and non-climatic signal in the observed proxy
data. Then we can write σ2

WOPE
= σ2

WPARAM
+σ2

WOTHER
, assuming the parametric and other

sources of noise are independent. Thus, for any given site, contributions to the model
noise from sources independent of the parameter uncertainty can be easily estimated20

by running a PPE and taking the difference between the total variance minus the com-
ponent σ2

WPARAM
= σ2

WPPE
.

The location of parameter point estimates relative to local climatological means in
multidimensional anomaly parameter space presents a graphical tool for understand-
ing the climate controls on the modeled ring width signal (Fig. 7). At sites where25

VS-Lite reasonably represents growth, this type of plot could help identify and pre-
dict changes in the climate-proxy relationship that result from climatic nonstationarities
driving mean environmental conditions across biological thresholds. In such cases of
“divergence” (D’Arrigo et al., 2004; Carrer and Urbinati, 2006), one would expect the
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point representing the optimal set of parameter choices to cross from one quadrant into
another after the climatic shift.

In future studies, uncertainty in the parameter posteriors can likely be reduced by
modeling the fields of parameters spatially, as sites close in space tend to take on sim-
ilar optimal parameter values (Fig. 4). Since the parameter values are interpretable in5

terms of the climate controls on growth, any modeled spatial structure of the parame-
ter fields likely holds information about the spatial distribution of climate controls that
can be linked to mechanistic causes, such as orography, regional drought patterns, the
timing of snowmelt, regional climatological means and variances, or teleconnections to
larger global patterns of climatic variability.10

5 Conclusions

The Bayesian calibration scheme presented here skillfully recovers parameter esti-
mates near the values used to create synthetic tree-ring width data. The spread of the
posterior distributions show that the model fit to data is generally sensitive (insensitive)
to the value of the moisture threshold M2 (M1), and may or may not be sensitive to15

the temperature threshold parameters depending on location. Estimates of the VS-Lite
model’s uncertainty provided by the scheme appear to be robust outside of the interval
used for calibration. The location of estimated parameters relative to local climatol-
ogy in multidimensional parameter space provides insight into the climate controls on
modeled tree-ring growth, and may be useful for some studies of the “divergence” phe-20

nomenon.

Supplementary material related to this article is available online at:
http://www.clim-past-discuss.net/9/615/2013/cpd-9-615-2013-supplement.zip.
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Prior (blue) and posterior (red) densities of VS−Lite parameters
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Fig. 1. Prior (blue) and estimated posterior (red) densities for the parameters of VS-Lite, con-
ditioned on pseudoproxy and PRISM climate data at the Sipsey Wilderness site in Alabama.
(Plot of posterior density given by a smooth approximation to a frequency plot of ensemble
members.) Solid black vertical lines give the target values of the growth response parameters,
dotted black lines give prior medians, and dash-dot black lines give the posterior medians.
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Fig. 2. Root-mean-squared error versus bias of parameter estimates in the pseudoproxy experi-
ment, with both statistics shown relative to the length of each prior’s support. Note that the struc-

ture in the scatter plots is a result of the fact that by definition RMSE(X ) =
√

Var(X )+Bias2(X ).
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Fig. 3. Ratio of posterior to prior variance for the four growth response parameters as a measure
of Bayesian learning in the pseudoproxy experiment. Color scale calibrated so that sites with
smaller (larger) values of the ratio, indicating greater (lesser) Bayesian learning, have darker
(lighter) coloration.
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Fig. 4. Posterior medians of VS-Lite growth parameters. Note that the color scale for each
parameter ranges over the interval on which the prior is supported, and is calibrated so that
white indicates the prior median.
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Fig. 5. Ratio of posterior to prior variance for the four growth response parameters as a measure
of Bayesian learning in the observed proxy experiment. Color scale calibrated so that sites with
smaller (larger) values of the ratio, indicating greater (lesser) Bayesian learning, have darker
(lighter) coloration.
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Fig. 6. Validation-interval model uncertainty, versus calibration-interval model uncertainty for
pseudoproxy experiment (x-markers) and observed proxy experiment (o-markers). Dotted red
line is y = x.

644

http://www.clim-past-discuss.net
http://www.clim-past-discuss.net/9/615/2013/cpd-9-615-2013-print.pdf
http://www.clim-past-discuss.net/9/615/2013/cpd-9-615-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/


CPD
9, 615–645, 2013

Bayesian parameter
estimation for

tree-ring model

S. E. Tolwinski-Ward
et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

−15 −10 −5 0 5 10
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

JJA−Anomaly T
2

JJ
A

−
A

no
m

al
y 

M
2

 

 
T−limited Sites
M−limited Sites
Sites with Mixed Controls

Fig. 7. Plot of estimated M2 versus estimated T2 at each site, with both parameters measured
as anomalies relative to the local climatological mean summer temperature. Color of points
denote the classification of the controls on modeled growth at each site. x = 0, y = 0 define the
mean local summer temperature and soil moisture content, respectively.
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