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Abstract

Paleoclimate time series are often irregularly sampled and age uncertain, which is an
important technical challenge to overcome for successful reconstruction of past climate
variability and dynamics. Visual comparison and interpolation-based linear correlation
approaches have been used to infer dependencies from such proxy time series. While5

the first is subjective, not measurable and not suitable for the comparison of many
datasets at a time, the latter introduces interpolation bias, and both face difficulties if
the underlying dependencies are nonlinear.

In this paper we investigate similarity estimators that could be suitable for the quan-
titative investigation of dependencies in irregular and age uncertain time series. We10

compare the Gaussian-kernel based cross correlation (gXCF, Rehfeld et al., 2011) and
mutual information (gMI, Rehfeld et al., 2013) against their interpolation-based counter-
parts and the new event synchronization function (ESF). We test the efficiency of the
methods in estimating coupling strength and coupling lag numerically, using ensem-
bles of synthetic stalagmites with short, autocorrelated, linear and nonlinearly coupled15

proxy time series, and in the application to real stalagmite time series.
In the linear test case coupling strength increases are identified consistently for all

estimators, while in the nonlinear test case the correlation-based approaches fail. The
lag at which the time series are coupled is identified correctly as the maximum of the
similarity functions in around 60–55 % (in the linear case) to 53–42 % (for the nonlinear20

processes) of the cases when the dating of the synthetic stalagmite is perfectly pre-
cise. If the age uncertainty increases beyond 5 % of the time series length, however,
the true coupling lag is not identified more often than the others for which the similarity
function was estimated. Age uncertainty contributes up to half of the uncertainty in the
similarity estimation process. Time series irregularity contributes less, particularly for25

the adapted Gaussian-kernel based estimators and the event synchronization function.
The introduced link strength concept summarizes the hypothesis test results and bal-
ances the individual strengths of the estimators: while gXCF is particularly suitable for
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short and irregular time series, gMI and the ESF can identify nonlinear dependencies.
ESF could, in particular, be suitable to study extreme event dynamics in paleoclimate
records. Programs to analyze paleoclimatic time series for significant dependencies
are included in a freely available software toolbox.

1 Introduction5

Time series are often used to assess the properties of the processes that generated
them, in climate science (Rehfeld et al., 2011) but also in many other scientific fields
ranging from ecology (Lhermitte et al., 2011) to astrophysics (Scargle, 1989). Time
series similarity measures quantify the degree of statistical association and are, par-
ticularly in the geoscientific context, often equated with Pearson correlation (Chatfield,10

2004). They help to identify the strength of dependencies between climate processes
and potential lead/lag relationships. For modern-day weather stations, both daily tem-
perature and the time of observations are logged precisely. To identify relationships
between distant weather evolution, time series of temperature anomalies can be com-
pared. Paleoclimate data are crucial to investigate climate inter-relationships beyond15

the instrumental record. Paleoclimate time series are, however, more challenging than
the data sources in other disciplines: Neither observation time nor the climatic vari-
able are known precisely. Both have to be reconstructed, resulting in irregular and age
uncertain time series, because variability in the growth of the archive impacts on the
temporal resolution of the resulting proxy time series (Fig. 1). The dependency of re-20

constructed paleoclimate time series, and its relationship to global or external forcing,
is often inferred from similarities, coinciding maxima/minima or trends, between graph-
ical visualizations of the time series (for example in Zhang et al., 2008; Cheng et al.,
2012; Sinha et al., 2011; Zhang et al., 2011). Visual comparison is, however, inherently
subjective, can not be quantified and tested in a hypothesis test and will not suffice with25

the growing number of paleoclimatic datasets available.
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Standard statistical techniques, such as estimating the Pearson correlation (XC), can
not readily be applied when the sampling of the time series is irregular. XC is, in prin-
ciple, computed by taking the arithmetic mean over the products of coeval, centralized
and standardized observations and reflects the goodness of a linear fit to the scatter-
plot of the data. If the two time series to be correlated are irregular, coeval observations5

are only given in the special case that both time series have the same timescale. In
practice, this would arise only if, for example, two proxies were measured on the same
samples. In the general case the irregularity precludes the direct computation. Inter-
polating the time series to a regular coinciding timescale, however, results in a loss
of high-frequency variability and a spectral bias towards low frequencies (Schulz and10

Stattegger, 1997). In a comparison of correlation analysis techniques the Gaussian-
kernel-based Pearson correlation was identified as a reliable and robust estimator for
irregular time series (Rehfeld et al., 2011). However, relationships in the climate sys-
tem are not always linear, and therefore not necessarily identifiable by linear techniques
such as Pearson correlation. This is not a problem in the geosciences alone, and simi-15

larity measures that can capture nonlinear inter-relationships exist. Mutual Information
(MI), an entropy-based measure, has been used to investigate nonlinear dependencies
of processes from observations (Donges et al., 2009; Runge et al., 2012; Hlinka et al.,
2013). In this measure, the joint and marginal distributions of processes X and Y are
evaluated. Its advantage is that it is model-free and able to quantify nonlinear depen-20

dencies, but it is symmetric, MI(X , Y )=MI(−X , Y ), and more difficult to quantify as
the quantification bias changes considerably for different sample sizes and estimator
techniques (Khan et al., 2007; Kraskov et al., 2004). It has been adapted and tested
for irregular and autocorrelated time series (Rehfeld et al., 2013) in a Gaussian-kernel-
based variant. Both MI and XC depend on the notion of a scatterplot between the data.25

An alternative, especially in the analysis of extreme events, could be found in the mea-
sure of Event Synchronization (ES, Quian Quiroga et al., 2002), which is not based
on the available time series, but the relative timing of distinguished events in two time
series. Originally conceived for neurophysiological signals, it has become a popular
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measure to investigate dependencies in precipitation time series (Malik et al., 2010,
2011; Rheinwalt et al., 2012), but it has not been tested for its suitability on short and
autocorrelated time series. In its original form it provides a measure for the strength
of synchronization and for the direction of a potential coupling between the processes
generating the events, but not for the lag of the potential coupling. Although stated5

differently in the original paper, ES does not require regular observation intervals.
A number for an individual correlation coefficient can be interpreted, when its level

of significance is determined as well. For the usually short and autocorrelated paleocli-
matic time series, this can be done by bootstrapping the result (Mudelsee, 2002), or by
testing the similarity for uncorrelated surrogate time series with similar autocorrelation10

properties (Rehfeld et al., 2011, 2013). The values of the different estimators, however,
can not be compared directly, as they vary on different scales. In this paper we eval-
uate the impact of age uncertainty and time series irregularity on the accuracy of the
estimators.

Furthermore we propose the concept of a link strength, to summarize the hypothesis15

test results of different estimators. If no outcome is significant, it is zero, if three out
of five employed estimators yield a significant similarity, the link strength is 3

5 and if all
tests for null correlation were rejected the link strength is equal to unity. The advantage
of this approach lies in its robustness due to the different estimators, and in the easy
consideration of uncertain datasets. If the uncertainty of the time series can be mod-20

eled, for example using the Monte Carlo techniques in age modeling software such as
StalAge (Scholz and Hoffmann, 2011) or COPRA (Breitenbach et al., 2012), it can be
incorporated in the link strength considerations in a straightforward manner.

In this paper we will investigate how well each of these estimators identify the
strength and the delay time of actual coupling between paleoclimatic processes from25

irregular and age uncertain time series. First we review the similarity measures (XC,
MI), and develop a Event Synchronization Function (ESF) based on the concept of ES.
We simulate artificial stalagmites with linearly and nonlinearly coupled proxy time se-
ries based on autoregressive (AR) and threshold-autoregressive (TAR) models. Using
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these and the stalagmite time series from Dandak (Sinha et al., 2011) and Wanxiang
(Zhang et al., 2008) cave we investigate how the similarity estimators perform for irreg-
ular, age uncertain and autocorrelated time series, and how they are impacted by age
uncertainty.

2 Methods5

In this section we first give necessary definitions for time series and similarity mea-
sures, and derive the ESF and the link strength concept.

2.1 Time series

Time series are a collection of measurements of specific properties of an dynamical
process, together with the time when the observation (or measurement) took place.10

The individual data points of the series are often regarded as observations of pro-
cesses, which may be deterministic, stochastic, or a combination of both. Economical
interests have motivated humans to record, for example, annual wheat prices (as early
as 1810 AD), daily stock indices or air temperature (Chatfield, 2004). Stock prices in
different markets may be co-dependent, but the reason for similar patterns may not be15

the same. These processes, named, say, X and Y and observed over the times t, yield
the time series x(t) and y(t). In classical time series analysis the observation times are
expected to be regular and certain, and the observation values to be measured exactly,
as well.

Definition 1 (Regular time series) The process Xt was observed through the regu-20

larly sampled time series x(t)= (xi )i=1,...,N , where the observation times are given by
multiplication of the index variable i with the common time step ∆t: ti = i∆t + t0.

In contrast to this, for irregular time series no unique sampling rate can be defined,
and the observation times cannot be directly related to an index anymore, but have to

5304

http://www.clim-past-discuss.net
http://www.clim-past-discuss.net/9/5299/2013/cpd-9-5299-2013-print.pdf
http://www.clim-past-discuss.net/9/5299/2013/cpd-9-5299-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/


CPD
9, 5299–5346, 2013

Similarity estimators

K. Rehfeld and J. Kurths

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

be given explicitly for each measurement. The observation time of irregular time series
might even carry some amount of information independently of the observation values,
as periods where the number of (reconstructed) observations over time are significantly
lower (higher) than others indicate a climate that is unfavorable (favorable) for archive
growth.5

Definition 2 (Irregular time series) An irregular time series x(t)= (ti , xi ) is defined
by its observation times ti and the respective observations xi , where i =1, . . . , N. The
two tuples have a common length Nx, with tx1 < tx2 < . . . < t

x
Nx as observation times.

In the following we focus on the age uncertain paleoclimate proxy time series for
which a growth model of the archive has been combined with point-wise age informa-10

tion, for example from uranium/thorium measurements. Input data to this age modeling
are (i) a dating table with its entries containing depths, associated age estimates and
their uncertainties, usually given as standard deviations, and (ii) the proxy observa-
tions.

Definition 3 (Dating table) A dating table D= (Di , T i , σTi )i=1,...,Ndat
contains Ndat point-15

wise age estimates T i taken at depths Di and their corresponding age standard devia-
tions σTi .

Definition 4 (Proxy observation series) Proxy observation series Xd = (d j , xj ) are
given for j =1, . . . , Nobs measurement depths d j and proxy measurements xj .

Definition 5 (Age model) For paleoclimate archives, the ages at few depths are esti-20

mated, with some uncertainty. Age models are then created to interpolate from these
few dates to a time axis for the proxy time series, which is sampled much more densely
in depth than the dating table. Thus, an age model is defined here as one potential
depth-age relationship ti (zi ) out of the possible ensemble of age models T.

For Monte Carlo (MC) age modeling, whole ensembles of age models, T are created,25

sampling the probability space inherent in the dating table (cf. Def. 3). By convention,
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usually the most likely age model is selected as the time axis for proxy time series
(Breitenbach et al., 2012; Scholz and Hoffmann, 2011).

The dating table is combined with the proxy observation series using a single age
model and forms a time-uncertain time series.

Definition 6 (Time-uncertain time series) Time-uncertain time series (ti , xi , σ ti ) as-5

semble i =1, . . . , N observations xi , reconstructed (most probable) observation times
ti from T and the observation time uncertainty σ ti .

2.2 Estimating similarity of irregular time series

Similar objects agree in some properties, while they may disagree in others. The pop-
ular saying “you can not compare apples and oranges” 1 is misleading in this context,10

because it implies only that it is not possible to compare them because they are not the
exact same type of objects. It is possible, however, to compare apples and oranges in
terms of their weights, glucose content, or environmental footprint, in which they might
be similar or different. Similarity measures, analogously, reflect statistical properties of
time series, which may not reflect the same climatic parameters. Different estimators15

focus on different characteristic properties related to the distributions of the observa-
tions, we summarize them in Table 1.

Assume that the processes X and Y generated time series x(t) and y(t). These
processes, and the time series, are similar if, for example, coeval minima or maxima
were observed. Comparison can then give information about functional relationships20

between processes underlying time series: Given that two processes X and Y are
not independent, there may either be a causal relationship or they are both driven by
a global common driver, or there are unobservable intermediate processes, as illus-
trated in Fig. 2. A significant similarity estimate may therefore arise for such physical
reasons - or as a false positive of the statistical test. If a transfer function between these25

two processes exists in a form of Yt =F (Xt+` ), this results in a repetition of a pattern,

1Or: apples and pears, in German.
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though maybe distorted, that occurs in Xt at t0 and in Yt at a time t= t0 + ` later. A sim-
ilarity estimator can help identify F and quantifies the similarities in the contemporary
evolution of two time series:

Definition 7 (Similarity estimator) A similarity estimator S =F ((tx, x)(ty , y)) reflects
the similarity between x(t) and y(t) to a numeric value in an interval [a, b], S :5

x(t)×y(t)→ [a, b].

For most similarity measures a=−1, b=1 is considered, but for different estimators
different bounds exist. Here we only require that the relationship between true depen-
dency and estimated similarity is monotonically increasing. If the delay time ` in the
transfer function is nonzero, a similarity function gives the similarity between two time10

series for increasing delay:

Definition 8 (Similarity function) A similarity function S(`) gives the estimated simi-
larity over different lag times ` :

S(`) = S(` · ∆t) = f
((
tx, x

)
,
(
ty + ` · ∆t, y

))
. (1)

The spacing of the lag vector is uniform and depends on the mean time resolution15

of the time series: ∆` =max(∆tx, ∆ty ). To indicate that we are focusing on bivariate
similarity we also use the alternative notation S(X , Y ) which does not explicitly refer to
the possible lags.

Similarity measures as required in this context should satisfy at least four properties
in an adaptation of the axiomatic definition of Batyrshin et al. (2012):20

– Symmetry : S(x(t), (t))=S(y(t), x(t))
The statistical association should not change under a permutation of the argu-
ments.

– Reflexivity : S(x(t), x(t))=b
When comparing a time series with itself the dependency is always maximal.25
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– Translation invariance: S(x(t)+c, y(t))=S(x(t), y(t)), c 6=0
Adding or subtracting a constant to one of the time series does not change the
resulting estimate.

– Scale invariance: S(ax(t), y(t))=S(x(t), y(t)), a≥0
Multiplying one or both observation vectors with a constant shall not alter the5

estimated association.

By definition the estimators presented here fulfill these requirements.

2.2.1 Kernel-based estimators for Pearson correlation

Pearson correlation is defined as the mean over co-eval products of standardized ob-
servations (Chatfield, 2004). For irregular time series the inter-sampling time intervals10

vary and the classical definition cannot be applied. Rehfeld et al. (2011) tested different
correlation estimators for irregular time series and found that a Gaussian-kernel based
estimator performed best. In the definition of the correlation function ρ̂(k∆τ) at the lag
k∆τ,

ρ̂(k · ∆τ) =

Nx∑
i=1

Ny∑
j=1

xi yj bk

(
t
y
j − t

x
i

)
N∑
i=1

N∑
j=1

bk

(
t
y
j − txi

) , (2)15

the kernel bk(tyj − t
x
i ) weights those products higher whose time lag lies closer to k∆τ:

b(d , k, h) =
1

√
2πh

e−|d |2/2h2
, (3)

where h=∆txy/4 or 0.25 for the rescaled time axis, t
x
i = t

orig
i /∆x

t , and d de-
notes the distance between the product inter-observation time and the desired lag,
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d =∆txyij −k∆τ, k denotes the lag index. The standard width parameter h is chosen to

result in a main lobe width of ∆txy , the mean sampling interval or common sampling
period in the bivariate case. Note that the observations have to be standardized to zero
mean and unit variance before the analysis.

2.2.2 Kernel-based estimators for mutual information5

Mutual information I(X , Y )= Ixy is a measure of the dependency (linear or nonlinear)
between two random variables, X and Y . This measure from information theory can be
interpreted as the uncertainty reduction in variable X , given that Y was observed. It is
symmetric, i.e. relationships of opposite sign but the same association strength, corre-
lation and anti-correlation, give the same MI. By definition, the measure yields a null10

result if, and only if, the two random variables, in this case time series of observations,
are independent (Kraskov et al., 2004; Cover and Thomas, 2006).

While more complex estimators exist (e.g. Kraskov et al., 2004), the simplest estima-
tor is

Îxy =
∑
x,y

px,y log
px,y

pxpy
, (4)15

where px,y is the 2-D joint probability density function of the variables X and Y and
px resp. py are the one-dimensional probability distributions of X resp. Y . The unit of
measurement of MI depends on the logarithm chosen in the estimator: it is measured
in bits, if the logarithmic base 2 is chosen, and in nats for the natural logarithm.

In case of irregular sampling, however, the bivariate observation set (Xt, Yt) at regular20

observation points t that is required for a scatterplot are not available. In standard
interpolation procedures, both (tx, x) and (ty , y) would be re-sampled to obtain a
bivariate set of observations with regular observation time intervals, (tr, xr, yr). This
is undesirable for paleoclimate records (a) because every interpolation routine involves
an assumption on the dynamics of the underlying process, and this is difficult to justify25
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for climate data and (b) it reduces the observable variability in the process (Schulz and
Stattegger, 1997; Stoica and Sandgren, 2006; Babu and Stoica, 2010).

There are two main points where this problem can be addressed: Either by recon-
structing bivariate observations while avoiding variance reduction as much as possible
or by a modification of the joint distribution, for example by introducing weights propor-5

tional to the sampling time-distance similar to the Gaussian-kernel based XC (Rehfeld
et al., 2011). For MI the latter is difficult to achieve. But following the former solution, the
probabilities required for Eq. (4) are straightforward to derive from relative frequencies.

Algorithmically, this can be described as follows:

1. A local reconstruction of the signal is performed by estimating for each point i10

in the time series X= (tx, x) a corresponding observation from Y= (ty , y), by
estimating a local, observation-time weighted mean y

lr
j around a time point txi in

Y,

y lr
j =

Ny∑
i=1

b(d , k, h)yi , (5)

with the Gaussian-kernel based local weight b(d , k, h) defined as in Eq. (3). For15

MI the standard deviation of the Gaussian weight function is set to h=0.5. If there
are no observations yi available in a time window ±τ∆t around txi this reconstruc-
tion is not performed. Repeating this for each time point j =1, . . . , Nx in X one
obtains a new, bivariate set of observations

Yx =
(
txi , xi , y

lr
i

)
.20

2. Afterwards the procedure is repeated by stepping through t
y
j , which yields

Xy =
(
t
y
j , xlr

j , yj

)
.
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3. The local reconstruction Y
x and the original observations Y are then concate-

nated into one vector Y r = {Y ∪ Y
x} combining locally reconstructed and original

observations. Similarly, a vector Xr = (X ∪ X
y ) is obtained.

4. Based on this set of bivariate observations (Xr, Y r) the joint density of X and Y
can be estimated using standard binning estimators for MI.5

The reconstructed set of bivariate observations can also be used to construct
Gaussian-weighted scatterplots, where the size of the marker reflects the amount of
weight placed on the reconstructed observation (cf. Figs. 4b and 5b). Conceptually, MI
is a beautiful method, but it is difficult to estimate in practice, first and foremost because
of the large bias effects produced in the inference of the joint and marginal probabili-10

ties. Elaborate algorithms have been devised to improve this (described, for example, in
Kraskov et al., 2004; Papana and Kugiumtzis, 2009; Roulston, 1999), but no straight-
forward solution to this has been found yet. We have tested several algorithms and
finally resorted to the most simple equidistant binning estimator (Kraskov et al., 2004),
due to its computational efficiency and simplicity. Bias effects are predominantly tied15

to the temporal sampling and length of the time series due to the occurrence of empty
bins. Thus, if necessary, we can estimate and subtract it using uncorrelated processes
with the same observation times as in X and Y . However, for the use as a similar-
ity measure comparable to XCF and ES in the context of paleoclimate networks we
only require that the estimated MI be proportional to the actual association strength.20

For bivariate normally distributed and linearly correlated X and Y MI is by definition
proportional to their estimated correlation coefficient r2

xy ,

Ixy = −1
2

log
(

1 − r2
xy

)
, (6)

and can, by inversion of this equation, be scaled to the positive semidefinite range of
the correlation coefficient so that Î ∈ [0, 1] (Nazareth et al., 2007). The expected value25

for mutual information of these processes at the lag of coupling is then given by MI(X (t),
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Y (t+l ))=−0.5 log (1− r2
xy (l )). For the evaluation of the joint and marginal distributions,

nbins =10 equidistant bins were employed. In principle, the number of bins should be
adapted to the respective length of the time series involved, to reduce bias effects from
empty bins.

2.2.3 Event synchronization function5

The concept of event synchronization (ES) was introduced by Quian Quiroga et al.
(2002). The motivation behind the development was to obtain a simple, fast method that
quantifies the synchronization between time series where certain events can be dis-
tinguished. The primary application was focused on neurophysiological signals (Quian
Quiroga et al., 2002; Kreuz et al., 2009), but it later was also applied for the inves-10

tigation of rainfall patterns in the Asian Monsoon domain (Malik et al., 2010, 2011;
Rheinwalt et al., 2012).

The main idea behind ES is that two time series are synchronized, if events in time
series X occur close in time to events in time series Y . Considering the temporal order
of the events, e.g. if an event in Y occurred before one in X , it is also possible to15

infer which process is leading. In the following we will define the Event Synchronization
Function, ESF, further developing the ES concept (Quian Quiroga et al., 2002; Malik
et al., 2010).

Given two time series (tx, x) and (ty , y) that represent observations of autocorrelated
stochastic processes, events are given by the set of observations that are considered20

extreme, in that their observation value lies above or below the α-th resp. (1−α) per-
centiles of the distributions of X and Y . The actual value of the observation at the event
points is not relevant for the further analysis. Once the events are defined, only the ob-
servation times are considered in the event time vectors t

∗
x and t

∗
y . Next a temporal

threshold τ is defined to evaluate the relationship between the events in X and Y with25

a maximum separation time:

τ = max
(
∆tx, min

(
∆t∗x, ∆t∗y

)
/2

)
. (7)
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Here, ∆tx is the mean sampling rate of X , and ∆t∗x and ∆t∗y are the inter-event times
in X and Y , respectively.

Subsequently, the co-occurrence of events in X and Y is counted and summed for
all events as

C(X |Y ) =
Nx∑
l=1

Ny∑
m=1

Jxy
lm , (8)5

where Nx and Ny , respectively, give the total numbers of events in X and Y . The
counter variable Jxy

lm is defined as

Jxy
lm =


1 if 0 < t

x
l − t

y
m < +τ

1/2 if txl − t
y
m = 0

0 otherwise.
(9)

C(Y |X ) is obtained by exchanging X vs. Y in the above expression, and combining
both,10

Qxy = Qxy (X , Y ) =
C(X |Y ) + C(Y |X )√

Nx, Ny

(10)

gives the strength of the event synchronization and

qxy =
C(X |Y ) − C(Y |X )√

Nx, Ny

(11)

the direction of the association. Unless double-counting of events occurs, these are
normalized to 0≤Q≤1 resp. −1≤q≤1. Q=1 corresponds to completely synchronous15

occurrence of events in X and Y , and q=1 implies that all events in Y precede those
in X .
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For the previous studies (Quian Quiroga et al., 2002; Malik et al., 2010, 2011) local
definitions of the temporal threshold τ were used,preventing, in most cases, events
from being double-counted, and adapting it to the local inter-event rate. The chosen
definition of τ is motivated by the fact that, to be able to compare the results for ES to
those obtained from MI and XCF, a similarity function over the delay is needed. Thus,5

the delay τ cannot allowed to be arbitrarily large or small, as in Malik et al. (2010) and
Quian Quiroga et al. (2002).

The ESF is obtained by shifting the observation times of time series X according to
the desired lag,

ES(k∆t) = Qxy
(
(tx − k∆t, x) ,

(
ty , y

))
(12)10

which, using the delay time τ from Eq. (7), makes it possible to use the ESF as a
similarity function.

2.3 An approach to similarity assessment of time-uncertain time series

In paleoclimate time series analysis age uncertainty is a key obstacle to be overcome
for a comprehensive understanding of Earth system dynamics. To investigate the po-15

tential dependency structure of paleoclimate processes X and Y as they are reflected
in natural archives, the contribution of age uncertainty to the uncertainty of the similarity
S(X , Y ) is important.

Thus the aim is to estimate the distribution p(S(X , Y )) of similarity for given datasets
X and Y, where20

X =
[
Dx =

{
Dx, T x, σT x

}
, Yd =

{
dx, x

}]
and (13)

Y =
[
Dy =

{
Dy , T y , σT y

}
, Xd =

{
d y , x

}]
, (14)

both input datasets consist of a dating table (Def. 3) D with dating depths D, estimated
ages T and their uncertainties σT y and a set of proxy measurements X

d resp. Y
d

(Def. 4), visualized as step 1 in Fig. 3. The smoothing resulting from the size of the25
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samples in depth direction, σD, is assumed to be negligible here. The input proxy mea-
surements are mapped to observation times in the age modeling process (def. 5). In
general, algorithms to assess similarity between time series are not capable of pro-
cessing probability distributions or confidence intervals instead of singleton values,
neither for the observation times nor for the measurement values.5

For Pearson correlation, an analytical approach to propagate the uncertainty around
the input data into the correlation estimate is possible. However, Pearson correlation
alone is insufficient to characterize similarity between paleoclimate time series in gen-
eral and in the context of paleoclimate networks. Therefore a Monte-Carlo based ap-
proach based on time series ensembles which are obtained via age modeling is used10

here, to keep the flexibility regarding similarity estimators.
The task (assessing the uncertainty on the output statistic due to the input uncer-

tainty) can be split into three parts:

– Drawing time series from the permitted ensemble of sample ages and corre-
sponding observations (Monte Carlo Simulation, Fig. 3 step 3), then15

– analyzing these samples individually, as if they had no age uncertainty (different
similarity estimators), step 4 in Fig. 3,

– and finally assessing the distributions of the output values (i.e. the similarity),
step 5 in Fig. 3.

Algorithmically, the approach can be described as20

1. In a first step the input datasets X and Y are processed. The monotonicity of the
control variables, d and D is checked. If it is not given, in an additional step the
dataset is corrected/modified.

2. A Monte-Carlo simulation for the uncertain age estimates in the dating table is
performed: Nens ages are drawn from TX

i ±σT X
i

and TY
j ±σT Y

j
, respectively, for all25

i =1, . . . , NX
dtg pointwise age estimates corresponding to j =1, . . . , NY

dtg entries
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in the dating table. This results in dating matrices X̂ and Ŷ with Nens columns
containing the sampled ages. If no distribution of ages is otherwise given the
ages are expected to be Gaussian distributed with the given standard deviation.

3. The age estimates in each column and X̂(Ŷ) are interpolated to the depths of the
proxy observations: T= interp (D, X̂, d ) which results in a matrix, or an ensem-5

ble, of reconstruction observation times T. Together with the depths d , T forms an
ensemble of possible age-depth relationships {T, d} and with the proxy observa-
tions x it gives an ensemble of proxy time series {T, x}.

4. Each of the members of the ensemble of proxy time series is used as an input to
the similarity statistic S(X , Y ). This results in a distribution of estimates p(S(X̂, Ŷ)).10

5. Analysis of distribution S(X̂, Ŷ): Apart from inspection of mean, variance and
skewness of this distribution, a hypothesis test can be conducted, comparing
S(X̂, Ŷ) with a distribution obtained from suitable surrogate time series S(X̂ ∗, Ŷ ∗).

This approach is general in the sense that it is independent of the specific function
F ([X̂, Ŷ]) that maps the uncertain input to some output estimate. Apart from F =S, F15

may represent any bivariate statistic, and with minor modification is also applicable to
calculate the influence of sampling uncertainty on univariate statistics, like the auto-
correlation coefficients or persistence times (Rehfeld et al., 2011; Mudelsee, 2002). Bi-
variate similarity assessment is often concerned with estimation of a potential coupling
strength S(`) (hinting towards the same process of origin) and/or the lag of coupling20

` for model-building. For Pearson correlation, the ratio of shared vs. total variance be-
tween two linearly correlated processes at a given lag ` , S(`) is given in the maximum
of the cross-correlation function. While the relation to the overall variance of the pro-
cesses does not necessarily hold by definition for other similarity measures, they, too,
will observe the maximum of their similarity function max(Ŝ), at the lag of coupling ` .25
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2.3.1 Synthetic data

“True” growth histories for two synthetic stalagmites SS1 and SS2 and according cli-
mate histories are obtained via simulation. These pseudo-archives are then “dated”,
and correlated pseudo-proxy for the climate histories are “sampled”. Then the age
modeling procedure is performed and its output is fed into similarity estimation. Finally,5

we assess how much of the similarity that was originally present in the climate his-
tory is still recognizable significantly, considering the uncertainties. The test strategy is
illustrated in Fig. 3.

2.3.2 The synthetic stalagmite

A synthetic (or: virtual) stalagmite is grown for the sensitivity analysis. The main pa-10

rameters controlled are

– the growth rate λ in mm yr−1,

– the total length of the stalagmite (in mm),

– the type of accumulation (linear growth, or growth modeled via randomly dis-
tributed accumulation rates).15

A growth rate of µ(λ(z))=1 mm yr−1 is chosen. Linear growth may be a reasonable
first order approximation (Telford et al., 2004), but microscopically, the growth rates
of natural archives archive vary. Therefore, γ(α, µ(λ(z))/α)-distributed accumulation
times are drawn for each depth zi = {0, . . . , Z}mm of the stalagmite, with the mean
µ(λ(z)) determined by the desired growth rate. Please refer to Rehfeld et al. (2011) for20

a discussion of the gamma distribution for benchmark tests in paleoclimate time series
analysis context, the role of parameters α and β and how they can be used to simulate
increasing irregularity. The cumulative sum of the accumulation times then give the

“true” ages of the archive at the depths zi : t
true
i (zi )=

i∑
j=1

λi .
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2.3.3 The simulated climate history

As in nature, each synthetic stalagmite SS1 and SS2 is attached to a climate history.
The climate/pseudo-proxy simulation is based on the assumption that SS1 lies in an
area whose climate is controlling that around SS2. We simulate climate variability us-
ing two different coupling schemes, one linear, one nonlinear, to investigate how the5

proposed methods perform.

Linearly coupled AR(1) processes

Assuming that the archive SS2 samples the same climate variability as SS1, in the
same way though at a later time, we model such a causal sequence using coupled
AR(1) processes. Then, the true proxy history of climate as recorded in SS1 is given10

by

X
(
ttrue
i , zi

)
= φX

(
ttrue
i−1

)
+ σεεi , (15)

and it determines part of the proxy history of SS2:

Y
(
ttrue
i , zi

)
= αX

(
ttrue
i−`

)
+ σξ ξi . (16)

Here, ε and ξ are additional Gaussian white noise whose variances σε and σξ are15

scaled such that the variances of X and Y are equal to unity (see Rehfeld et al., 2011,
for more details), α is the coupling strength between SS1 and SS2 and φ the autocor-
relation of SS1. Since there is no autocorrelative term in Yt the expected similarity S(X ,
Y ) is equal to the cross correlation: S(X , Y )=ρxy =α.

Nonlinear threshold–AR(1) processes20

Assume that SS1 samples climate variability in a certain place, and this can be mod-
eled as in Eq. (15). Then the climate variability in another place, where SS2 is located,
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could be controlled in a nonlinear manner: In principle, the processes are negatively
correlated, similar to Eq. (16). If, however, a threshold in the climate system is ex-
ceeded, X (t)>τ, the correlation changes and might even become positive. Such
a multi-scale behavior can be modeled using Threshold-AR-processes (TAR, Tsay,
1989), which are similar to the regime-dependent AR models Zwiers and Storch (1990)5

used to model the behavior of the Southern Oscillation. Assume that the negative cou-
pling α below the threshold τ =0, for X (t−1)6 τ turns into a positive correlation, with
the same magnitude, for X (t−1)>τ. Then the proxy history of SS2 can be modeled
as

Y
(
ttrue
i , zi

)
= α · κ

(
ttrue) X (

ttruei−`

)
+ σ

(
ttrue) ξi , (17)10

where the κ =−1 if X (t−1)6 τ and κ =1 when X (t−1)>τ. In both cases the variance
of the innovation term ξ is scaled such that the overall variance of Y is equal to unity.

2.3.4 “Dating” of the synthetic stalagmite

Mimicking the real life situation, the true growth history of the synthetic stalagmite,
z(ttrue) is, in the following, inaccessible. The stalagmite is subjected to dating along its15

depth. The dating table contains the for the dating depths D, the estimated age at these
depths, T j , the proxy measurement sample width σD and the age uncertainty σT .

In real life, the stalagmite would be dated using radiometric dating techniques based
on Uranium-Thorium (Sinha et al., 2007; Dykoski et al., 2005; Breitenbach et al., 2012)
or radiocarbon (Yadava et al., 2004; Webster et al., 2007), yielding an estimate of T (zj )20

at a few points. The corresponding dating uncertainty, in reality dependent on many
factors from initial isotope concentrations, overall age of the core, dating technique to
lab and contamination (Fairchild and Baker, 2012), often lies between 0.1 to 0.5 % of
the age.

For the synthetic stalagmites, dating “samples” are taken at equidistant depths Dj25

and the center points of the assumed age distribution are taken directly from the true
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age-depth relationship. The age uncertainty, however, is modeled as increasing pro-
portionally with age, as p · T j . p thus denotes the (im-)precision of the dating and is
varied in the following numerical experiments.

2.3.5 Age modeling

Age modeling aims at reconstructing the “true” depth-age relationship that is inacces-5

sible in real paleoclimate archives.
Based on the synthetic stalagmite dating tables Dx and Dy for SS1 and SS2, the

“observation times” for the proxy observations X
d and Y

d , tx and t
y , are constructed

by interpolation from the known ages (see Eq. 13). In Monte-Carlo based numerical
frameworks such as StalAge (Scholz and Hoffmann, 2011) or COPRA (Breitenbach10

et al., 2012), an ensemble of age models T= {tk , zk}
k=1,...,Nens is created, which, in their

entirety, reflect the age uncertainty of the estimated depth-age relationship. Based on
this ensemble of age models, the uncertainty in the similarity estimates can be inferred,
as is visible in Fig. 3.

In summary, the test plan is thus as follows:15

1. Simulate a growth history z(t) of a synthetic stalagmite of length Z mm, corre-
sponding to a “true” age–depth relationship ttrue

i (zi ), resp. zi (t
true). For this, as-

sume gamma-distributed growth and an accumulation rate λ=1 mm yr−1. Z can
be varied to study the influence of changing time series length.

2. Simulate proxy histories {T, x}SS1 and {T, y}SS2 according to the true growth his-20

tory using coupled autoregressive processes (cf. Eqs. 16 and 17). Forget the true
growth history.

3. Sample the true growth history at the dating depths and infer corresponding un-
certainties.

4. Create Nens surrogate dating tables for SS1 and SS2 with increasing uncertainty25

of the ages according to the (im)precision p, i.e. an ensemble of dating tables.
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5. Assess if the estimates S(X̂, Ŷ) are statistically significant for the given uncertainty,
and how they are influenced by sampling heterogeneity and time uncertainty.

The core of the COPRA algorithm is used for MC simulations. Nens =2000 MC iterations
are used to sample the probability space and linear interpolation is employed to infer
ages between point estimates of the age at depth.5

3 Tests on synthetic stalagmites

We evaluate the performance of the different estimators described in Sect. 2, for which
parameter choices and references are given in Table 1.

3.1 Characterization of linear proxy dependency

We first consider the linear dependency case, where the proxy history of SS1 is lin-10

early correlated with that of SS2 a lag time ` later. We chose a length for the sta-
lagmite of L=100 mm for which we expect the time series to be roughly 100 yr long
(cf. Sect. 2.3.2) and linearly correlated, as in Fig. 4a. For each test 100 time series
were generated from AR1 processes (cf. Sect. 2.3.3), where process Y is coupled to
process X at an intrinsic lag ` and with a coupling strength α. The autocorrelation15

parameter was set to φ=0.8, the coupling lag to ` =5 and the coupling parameter
to α=0.6. For such stochastic processes, the true similarity function is single-peaked,
with its peak height determined by α, and its location on the lag-axis by the coupling lag
` . The time series are irregular, therefore a direct scatterplot of the data is not possible.
Figure 4b shows a weighted scatterplot where the time series have been reconstructed20

using Gaussian weights, as for the MI estimation in Sect. 2.2.2.
The tests were guided by two questions: Do the similarity estimators reflect the actual

similarity (here: the coupling strength at lag ` , α) truthfully and monotonically? And,
how well do they identify the lag of coupling ` as the maximum of the similarity function?
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To answer the first question we fix the imprecision at zero (at the dating points) and
vary the coupling strength by setting the parameter α in Eq. (16) to values from 0.1
to 1. The results are given in Fig. 4c. The expected value of the similarity, αest, and
the variance of the estimate are computed from the mean and standard deviations
of the estimated αest,i for 100 realizations for each value of the coupling parameter.5

Each of the similarity measures returns estimates whose expectation values increase
monotonically with the actual similarity, αtrue in Eq. (16), except for the ESF, which has
a single reversal which may be due to the low number of MC realizations (100) for each
point in this diagram.

In practical data analysis, the potential lag and strength of (primary) coupling, iden-10

tified as the maximum of the similarity function is of interest (e.g. for model-building).
If no age uncertainty exists at the dating points, the maximum of the similarity function
correctly identified in 50–60 % of the ensemble cases. When time-scale uncertainty
exists in the time series, this becomes difficult quickly (Fig. 4d). When the percentage
has dropped to 1

n`
≈0.05, where n` is the number of lags for which S(`) has been15

estimated, the maxima of the similarity functions are perfectly uncorrelated. This limit
is approached as an imprecision of more than 10 % is reached. Increasing imprecision
contained in the time series also results in increasing estimation error (i.e. RMSE, root
mean square error) for the similarity at the lag of coupling, S(`) (results not shown).
When the stalagmite length is increased the time series length increases and both the20

RMSE and the false identification rate decrease for all estimators.

3.2 Nonlinear dependencies

For the nonlinear TAR model, the time series in Fig. 5a are not straightforward to com-
pare visually as the linearly coupled ones in Fig. 4a. The weighted scatterplot for these
time series in Fig. 5b shows the two different slopes of the positive and negative corre-25

lation regimes above and below the threshold value of zero.
The comparison of true vs. estimated coupling strength α in Fig. 5c shows no

monotonous behavior for the linear correlation measures and no overall increase of
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their expected similarity estimates with the coupling strength. The MI estimators retain
a monotonic increase, starting from a considerable bias value, while the ESF increases
monotonically, but does not show consistent similarity estimate increases until the cou-
pling strength is rather large. The monotonicity and linearity of the response for gMI,
iMI and ESF improve considerably when the time series are chosen longer, i.e. with a5

length of 200 or more (results not shown).
In the identification of the maximum lag the Gaussian MI succeeds most often for im-

precisions up to 2.5 %. For more imprecise datasets the ESF remains stable, while the
other measures perform worse and worse. The linear estimators, gXCF and iXCF do
not identify the maxima correctly, neither the coupling strength, nor the lag of coupling.10

3.3 Error source attribution

Age uncertainty has a considerable impact on the accuracy of similarity estimates, as
we have shown in the previous section. But to what extent can this impact be attributed
to short length of the time series, or the time series irregularity that results from the
increasing age uncertainty? The uncertainty around the ages in the dating table is,15

in Monte-Carlo-based age-depth modeling, reflected by drawing different “dates” from
distributions around these ages for each MC realization. These realizations will there-
fore have different partial slopes between any date Di and Di+1. This corresponds to
different estimated growth rates for the individual segments of the synthetic core. At
a proxy sampling rate over depth that is constant, this will lead to uneven observation20

times for the time series which correspond to the MC realizations, and this irregularity
increases with the age uncertainty. The RMSE of S(`) is, however, also dependent
on the irregularity of the time series, as it was shown for both XCF and MI previously
(Rehfeld et al., 2011, 2013).

To separate these sources of uncertainty, M =2000 realizations of coupled climate25

histories, as defined in Sect. 2.3.2, were generated in three different ways: age un-
certain, irregularly and regularly sampled. The age uncertain ensembles were the di-
rect product of the age modeling efforts, as in the previous sections and with same
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parameter settings (φ=0.8, α=0.9, ` =5). For the irregular dataset the proxy histo-
ries were re-generated with the true coupling strength on the irregular timescales of
the age modeling output. To assess the impact of regular sampling, regular time se-
ries of the same length, average temporal spacing and coupling scheme were also
simulated. We evaluated the performance of the different estimators for the different5

sampling schemes at increasing dating imprecision using the root mean square error
(RMSE) of the estimators for the target coupling parameter α:

RMSE(αest) =
√

var(αest) + bias(αest)
2, (18)

where bias(αest)=αtrue −αest.
We did this separately for each sampling scheme to obtain the RMSEreg, the10

“baseline” RMSE for each estimator under regular sampling, RMSEirreg for the irreg-
ularly sampled ensembles and the RMSEau for the age uncertain ensemble. Coupling
strength, autocorrelation and time series length were fixed to the same values for the
three different sampling schemes. To improve the comparability for the MI estimators
the bias offset was estimated from uncorrelated time series with the same autocorrela-15

tion and length and subtracted prior to the conversion to the XCF scale.
Based on the assumption that the RMSE should increase from regular to irregular to

age uncertain time series,

RMSEreg < RMSEirreg < RMSEau,

the “baseline” contribution is estimated from regular time series as RMSEreg, the ad-20

ditional contribution from time scale irregularity as RMSEirreg −RMSEreg and the addi-
tional RMSE of the age uncertain time series’ similarity as RMSEageunc −RMSEirreg.

The results, averaged over the realistic imprecision values (the 2nd–5fth points in
Figs. 4d and 5d), are given in Fig. 6.

Ideally the RMSE should of course be as small as possible. For the linear (CAR)25

case in Fig. 6a the smallest RMSE is observed for the ESF and the gXCF, the largest
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– by far – for the interpolation-based iXCF. While the regular (estimator) bias is low for
the correlation estimators, the contribution of increasing irregularity of the time series
sampling (due to the uncertain inputs) is non-negligible particularly for the interpolation-
based cases. The age uncertainty alone accounts for additional, but generally smaller,
error. While a large amount of the uncertainty of the interpolation-based estimators, iMI5

and iXCF, is due to sampling irregularity, ES has a large RMSE for regular time series,
which is even higher than that for regular to slightly irregular time series. Therefore the
contribution of irregular sampling to the cumulative uncertainty, as depicted in Fig. 6a,
is negative, thus improving the estimation efficiency!

In the nonlinear (TAR) case the picture is quite different. The correlation-based es-10

timators are not able to tell the coupling strength, regardless of the sampling scheme.
The gMI estimator ranks lowest, with a lower uncertainty contribution from irregular
sampling compared to the iMI estimator. The ESF, again, improves its accuracy when
the time series are irregular. The overall error level is higher than for the linear case.

3.4 The link strength concept15

Each of the tested similarity estimators comes with different underlying assumptions,
estimator bias and variance, and they refer to different properties of the time series:
the goodness of a linear fit to the joint distribution (XCF), the sharpness of the joint vs.
the marginal distributions (MI) or the relative positions of extreme points, or events, in
the time series (ES).20

Therefore direct results obtained from the different estimators are difficult to compare,
and they respond to coupling strength increases differently (Figs. 4c and 5c). The MI
estimates, to this end, have to be converted to the XC scale and thus are bound to
the interval [0, 1], not [−1, 1] as for XC. This, together with the substantial and non-
negative bias, induces a different proportionality between the actual coupling and the25

inferred association strength. Inferred ES, on the other hand, increases nonlinearly, but
monotonically, with the coupling.

5325

http://www.clim-past-discuss.net
http://www.clim-past-discuss.net/9/5299/2013/cpd-9-5299-2013-print.pdf
http://www.clim-past-discuss.net/9/5299/2013/cpd-9-5299-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/


CPD
9, 5299–5346, 2013

Similarity estimators

K. Rehfeld and J. Kurths

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

The main use of similarity measures is to assess the association strength between
dynamics of processes. This can only be interpreted properly, if the significance of
this estimate is known. To unify the results obtained from different similarity estimators
we propose to use a link strength p(X , Y ), to homogenize and summarize the results
obtained for individual similarity measures.5

Definition 9 (Link strength) The link strength p(X , Y ) for two observed time series
X and Y is defined as the relative frequency of significant estimates from of the Nsim
employed estimators Si :

pq
sim(X , Y ) =

Nsim∑
i=1

Pi (X , Y )

Nsim
. (19)

The link strength of the individual estimators, P q
i (X , Y ) is recorded on a binary scale:10

P q
i (X , Y ) =


1 if Si symmetric and Sxy

i > Shi,xy
i

1 if Si asymmetric and(
Sxy
i > Shi,xy

i

)
|
(
Sxy
i < S lo,xy

i

)
, and

0 otherwise,

(20)

and here Shi/lo refer to the critical values of a hypothesis test, the null hypothesis being
that both X and Y are autocorrelated, but mutually uncorrelated, Gaussian distributed
stochastic processes. The significance q determines the critical values Shi,xy

i and S lo,xy
i

which are obtained from the qhi =1−0.5q and qlo =0.5q quantiles of surrogate simi-15

larity estimates Si (X
∗, Y ∗).

Independent AR(1) surrogate time series X ∗ and Y ∗ are generated on the same
time axes as X and Y according to Eq. (15). The individual AR(1) persistence time
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for actual paleoclimate data can be obtained using an efficient least-squares fitting
algorithm (Rehfeld et al., 2011; Mudelsee, 2002). The link strength can be extended to
incorporate age uncertainties by computing the similarities for Nmc realizations of an
age model and adding a second summation over these in Eq. (19).

4 Application to real stalagmite data5

Now that we have characterized the estimators using synthetic datasets, we apply the
estimators to real-world stalagmite datasets from India, (the Dandak cave δ18O record
originally published in Sinha et al., 2007), and China (the Wanxiang record, Zhang
et al., 2008). Comparisons of these datasets have been performed by Berkelhammer
et al. (2010) and Rehfeld et al. (2011). Please refer to these publications for the graph-10

ical depiction of the time series. Thirteen U/Th dates constrain the age model of the
Dandak cave record, 19 are available for the Wanxiang cave record. Age modeling was
performed on the full proxy datasets, comprising of 684 and 703 oxygen isotope mea-
surements over depth and using the COPRA algorithm with 1000 realizations (Bre-
itenbach et al., 2012). The time series were cut to the overlapping time period from15

600–1550 AD and detrended by subtracting the result of a Gaussian kernel smoother
with a 300-yr bandwidth to remove trends on long timescales. With more proxy mea-
surements Berkelhammer et al. (2010) determined an averaged correlation of 0.27 for
50-yr overlapping time windows, while Rehfeld et al. (2011) found a lag zero correla-
tion coefficient of 0.290 and 0.295 for iXCF and gXCF, respectively. This correlation was20

found to be significant to the 95%-level in the two-sided test for zero correlation, the
null hypothesis being that the time series are autocorrelated but mutually uncorrelated.

Does this correlation persist, when the age uncertainties are considered in the anal-
ysis? We estimated the similarities for the two records considering all five estimators of
Table 1 and for the original records as well as the results from age modeling, and give25

the results in Fig. 8. The histograms of similarity estimates for 100 realizations of the
age models show a considerable spread. The mean similarity (indicated by the solid
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red line in Fig. 8a and b) for the correlation estimators is above zero, but except for the
iMI estimation scheme, none returns a significant similarity with respect to uncorrelated
AR1 processes: for no estimator the solid red line lies above or below the confindence
values, indicated by the dashed red lines. A similar picture is found for the mean age
model from 2000 COPRA ensembles: only the interpolation-based scheme returns a5

significant estimate. When we compute the similarities using the better resolved Dan-
dak δ18O time series published later (Berkelhammer et al., 2010) the outcome is quite
different. Three estimators, gXCF, iXCF and gMI return significant values, resulting in a
link strength of 0.6. While this value is significant, we can not confirm the same for the
original dataset for which the full proxy information (dating table and proxy measure-10

ments with their depths) is available.

5 Discussion

Age uncertainty clearly affects all estimators of similarity for time series, and it is an il-
lusion that it would be possible to mitigate the effects of uncertainty on the time axis for
any type of analysis depending on observation times. Even if the observation – or accu-15

mulation – time of a grown archive is known precisely at some depths, an observation
time reconstruction from age modeling requires an assumption on the accumulation be-
havior which, necessarily, will be wrong to some extent, as nature dictates some extent
of stochasticity and irregularity in the growth. This is a fact not challenged by the choice
of a different interpolation routine, e.g. to a continuous cubic spline, which is often pre-20

ferred by geoscientists (Breitenbach et al., 2012; Scholz and Hoffmann, 2011). On the
positive side, and although counter-intuitive, incorporating (small) age uncertainty in
the analysis might even improve the estimate when a deterministic (thus: necessarily
wrong) assumption on the growth of the archive is made.

A low imprecision of 0–0.5 % or an age uncertainty of approximately 1–2 a.u. over a25

period of 200 a.u. results in minimal relative estimation error and maximal confidence
on the similarity peak position for the time series similarity functions Ŝ. If a similarity
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analysis for real-world datasets covering a time span of 100 000 yr was desired, this
would amount to an “allowed” age error of 500 yr at a mean time series resolution
of 500 yr, which is a lower than what is usually found (Taylor et al., 2004). Thus, the
resolution desired in the analysis is necessarily dependent on age uncertainty – only if
that is lower, or comparable, an analysis of such short time series with full consideration5

of age uncertainties is feasible.
The similarity estimators tested show different behavior, dependent on the signal

type. The correlation-based estimators perform better for the linear coupling scheme,
but fail for the nonlinear processes.

The gXCF and iXCF error split is dominated by the age uncertainty as the largest10

source of error in the linear CAR case. Both have small baseline bias for regular sam-
pling. gXCF estimates coupling strength more effectively, however, for both age un-
certainty and irregular sampling contributions of iXCF are significantly larger due to
interpolation effects. In the nonlinear coupling scheme there is little difference whether
the time series is regular, irregular or age uncertain – the correlation-based methods15

can not capture such type of dependencies.
gMI and iMI perform badly on the first glance in the linear CAR case, as their baseline

bias for regular sampling RMSE is large. However, one needs to take into account
that the RMSE is determined by both variance and bias – and that MI estimation,
especially using binning estimators, is always associated with a significant positive20

bias, particularly for short time series. This bias, however, decreases with increasing
time series length. If a direct comparison of MI and XC estimates is desired, this bias
should be subtracted from the MI estimate prior to scaling it to the correlation scale.
In the nonlinear TAR case the Gaussian-kernel-based version has the lowest overall
RMSE.25

The ESF, originally intended for the analysis of event series, performs well and has
the lowest total RMSE, followed closely by gXCF, in the linear test case. There, its
baseline RMSE dominates the RMSE split, and the RMSE for irregular sampling is
lower than that for regular sampling. This is similar for the nonlinear processes. One
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reason for this might be that, for irregularly sampled time series of the same mean ob-
servation time distance, the number of observations spaced closely together is higher,
which might increase the chances to find multiple events spaced closely together, re-
sulting in effective double-counting of events. The comparably small contribution from
age uncertainty in the linear test indicates, that neither the relative nor the absolute ob-5

servation time distance between the time series are crucially important to the measure.
Thus, it is quite a robust similarity measure with respect to age uncertainty and compa-
rable to gXCF for linear coupling and gMI for nonlinear coupling, which both ultimately
depend on the notion of simultaneous observations.

Although the irregularity of the time series is rather low (the inter-sampling-time dis-10

tribution is narrow and close to normally distributed) the estimators that do not require
the time series to be sampled regularly perform better than the interpolation-based
records, which confirms the previous finding (Rehfeld et al., 2011, 2013) that large
sampling irregularity (i.e. the presence of gaps) leads to large interpolation bias, where
the adapted estimators gXCF and gMI are particularly suitable. We have applied the15

similarity estimators to investigate the similarities between the Dandak and Wanxiang
cave records. We find that the link strength aptly summarizes the results of the similar-
ity significance tests: the time series may be correlated, but age uncertainty blurs the
results even more. Nevertheless the more highly resolved dataset of Berkelhammer
et al. (2010) returned high values for link strength and correlation, and we conclude20

that the temporal resolution of this dataset (Sinha et al., 2007), together with the age
uncertainties, does not suffice to draw conclusions on correlation or linkage. We have
only considered five similarity estimators, gXCF, iXCF, gMI, iMI and ESF, here, but
this could be expanded for other concepts, for example based on (cross-)recurrence
plots (Romano et al., 2005; Marwan et al., 2007; Marwan, 2002; Lange, 2011), recur-25

rence networks (Feldhoff et al., 2012), or distance measures (Lhermitte et al., 2011).
The notion of a link strength, instead of XC, MI or ES values, makes it straightforward
to extend the analysis to a whole ensemble of time series, be it from age modeling
or out of a database of paleoclimate records. If age uncertainty does not impact the
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cross-similarity, the link strength will not drop substantially. The actual value of the link
strength can be interpreted in terms of a “degree of confidence”: if the value is close
to the significance level, a relationship cannot be concluded with confidence. If the link
strength is close to one, all the estimators return significant similarity estimates and
a similarity can be deduced with certainty. In the future it could be evaluated whether5

p values from the the surrogate tests could replace the binary thresholding for the
link strength metric to improve the sensitivity of the link strength estimate. The ESF
alone, however, could be particularly suitable for the analysis of extreme events since it
does not place strong restrictions on the time series beyond stationarity, and performs
particularly well for irregular time series.10

The NESToolbox containing scripts and programs for the similarity analysis of age
uncertain time series in Matlab and the open source software Octave are available
with this paper. We also include a function to simulate age uncertainties that arise for
archives for which the chronology is based on layer counting, trees, ice cores or lami-
nated sediments, so that these, too, can be investigated using the methods presented15

in this paper.

6 Conclusions

In this paper we have investigated similarity estimators that do not require regular sam-
pling in time and can capture linear (gXCF) and nonlinear (gMI and ESF) relationships.
We found that interpolation to regular spacing of the observation times results in worse20

estimates. By contrast, the adapted estimators are more efficient in the presence of
sampling time irregularity and cope with age uncertainty better. Table 1 gives a com-
prehensive overview over the similarity estimators, parameter choices and further ref-
erences. gXCF and ESF perform particularly well if the relationship is linear, but the
correlation estimator fails in the presence of nonlinear coupling, where the ESF and25

gMI are better suited to infer dependences. The significance of results from different
estimators and under varying time series length and sampling can be unified using the
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concept of a link strength. It combines similarity estimators and significance tests and
is given by the relative frequency of positive significance tests and could be especially
useful in the analysis of large paleoclimatic datasets where it is infeasible to check
each pair of time series for similarity individually. We have shown that age uncertainty
is the largest contributor to estimation error for time series similarity, and for a reliable5

of similarity function shape and coupling structure, the time scale imprecision should
be as low as possible, and when it exceeds 5 % the results are not reliable anymore.
While time series irregularity can be well addressed by the use of the adapted estima-
tors, age uncertainty can not, and should therefore be reduced as much as possible
by measuring more ages and improving the dating techniques. These are, in essence,10

good news, because the irregular growth of the archives cannot be reversed, but mea-
surement devices can be optimized.
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Table 1. Properties, parameters and references of the similarity estimator algorithms for irreg-
ularly sampled time series developed and tested in this paper.

Estimator (Abbr.) Quantif. property Parameter choice References

1 (gXCF) Gaussian-kernel-based XCF h=0.25 Rehfeld et al. (2011);
(goodness of linear fit to Babu and Stoica (2010)
scatterplot)

2 (iXCF) interpolation+Pearson ∆t=max(∆tx, ∆ty ) e.g. Rehfeld et al. (2011),
correlation (goodness of linear basics for example in
fit to scatterplot) Chatfield (2004)

3 (gMI) Gaussian-kernel-based MI (rel. h=0.5, τ =3 Rehfeld et al. (2013),
non-randomness in joint vs. basics for example in
marginal distribution) Cover and Thomas (2006)

4 (iMI) interpolation+MI (rel. ∆t=max(∆tx, ∆ty ), Rehfeld et al. (2013),
non-randomness in joint vs. nbins =10 basics for example in
marginal distribution) Cover and Thomas (2006)

5 (ESF) Relative timing of extreme q=0.8 here, based on
events Quian Quiroga et al. (2002);

Malik et al. (2010)
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2 K. Rehfeld: Similarity estimators

of reconstructed paleoclimate time series, and its relationship
to global or external forcing, is often inferred from similar-70

ities, coinciding maxima/minima or trends, between graphi-
cal visualizations of the time series (for example in Zhang
et al., 2008; Cheng et al., 2012; Sinha et al., 2011; Zhang
et al., 2011). Visual comparison is, however, inherently sub-
jective, can not be quantified and tested in a hypothesis test75

and will not suffice with the growing number of paleocli-
matic datasets available.

Fig. 1: Illustration: Assume that the climatic processes Y is
driven by process X at a given lag. They are sampled by a
paleoclimate proxy archive (X) and an automatized measure-
ment device (Y), resulting in corresponding time series. A
typical task in paleoclimate data analysis is to estimate the
strength of statistical association between such time series,
the delay time can hint towards physical driving mechanisms.

Standard statistical techniques, such as estimating the
Pearson correlation (XC), can not readily be applied when
the sampling of the time series is irregular. XC is, in princi-80

ple, computed by taking the arithmetic mean over the prod-
ucts of coeval, centralized and standardized observations and
reflects the goodness of a linear fit to the scatterplot of the
data. If the two time series to be correlated are irregular, co-
eval observations are only given in the special case that both85

time series have the same timescale. In practice, this would
arise only if, for example, two proxies were measured on
the same samples. In the general case the irregularity pre-
cludes the direct computation. Interpolating the time series
to a regular coinciding timescale, however, results in a loss90

of high-frequency variability and a spectral bias towards low
frequencies (Schulz and Stattegger, 1997). In a comparison
of correlation analysis techniques the Gaussian-kernel-based
Pearson correlation was identified as a reliable and robust es-
timator for irregular time series (Rehfeld et al., 2011). How-95

ever, relationships in the climate system are not always lin-
ear, and therefore not necessarily identifiable by linear tech-
niques such as Pearson correlation. This is not a problem in
the geosciences alone, and similarity measures that can cap-
ture nonlinear inter-relationships exist. Mutual Information100

(MI), an entropy-based measure, has been used to investi-

gate nonlinear dependencies of processes from observations
(Donges et al., 2009; Runge et al., 2012; Hlinka et al., 2013).
In this measure, the joint and marginal distributions of pro-
cesses X and Y are evaluated. Its advantage is that it is model-105

free and able to quantify nonlinear dependencies, but it is
symmetric, MI(X,Y)=MI(-X,Y), and more difficult to quan-
tify as the quantification bias changes considerably for differ-
ent sample sizes and estimator techniques (Khan et al., 2007;
Kraskov et al., 2004). It has been adapted and tested for ir-110

regular and autocorrelated time series (Rehfeld et al., 2013)
in a Gaussian-kernel-based variant. Both MI and XC depend
on the notion of a scatterplot between the data. An alterna-
tive, especially in the analysis of extreme events, could be
found in the measure of Event Synchronization (ES, Quian115

Quiroga et al., 2002), which is not based on the available time
series, but the relative timing of distinguished events in two
time series. Originally conceived for neurophysiological sig-
nals, it has become a popular measure to investigate depen-
dencies in precipitation time series (Malik et al., 2010, 2011;120

Rheinwalt et al., 2012), but it has not been tested for its suit-
ability on short and autocorrelated time series. In its original
form it provides a measure for the strength of synchroniza-
tion and for the direction of a potential coupling between the
processes generating the events, but not for the lag of the po-125

tential coupling. Although stated differently in the original
paper, ES does not require regular observation intervals.
A number for an individual correlation coefficient can be
interpreted, when its level of significance is determined as
well. For the usually short and autocorrelated paleoclimatic130

time series, this can be done by bootstrapping the result
(Mudelsee, 2002), or by testing the similarity for uncorre-
lated surrogate time series with similar autocorrelation prop-
erties (Rehfeld et al., 2011, 2013). The values of the different
estimators, however, can not be compared directly, as they135

vary on different scales. In this paper we evaluate the impact
of age uncertainty and time series irregularity on the accu-
racy of the estimators.
Furthermore we propose the concept of a link strength, to
summarize the hypothesis test results of different estimators.140

If no outcome is significant, it is zero, if three out of five
employed estimators yield a significant similarity, the link
strength is 3

5 and if all tests for null correlation were rejected
the link strength is equal to unity. The advantage of this ap-
proach lies in its robustness due to the different estimators,145

and in the easy consideration of uncertain datasets. If the un-
certainty of the time series can be modeled, for example us-
ing the Monte Carlo techniques in age modeling software
such as StalAge (Scholz and Hoffmann, 2011) or COPRA
(Breitenbach et al., 2012), it can be incorporated in the link150

strength considerations in a straightforward manner.
In this paper we will investigate how well each of these
estimators identify the strength and the delay time of ac-
tual coupling between paleoclimatic processes from irregu-
lar and age uncertain time series. First we review the sim-155

ilarity measures (XC, MI), and develop a Event Synchro-

Fig. 1. Illustration: assume that the climatic processes Y is driven by process X at a given
lag. They are sampled by a paleoclimate proxy archive (X ) and an automatized measurement
device (Y ), resulting in corresponding time series. A typical task in paleoclimate data analysis
is to estimate the strength of statistical association between such time series, the delay time
can hint towards physical driving mechanisms.
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K. Rehfeld: Similarity estimators 5

Fig. 2: Significant similarities between the time series at two locations, X and Y, can arise from a) direct physical coupling, b)
a teleconnection, c) a common driving mechanism or d) by chance as false positives.

2.2.1 Kernel-based estimators for Pearson correlation

Pearson correlation is defined as the mean over co-eval prod-
ucts of standardized observations (Chatfield, 2004). For ir-
regular time series the inter-sampling time intervals vary310

and the classical definition cannot be applied. Rehfeld et al.
(2011) tested different correlation estimators for irregular
time series and found that a Gaussian-kernel based estimator
performed best. In the definition of the correlation function
ρ̂(k∆τ) at the lag k∆τ ,315

ρ̂(k·∆τ) =

∑Nx

i=1

∑Ny

j=1xiyjbk(tyj − txi )∑N
i=1

∑N
j=1 bk(tyj − txi )

, (2)

the kernel bk(tyj − txi ) weights those products higher whose
time lag lies closer to k∆τ :

b(d,k,h) =
1√
2πh

e−|d|
2/2h2

, (3)

where h= ∆txy/4 or 0.25 for the rescaled time axis,txi =320

torig
i /∆x

t , and d denotes the distance between the product
inter-observation time and the desired lag, d= ∆txyij −k∆τ ,
k denotes the lag index. The standard width parameter h is
chosen to result in a main lobe width of ∆txy , the mean sam-
pling interval or common sampling period in the bivariate325

case. Note that the observations have to be standardized to
zero mean and unit variance before the analysis.

2.2.2 Kernel-based estimators for mutual information

Mutual information I(X,Y ) = Ixy is a measure of the de-
pendency (linear or nonlinear) between two random vari-330

ables, X and Y . This measure from information theory can
be interpreted as the uncertainty reduction in variable X ,
given that Y was observed. It is symmetric, i.e. relationships
of opposite sign but the same association strength, correla-
tion and anti-correlation, give the same MI. By definition, the335

measure yields a null result if, and only if, the two random
variables, in this case time series of observations, are inde-
pendent (Kraskov et al., 2004; Cover and Thomas, 2006).

While more complex estimators exist (e.g. Kraskov et al.,
2004), the simplest estimator is340

Îxy =
∑
x,y

px,y log
px,y
pxpy

, (4)

where px,y is the two-dimensional joint probability density
function of the variables X and Y and px resp. py are the
one-dimensional probability distributions of X resp. Y . The
unit of measurement of MI depends on the logarithm chosen345

in the estimator: it is measured in bits, if the logarithmic base
2 is chosen, and in nats for the natural logarithm.
In case of irregular sampling, however, the bivariate obser-
vation set (Xt,Yt) at regular observation points t that is re-
quired for a scatterplot are not available. In standard inter-350

polation procedures, both (tx,x) and (ty,y) would be re-
sampled to obtain a bivariate set of observations with regu-
lar observation time intervals, (tr,xr,yr). This is undesirable
for paleoclimate records a) because every interpolation rou-
tine involves an assumption on the dynamics of the underly-355

ing process, and this is difficult to justify for climate data and
b) it reduces the observable variability in the process (Schulz
and Stattegger, 1997; Stoica and Sandgren, 2006; Babu and
Stoica, 2010).

There are two main points where this problem can be360

addressed: Either by reconstructing bivariate observations
while avoiding variance reduction as much as possible or by
a modification of the joint distribution, for example by intro-
ducing weights proportional to the sampling time-distance
similar to the Gaussian-kernel based XC (Rehfeld et al.,365

2011). For MI the latter is difficult to achieve. But follow-
ing the former solution, the probabilities required for Eq. 4
are straightforward to derive from relative frequencies.

Algorithmically, this can be described as follows:

1. A local reconstruction of the signal is performed by es-370

timating for each point i in the time series X = (tx,x)
a corresponding observation from Y = (ty,y), by es-
timating a local, observation-time weighted mean ylrj
around a time point txi in Y ,

Fig. 2. Significant similarities between the time series at two locations, X and Y , can arise from
(a) direct physical coupling, (b) a teleconnection, (c) a common driving mechanism or (d) by
chance as false positives.
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8 K. Rehfeld: Similarity estimators

Fig. 3: How much age uncertainty is allowed to still enable reliable similarity estimation? Artificial stalagmites with increasing
standard deviations of the ages are evaluated.

4. Each of the members of the ensemble of proxy time545

series is used as an input to the similarity statistic
S(X,Y ). This results in a distribution of estimates
p(S(X̂, Ŷ )).

5. Analysis of distribution S(X̂, Ŷ ): Apart from inspection
of mean, variance and skewness of this distribution, a550

hypothesis test can be conducted, comparing S(X̂, Ŷ )
with a distribution obtained from suitable surrogate time
series S(X̂∗, Ŷ ∗).

This approach is general in the sense that it is independent
of the specific functionF([X̂, Ŷ ]) that maps the uncertain in-555

put to some output estimate. Apart from F = S, F may rep-
resent any bivariate statistic, and with minor modification is
also applicable to calculate the influence of sampling uncer-
tainty on univariate statistics, like the autocorrelation coeffi-
cients or persistence times (Rehfeld et al., 2011; Mudelsee,560

2002). Bivariate similarity assessment is often concerned
with estimation of a potential coupling strength S(`) (hinting
towards the same process of origin) and/or the lag of cou-
pling ` for model-building. For Pearson correlation, the ratio
of shared vs. total variance between two linearly correlated565

processes at a given lag `, S(`) is given in the maximum of
the cross-correlation function. While the relation to the over-
all variance of the processes does not necessarily hold by def-
inition for other similarity measures, they, too, will observe
the maximum of their similarity function max(Ŝ), at the lag570

of coupling `.

2.3.1 Synthetic data

‘True’ growth histories for two synthetic stalagmites SS1
and SS2 and according climate histories are obtained via
simulation. These pseudo-archives are then ‘dated’, and cor-575

related pseudo-proxy for the climate histories are ‘sampled’.
Then the age modeling procedure is performed and its out-
put is fed into similarity estimation. Finally, we assess how
much of the similarity that was originally present in the cli-
mate history is still recognizable significantly, considering580

the uncertainties. The test strategy is illustrated in Fig. 3.

2.3.2 The synthetic stalagmite

A synthetic (or: virtual) stalagmite is grown for the sensitiv-
ity analysis. The main parameters controlled are

– the growth rate λ in mm
year ,585

– the total length of the stalagmite (in mm),

– the type of accumulation (linear growth, or growth mod-
eled via randomly distributed accumulation rates).

A growth rate of µ(λ(z)) = 1mm/yr is chosen. Lin-
ear growth may be a reasonable first order approximation590

(Telford et al., 2004), but microscopically, the growth rates
of natural archives archive vary. Therefore, γ(α,µ(λ(z))/α)-
distributed accumulation times are drawn for each depth
zi = {0, ...,Z}mm of the stalagmite, with the mean µ(λ(z))
determined by the desired growth rate. Please refer to Re-595

hfeld et al. (2011) for a discussion of the gamma distribution
for benchmark tests in paleoclimate time series analysis con-
text, the role of parameters α and β and how they can be used
to simulate increasing irregularity. The cumulative sum of the
accumulation times then give the ‘true’ ages of the archive at600

the depths zi: ttruei (zi) =
∑i
j=1λi.

2.3.3 The simulated climate history

As in nature, each synthetic stalagmite SS1 and SS2 is at-
tached to a climate history. The climate/pseudo-proxy sim-

Fig. 3. How much age uncertainty is allowed to still enable reliable similarity estimation? Artifi-
cial stalagmites with increasing standard deviations of the ages are evaluated.
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K. Rehfeld: Similarity estimators 11

Fig. 4: Testing the similarity measures: for linearly coupled AR time series (cf. Eq. 16) from two synthetic stalagmites, SS1 and
SS2, we give the sample time series (a) and the Gaussian weighted scatterplot (b). We check the monotonicity of the estimators
with increasing coupling strength (c) and how often the maximum of the similarity function correctly coincides with the lag of
coupling (d).

slopes between any date Di and Di+1. This corresponds to
different estimated growth rates for the individual segments800

of the synthetic core. At a proxy sampling rate over depth
that is constant, this will lead to uneven observation times
for the time series which correspond to the MC realizations,
and this irregularity increases with the age uncertainty. The
RMSE of S(`) is, however, also dependent on the irregular-805

ity of the time series, as it was shown for both XCF and MI
previously (Rehfeld et al., 2011, 2013).

To separate these sources of uncertainty, M = 2000 real-
izations of coupled climate histories, as defined in 2.3.2, were
generated in three different ways: age uncertain, irregularly810

and regularly sampled. The age uncertain ensembles were
the direct product of the age modeling efforts, as in the pre-
vious sections and with same parameter settings (φ= 0.8,
α= 0.9, `= 5) For the irregular dataset the proxy histories
were re-generated with the true coupling strength on the ir-815

regular timescales of the age modeling output. To assess the
impact of regular sampling, regular time series of the same
length, average temporal spacing and coupling scheme were
also simulated. We evaluated the performance of the different
estimators for the different sampling schemes at increasing820

dating imprecision using the root mean square error (RMSE)
of the estimators for the target coupling parameter α:

RMSE(αest) =

√
var(αest) + bias(αest)

2
, (18)

where bias(αest) = αtrue−αest.
We did this separately for each sampling scheme to ob-825

tain the RMSEreg, the ‘baseline’ RMSE for each estimator
under regular sampling, RMSEirreg for the irregularly sam-
pled ensembles and the RMSEau for the age uncertain ensem-
ble. Coupling strength, autocorrelation and time series length
were fixed to the same values for the three different sampling830

schemes. To improve the comparability for the MI estima-
tors the bias offset was estimated from uncorrelated time se-
ries with the same autocorrelation and length and subtracted
prior to the conversion to the XCF scale.

Based on the assumption that the RMSE should increase
from regular to irregular to age uncertain time series,

RMSEreg < RMSEirreg < RMSEau ,

the ‘baseline’ contribution is estimated from regular time835

series as RMSEreg, the additional contribution from time

Fig. 4. Testing the similarity measures: for linearly coupled AR time series (cf. Eq. 16) from
two synthetic stalagmites, SS1 and SS2, we give the sample time series (a) and the Gaussian
weighted scatterplot (b). We check the monotonicity of the estimators with increasing coupling
strength (c) and how often the maximum of the similarity function correctly coincides with the
lag of coupling (d).
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12 K. Rehfeld: Similarity estimators

Fig. 5: Testing the similarity measures for nonlinear threshold-AR time series (cf. Eq. 17). For caption please refer to Fig. 4.
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Fig. 6: Attribution of the uncertainty to its sources for (a) the linear CAR model and (b) the nonlinear TAR model: General
(estimator) error in red, error introduced via irregular sampling (orange) and additional error due to the age uncertainty (yellow).
The source-dependent RMSE was averaged over the second through to fifth imprecision levels given in Fig. 4d and 5d, as these
correspond to the error levels most likely found in real world studies. Errorbars indicate the associated standard deviation. For
event synchronization the RMSE is lower for irregular than regular sampling, folding the irregular part of the bar backwards.

Fig. 5. Testing the similarity measures for nonlinear threshold-AR time series (cf. Eq. 17). For
caption please refer to Fig. 4.
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12 K. Rehfeld: Similarity estimators

Fig. 5: Testing the similarity measures for nonlinear threshold-AR time series (cf. Eq. 17). For caption please refer to Fig. 4.
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Fig. 6: Attribution of the uncertainty to its sources for (a) the linear CAR model and (b) the nonlinear TAR model: General
(estimator) error in red, error introduced via irregular sampling (orange) and additional error due to the age uncertainty (yellow).
The source-dependent RMSE was averaged over the second through to fifth imprecision levels given in Fig. 4d and 5d, as these
correspond to the error levels most likely found in real world studies. Errorbars indicate the associated standard deviation. For
event synchronization the RMSE is lower for irregular than regular sampling, folding the irregular part of the bar backwards.

Fig. 6. Attribution of the uncertainty to its sources for Fig. 8a the linear CAR model and Fig. 8b
the nonlinear TAR model: General (estimator) error in red, error introduced via irregular sam-
pling (orange) and additional error due to the age uncertainty (yellow). The source-dependent
RMSE was averaged over the second through to fifth imprecision levels given in Figs. 4d and 5d,
as these correspond to the error levels most likely found in real world studies. Errorbars indicate
the associated standard deviation. For event synchronization the RMSE is lower for irregular
than regular sampling, folding the irregular part of the bar backwards.

5343

http://www.clim-past-discuss.net
http://www.clim-past-discuss.net/9/5299/2013/cpd-9-5299-2013-print.pdf
http://www.clim-past-discuss.net/9/5299/2013/cpd-9-5299-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/


CPD
9, 5299–5346, 2013

Similarity estimators

K. Rehfeld and J. Kurths

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Fig. 7. The link strength concept: For each similarity estimator, significant results result in a link
between the time series. The sum of these links determine the strength, or weight, of the link.
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14 K. Rehfeld: Similarity estimators

originally published in Sinha et al., 2007), and China (the
Wanxiang record, Zhang et al., 2008). Comparisons of these
datasets have been performed by Berkelhammer et al. (2010)920

and Rehfeld et al. (2011). Please refer to these publications
for the graphical depiction of the time series. Thirteen U/Th
dates constrain the age model of the Dandak cave record, 19
are available for the Wanxiang cave record. Age modeling
was performed on the full proxy datasets, comprising of 684925

and 703 oxygen isotope measurements over depth and using
the COPRA algorithm with 1000 realizations (Breitenbach
et al., 2012). The time series were cut to the overlapping
time period from AD 600-1550 and detrended by subtract-
ing the result of a Gaussian kernel smoother with a 300-year930

bandwidth to remove trends on long timescales. With more
proxy measurements Berkelhammer et al. (2010) determined
an averaged correlation of 0.27 for 50-year overlapping time
windows, while Rehfeld et al. (2011) found a lag zero cor-
relation coefficient of 0.290 and 0.295 for iXCF and gXCF,935

respectively. This correlation was found to be significant to
the 95%-level in the two-sided test for zero correlation, the
null hypothesis being that the time series are autocorrelated
but mutually uncorrelated.

Does this correlation persist, when the age uncertainties940

are considered in the analysis? We estimated the similari-
ties for the two records considering all five estimators of
Tab. 1 and for the original records as well as the results
from age modeling, and give the results in Fig. 8. The his-
tograms of similarity estimates for 100 realizations of the945

age models show a considerable spread. The mean similar-
ity (indicated by the solid red line in Figs. 8a and 8b) for
the correlation estimators is above zero, but except for the
iMI estimation scheme, none returns a significant similarity
with respect to uncorrelated AR1 processes: for no estima-950

tor the solid red line lies above or below the confindence
values, indicated by the dashed red lines. A similar picture
is found for the mean age model from 2000 COPRA en-
sembles: only the interpolation-based scheme returns a sig-
nificant estimate. When we compute the similarities using955

the better resolved Dandak δ18O time series published later
(Berkelhammer et al., 2010) the outcome is quite different.
Three estimators, gXCF, iXCF and gMI return significant
values, resulting in a link strength of 0.6. While this value
is significant, we can not confirm the same for the original960

dataset for which the full proxy information (dating table and
proxy measurements with their depths) is available.

5 Discussion

Age uncertainty clearly affects all estimators of similarity for
time series, and it is an illusion that it would be possible to965

mitigate the effects of uncertainty on the time axis for any
type of analysis depending on observation times. Even if the
observation – or accumulation – time of a grown archive is
known precisely at some depths, an observation time recon-
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Fig. 8: Estimated lag zero similarities and link strength be-
tween Dandak and Wanxiang cave record for the overlapping
time period. The results for the age uncertain ensembles are
given in the dark blue histograms. The red solid line refers
to the mean of these estimates, the light blue stem to the re-
sults for the mean timescale. The dashed lines refer to the
respective confidence intervals.

5345

http://www.clim-past-discuss.net
http://www.clim-past-discuss.net/9/5299/2013/cpd-9-5299-2013-print.pdf
http://www.clim-past-discuss.net/9/5299/2013/cpd-9-5299-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/


CPD
9, 5299–5346, 2013

Similarity estimators

K. Rehfeld and J. Kurths

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Fig. 8. Estimated lag zero similarities and link strength between Dandak and Wanxiang cave
record for the overlapping time period. The results for the age uncertain ensembles are given in
the dark blue histograms. The red solid line refers to the mean of these estimates, the light blue
stem to the results for the mean timescale. The dashed lines refer to the respective confidence
intervals.
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