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Abstract

The mid-Holocene (6 thousand years before present) is a key period to study the con-
sistency between model results and proxy data as it corresponds to a standard test
for models and a reasonable number of proxy records are available. Taking advantage
of this relatively large amount of information, we have first compared a compilation of
50 air and sea surface temperature reconstructions with the results of three simula-
tions performed with general circulation models and one carried out with LOVECLIM,
a model of intermediate complexity. The conclusions derived from this analysis con-
firm that models and data agree on the large-scale spatial pattern but underestimate
the magnitude of some observed changes and that large discrepancies are observed
at the local scale. To further investigate the origin of those inconsistencies, we have
constrained LOVECLIM to follow the signal recorded by the proxies selected in the
compilation using a data assimilation method based on a particle filter. In one simula-
tion, all the 50 proxies are used while in the other two, only the continental or oceanic
proxies constrains the model results. This assimilation improves the consistency be-
tween model results and the reconstructions. In particular, this is achieved in a robust
way in all the experiments through a strengthening of the westerlies at mid-latitude
that warms up the Northern Europe. Furthermore, the comparison of the LOVECLIM
simulations with and without data assimilation has also objectively identified 16 proxies
whose reconstructed signal is either incompatible with the one recorded by some other
proxies or with model physics.

1 Introduction

The Holocene, our current interglacial, has been the subject of a large number of stud-
ies based on reconstructions derived from proxy records (e.g., Bartlein et al., 2011;
Davis et al., 2003; Leduc et al., 2010; Marcott et al., 2013; Viau and Gajewski, 2009;
Vinther et al., 2009) and on simulations performed with climate models of various com-
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plexities (e.g., Braconnot et al., 2007a,b; Claussen et al., 1999; Crucifix, 2008; Renssen
et al., 2012; Zhao et al., 2005). The two approaches are complementary (Mock, 2007)
as the information inferred from the proxies often serves to validate the climate model
results (Braconnot et al., 2012) while the models allow the exploration of the physical
processes responsible for the recorded climatic changes.

In particular, the mid-Holocene, corresponding to 6 ky BP (thousand years before
present), is a standard period in the Paleoclimate Modelling Intercomparison Project
(PMIP) for which boundary conditions have been specified to facilitate the comparison
between models results and with reconstructions. One of the most robust conclusions
of those model studies is that the summer of the mid to high latitudes of the Northern
Hemisphere is warmer during the mid-Holocene compared to the pre-industrial condi-
tions (Braconnot et al., 2007a). This is consistent with the trends of the pollen-based
reconstructions of Bartlein et al. (2011) and Davis et al. (2003) for Northern Europe
and with several other proxy records (e.g., Andreev et al., 2003; Clegg et al., 2010;
Marcott et al., 2013; Seppa and Birks, 2002, 2001; Vinther et al., 2009).

The model-data comparisons have nonetheless underlined some major differences
between reconstructions and simulation results. Brewer et al. (2007b) have highlighted
that PMIP2 models are able to capture the large-scale surface temperature patterns
over Europe reconstructed from pollen records, but they tend to underestimate the
magnitude of the observed changes, which is also in agreement with the conclusion
of Braconnot et al. (2007a). Lohmann et al. (2012) have found similar results when
analyzing the trends of annual mean sea surface temperature of the last 6000 yr ob-
tained from alkenone data: the large-scale spatial pattern derived from the proxies is
consistent with the ones of models, while the latter underestimate the magnitude of the
changes.

Moreover, Lohmann et al. (2012) have not been able to find any link between mod-
eled sea surface temperatures and reconstructed ones based on Mg/Ca proxies. Fur-
thermore, Hargreaves et al. (2013) have shown that, at the local scale, models fail to
reproduce the difference between mid-Holocene and pre-industrial temperature recon-
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structed by Leduc et al. (2010) for sea surface temperature and Bartlein et al. (2011)
for land temperature.

Our goal here is to further investigate the origin of those inconstancies between
model results and reconstructions using simulations with data assimilation. Data assim-
ilation evaluates which state of the system is the most consistent with all the sources
of information, derived here from a climate model, the forcing and the proxy records.
By performing different experiments, driven by different subsets of proxies, we plan to
identify the ones that are compatible with model physics, the ones that are not, and
those that are incompatible with other proxy records.

We focus on the mid-Holocene as this is a well-documented period. LOVECLIM1.2
(Goosse et al., 2010), a three-dimensional Earth Model of Intermediate Complexity, is
constrained to follow a compilation of 50 air and sea surface temperature reconstruc-
tions located in the Northern Hemisphere by means of a particle filter with resampling
(Dubinkina et al., 2011). These simulations with data assimilation will be compared with
a simulation performed with LOVECLIM without data assimilation and with three GCMs
(General Circulation Models) simulations following the PMIP3-CMIP5 framework (Pale-
oclimate Models Intercomparison Project phase 3 — Coupled Model Inter-comparison
Project phase 5) in order to assess the dependance of model-data differences on the
model selected.

The methodology is presented in Sect. 2, including a description of LOVECLIM, the
data assimilation method, the proxy dataset and the experimental design. This is fol-
lowed by the analysis and the discussion of the model results without and with data
assimilation in Sect. 3. The conclusions are drawn in the Sect. 4.
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2 Methodology
2.1 Description of LOVECLIM1.2

LOVECLIM1.2 is based on a simplified representation of the dynamics of the climate
system and has a coarse horizontal and vertical resolution which enables low computa-
tional requirements. Therefore, the large ensembles of simulations required by data as-
similation can be performed at a reasonable cost. This model includes three main com-
ponents named ECBIlt2, CLIO3 and VECODE, which represent the development of the
atmosphere, the ocean and the vegetation, respectively. ECBIlt2 is a spectral T21 (cor-
responding to about 5.625° in latitude and longitude) global 3-level quasi-geostrophic
model (Opsteegh et al., 1998). CLIO3 is an ocean general circulation model coupled
to a comprehensive sea-ice model (Goosse and Fichefet, 1999). It has a horizontal
resolution of 3° x 3° and 20 unequally spaced vertical levels ranging from 10 m near
surface to 500 m at 5500 m depth. VECODE is the continental biosphere component
that describes the distribution of trees, grass and desert at the same resolution as EC-
Bilt2 (Brovkin et al., 1997). For a complete description of LOVECLIM1.2, please refer
to Goosse et al. (2010).

2.2 Assimilation method

The particle filter with resampling applied here is identical to the one described in Du-
binkina et al. (2011) and used in several recent studies (e.g., Goosse et al., 2012;
Mathiot et al., 2013). An ensemble of 96 simulations, also referred to as particles or
ensemble members, is first initiated from slightly different states obtained by perturb-
ing the surface temperature of an equilibrium experiment under the same conditions
as the simulation without data assimilation (Dubinkina and Goosse, 2013). Due to the
chaotic nature of the climatic system, each particle evolves in a different way. After
the assimilation step, which is six months here, the likelihood of each member of the
ensemble is evaluated according to its agreement with the climate inferred from the
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proxies. The assimilation frequency of six months has been chosen to follow more pre-
cisely the seasonal signal embedded in proxies as more than 60 % of the selected
proxies represent a month or a particular season (mainly winter, summer, the hottest
month or the coldest month). For each variable (i.e. air and sea surface temperature)
the likelihood is estimated using anomalies obtained from both model and data as the
difference between mid-Holocene (the period 5500-5000 y BP) and modern condi-
tions (the period 950450 y BP). This function is computed for all the locations and
months for which paleodata is available. The particles that have the largest likelihood
are retained. The other ensemble members are rejected. The remaining particles are
resampled a number of times proportional to their likelihood in order to keep the num-
ber of particles constant and avoid a degenerative issue. For more details about the
resampling method please refer to Dubinkina et al. (2011). A small perturbation of sur-
face temperature is then added to the initial conditions of the members that have been
sampled more than once, and the particles are propagated forward in time using the
climate model. The whole procedure is repeated until the end of the simulated period
(which corresponds to 400 yr here).

2.3 The proxy dataset

Numerous surface and sea surface temperature reconstructions derived from proxies
are available for the Holocene. These reconstructions are derived from marine, conti-
nental and ice archives using different methods such as, among others, the Alkenone
Paleothermometry (Grimalt and Lopez, 2007; Herbert, 2003), the modern Analog Tech-
nique (Brewer et al., 2007a) or the Stable Isotopes Analysis (Brook, 2007). Each quan-
titative reconstruction has its strengths and weaknesses (Birks et al., 2010; Juggins,
2013; Telford and Birks, 2005). For instance, almost all of them are influenced by the
confounding effects, which means that environmental variables other than the climate
variable of interest influence the reconstruction (Birks et al., 2010; Ortiz, 2007). For
instance, a summer temperature derived from pollen records could include a signal re-
lated to winter temperature or precipitation (Birks et al., 2010). Furthermore, attributing
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the signal to a particular period of the year is not always straightforward as, for instance,
the sedimentary alkenone signal is usually assumed to reflect the annually averaged
sea surface temperature while at high latitudes the alkenone signal is likely phased to
the summer months (Bendle and Rosell-Melé, 2007; Herbert, 2003; Samtleben and
Bickert, 1990; Thomsen et al., 1998). In this study, we decided to follow the inter-
pretation proposed in the original studies describing the proxies. For instance, if the
reconstructed signal represents the summer surface air temperature according to the
authors of those studies, this is also the case for us.

The proxy dataset used in the simulations with data assimilation results from a selec-
tion among more than 300 Holocene records according to the following criteria: (i) the
record represents the air or the sea surface temperature, (ii) comes from archives lo-
cated between 20° N and 90° N, (iii) has a mean temporal resolution of at least 250 yr
for the mid-Holocene time-slice (6 £ 0.5 ky BP) and for the reference period (950 to
450yrBP), as we work with anomalies related to this period (Sect. 2.2). (iv) If multi-
ple reconstructions with different temporal interpretations are located within the same
model grid, the seasonal reconstructions are retained, as we consider that it provides
more information on the system. On the basis of these criteria, we have selected 50
records of air and sea surface temperature for the mid-Holocene (Table 1). For each
selected record, an anomaly is calculated between the mean value of the period of
interest (6 £ 0.5 ky BP) and the mean value of the reference period (500 yr) (Fig. 1). As
we perform averages over periods that are longer than the dating uncertainties of the
records, we neglect any potential biases related to those dating uncertainties.

Furthermore, if two reconstructions which represent the same physical variable at
the same period of the year are located in the same model grid, they are merged.
This is the case for the proxies number 2 (hereafter N2) and N2" which are merged
under the identifier N2. In the evaluation of the likelihood, we assume that the proxies
represent the climate of the scale of the model grid, except for the reconstructions of
Davis et al. (2003) and Viau and Gajewski (2009) which explicitly refer to a larger scale
and, therefore, the average over the corresponding region for the model is performed
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before computing the model-data difference. Therefore, the signal reconstructed from
the proxies is representative on a 3° grid box for CLIO3 and a 5.625° grid box for
ECBiIlt2.

Finally, an estimation of the uncertainty for each reconstruction derived from proxies
is required for data assimilation. This information is frequently not available, and when
it is, these uncertainties are often very large and thus sometimes of the same order
as the signal itself (Ohlwein and Wahl, 2011). As in Mathiot et al. (2013), we have
thus deliberately selected here lower bounds for those uncertainties in order to provide
a strong constraint on the model during the data assimilation process. By simplicity, we
have also chosen only one error for each proxy type (Table 1) based on values provided
in previous studies (e.g., Heikkild and Sepp4a, 2003; Martrat et al., 2007; Mathiot et al.,
2013; Muller et al., 1998; Seppéa and Birks, 2001). Those values of the uncertainties
affect weakly the spatial patterns but influence the magnitude of the changes induced
by the data assimilation processes (Goosse et al., 2012). This will be taken into account
in the interpretation of our results.

2.4 Experimental design

Three mid-Holocene simulations with data assimilation are performed and compared
to a mid-Holocene reference simulation realized with LOVECLIM, named NODATA (Ta-
ble 2). In two simulations either the continental or the oceanic proxies are assimilated
and in one simulation these proxies are assimilated together. They are named CON,
OCE and ALL, respectively. The objective is to propose two extreme cases in which we
either constrain the model by only the continental archives or by only the signal inferred
from oceanic proxies in order to identify the signal brought by each subset as well as
the compatibility between model physics and the proxies, and between the proxies
themselves. In addition, a simulation spanning the reference period (950 to 450 yr BP)
is required as the likelihood in the data assimilation process compares proxy anoma-
lies with modeled anomalies (Sect. 2.2). This simulation is driven by both natural and
anthropogenic forcings as in Crespin et al. (2013).
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We also analyse simulations performed with GCMs to allow the comparison of the
LOVECLIM results with the ones from three state-of-the-art models: BCC-CSM1-1,
CSIRO-Mk3BL-1-2 and MPI-ESM-P. For details about these models, please refer to the
references listed in Table 2. These models were chosen because at the time of our
analysis they were the only ones on the CMIP5 data portal that provide the variables
needed for our diagnostics over the period 950—450 yr BP and the mid-Holocene.

The four mid-Holocene simulations performed with LOVECLIM are either 200 yr (NO-
DATA) or 400yr long (ALL, CON and OCE). The lenght of the simulation NODATA is
smaller because it is the prolongation of an equilibrium simulation in the same condi-
tions. The four simulations are driven by the same constant forcing which is identical
to the one used by Mathiot et al. (2013). The orbital parameters follow Berger (1978).
The greenhouse gas concentrations are based on the data of Flickiger et al. (2002).
The Laurentide ice sheet topography and surface albedo have been adapted for LOVE-
CLIM by Renssen et al. (2009) from the reconstruction of Peltier (2004). In comparison
to the present, the changes in topography and surface albedo are extremely small. As
in Mathiot et al. (2013) small fresh water fluxes (26 mSv) coming from the Antarctic ice
sheet are added in the Amundsen, the Bellingshausen and the West part of Weddell
Seas, based on Pollard and DeConto (2009). For the Northern Hemisphere, there are
no fresh water fluxes resulting from the melt of the Laurentide ice sheet for this period
(as in Renssen et al., 2009). This design is slightly different from the PMIP3 protocol
used in GCMs as the latter assumed a similar ice sheet topography as the present one
and no additional freshwater fluxes from ice sheet melting. But this has only a very
marginal effect on our results at 6 ky BP.
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3 Results and discussion
3.1 Simulations without data assimilation

The climate anomalies simulated by LOVECLIM and the selected GCMs for mid-
Holocene conditions display similar large-scale patterns (Fig. 2) and are consistent
with previous modeling studies (e.g., Braconnot et al., 2007a). They all depict warmer
air and sea surface temperature during the mid-Holocene summer and cooler air sur-
face temperature during the winter, except in the Arctic. The mid-Holocene seasonal
cycle amplitude is then more pronounced than the one of the reference period for most
of the location in the Northern Hemisphere. This signal is mainly caused by the higher
(lower) summer (winter) insolation for mid-Holocene (Braconnot et al., 2007a; Wan-
ner et al., 2008). The winter Arctic warming is due to a memory effect associated with
the summer insolation as the latter induces a decrease in ice thickness which leads
to larger oceanic heat fluxes during the autumn and the winter, and then to a surface
temperature increase during these seasons (Renssen et al., 2005).

In comparison with the first half of the last millennium, the westerlies are slightly
weakened during the mid-Holocene in LOVECLIM in winter (Fig. 3). This appears con-
sistent with smaller meridional gradient in temperature due to the Arctic warming and
leads to a tendency towards more negative NAO state in the model for that period.
BCC-CSM1-1 also shows a weakening of the westerlies in the Pacific during the mid-
Holocene while MPI-ESM-P and CSIRO-Mk3L-1-2 show a slight strengthening. These
results are consistent with an analysis of PMIP2 simulations realized by Gladstone
et al. (2005) showing that many models display anomalies similar to either positive or
negative NAO phases during the mid-Holocene compared to present day but without
a clear and robust signal common between the different models.

The mid-Holocene reconstruction based on proxies (Fig. 2) depicts a less homo-
geneous pattern than the modeled one. The Arctic and Northern Europe surface air
temperature are warmer during the summer and the winter which is in agreement with
model results, while the Norwegian sea surface temperature is colder in the selected
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proxies for the same seasons, in contrast to model results. Risebrobakken et al. (2003)
argue that this reconstructed cooling in the Norwegian sea may rather represent a sub-
surface signal, explaining the discrepancy with other estimates of surface tempera-
ture in the region. Over Europe, the northern part is warmer during the mid-Holocene
and the southern one is colder all year long in the proxy-based reconstruction. Those
changes are relatively consistent with the simulation results in winter, although the sig-
nal at high latitudes appears underestimated in many models, but no model is able to
reproduce a cooling in summer over Southern Europe. In the western North Atlantic,
reconstructed sea surface temperature is warmer, which is consistent in summer but
not with the winter signal simulated by LOVECLIM and BCC-CSM1-1. In North Amer-
ica, surface temperature is slightly warmer in the reconstructions over the western part
while it is colder over the eastern part, a signal that appears thus weaker than the one
simulated by models.

A more quantitative model-data comparison shows that the magnitude of the signal
(estimated here by the standard deviation of the anomalies) is much weaker in mod-
els, with a mean value of 0.9 °C, than in reconstructions based on proxies which reach
a value of 1.6 °C (Fig. 4). The difference is seen both for continental and oceanic prox-
ies but is more marked over the ocean where the signal in the proxies is 4.5 times
greater than one of models, a result consistent with the recent findings of Lohmann
et al. (2012). According to Fig. 4, the mean signal recorded by the selected proxies
is larger over the ocean that over land by about 0.5 °C. This might appear surprising
as the oceanic response to many forcings is expected to be smaller than the one over
continents because of the larger thermal inertia of the ocean and of various feedbacks
(e.g., Boer, 2011). Investigating in detail this issue is out of the scope of this study but it
might be related to the too small number of proxies used here to estimate precisely the
mean over oceans and continents or to the location of oceanic proxies that represent
relatively local-regional phenomena in coastal areas or close to fronts and thus not the
mean open ocean conditions.
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Additional information on the local agreement between model results and proxy re-
constructions can be obtained by computing the Root Mean Square Error (RMSE)
defined as

n 2
> (a7 - are™)
i=1 ! :

RMSE = (1)

n

where n is the number of proxies, AT,.Obs is one particular mid-Holocene air or sea sur-

face temperature anomaly derived from a proxy record and AT,.mOd is the corresponding
modeled value. The minimum RMSE value for the different models is 1.7 °C (Fig. 4).
This is larger than the mean signal, showing that the models have nearly no skill at the
local scale as discussed in Hargreaves et al. (2013). Furthermore, the RMSE s larger
for the oceanic proxies than for continental proxies in all the models. Actually, models
results are in much better agreement between themselves than with the proxies as the
root mean square difference between different models, at locations for which proxies
are available, is close to 0.6 °C on average (i.e. about a third of the RMSE shown in
Fig. 4).

Nevertheless, this quantitative evaluation of model performance based on results at
the grid scale could be considered as a too strong test on several aspects. First, it
does not take into account proxies uncertainties. Second, any small spatial shift in the
model response compared to data would lead to large errors (e.g., Guiot et al., 1999).
Third, model results and proxy records do not necessarily represent the climate at the
same scale, leading to difference in the recorded signal, in particular on its magnitude.
As a consequence, we have divided for Fig. 5a all the proxies into three categories:
(i) LOVECLIM agrees with the proxies with error bars, (ii)) LOVECLIM agrees only with
the sign of the proxy record anomaly, (iii) it does not agree with the sign of the proxy
record anomaly. This is displayed for the LOVECLIM model but the results are similar
for the three GCMs (not shown). This leads to much more encouraging results than the
conclusions derived from the analysis of the RMSE since LOVECLIM mid-Holocene
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simulation agrees with the sign of the anomaly of about two thirds of the proxies. This
agreement displays no clear dependance on the season, on the location of the proxies
or on the type of the proxies.

3.2 Simulations with data assimilation

Although the results of simulations constrained by data assimilation will be presented
in a quantitative way, our interpretation will often be more qualitative for the two follow-
ing reasons. First, as mentioned in the methodology section, the proxies uncertainty
selected here has a potential influence on the amplitude of the difference between
the simulations with and without data assimilation. Second, the disagreement between
LOVECLIM without data assimilation and proxies is large. Although some improvement
are obtained due to data assimilation, it is not expected to have a model state which
displays values fully consistent with proxy records. This would for instance require ad-
ditional perturbations within the ensemble of simulations, for example in model param-
eters, and thus to develop a specific experimental design. This is out of the scope of
this paper, as we would like to focus, in this first study devoted to the mid-Holocene
climate, on an estimate of the compatibilities between models and proxies.

By construction, the data assimilation method applied in LOVECLIM for the mid-
Holocene period provides with results that are locally more consistent with the proxies
that are assimilated than with any other simulation performed without data assimilation
selected in this study (Fig. 4). Indeed, the simulation constrained by all the proxies,
displays the RMSE of 1.6 °C which is 15% closer to the proxy anomalies compared
to the model without data assimilation. The RMSE between this simulation and the
proxies is thus of the same magnitude as the mean signal of the proxies from the mid-
Holocene (1.6 °C). The assimilation of the continental proxies alone gives the RMSE
of 1.5 °C, which corresponds to a reconstruction which is 22 % closer to the proxies
that are assimilated compared to the model without data assimilation. Finally, the data
assimilation of the oceanic proxies alone provides with a reconstruction that is 15 %
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closer to those oceanic proxies, inducing almost a doubling of the simulated oceanic
signal compared to the simulation without data assimilation.

The Fig. 4 shows also that the assimilation process in ALL leads LOVECLIM to be
more consistent with the continental proxies than with the oceanic ones, which is due
to the combination of two effects. First, the estimated error of the continental proxies
is smaller than the oceanic records (Table 1), which means that in the computation of
the likelihood a larger weight is given to the continental archives. Second, the model
atmospheric fields and the surface temperature over land have a greater variance than
the oceanic ones. Among the ensemble of simulations, it is thus more common to
have members that are in agreement with continental proxies. This leads to a larger
impact from the continental proxies if both domains are assimilated together and strong
similarities between the simulation constrained by all the proxies and the one that is
based on the continental proxies only.

Although data assimilation only marginally reduces the RMSE between model and
data, the amount of proxies for which LOVECLIM does not agree with the sign of the
anomalies decreases by about 20 % in OCE and about 30 % in CON and ALL com-
pared to NODATA (Fig. 5). This is mainly caused in the reconstruction CON and ALL
by a slight summer warming over North-East Europe, the Barents sea and the Kara
sea and by a summer cooling around Lake Baikal as well as by a winter warming from
North-East Europe to Lake Baikal, over North of Greenland and over the central part of
North America (Fig. 6). In these simulations, the improvement of sea surface temper-
ature is mainly related to a warming along the coast of North-America at about 40° N.
In the simulation OCE the higher number of proxies that have the same anomalies as
the model is mainly due to an annual warming of the North Atlantic and a summer
warming in the North Pacific close to the West coast at 45° N (Fig. 6). Consequently,
data assimilation drives the LOVECLIM model to a state which is maybe still not in the
range of the anomalies derived from the proxies but that is at least more consistent
with the sign of their changes.
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The three experiments with data assimilation also allow us testing the influence of
the data assimilation over the different domains (continent and ocean) on all the proxy
by grouping them in three categories (Fig. 7), but on different basis compared to the
Fig. 5. The first category consists of proxies for which LOVECLIM results without data
assimilation were already consistent with the proxies signal, i.e. the difference between
model results and proxy-based reconstruction is smaller than the error assigned here.
Moreover, assimilation of these proxies does not deteriorate the consistency between
the model results with data assimilation and the signal recorded by the proxies. This
category concerns 22 % of all the proxies used in this study. These proxy records can
be identified individually on the basis of the numbers on the Fig. 1, using the Table 1.
The second category (45 % of all the proxies) deals with the proxies that satisfy the
two following criteria: (i) at least in one of the two simulations performed with data
assimilation in which these proxies are used, they are more consistent with the results
with data assimilation than with the results without data assimilation. (ii) These proxies
are not less consistent with the results with data assimilation than with the results
without data assimilation if they do not comply with the first rule. This corresponds
to all the continental (oceanic) proxies for which the anomaly difference in absolute
value decreases by at least 5% in ALL and/or CON (ALL and/or OCE) and does not
increase by more than 5% in the other(s) simulation(s) with data assimilation. For
66 % of the proxies included in this category (28 % of all the proxies), the anomalies
in the three simulations with data assimilation are closer to the proxy record anomaly
than in the model without data assimilation. This implies that the model dynamics is
able to propagate the signal brought by the assimilated proxies towards the locations
where no data is assimilated and also that the information brought by these 28 % of
proxies is coherent. The third category (33 % of all the proxies) includes the proxies that
are either (i) less consistent (5 % threshold) with at least one of the three simulations
with data assimilation compared with the simulation without data assimilation, or that
are (ii) not more consistent with any simulation with data assimilation than with the
simulation without data assimilation. In the majority of the cases (70 % of the proxies

3967

CPD
9, 3953-3991, 2013

A mid-Holocene case
study

A. Mairesse et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

() ®

uI
| I


http://www.clim-past-discuss.net
http://www.clim-past-discuss.net/9/3953/2013/cpd-9-3953-2013-print.pdf
http://www.clim-past-discuss.net/9/3953/2013/cpd-9-3953-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/

10

15

20

25

of this category), this corresponds to proxies on land (ocean) whose differences with
model results are larger in OCE (CON) than in NODATA. As a consequence, the model
dynamics suggests an incompatibility between the signal recorded by different types of
proxies as improving one realm (land or ocean) deteriorates the results in the other one.
This could be due to several processes such as a bias in the teleconnections simulated
by the models, in the interpretation of the proxy signal, in the way models and proxies
are compared. Our experimental design does not allow us determining which of those
is dominant for each proxy record but it indicates that a special attention has to be given
to those regions to understand the causes of this disagreement. This is the case, for
instance, for the continental proxy N42 whose signal is opposite to the one depicted by
the oceanic proxies N4, N7, N9 and N10. Another example is the oceanic proxy N15
whose signal shows a summer negative anomaly opposite to the positive one illustrated
by the nearby continental proxies. This incompatibility consolidates the interpretation
of Risebrobakken et al. (2003) that this proxy record should not be considered as an
estimate of surface temperature. Finally, the proxies that are never more consistent with
the simulations performed with data assimilation, indicate a profound disagreement
between their information and the model physics. For instance, the model is not able
to reproduce the summer (winter) cooling over the Southern-West (Northern-West)
Europe depicted by the proxies N43 (N38) with data assimilation as already mentioned
for LOVECLIM and the GCMs without data assimilation.

The improvement brought by data assimilation can be related to modifications of
both winds and ocean currents. The atmospheric circulation changes associated with
data assimilations in ALL, CON and OCE have a lower magnitude that the one in re-
sponse to the forcing in NODATA for the summer, while for the winter, these changes
are at least of the same magnitude as the model response to forcing (Fig. 8). All the
experiments constrained by data assimilation display a decrease in geopotential height
at high latitudes and an increase at mid latitudes in winter compared to NODATA, the
signal in summer being weaker. This strengthens the westerlies over the North At-
lantic inducing a winter warming from the Northern Europe to the Lake Baikal as well
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as over North America (Fig. 6). This is consistent with the findings of Rimbu et al.
(2003), who indicate, using alkenone data, that the NAO was more likely in a posi-
tive pattern phase during the mid-Holocene with respect to our reference period. The
induced surface temperature changes are more pronounced during the winter since
during these months the atmospheric circulation endures the stronger changes. Fur-
thermore, changes in atmospheric circulation are stronger in the OCE simulation than
in the simulations ALL and CON (Fig. 8). This induces stronger westerlies over the
Pacific and, therefore, a stronger warming over North America (Fig. 6). In winter the
pattern over the North Atlantic is more complex in OCE than in the other experiments,
with stronger westerlies northward of 50° N and weaker ones between 40° N and 50° N.

The spatial structure of the changes of annual mean sea surface temperature and
surface current between each simulation performed with data assimilation and the sim-
ulation NODATA are similar, both in the North Atlantic and the North Pacific. There-
fore, the figures are shown only for ALL (Fig. 9). In the Pacific, the strengthening of
the westerlies produces an intensification of the northern branch of the North Pacific
Gyre, which is stronger on the eastern part compared to the western part. This tends
(i) to transport the warmer water from the northern extension of the Kuroshio eastward
(around 45° N). It leads to warmer sea surface temperature and a warming of the atmo-
sphere by the ocean. (ii) This also transports the colder western and northern Pacific
water (cooled by the Siberian winds) toward the warmer eastern Pacific following the
gyre cycle. The pattern is most marked in the simulation OCE than in the others two
(Fig. 6) as the westerlies are more intensified in this simulation. Additionally, the north-
ward shift of the westerlies slows down the winds around 30° N in the western Pacific
which induces a reduced heat loss by evaporation and, therefore, a warmer sea surface
temperature at this location. These two processes occur also in the Atlantic Ocean. The
first is associated with an intensification of the gulf stream current at around 40° N due
to stronger winds at this location (Fig. 8) which leads to a warming of the West Atlantic
between 40° N and 50° N. The second one leads to a warming of the Atlantic between
20°N and 30° N induced by weaker winds. Finaly, around 65° N, a localized warming
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results from the ice front shifting. This feature is not robust as it is not present in all
our experiments. The meridional overturning circulation is also slightly stronger in the
Atlantic in the simulations with data assimilation compared to NODATA. The difference
between the maximum in ALL-CON-OCE and the maximum in NODATA is, however,
smaller than 1 Sv, which corresponds to an increase of the meridional heat transport at
30° S between 2% (5 TW) and 8 % (18 TW) compared to the mean value in NODATA,
contributing to some extent to the large-scale warming of the North Atlantic.

4 Conclusions

The conclusions derived from our analysis of simulations performed with GCMs and
with LOVECLIM with and without data assimilation for the mid-Holocene can be sum-
marized as follows:

1. In agreement with previous studies, a direct evaluation of the mean error of mid-
Holocene simulations performed without data assimilation suggests that models
have nearly no skill at the local scale compared to proxy data and that the models
agree much better between themselves than with proxies. A comparison of the
dominant patterns and of the sign of the changes, taking into account the uncer-
tainties in proxies, leads to a much better consistency between models and data
although clear disagreements remain in some regions.

2. The simulations with data assimilation are more consistent with the sign of the
proxies anomalies and the spatial pattern of the changes than the simulation with-
out data assimilation.

3. However, for a third of the proxies, data assimilation does not bring any improve-
ment to the agreement with proxy data. For some proxies, it is due to a funda-
mental inconsistency with model physics, but for the majority of the proxies in
this case, this is due to an incompatibility between the various proxies according
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to the model physics; i.e. the model is not able to follow the signal recorded in
all of them simultaneously. One clear strength of our methodology is to identify
objectively those proxies.

4. The methodology has also allowed identifying the mechanisms that lead to a bet-
ter consistency between the model results and the proxies. The dominant one,
which is robust in all our experiments, is the strengthening of the westerlies at
mid-latitude that warms up the Northern Europe.
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Table 1. Air surface (TS) and sea surface (SST) mid-Holocene temperature proxies used in
the simulations with data assimilation. Winter corresponds to December to February (DJF) and
summer to June to August (JJA). The anomalies and their error are in °C.

id lat lon Site or core name Area Proxy record Climate Temporal 6 ky BP ano. error Reference
variable interpretation
1 6148 26.07 Laihalampilake Southern Finland Pollen TS Annual 1.86 0.60 (Heikkila and Seppa, 2003)
2 69.20 21.47  Toskaljavri lake Northern Finland Pollen TS Jul 1.06 0.60 (Seppa and Birks, 2002)
2" 68.68 22.08  Tsuolbmajavrilake Northern Finland Pollen TS Jul 1.14 0.60 (Seppa and Birks, 2001)
3 5565 -13.98 Feni Drift North Atlantic Alkenone — Uk37 SST Annual 0.47 0.80 (Esparza, 2005)
4 40.50 4.03 Minorca Mediterranean Alkenone — Uk37 SST Annual 2.38 0.80 (Martrat, 2007)
5 4388 -62.80 OCE326-GGC30 Northwest Atlantic Alkenone — Uk37 SST Annual 415 0.80 (Sachs, 2007)
6 4348 -54.87 OCE326-GGC26 Northwest Atlantic Alkenone — Uk37 SST Annual 2.81 0.80 (Sachs, 2007)
7 3756 -10.14 MDO01-2444 Iberian Margin Alkenone — Uk37 SST Annual 0.63 0.80 (Martrat et al., 2007)
8 66.60 -17.58 JR51-GC35 Nordic Seas Alkenone — Uk37 SST Annual -1.10 0.80 (Bendle and Rosell-Melé, 2007)
9 30.85 -10.27 GeoB 6007-02 Northwest Africa Alkenone — Uk37 SST Annual 1.02 0.80 (Kim et al., 2007)
10 3863 -9.45 D13882 Iberian Margin Alkenone — Uk37 SST Annual 2.27 0.80 (Rodrigues et al., 2009)
11 6209 -17.82 RAPID-12-1k Subpolar North Atlantic Mg/Ca and d180 SST May, Jun -1.12 0.80 (Thornalley et al., 2009)
(bulloides)
12 60.08 15.83  Stora Gilltjarnen Sweden Pollen TS Annual 1.01 0.60 (Antonsson et al., 2006)
13 60.58 24.08 Lake Arapisto Finland Pollen TS Annual 3.04 0.60 (Sarmaja-Korjonen and Sepp4, 2007)
14 58.55 13.67  Lake Flarken Sweden Pollen TS Annual 2.04 0.60 (Seppa et al., 2005)
15 66.97 7.63 JM97-948/2A and Norwegian Sea Forams (planktic) SST August -1.77 0.80 (Risebrobakken et al., 2003)
MD95-2011
16 7447 98.63 Levinson-Lessing lake  Russia Pollen Ts Annual 2.06 0.60 (Andreev et al., 2003)
17 4168 -124.93 ODP1019C North Pacific Alkenone — Uk37 SST Annual -0.84 0.80 (Barron et al., 2003)
18 20.75 -18.58 ODP658C Northwest Africa Sea Forams (planktic) SST Aug -3.05 0.80 (deMenocal et al., 2000)
19 2075 -18.58 ODP658C Northwest Africa Sea Forams (planktic) SST Feb -1.07 0.80 (deMenocal et al., 2000)
20 3148 128,52 Core B-3GC Northwestern Pacific Ocean  Forams (planktic) SST Summer -0.54 0.80 (Jian et al., 2000)
21 3148 12852 Core B-3GC Northwestern Pacific Ocean  Forams (planktic) SST Winter -1.59 0.80 (Jian et al., 2000)
22 66.55 13.92 SG93 Norway (Soylegrotta) Speleothem TS Annual -0.19 0.80 (Lauritzen and Lundberg, 1999)
23 5858  26.65 Raigastvere lake Estonia Pollen TS Annual 2.63 0.60 (Seppa and Poska, 2004)
24 36.03 141.78 KRO02-06 StAMC/GC Northwestern Pacific Alkenone — Uk37 SST Summer 2.08 0.80 (Isono et al., 2009)
and MD01-2421
25 20.12 117.38 GIK17940-2 South China Sea Alkenone — Uk37 SST Annual -0.19 0.80 (Pelejero et al., 1999)
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Table 1. Continued.

id lat lon Site or core name Area Proxy record Climate Temporal 6 ky BPano. error Reference
variable interpretation
26 5278 108.12 Kotokel lake Russia Pollen TS Jan 3.30 0.60 (Tarasov et al., 2009)
27 5278 108.12 Kotokel lake Russia Pollen TS Jul -0.07 0.60 (Tarasov et al., 2009)
28  80.70 -73.70 Agassiz Ice cap Greenland ice core — d180 TS Annual 2.00 0.40  (Vinther et al., 2009)
29 71.27 -26.73 Renland Ice Cap Greenland ice core — d180 TS Annual 2.00 0.40 (Vinther et al., 2009)
30 50to70 —65to0 -50  Labrador region Canada Pollen TS Jan -2.28 0.60 (Viau and Gajewski, 2009)
31 50to70 —-65to —50 Labrador region Canada Pollen TS Jul -0.48 0.60 (Viau and Gajewski, 2009)
32 50t070 -120to-80 Central Canadaregion Canada Pollen TS Jan 0.68 0.60 (Viau and Gajewski, 2009)
33 50t070 -120to-80 Central Canadaregion Canada Pollen TS Jul 0.49 0.60 (Viau and Gajewski, 2009)
34 50to70 -140to-120 MacKenzie region Canada Pollen TS Jan 0.46 0.60 (Viau and Gajewski, 2009)
35 50t070 -140to-120 MacKenzie region Canada Pollen TS Jul 0.17 0.60 (Viau and Gajewski, 2009)
36 44.53 145.00 MDO01-2412 Okhotsk Sea Alkenone — Uk37 SST Autumn -0.82 0.80 (Harada et al., 2006)
37 71.34 -113.78 KRO2 lake Victoria Island (Canada) Pollen TS Jul 0.00 0.60 (Peros and Gajewski, 2008)
38 55t072 -12to 15 Northwest region Europe Pollen TS Winter -0.71 0.60 (Davis et al., 2003)
39 55t072 -12to 15 Northwest region Europe Pollen TS Summer 1.00 0.60 (Davis et al., 2003)
40 45to0 55 -12to 15 Centralwest region Europe Pollen TS Winter -0.51 0.60 (Davis et al., 2003)
41 451055 -12to0 15 Centralwest region Europe Pollen TS Summer 0.47 0.60 (Davis et al., 2003)
42 30to45 -12to 15 Southwest region Europe Pollen TS Winter -0.98 0.60 (Davis et al., 2003)
43 30to45 -12to 15 Southwest region Europe Pollen TS Summer -1.49 0.60 (Davis et al., 2003)
44 55t072 15to 50 Northeast region Europe Pollen TS Winter 0.22 0.60 (Davis et al., 2003)
45 55t072 15to 50 Northeast region Europe Pollen TS Summer 0.60 0.60 (Davis et al., 2003)
46 451055 15to 50 Centraleast region Europe Pollen Ts Winter 0.24 0.60 (Davis et al., 2003)
47 451055 15to 50 Centraleast region Europe Pollen TS Summer -0.11 0.60 (Davis et al., 2003)
48 30to45 15to 50 Southeast region Europe Pollen TS Winter -0.25 0.60 (Davis et al., 2003)
49 30to45 15 to 50 Southeast region Europe Pollen TS Summer —-0.66 0.60 (Davis et al., 2003)
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Fig. 1. Mean air and sea surface temperature anomaly (°C) for all the proxies available for
the mid-Holocene. Each marker type corresponds to a different proxy group. Each anomaly
represents a month or a particular period (Table 1). If more than one proxy record is given
at the same location, the markers representing the proxies are slightly shifted for improved
readability. The reference period is 950 to 450 yr BP.
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Fig. 2. Mid-Holocene air (TS) and sea (SST) surface temperature anomaly (°C) for the proxies,
LOVECLIM without data assimilation (NODATA) and the GCMs. Winter corresponds to Decem-
ber to February (DJF) and summer to June to August (JJA). The reference period is 950 to 450

yr BP.
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Fig. 3. Mid-Holocene geopotential height anomaly (in m) at 800 hPa for LOVECLIM without
data assimilation (NODATA) and at 850 hPa for the GCMs. Winter corresponds to Decemberto Full Screen / Esc
February (DJF) and summer to June to August (JJA). The reference period is 950 to 450 yr BP.
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Fig. 4. From left to right: RMSE between the mid-Holocene anomalies of each simulation
(LOVECLIM with and without data assimilation and the GCMs) and the proxies anomalies for
three groups of proxies: all the proxies, the continental proxies only and the oceanic proxies
only. The mean mid-Holocene signal (estimated as the standard deviation of the anomalies) for
the proxies and the model are the black and the grey horizontal bars, respectively.
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Fig. 5. Agreement between the mid-Holocene anomalies in LOVECLIM and in the proxies.
Each marker type corresponds to a different proxy group. It is in green when the model agrees
with the proxy record within the error bars; In blue, when the model agrees only with the sign
of the anomaly; In red, when the model does not agree on the sign of the anomaly. If more
than one proxy record is given at the same location, the markers representing the proxies are
slightly shifted for improved readability.
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Fig. 6. Mid-Holocene air and sea surface temperature anomaly (°C) for the proxies and the
LOVECLIM simulation performed without data assimilation (NODATA). The reference period is
950 to 450 yr BP. Differences between the three simulations performed with data assimilation
(ALL, CON and OCE) and the simulation NODATA (°C). Winter corresponds to December to
February (DJF) and summer to June to August (JJA).
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Fig. 7. Percentage and location of mid-Holocene proxies for which: (i) the modeled anomalies
without data assimilation and in the three simulations with data assimilation are always within
the estimated uncertainty of a particular proxy record (in blue); (ii) the modeled anomaly of
at least one simulation with data assimilation is more consistent with the proxy record at the
same location if it is assimilated and is not less consistent in the others simulations with data
assimilation (in green); (iii) at least one of the three simulations with data assimilation is less
consistent with the proxy records than the simulation without data assimilation or that no im-
provement is brought when they are assimilated (in red). On the map, if more than one proxy
record is given at the same location, the markers representing the proxies are slightly shifted
for improved readability. Each marker type corresponds to a different proxy group.
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Fig. 8. Mid-Holocene geopotential height anomaly at 800 hPa (in m) for the simulation NODATA.
The reference period is 950 to 450 yr BP. Difference between the three simulations performed
with data assimilation (ALL, CON and OCE) and the simulation NODATA. Winter corresponds

-4

16 20

to December to February (DJF) and summer to June to August (JJA).

3990

Title Page

Abstract Introduction

Conclusions References

Tables Figures

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

©)
do


http://www.clim-past-discuss.net
http://www.clim-past-discuss.net/9/3953/2013/cpd-9-3953-2013-print.pdf
http://www.clim-past-discuss.net/9/3953/2013/cpd-9-3953-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/

AV . 3
SN ¢
R
AN,
IR R R Y

ALL-NODATA

Fig. 9. Mean annual mid-Holocene difference of sea surface temperature (°C) and surface
oceanic current for the Pacific and the Atlantic Ocean between the simulation ALL and the
simulation NODATA. The size of the arrows is not proportional to their velocity to improve the
readability of the maps since the objective is to show the current direction and not its strenght.
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