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Abstract

Pseudoproxy experiments (PPEs) have become an essential framework for evaluat-
ing paleoclimate reconstruction methods. Most existing PPE studies assume constant
proxy availability through time and uniform proxy quality across the pseudoproxy net-
work. Real multi-proxy networks are, however, marked by pronounced disparities in5

proxy quality, and a steep decline in proxy availability back in time, either of which
may have large effects on reconstruction skill. Additionally, an investigation of a real-
world global multi-proxy network suggests that proxies are not exclusively indicators
of local climate; rather, many are indicative of large-scale teleconnections. A suite of
PPEs constructed from a millennium-length general circulation model simulation is thus10

designed to mimic these various real-world characteristics. The new pseudoproxy net-
work is used to evaluate four climate field reconstruction (CFR) techniques: truncated
total least square embedded within the regularized EM algorithm (RegEM-TTLS), the
Mann et al. (2009) implementation of RegEM-TTLS (M09), canonical correlation analy-
sis (CCA), and Gaussian graphical models embedded within RegEM (GraphEM). Each15

method’s risk properties are also assessed via a 100-member noise ensemble.
Contrary to expectation, it is found that reconstruction skill does not vary monoton-

ically with proxy availability, but rather is a function of the type of climate variability
(forced events vs. internal variability). The use of realistic spatiotemporal pseudoproxy
characteristics also exposes large inter-method differences. Despite the comparable20

fidelity in reconstructing the global mean temperature, spatial skill varies considerably
between CFR techniques. Both GraphEM and CCA efficiently exploit teleconnections,
and produce consistent reconstructions across the ensemble. RegEM-TTLS and M09
appear advantageous for reconstructions on highly noisy data, but are subject to larger
stochastic variations across different realizations of pseudoproxy noise. Results collec-25

tively highlight the importance of designing realistic pseudoproxy networks and imple-
menting multiple noise realizations of PPEs. The results also underscore the difficulty
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in finding the proper bias-variance tradeoff for jointly optimizing the spatial skill of CFRs
and the fidelity of the global mean reconstructions.

1 Introduction

Over the past few decades, multiple methods have been proposed to estimate hemi-
spheric and global temperature variability from proxy data over the Common Era (see5

Jones et al., 2009; Tingley et al., 2012, for comprehensive reviews). Such reconstruc-
tions provide an important testbed for understanding multidecadal to centennial climate
variability and the climate sensitivity to exogenous forcing, while providing extended
context prior to the instrumental era for anthropogenic warming (Jansen et al., 2007).
The majority of such reconstructions target an index (e.g. northern hemispheric mean10

temperature, Briffa et al., 2001; Crowley and Lowery, 2000; Mann and Jones, 2003;
D’Arrigo et al., 2006), while a few are derived from climate field reconstruction (CFR)
methods that aim to estimate the spatial, as well as the temporal aspects of large-scale
temperature variability (Mann et al., 1998, 1999, 2009; Evans et al., 2002; Luterbacher
et al., 2004; Rutherford et al., 2005; Tingley and Huybers, 2013).15

A leading challenge in producing credible real-world climate reconstructions is the
assessment of their uncertainties. The uncertainty of a real-world reconstruction is a
mixture of two sources: the uncertainty associated with using necessarily imperfect
proxy and target data, and the uncertainty associated with the employed statistical
methodologies. Data uncertainties include the uncertainty in proxy-temperature rela-20

tionships, the analytical uncertainty of proxies, errors in instrumental climate fields,
chronological uncertainties, and the uncertainty resulting from the network’s often par-
tial spatiotemporal coverage. Methodological uncertainties includes a given methods’
sensitivity to input data and parameters, the uncertainty associated with the choice
of these parameters, and uncertainties stemming from each method’s inherent risk25

properties.

3017

http://www.clim-past-discuss.net
http://www.clim-past-discuss.net/9/3015/2013/cpd-9-3015-2013-print.pdf
http://www.clim-past-discuss.net/9/3015/2013/cpd-9-3015-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/


CPD
9, 3015–3060, 2013

PPEs: spatial
performance of CFRs
in a realistic context

J. Wang et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Until recently, assessments of reconstruction uncertainties have primarily relied on
cross-validation (CV, Cook et al., 1994), which consists of calibrating CFR methods
over a subset of the instrumental period, and then validating the methods with the
remaining observations. This method has the advantage of being firmly grounded in
statistical theory (e.g. Hastie et al., 2008, Chap. 7) and relies solely on actual obser-5

vations; however, it was recently shown that shortening the calibration interval leads to
estimates of low-frequency skill that are biased low (Emile-Geay et al., 2013a). Tem-
poral variations in reconstruction skill may be crudely estimated from “frozen network”
experiments (Jones et al., 1998; Crowley and Lowery, 2000; Mann and Jones, 2003;
Hegerl et al., 2006; Mann et al., 2007; Emile-Geay et al., 2013a), but because instru-10

mental records are only available since the 1850s, it is impossible to directly estimate
skill prior to the 19th century. Reconstruction uncertainty, particularly on multidecadal
to centennial timescales, is thus difficult to quantify.

In this study, we use pseudoproxy experiments (PPEs) to extend our skill assess-
ments of CFRs to decadal and centennial timescales and to isolate the impacts of the15

two principal uncertainty sources discussed above. PPEs were originally proposed by
Bradley (1996) and adopted by Mann and Rutherford (2002) as a means of method-
ological assessment, and have been widely used to assess the performance of differ-
ent CFRs in reconstructing global or hemispheric temperature (see Smerdon, 2012,
and references therein for more details). Only a few of these PPEs, however, have20

focused on comprehensive assessments of CFR spatial skill (Tingley and Huybers,
2010b; Smerdon et al., 2011; Li and Smerdon, 2012; Annan and Hargreaves, 2012;
Werner et al., 2013). In keeping with these earlier investigations, we focus herein on
direct assessments of the spatial skill associated with leading CFR methods. Our ap-
proach nevertheless relies on more realistically designed pseudoproxy networks that25

give us better insights into the true spatial and temporal uncertainties in currently avail-
able CFR products.

Pseudoproxies typically are derived from the output of GCM simulations. The syn-
thetic proxy data mimic some aspects of real-world proxy networks, and reconstruction
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algorithms are applied to the data to backcast the GCM-simulated climate conditions.
Thus PPEs allow for controlled assessments of reconstruction methods with regard
to the geographical and temporal distribution of proxies, their quality, and the spec-
tral characteristics of the noise (Smerdon, 2012). However, most PPEs to date have
constructed pseudoproxies that are temporally invariant throughout the reconstruction5

interval and have uniform proxy quality. Such networks drastically under-represent the
complexity of real-world proxies, limiting the applicability of their results to real-world
reconstructions.

Here we construct more realistic pseudoproxy networks that mimic the key spa-
tiotemporal characteristics of the multiproxy network used by Mann et al. (2008) (here-10

inafter M08). Two novelties in pseudoproxy design are introduced in this work: (1) the
decrease in proxy availability over time follows that of the M08 network; and (2) the
spatial variations of proxy quality mimic those found in M08. The realistic pseudoproxy
approach from this design provides a more stringent test on the performance of differ-
ent CFR techniques, and provides insights into at least three aspects: (1) assessing15

how the spatiotemporal characteristics of the proxy network affects reconstruction skill,
(2) tracing factors that contribute to the spatial variations of reconstruction skill, and
(3) evaluating a method’s ability to produce skillful index and field reconstructions. The
four reconstruction techniques that we evaluate are: (1) truncated total least squares re-
gression embedded within the regularized estimation-maximization algorithm (Schnei-20

der, 2001, hereinafter RegEM-TTLS), (2) the Mann et al. (2009) implementation of
RegEM-TTLS (hereinafter M09), (3) Canonical Correlation Analysis (Smerdon et al.,
2010, hereinafter CCA), and (4) Gaussian graphical models embedded within the EM
algorithm (Guillot et al., 2013, hereinafter GraphEM). We first explore the spatiotem-
poral characteristics of M08 proxies in Sect. 2, and then describe the employed CFR25

techniques in Sect. 3. We present results in Sect. 4, followed by a discussion in Sect. 5.
We summarize our findings in Sect. 6.
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2 Properties of real-world proxy networks

We consider the M08 proxy network as the basis for our pseudoproxy emulation of
a real-world proxy network. The M08 proxy network has a relatively extensive spatial
coverage over land, and most proxies’ temporal resolution are decadal or higher. More
importantly, the M08 network has recently been used to derive real-world CFRs (Mann5

et al., 2009), in which the authors reconstructed spatial patterns of surface temperature
over the past 1500 yr and explored their associated dynamical causes. Out of the total
1209 proxies in the network, we exclude 71 European composite surface temperature
reconstruction records (Luterbacher et al., 2004), so that only true natural proxies are
used to as a basis for our emulation. Figure 1 shows the spatiotemporal distribution10

of the remaining 1138 proxies. Most proxies are concentrated in extra-tropical land
regions of the Northern Hemisphere, particularly across North America and western
Europe (Fig. 1a). Tree-ring width is the dominant proxy class, and fewer than 200 prox-
ies in total are available prior to 1400 AD (Fig. 1b).

2.1 Spatial characteristics15

Spatial relationships between proxies (P) and temperature (T) are explored by cal-
culating the Pearson’s correlation coefficient (ρ) between each proxy and the Had-
CRUT3v surface temperature field (Brohan et al., 2006, the temperature target used
in the M08 and M09 studies). In order to reduce the number of spurious correlations,
only statistically significant correlations are explored, which we will describe in more20

detail later. Temperature grid boxes less than 10 % complete were removed from the
HadCRUT3v dataset, and missing values were infilled with the RegEM-ridge algorithm
(Schneider, 2001) during the 1850–2006 AD period (Mann et al., 2008). In Fig. 2, |ρ|max
is plotted as a function of P–T distance, where |ρ|max(i ) = max

j∈[1,p]
|ρ(Pi ,Tj )| is the high-

est absolute value of the estimated correlation coefficients between the i th proxy and25

all temperature grid points. The total number of temperature grid cells is p = 1732,
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as in Mann et al. (2009). All the temperature and proxy data can be downloaded at
http://www.ncdc.noaa.gov/paleo/pubs/mann2008/mann2008.html.

Contrary to common assumptions (Jones and Mann, 2004), we find that ρ(P,T) is
not a monotonically decreasing function of distance. As in Fig. 2, the distribution of
P–T distance is bimodal: one cluster of proxies is well correlated to local temperature5

(distance shorter than 2000 km, similar to findings in Hansen and Lebedeff, 1987), but
the majority of proxies are at least 8000 km away from the temperature point yielding
the highest |ρ|. On the other hand, the distribution of |ρ|max is unimodal and positively
skewed. The distribution exhibits a mode near 0.4, while high values are quite rare
(95 % of values are below 0.76). The average |ρ|max is 0.45, corresponding to a P–T10

distance of 11 000 km. This indicates that the majority of proxies in the M08 network
are not indicative of local temperature1; rather, the majority are indicative of long-range
teleconnections (e.g. Liu and Alexander, 2007).

Traditionally, pseudoproxies P(x,t) are generated according to:

P(x,t) = Ts(x,t)+
1

SNR
·ε(x,t) (1)15

where Ts is time-standardized matrix of T. The primary data of T are grid cells extracted
from GCM fields in a way that mimic instrumental data availability. ε(x,t) are indepen-
dent realizations of a Gaussian white noise process with zero mean and unit variance,
and the signal-to-noise ratio (SNR) controls the amount of noise in the pseudoproxies
(Mann and Rutherford, 2002; von Storch et al., 2004; Mann et al., 2005, 2007; Ruther-20

ford et al., 2005; Küttel et al., 2007; Smerdon et al., 2008, 2011; Christiansen et al.,
2009; Emile-Geay et al., 2013a). SNR is related to proxy-temperature correlations ρ
via:

SNR =
|ρ|√

1−ρ2
(2)

1Some of the M08 proxies are drought and precipitation proxies, but they correlate to tem-
perature variability at large scale on the globe (Ljungqvist et al., 2012).
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(Mann et al., 2007). While most studies have heretofore considered spatially-uniform
SNRs, it is clear that |ρ| is quite variable (Fig. 2), requiring that a realistic pseudoproxy
network contain such variability. To comprehensively model the bimodal structure ob-
served in real-world proxies, we therefore constructed pseudoproxies in two comple-
mentary manners: one corresponding to local temperature associations and the other5

reflective of teleconnections.
The bimodal structure is modeled as:

1. Local SNR: each proxy record is regressed onto temperature at the closest Had-
CRUT3v grid point over the 1850–2000 period, exposing each proxy’s ability to
record local temperature conditions (Fig. 3, top);10

2. Max SNR: proxies are regressed onto all temperature points in the HadCRUT3v
dataset. The highest absolute value of ρ for each proxy (and the corresponding
temperature grid) is selected, based on a proxy’s highest potential to capture
long-range temperature dependencies (Fig. 3, bottom).

The significance of a real-world proxy’s correlation with temperature is also incor-15

porated into the construction of the PPEs. Pseudoproxies are generated to emulate
only proxies with a significant relationship to annual temperature in the HadCRUT3v
dataset, selected via a non-parametric significance test (Ebisuzaki, 1997). Based on
the significance test, only 312 out of 1138 M08 proxies exhibit a significant correlation
with local temperature, whereas 1121 proxies are significantly correlated to at least one20

temperature point on Earth. Pseudoproxies are therefore sampled only in these proxy
sites. Unique temperature grid points being used in the local and max SNR networks
reduce to 128 and 551, respectively, i.e. only locations of these temperature grids are
used to sample T in Eq. (1). As illustrated in Fig. 3, even in the best-case scenario
(max SNR), SNR is on average lower than 0.5, with fewer than 30 proxies exhibiting an25

SNR above unity. In the local SNR case, the mean SNR is even lower (0.27), close to
the low end of SNRs usually considered in pseudoproxy studies (0.25). Neither choice
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of SNR design is realistic, but each may be viewed as an end-member of real-world
conditions.

Similar characteristics were also considered in PPEs by Christiansen et al. (2009), in
which empirical SNRs and noise values were used to reflect the heterogeneous proxy
quality in the Mann et al. (1998) proxy network. Their work, however, did not model5

the temporal heterogeneity in proxy availability, and the spatial skill evaluation was not
their main focus. Our study here seeks to evaluate the impact of spatial heterogeneity
in multi-proxy networks and its impact on derived CFRs. Six networks are designed to
address this problem, of which two model the spatial variation of SNRs in real-world
proxies (local SNR and max SNR) and four have uniform SNRs. Following previous10

studies (Mann and Rutherford, 2002; von Storch et al., 2004; Mann et al., 2005, 2007;
Rutherford et al., 2005; Küttel et al., 2007; Smerdon et al., 2008, 2011; Werner et al.,
2013), the four networks of homogenous quality are designed by assigning constant
SNRs (SNR =∞,1.0,0.5,0.25) in Eq. (1). These six networks together provide the
basis for our experiments.15

2.2 Temporal characteristics

Another realistic characteristic we incorporate into the PPE design is the temporal het-
erogeneity of proxy availability. As shown in Fig. 1b, data availability decreases steeply
back in time, and a staircase pattern is evident for all proxy classes. In a similar man-
ner, the effective SNR, which is the sum of SNRs available for all proxies available at a20

given point in time, also declines back in time (Fig. 4). This pattern is very common in
paleoclimate datasets, as most reliable proxies are typically only available for several
decades or centuries prior to widespread observational data. For instance, most tree
rings drop out of the network prior to the 16th century, with fewer than 100 (out of an
original 1031) still available before the 14th century. Overall, only 47 proxies are avail-25

able throughout the entire reconstruction period, of which 25 are annually resolved.
To isolate the impact of temporal availability, we specify two types of pseudoproxy

networks:
3023
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1. M08 “flat” network: pseudoproxy availability is uniform through time.

2. M08 “staircase” network: pseudoproxy availability matches the pattern of the M08
database (Fig. 1b).

Contrasting these two cases will therefore characterize the impact of temporal hetero-
geneity on CFR performance.5

2.3 Limitations

Despite the spatiotemporal characteristics that are modeled in the pseudoproxies, the
networks are still idealized in various respects. The pseudoproxy networks do not
model the temporal auto-correlation (persistence) present in real-world temperature
and proxy data, nor do they consider the effect of using low-resolution data for recon-10

structions of annual temperature (e.g. 19 of the 47 proxies that are available throughout
the entire reconstruction period are resolved only on decadal or longer timescales). Us-
ing Gaussian white noise for ε in Eq. (1) is a natural first step, but a more complex noise
model could be used to better reflect real-world noisy proxies (Smerdon, 2012, and ref-
erences therein), as done in Tingley and Huybers (2010a,b). Furthermore, mechanis-15

tic proxy models could be used to simulate synthetic proxy records with more realistic
properties (Anchukaitis et al., 2006; Evans, 2007; Cobb et al., 2008; Thompson et al.,
2011; Evans et al., 2013). Finally, the target field is assumed to be noise-free, yet in re-
ality, gridded instrumental observations may contain substantial noise or interpolation
errors, yielding a large influence on the derived calibrations and thus the reconstruction20

in the pre-instrumental era (Emile-Geay et al., 2013a,b).
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3 Methodology

3.1 CFR techniques

Two classes of statistical methods are commonly used to perform CFRs. One is based
on regression models (e.g. Mann et al., 1998, 2008, 2009; Schneider, 2001; Luter-
bacher et al., 2004; Smerdon et al., 2010; Guillot et al., 2013) and the other uses5

Bayesian hierarchical models (e.g. Li et al., 2010; Tingley and Huybers, 2010a). We
restrict our attention to regression-based methods since only those have heretofore
been used to derive to global/hemispheric CFRs.

Let P be an np ×pp matrix of proxy values and T be an nt ×pt matrix of instru-
mental temperature records, where np,nt are the number of years of available data10

(i.e. number of observations), pp,pt are the number of spatial locations (i.e. number of
variables), and the subscripts p,t denote proxies and instrumental data, respectively.
Traditional regression-based CFR methods assume a multivariate linear relationship
between proxies and the climate variable of interest (e.g. temperature) (Jones and
Mann, 2004; National Research Council, 2006; Jones et al., 2009; Tingley et al., 2012).15

Additionally, each year is often treated as an independent observation. In this context,
temperature may be estimated from the proxies via the regression equation:

T = B P+ε (3)

where ε is an error term following a multivariate normal distribution with zero mean. In
the sample-rich setting familiar to classic regression problems (e.g. Anderson, 2003),20

the optimal estimate of B would be given by the ordinary least squares (OLS) estimate:

B̂ = (PtP)−1PtT (4)

This formulation is such that in order to estimate B̂, PtP must be invertible (non-
singular). In paleoclimate applications, however, it is often the case that PtP is rank-
deficient. Instrumental temperature records are only available for the past 150 yr25
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(nt ≈ 150), and the number of proxies pp is on the order of 103 (high dimension, low-
sample size). In this setting, the OLS estimate is demonstrably suboptimal, and some-
times wildly erroneous (Marcenko and Pastur, 1967; Johnstone, 2001; Johnstone and
Lu, 2007; El Karoui, 2007; Paul, 2007). To solve Eq. (4), some form of regularization is
needed to make PtP invertible (Hansen, 1998). Each regression-based CFR technique5

accomplishes this in a different manner. Our study focuses on four such techniques:
RegEM-TTLS, M09, GraphEM and CCA.

3.1.1 RegEM

RegEM (Schneider, 2001) is a variant of the EM algorithm (Dempster et al., 1977; Lit-
tle and Rubin, 2002) designed for the imputation of missing values in spatiotemporal10

datasets typically encountered in climatology. Under the multivariate normal assump-
tion, given an initial estimate of the mean µ̂ and the covariance matrix Σ̂, the RegEM
algorithm reduces to regressing the missing values onto the available ones (instrumen-
tal temperature data and overlapping proxies). The estimates of µ̂ and Σ̂ are updated
at each iteration until convergence is achieved. Two regularization methods have been15

considered in RegEM: one is ridge regression (Tikhonov and Arsenin, 1977; Hoerl
and Kennard, 1970a,b), used in the paleoclimate context by Mann and Jones (2003);
Rutherford et al. (2003); Mann et al. (2005) and Rutherford et al. (2005); the other is
truncated total least squares (Van Huffel and Vandewalle, 1991; Fierro et al., 1997,
hereinafter TTLS), used in the paleoclimate context by Mann et al. (2007, 2008, 2009);20

Emile-Geay et al. (2013a,b); Wilson et al. (2010). As explained in Smerdon and Ka-
plan (2007); Mann et al. (2007) and Smerdon et al. (2008), ridge regression can lead
to overly damped reconstructions in very data-sparse scenarios such as paleoclimate
reconstructions. TTLS is designed to mitigate such variance losses, and therefore is
chosen as our regularization method for this study. We employ two different styles of25

RegEM-TTLS: one following the standard formulation described in Schneider (2001),
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and the other following its paleoclimate-specific implementation described in Mann
et al. (2009).

3.1.2 M09

The M09 implementation of TTLS uses a hybrid version of RegEM-TTLS (Mann et al.,
2007) that treats low-frequency and high-frequency signals separately (the domains5

are split at a 20 yr period). The reconstruction is then performed in a forward stepwise
approach century by century. For each step, the target data are compressed in that
only the first M leading modes of surface temperature are retained, where M is an
estimate of the number of degrees of freedom in the proxy network, determined by
a fit to the log-eigenvalue spectrum. Additionally, semi-adaptive choices are adopted10

for both low-frequency kl and high-frequency truncation parameters kh. The method
selects: (1) kl to retain 33 % of the low-frequency multivariate data variance (Mann
et al., 2009; Rutherford et al., 2010); and (2) kh by detecting the first break in the log
eigenvalue spectrum of high-frequency multivariate data variance.

Although these ad-hoc modifications are not grounded in statistical theory, the M0915

implementation of TTLS has proven effective in practice (Mann et al., 2009; Emile-
Geay et al., 2013a,b). Indeed, the M09 implementation is the only technique that has
ever been used for global-scale real-world CFRs, so it is taken as the benchmark of
our study. By comparing M09 to TTLS with fixed regularization (i.e. RegEM-TTLS),
we investigate the merits of the M09 approach to parameter selection in an ensemble20

framework, which is a novel assessment of this heuristic approach.

3.1.3 CCA

CCA (Christiansen et al., 2009; Smerdon et al., 2010) is based on ideas presented in
Barnett and Preisendorfer (1987). As discussed in Smerdon et al. (2010), CCA employs
singular value decomposition (SVD) to perform dimensional reductions separately on25

T,P, and B. The basic assumption, as in most paleoclimate applications, is that the first
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few leading modes of EOF-PC pairs contain most of the variance in the target climate
field and the multi-proxy network. The algorithm seeks an optimal set of truncation
parameters (dt,dp,dcca) that yields good approximations of T,P, and B, respectively.
These truncation parameters are chosen by minimizing the area-weighted root mean
square error (RMSE) of the reconstruction relative to the target field using a leave-half-5

out cross-validation procedure (e.g. Chap. 7, Hastie et al., 2008).
Smerdon et al. (2010, 2011) have only applied CCA on pseudoproxy networks with

constant temporal availability. For this study, we modify the original CCA code to make
it applicable to real networks with variable temporal availability, and also made it more
computationally efficient. The reader is referred to the supplementary information (SI)10

for more details.

3.1.4 GraphEM

GraphEM (Guillot et al., 2013) is based on the theory of Gaussian graphical models
(GGMs, a.k.a. Markov random fields, Whittaker, 1990; Lauritzen, 1996). A GGM makes
use of the conditional independence2 structure of the climate field, in order to reduce15

the dimensionality and obtain a parsimonious estimate of Ω ≡ Σ−1. The conditional in-
dependence relations are estimated by solving an `1-penalized maximum likelihood
problem (Friedman et al., 2008). Σ is then estimated in accordance with these condi-
tional independence relations. The resulting Σ̂ is sparse and better-conditioned so that
OLS applies. This procedure is implemented within the standard EM algorithm without20

further need for regularization. GraphEM was extensively tested against RegEM-TTLS
in Guillot et al. (2013), albeit with the more idealized proxy design of Smerdon et al.
(2011). One goal of this study is to document GraphEM’s performance in a more real-
istic context.

2Conditional independence: two random variables X and Y are “conditionally independent”
given a random variable Z if, once Z is known, the value of Y does not add additional informa-
tion about X .
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3.2 Numerical experiments

As in Smerdon et al. (2011), all of our pseudoproxy experiments target the annual sur-
face temperature field computed from the NCAR CSM1.4 integration of Ammann et al.
(2007), using the correctly oriented version of the CSM1.4 filed (Smerdon et al., 2010)
Although multiple last millennium simulations are becoming publicly available as part5

of the Paleoclimate Modelling Intercomparison Project Phase 3 (PMIP3) and through
other projects (Fernández-Donado et al., 2013), we selected the CSM1.4 model to en-
able comparisons with previous work (Mann et al., 2007, 2009; Li et al., 2010; Smerdon
et al., 2010, 2011). The target field was spatially masked to approximate the availability
of the HadCRUT3v dataset used in the Mann et al. (2009) study. We generated 10010

realizations of pseudoproxy series for each SNR case (SNR=∞, 1.0, 0.5, 0.25, lo-
cal SNR and max SNR) by varying ε in Eq. (1), and then performed reconstructions
with the four CFR techniques. The first four cases have fixed SNR, corresponding to
networks of homogeneous quality.

The ensemble approach allows us to identify spurious reconstruction skill arising15

from random noise, and to test the robustness of each method. We also conducted
experiments using both the flat and staircase networks. Experiments using the flat net-
work, in which the spatial distribution of pseudoproxies is temporally invariant, serve
as the control group in this study. Experiments with the staircase network, correspond-
ingly serve as the test group. By comparing results between these two experiments, we20

test the null hypothesis that temporal heterogeneity does not affect reconstruction skill.
We also consider computational cost, and investigate numerical methods to speed up
each CFR technique. Further details are provided in the SI.
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4 Results

4.1 Skill metrics

As is common practice in paleoclimatology, we evaluate reconstruction skill using the
coefficient of efficiency (CE), reduction of error (RE) and the coefficient of determina-
tion (R2) (Cook et al., 1994). These validation statistics (Table 1) are related to the5

mean squared error (MSE) common in the statistical literature, and are calculated for
both the global mean temperature index and the spatial field. The former provides an
aggregate summary of a method’s ability to track global climate fluctuations, and the lat-
ter evaluates a method’s spatial performance. The global mean enables comparisons
with index reconstructions, which comprise the majority of published reconstructions of10

hemispheric and global temperatures (Fig. 6.10 in Jansen et al., 2007).
As indicated in Fig. 3, the quality of pseudoproxies in the local SNR case, on average,

is comparable with the SNR=0.25 network, and the average SNR of pseudoproxies
in the max SNR case is similar to the SNR=0.5 network. Based on these consider-
ations, we only show results from the spatially heterogenous pseudoproxy networks.15

The reader is referred to the SI for results on spatially homogenous networks.

4.2 Reconstructing the global mean

In the global mean temperature reconstructions, the overall shape of low-frequency
variability is reasonably well reconstructed by all CFR methods (Fig. 5). Warm biases
nevertheless are present in all of the reconstructed estimates (von Storch et al., 2004;20

Smerdon et al., 2011), as expected from regression dilution (e.g. Frost and Thompson,
2000; Tingley et al., 2012). In the local SNR case (Fig. 5a), GraphEM and CCA, in
particular, underestimate the amplitude of variability by a factor of 3–5. The variance-
bias decomposition (Hastie et al., 2008, Chap. 7) further shows that for GraphEM and
CCA (Fig. 6, right column), the bias contributes more than 75 % to their mean square25

error (MSE). RegEM-TTLS and M09, on the other hand, have a similar variance but a
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much smaller bias, and thus a correspondingly smaller MSE. Overall, M09 produces
the most skillful global mean temperature series in both cases, closely followed by
RegEM-TTLS. It would be erroneous, however, to conclude that these two methods
produce the closest match to the target, as there is a large spread between different
noise realizations.5

In assessing the risk properties of each method (Fig. 5a), we find that GraphEM
and CCA are more consistent estimators than RegEM-TTLS and M09: their ensem-
ble spreads are much narrower, especially for early reconstruction intervals (prior to
1600 AD). This indicates that any given RegEM-TTLS or M09 reconstruction may yield
an inaccurate depiction of the true temperature, and this risk should be kept in mind10

especially when using M09 and RegEM-TTLS for real-world reconstructions.

4.3 Spatial performance

We now examine the spatial performance of the four CFRs. In Figs. 7 and 8, we sum-
marize the century-by-century skill variation and each CFR’s ensemble spread using
boxplots of the globally-averaged CE statistic. CE is shown because it is the most strin-15

gent metric among the three in Table 1 (Cook et al., 1994; Ammann and Wahl, 2007),
and thus exposes significant contrast between methods (Table S1). Boxplots charac-
terize the full distribution of the 100-member ensemble: the median of each distribution
assesses the tendency for temporal proxy availability to affect reconstruction skill, while
the spread yields information about the consistency of each method. The impact of the20

spatial heterogeneity is isolated by plotting spatial maps of CE using the flat network
in Figs. 9 and 10, which help us trace spatial errors and inter-method similarities and
differences.

4.3.1 Effect of the temporal heterogeneity

As evident in Figs. 7 and 8, reconstruction skill varies substantially from century to25

century, even when proxy availability is time-invariant (gray boxplots in Figs. 7 and 8,
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Figs. S3–S12). In general, reconstruction skill is highest in the most recent 100 yr
slice (1750–1849 AD) but does not decrease monotonically prior to this slice. For in-
stance, reconstruction skill decreases from 1050 to 1450 AD, but increases from 850 to
1049 AD. During this interval (broadly coincident with the “Medieval Climate Anomaly”),
the NCAR CSM1.4 model is forced by relatively high solar irradiance and frequent,5

high-amplitude volcanic eruptions, in particular during the 13th century. Such high-
amplitude forcing events, which have more coherent spatial expressions than other
fluctuations, appear to be more easily captured by the proxy network. This suggests
that reconstruction skill is not only affected by proxy availability and quality, but is also
a function of the type and amplitude of climate variations (i.e. internally-generated10

vs. externally-forced variations).
An additional important observation to note is that RegEM-TTLS in the local SNR

case is distinct from the other three methods (Fig. 7) in that the temporal availability
of input data dominates the reconstruction skill, which is a monotonically increasing
function of time. The ensemble spread becomes wider back in time as well (consistent15

with Fig. 5a). The decreasing trend back in time for RegEM-TTLS is partially due to
the fact that the method uses a fixed truncation parameter for the estimation of Σ̂,
despite the declining availability (Fig. 3) and quality (Fig. 4) of pseudoproxies back
in time. Consequently, the TTLS solution tends to be less regularized, and hence is
dominated by noise (Sima and Van Huffel, 2007). For GraphEM, a fixed graph is used20

for the entire reconstruction interval. The graph identifies most of the significant proxy-
temperature relationships and thus GraphEM is able to efficiently use the relationships
for reconstruction. M09 and CCA, on the other hand, have semi-adaptive and adaptive
criteria respectively when performing reconstructions, and are less sensitive to the
temporal heterogeneity in the pseudoproxies. In the max SNR case (Fig. 8), RegEM-25

TTLS shows a similar pattern to the other CFRs. This implies that for RegEM-TTLS,
the reconstruction skill vs. data availability relationship is conditionally dependent on
data quality: when proxy quality is relatively high (max SNR), reconstruction skill is
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relatively insensitive to the choice of truncation parameters in RegEM-TTLS, but – like
other CFRs – the skill is still sensitive to high-amplitude climate events.

Despite agreement across reconstructions of global mean temperature (Figs. 5b and
6, left column), the spatial metrics also reveal large discrepancies among methods.
Although M09 and RegEM-TTLS perform well reconstructing the global mean temper-5

ature, their globally-averaged spatial skill only breaches zero in the last two centuries
of the reconstruction, even in the max SNR case (Fig. 8). GraphEM and CCA, on the
other hand, display high spatial skill for most of the reconstruction period (in the max
SNR case, Fig. 8).

4.3.2 Effect of the spatial heterogeneity10

To isolate the effect of spatial heterogeneity, and to better visualize spatial patterns,
Figs. 9 and 10 display the spatial pattern of CE using the flat network over the first
(850–949 AD) and last centuries (1750–1849 AD) of the reconstruction3. In Fig. 9, a
band of high CE scores connecting the eastern equatorial Pacific to North America is
evident in all cases, and appears to be a feature of CSM1.4’s climate (Smerdon et al.,15

2011). Similarly, there is some reconstruction skill over other oceans where no proxies
are available. Collectively, this indicates that modeled teleconnections are effectively
exploited by all methods to reconstruct surface temperature in regions with little to no
proxy coverage. On the other hand, the pattern of enhanced skill associated with ENSO
teleconnections vanishes in the 850–949 AD interval when employing RegEM-TTLS or20

M09 on the max SNR network (Fig. 10), but is still visible in CFRs using CCA and
GraphEM. This suggests that the latter two methods are more skillful in resolving such
spatial patterns.

Using the local SNR network, we find that RegEM-TTLS and M09 both produce more
skillful reconstructions than GraphEM and CCA. In the case of max SNR, however,25

3Spatiotemporal maps for each century of the entire reconstruction interval are available in
the SI, Figa. S3–S12
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the results are opposite: reconstructions with CCA and GraphEM are more skillful.
In particular, GraphEM is the most skillful method almost everywhere (Fig. 10) and
across all time intervals (Figs. 8, S10). The goal of dimension reduction in CCA is
to increase the solution stability, and is achieved by pre-filtering noise and retaining
only a few leading modes. Similarly, GraphEM filters out spurious proxy-temperature5

relationships and noise by assigning zeros in the precision matrix (Friedman et al.,
2008; Hastie et al., 2008; Guillot et al., 2013). In the case of local SNR network, most
proxies have SNRs lower than 0.3 (or equivalently, more than 92 % noise4), and hence
are dominated by random noise. As a consequence, both CCA and GraphEM tend to
treat those proxies as noise and filter them out, shrinking the reconstruction closer to10

the calibration mean. Figures 9 and 10 suggest that RegEM-TTLS and M09 are likely
to be more powerful when data are very noisy (the local SNR network). Nevertheless,
the poor risk properties of these two methods, as discussed above, indicate that single
inferences drawn with these methods should be treated with caution.

Despite the differences among methods described above, some common features15

emerge when comparing reconstructions with the realistic SNRs to uniform SNR net-
works (Figs. S9–S12)5. Compared with CFRs using the SNR=0.25 network (Fig. S11),
CFRs using the local SNR network (Fig. S9) produce similar results but are less skillful.
This is primarily due to the fact that the local SNR network contains only 312 records,
while the SNR=0.25 network includes all 1138 proxies in the M08 database. The com-20

parison between CFRs with SNR=0.5 (Fig. S12) and max SNR networks (Fig. S10),
however, shows that reconstructions using the max SNR network are much more skill-
ful, especially during early reconstruction periods. We discuss this point below.

4%noise: the fraction of the variance in the proxy accounted for by the noise component
alone, formulated as 1

1+SNR2 (Mann et al., 2007).
5Reconstructed patterns are relatively consistent between methods, thus we only present

results from GraphEM in this paper.
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5 Discussion

In exploring the proxy-temperature relationship, we find that even in the max SNR net-
work, where the highest possible SNR is taken for each proxy, the average SNR is 0.47
(close to the SNR=0.5 case used in previous studies). Nevertheless, some of the prox-
ies on the right end of the distribution (Fig. 3) may exhibit SNRs higher than 1.0; these5

proxies drive reconstruction skill upward, so that reconstructions derived from the max
SNR network are more skillful than using the SNR=0.5 network (Figs. S10 and S12,
Table ). In other words, a small number of high-quality proxies may contribute to a ma-
jority of the reconstruction skill. This is encouraging and suggests that global surface
temperature may be skillfully reconstructed without requiring uniform spatial sampling10

over the entire globe. Nevertheless, just like the reconstruction skill vs. climate variation
relationship discussed in Sect. 4.3.1 and the teleconnections discussed in Sect. 4.3.2,
we note that such conclusions might be model-dependent. The skill observed here may
result from the low internal variability in the NCAR CSM1.4 model (partially a product of
its low resolution). To confirm these findings, similar experiments should be conducted15

with PMIP3-generation last millennium simulations.
We also find that differences across CFRs are much smaller in the case of the max

SNR network (Fig. 10), indicating that, not surprisingly, reconstructions are much less
sensitive to methodology when data quality is high. The spatial reconstruction skill,
as expected, is highest in regions of dense proxy availability (e.g. North America),20

which is consistent with previous findings by Smerdon et al. (2011). The contrast be-
tween Figs. 9 and 10, both assuming constant time availability, suggests that our CFR
methods, in particular GraphEM and CCA, are more sensitive to data quality than to
temporal availability.

As mentioned in Sect. 4.3.1, the ensemble spread for each method is quite differ-25

ent. RegEM-TTLS consistently yields the largest spread, followed by M09, CCA and
GraphEM. As an error-in-variable model (EVM), TTLS is designed to minimize the vari-
ance of residuals from both the predictands (T̂−T) and the predictors (P̂−P). The
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minimization is subject to the estimates of regression coefficients, which in turn de-
pend crucially on the choice of the truncation parameter. Since the noise ε in Eq. (3)
is randomly generated, it is sometimes spuriously high in the calibration interval and
makes the true signal too noisy for CFR methods to identify, especially in the local
SNR network. Under such circumstances, reconstructions using TTLS with fixed trun-5

cation may therefore be over-fitting to noise. This confirms an important point made
by Christiansen et al. (2009): there is a substantial element of stochasticity in the re-
constructions. Hence, one might obtain very different results with the same method
applied to different pseudoproxy noise realizations. In order to improve reconstruction
skill when employing RegEM-TTLS, we suggest the development of an algorithm that10

adaptively selects the regularization parameters using standard statistical theory.
Compared with RegEM-TTLS, M09 produces more skillful reconstructions. In partic-

ular, M09 appears advantageous at very high noise levels (local SNR, Figs. 9 and S6).
This is not surprising in part due to the heuristic truncation choices. M09 strongly bene-
fits from the hybrid-frequency approach to perform reconstructions, namely white noise15

contained in the low-frequency pseudoproxies is effectively filtered out and hence the
low-frequency components are better reconstructed in the PPEs. The noise-filtering
advantage is likely not present in real-world reconstructions, and the absence of a
theoretical justification for the selection criterion makes it vulnerable. Given a different
dataset or given a different noise model (by varying ε in Eq. (1), for instance, using20

red noise instead), the 20 yr frequency split might no longer be optimal, and the “33 %-
truncation” criterion might also need to change. For the global mean temperature, M09
produces the closest fit to the target overall (Fig. 5), which is due to the fact that trun-
cation parameters are optimized to fit the global mean. However, our results suggest
that the optimization comes at the expense of spatial skill, especially during the early25

reconstruction period (Figs. 10 and S5).
Reconstructions derived from CCA and GraphEM in general show very similar re-

sults, with GraphEM slightly outperforming CCA. In particular, as shown in Figs. 8 and
10, in the max SNR case, GraphEM outperforms other methods at all locations across
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all time intervals. This indicates that given enough high-quality data, GraphEM can pro-
duce the most skillful reconstructions. The strength of GraphEM is especially noticeable
in regions of dense proxy sampling. For instance, over North America (Fig. S10), the
other three methods display negative CE scores prior to 1650 AD, yet GraphEM pro-
duces skillful reconstructions over the entire reconstruction interval (CE>0). Neverthe-5

less, as noted in Fig. 9, GraphEM does not perform as well in the local SNR setting as
it does using the max SNR network, GraphEM’s superior performances in the former
case and unsatisfying performances in the latter are both largely due to the graphical
structure selected by the GraphEM algorithm. In the max SNR case, pseudoproxies
have, by design, much higher SNR than they do in the local SNR case. Thus most of10

the significant proxy-temperature relationships are effectively detected and exploited
by the method. In the local SNR case, on the other hand, very few significant rela-
tionships are detected and thus GraphEM fails to produce meaningful CFRs. Despite
sensitivity to data quality, another potential cause of GraphEM’s poor performance in
the local SNR cases is the choice of the graph. Currently, as described in Guillot et al.15

(2013), the graph is a fixed choice for the entire reconstruction period, which is based
solely on instrumental proxy-temperature relationships. To improve the performance of
GraphEM-based CFRs, adaptive choices of the graph should be made for each cen-
tury of the reconstruction. Through this approach, available proxies from each century
will be more effectively used. Alternatively, other methods should also be explored to20

estimate the graph.
As illustrated in Fig. 6, both GraphEM and CCA suffer from large mean biases, which

contribute to more than 75 % of the total MSE associated with reconstructions from
each method. In terms of bias-variance tradeoffs, introducing a certain amount of bias
can lead to a reduction in MSE (compared to using an unbiased estimator). However,25

this often results in the reduction of the corresponding variance, i.e. the amplitude
of past climatic variations are underestimated (Fig. 5). CCA often does the best by
measure of R2 values (Table ). This is expected: the method regularizes by maximiz-
ing the cross correlation between the proxy and target matrices, but without further

3037

http://www.clim-past-discuss.net
http://www.clim-past-discuss.net/9/3015/2013/cpd-9-3015-2013-print.pdf
http://www.clim-past-discuss.net/9/3015/2013/cpd-9-3015-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/


CPD
9, 3015–3060, 2013

PPEs: spatial
performance of CFRs
in a realistic context

J. Wang et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

constraining the variance. One possible modification would be matching the variance
of CCA reconstructions to the variance of the target data in each grid cell during the
calibration interval. In doing this, more variance would be preserved for networks af-
fected by declining data availability. However, this modification would inflate errors and
the solution could no longer be interpreted as minimizing the calibration misfit.5

By contrasting the CFRs derived from four methods in both the spatial and tempo-
ral context, we find that, despite some general agreement (Fig. 5b) and reasonable
skill (Table 1) in the global mean temperature reconstruction, the four methods yield
large spatial differences, and their validation scores in terms of CE can still be large
locally. This confirms previous findings in Smerdon et al. (2011), that the global mean10

temperature series is a poor indicator of spatial skill, and that spatial performance met-
rics are crucial for the assessment of different CFR techniques (e.g. Li and Smerdon,
2012). The results also highlight the difficulty in jointly optimizing the spatial skill and
the global mean temperature. Fundamentally, reconstruction skill can be assessed us-
ing MSE. As discussed in the previous paragraph, in order to find the lowest MSE (thus15

the best reconstruction), a tradeoff must be found between bias and variance. It there-
fore is most likely that the lowest MSE for the spatial field and the global mean time
series are not given by the same set of regularization parameters.

We also calculated a suite of diagnostics for reconstruction skill and its dependence
on: (1) the number of proxies, (2) the average SNR, and (3) the sum of SNR in each grid20

box. No apparent relationships between these variables and spatial skill were found
(Figs. S13–S18). Our experiments also highlight the need for methodological refine-
ments, since no method can consistently perform well in all cases for both index and
field reconstructions. We find that both RegEM-TTLS and M09 produce meaningful
global mean reconstructions, but do not perform as well in the spatial field. The dis-25

agreement between the field and index reconstruction was explored in Guillot et al.
(2013), in which it is found that the skillful performance of TTLS-based global mean
temperature reconstructions involves considerable cancellation between positive and
negative deviations from the true field at any given grid point (see SI). Hence, the fi-
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delity of the reconstructed global mean is a poor indication of spatial skill (Figs. S19–
S20).

Additionally, we note that all methods consistently introduce a warm bias to the global
mean temperature reconstruction, even in the max SNR setting. As previously found
in von Storch et al. (2004), Christiansen et al. (2009), and Smerdon et al. (2011),5

regression-based CFR methods are generally associated with variance losses and
large mean biases. These are an inevitable by-products of linear regression and are
especially severe if proxies are subject to extensive errors. This well-known problem
is called regression dilution (e.g. Frost and Thompson, 2000; Tingley et al., 2012). It
commonly translates into reconstructions that are always biased towards the mean of10

the calibration interval. Ammann et al. (2010) has proposed a correction to regression
dilution in the context of index reconstructions, which minimizes out-of-sample bias
over subsets of the calibration interval. Further investigations could pursue similar so-
lutions for each CFR method, especially when the quantification of the amplitude of the
low-frequency variability is a principal focus.15

6 Conclusions

An updated pseudoproxy network design has been constructed with more realistic
characteristics: for the first time, pseudoproxies were sampled with spatiotemporal
characteristics that reflect heterogeneities in proxy quality and proxy attrition back in
time. The updated network has allowed an assessment of the spatial performance of20

four different CFR techniques using a comprehensive suite of experiments.
Through the investigation of the spatiotemporal characteristics of the M08 proxy net-

work, it is found that real-world proxies are not exclusively indicators of local climate. A
majority of proxies in the M08 network are instead indicative of teleconnections. This
point should be kept in mind when searching for new proxy records: the correlation25

with local climate variables should not be the only criterion for selecting proxies. The
teleconnections should nevertheless be carefully evaluated as they could arise from
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spurious correlations. Results based on the max SNR network are also encouraging:
CFRs show relatively small sensitivity to the choice of methodology when SNR is high.
However, results are strongly method-dependent in sample-starved settings. Overall,
reconstructions are generally better in regions with dense proxy sampling, and telecon-
nections can be utilized by these CFR methods, in particular by CCA and GraphEM.5

The effect of temporal heterogeneity of proxy availability is counter-intuitive. We find
that despite the declining data availability back in time, reconstruction skill does not
necessarily follow suit. Rather, our experiments show that forced, high-amplitude cli-
matic events have a larger impact on reconstruction skill and are more easily resolved
by these methods, even when data availability is low.10

Our experiments also show that no method universally outperforms another, and
that each method has its own strengths and weaknesses. Overall, RegEM-TTLS and
M09 produce more skillful index reconstructions (global mean temperature), and retain
a higher skill than other methods when proxies are very noisy (local SNR network,
Fig. 9). However, RegEM-TTLS displays large ensemble spreads, partially due to its15

fixed choice of truncation parameter and high sensitivity to noise in the data. This
emphasizes the high risk involved when drawing conclusions from a single noise re-
alization (such as a real-world reconstruction). The stochasticity of a reconstruction
method should therefore always be seriously considered when evaluating a real-world
reconstruction (Christiansen et al., 2009).20

The heuristic parameter choices proposed by M09 show the potential for RegEM-
TTLS to produce meaningful global mean temperature reconstructions. The set-up
nevertheless deviates greatly from the standard implementation of RegEM-TTLS. More
objective methods grounded in statistical theory are currently under development. Ad-
ditionally, for global mean reconstructions, both RegEM-TTLS and M09 involve error25

cancellations that are not readily noticeable (Figs. S17–S20). This might explain some
of the observed divergence between the quality of index and field reconstructions using
these methods.
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CCA and GraphEM generally produce very similar results, but the former suffers from
larger variance losses and associated mean biases. This can be attributed to the man-
ner in which the method selects for the optimal estimates of regression coefficients B̂.
Given enough high-quality data, reconstructions using GraphEM display a higher spa-
tial skill than the other three methods everywhere in the field, and in particular over the5

oceans and regions with denser proxy sampling. This suggests that the reconstruc-
tion strongly benefits from the improved covariance estimation induced by the use of
Gaussian graphical models.

Given the large performance differences among various CFR methods in the pseu-
doproxy context, we emphasize that unless reconstructions with various methods pro-10

vide very similar spatiotemporal information, real-world reconstructions derived from
a single method should be evaluated with caution. In agreement with Smerdon et al.
(2011), we recommend applying as many methods as possible to make robust con-
clusions. Additionally, the exact pattern of spatial skill varies according to the GCM
simulation used as the basis of the PPEs. Multiple PMIP3 last millennium simulations15

(http://pmip3.lsce.ipsl.fr/) should ideally be used to validate the present results. Fu-
ture studies should also rigorously model real-world conditions, including persistence,
noise characteristics, and a mechanistic representation of climate proxies. Finally, we
emphasize the fundamental difficulty in finding a bias-variance tradeoff that optimizes
the reconstruction of both the temperature field and its global mean. Future studies20

should explore solutions that jointly minimize spatial and temporal errors.

Supplementary material related to this article is available online at:
http://www.clim-past-discuss.net/9/3015/2013/cpd-9-3015-2013-supplement.
pdf.
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Table 1. Comparison among R2, RE, CE. yi denotes the i th temperature grid point, and ŷi
denotes the estimation of yi . ȳc and ȳv refer to the mean of (y1,y2, . . .,yn) over calibration pe-
riod and verification period, respectively. Reproduced from National Research Council (2006),
Chap. 6.

Metric Expression Range Track

R2

[∑n
i=1(yi−ȳv)(ŷi− ¯̂yv)

]2

∑n
i=1(yi−ȳv)2

∑n
i=1(ŷi− ¯̂yv)2

[0,1] Phase

RE 1−
∑n

i=1(yi−ŷi )
2∑n

i=1(yi−ȳc)2 [−∞, 1] Phase and Amplitude

CE 1−
∑n

i=1(yi−ŷi )
2∑n

i=1(yi−ȳv)2 [−∞, 1] Phase, Amplitude and Mean
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Table 2. Verification statistics summary for the global mean temperature time series, using the
staircase network. CE, RE, R2 and bias are computed for the low-frequency component (20 yr
lowpass) of the reconstructed global mean. All numbers given outside of parentheses are the
mean of the 100-member ensemble; numbers in parentheses are the corresponding standard
deviation.

Method SNR CE RE R2 bias

RegEM-TTLS

∞ +0.920.00 +0.990.00 +0.920.00 +0.020.00
1.0 +0.840.02 +0.980.00 +0.910.01 +0.030.01
0.5 +0.780.07 +0.970.01 +0.870.03 +0.030.02
0.25 +0.530.13 +0.940.02 +0.700.06 +0.040.02
local −0.120.39 +0.850.05 +0.520.09 +0.060.03
max +0.550.13 +0.940.02 +0.870.04 +0.070.01

M09

∞ +0.930.00 +0.960.00 +0.880.00 +0.020.00
1.0 +0.740.02 +0.970.00 +0.880.01 +0.050.02
0.5 +0.690.07 +0.960.01 +0.850.02 +0.050.01
0.25 +0.300.21 +0.910.03 +0.670.08 +0.070.02
local −0.240.26 +0.830.04 +0.570.06 +0.110.02
max +0.740.06 +0.970.01 +0.900.03 +0.050.01

CCA

∞ +0.960.00 +1.000.00 +0.970.00 +0.010.00
1.0 +0.780.04 +0.970.01 +0.940.01 +0.050.01
0.5 −0.180.12 +0.840.02 +0.880.02 +0.130.01
0.25 −2.920.28 +0.470.04 +0.610.06 +0.240.01
local −3.280.25 +0.420.03 +0.540.06 +0.250.01
max +0.370.07 +0.920.01 +0.910.01 +0.090.01

GraphEM

∞ +0.950.00 +0.990.00 +0.970.00 +0.010.00
1.0 +0.680.07 +0.960.01 +0.950.01 +0.060.01
0.5 +0.530.10 +0.940.01 +0.900.01 +0.080.01
0.25 −0.430.38 +0.810.05 +0.750.04 +0.140.02
local −2.000.30 +0.600.04 +0.640.05 +0.210.01
max +0.530.09 +0.940.01 +0.940.01 +0.080.01
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Fig. 1. Temporal and spatial availability of the M08 proxy network between 850–1800 AD.
Top: the spatial distribution of the M08 proxies, with colored dots indicating the first year that
each proxy record becomes available. Each marker represents a proxy class, as indicated in
the legend. Bottom: the temporal availability of each proxy class.
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Fig. 2. Maximum absolute correlation coefficient |ρ| between proxies of the M08 network and
the HadCRUT3v grid point temperatures vs. the corresponding distance between the proxy
location and the grid point. On the y-axis is the histogram of the maximum |ρ|; on the x-axis is
the histogram of distance between each proxy Pi and the corresponding temperature grid Tj
that gives the highest |ρ|.
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Fig. 3. Estimated signal-to-noise ratio (SNR) for proxies in the M08 network. Top: local SNR
scenario, in which SNR is calculated between each proxy and its closest temperature grid;
Bottom: Max SNR scenario, in which the highest SNR for each proxy is chosen from its corre-
lations with all temperature grids available. Colors reflect the value of SNR assigned to each
pseudoproxy, as per Eq. (2).
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Fig. 4. Effective network quality expressed as SNR (Eq. 2) for idealized pseudoproxy networks
and observed networks. For the observed SNRs, we consider two possible scenarios as de-
scribed in Sect. 2.1. Shaded areas correspond to the [2.5 %, 97.5 %] interval, and dashed lines
correspond to the values of SNR for temporally invariant networks. SNR=∞ is not plotted.
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Fig. 5. Area-weighted global mean time series comparison of the four CFR methods, with
the staircase network. (a) local SNR, (b) max SNR. Only the low-frequency (20 yr lowpass)
signal is plotted. Black line: target temperature from the CSM1.4 model output; colored lines:
reconstructed temperature from median of the reconstruction ensembles; shaded areas: [2.5 %,
97.5 %] quantiles derived from the reconstruction ensembles.
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Verification statistics for the global mean time series (20-year lowpass)
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Fig. 6. Summary of verification statistics of the global mean temperature reconstruction en-
semble. Note the range of ordinates for each metric is different. MSE= variance+bias2.
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Fig. 7. Temporal variation of globally averaged CE, within CFRs derived from the local SNR
network. Spatial CE is first calculated for each grid box, and then area-weighted averaged to get
the global mean. Each boxplot represents CE scores from the 100-member ensemble for each
100 yr slice between 850–1850 AD. For example, the boxplot with time slice 900 corresponds
to the global mean CE between 850–950 AD.
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Fig. 8. Same as Fig. 7, but for the max SNR network.
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Fig. 9. Spatial Pattern of CE, using the local SNR flat network. 850–949 AD and 1750–1849 AD
represent periods with the minimum and maximum global mean CE over the entire reconstruc-
tion interval, respectively.
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Fig. 10. Same as Fig. 9, but for the max SNR flat network.
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