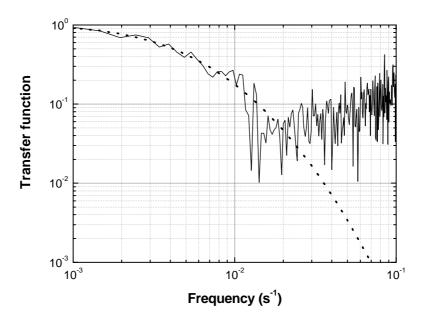
- High resolution measurements of carbon monoxide along a late 1
- Holocene Greenland ice core: evidence for in-situ production 2
- **SUPPORTING INFORMATIONS** 3

4

- Xavier Faïn^{a,*}, Jérôme Chappellaz^a, Rachael H. Rhodes^b, Christopher Stowasser^c, Thomas 5
- Blunier^c, Joseph R. McConnell^d, Edward J. Brook^a, Suzanne Preunkert^a, Michel Legrand^a, 6
- Thibault Debois^e, and Daniele Romanini^e 7

8

9


2.2 Detecting CO with OF-CEAS

- 10 The OF-CEAS spectrometer was calibrated on dry gas by direct injection of two synthetic standards
- gas precisely calibrated (CO concentration of 50.2 and 95.4 ppbv respectively, reported as standards 11
- 1 and 2) onto the NOAA/WMO 2004 scale. 12
- Both standards were injected to the OF-CEAS spectrometer using mass flow controller (MFC, 5850E, 13
- 14 Brooks Instrument, USA) at the beginning of the analytical campaign. We measured 49.9±0.8 ppbv
- 15 and 89.0±.0.9 ppbv respectively for standard 1 and 2. The linear regression obtained using a chi-
- 16 square fitting, which takes into account individual standard deviations, is shown in Equation (1):
- 17
- $[CO]_{measured} = a \times [CO]_{NOAA} + b$
- where $a = 0.86 \pm 0.03$ and $b = 6.47 \pm 1.96$
- 18 We report a a factor lower than 1 because both standard gas cylinders were accurately recalibrated
- by the NOAA GMD Carbon Cycle Group after the measurements campaign, revealing CO levels higher 19
- 20 than the initial values used for calibration of the OF-CEAS spectrometer before analysis of the NEEM-
- 2011-S1 core. However, this did not affected the precision of our measurements (see Romanini et al., 21
- 22 2006, for more details about OF-CEAS calibration).

23

24

2.4. Data processing and depth scaling

25

26

27

28

Figure S1. Transfer function of the continuous CO measurements system (full loop) obtained by switching between two gas standard (continuous line), and of the theoretical case of zero- noise measurements (dashed line).

29

30

Reference

- Romanini, D., Chenevier, M., Kassi, S., Schmidt, M., Valant, C., Ramonet, M., Lopez, J., and
- 32 Jost, H. J.: Optical-feedback cavity-enhanced absorption: a compact spectrometer for real-
- time measurement of atmospheric methane, Applied Physics B-Lasers and Optics, 83, 659-
- 34 667, doi:10.1007/s00340-006-2177-2, 2006.