
Reply to comments

Reviewer 1

In the moment, at least from my viewpoint, the paper is unnecessary difficult to read and 
the presentation of the results could be improved. I added some suggestions in the line-
by-line comments. I would further recommend including all the results either in figures or 
tables (summary statistics), if needed by adding an appendix. In the moment, most 
Holocene results (e.g. the GHOST comparison) are not shown.

We have significantly reorganised the text, adding a Discussion section, and hope the 
paper is now more readable. Rather than add a large number of figures which do not 
further elucidate the results described in this paper, we will upload the derived model 
output and associated data as a supplement. This should enable readers to rather easily 
make model-data comparisons for all the variables we analysed.

Major points:
Holocene dataset and data uncertainty:
For the Holocene terrestrial dataset the error estimates seem unrealistic. The given 
minimum error of 0.04C  (Fig.2 ) would be smaller than the error of a very good 
thermometer. I understand that a reanalysis of the terrestrial temperature proxy error is 
beyond the scope of the paper, but at least a discussion of this weakness and its po- 
tential effects on the results has to be included. A more realistic treatment of terrestrial 
Holocene temperature errors can be found for example in Zhang et al., 2010.
For the marine GHOST dataset, it is unclear how the anomaly between 6 and 0ka was 
formed. As the time series are highly variable (because of internal climate variability and 
"proxy" noise), taking the difference between the mean of two short timeslices will give 
highly variable estimates. This is very  different than for the LGM in which the LGM value 
represents the mean over several thousand years and is taken relative to a well 
determined modern instrumental estimate. I would recommend checking if this uncertainty 
is already included in the 2C assumption.
My worries are that for the Holocene, the data error has a similar magnitude than the 
signal term, and the reliability test mainly tests if the error estimate was good (which it is 
likely  not the case). I would therefore recommend a sensitivity study if the models would 
pass the reliability test if the data uncertainty would be more realistic.
For the Holocene, other "quantitative" studies found at least a significant pattern corre- 
lation (e.g. Schneider et al., 2010, Lohmann et al., 2012). How can this be recnciled with 
the results of this paper? At least the Taylor diagram for the GHOST dataset (which is not 
shown in the moment) should show some correlation and a significant correlation should 
also display as some skill relative to a uniform Holocene warming null hypothesis for the 
GHOST dataset.

Thank you for the interesting comments and references. Although we very  much want to 
encourage data syntheses to include error estimates,  we agree that presently these need 
some more work, and share some of your scepticism around the estimated uncertainties of 
the proxy data. We discuss this in more detail in the paper (also with reference to Annan 
and Hargreaves 2012, though this only considers the LGM). Some sensitivity tests have 
also been done, and are reported in the paper. We removed the spatial variation of the 
error, setting all errors to 2C, for land and ocean, LGM and mid-Holocene. The results of 



these tests do not significantly impact our findings. As for the GHOST dataset, as already 
described in the paper, no clear error estimate is available in the data set so we merely 
make a first-order estimate that the errors are similar to those of the MARGO dataset as a 
whole. 

We had not considered analysing the ocean data separately for the MH, as there are 
relatively few points and almost all lie in coastal regions (thus poorly resolved by these 
models and perhaps not representative of the global ocean). Also, we focussed primarily 
on seasonal rather than annual mean changes, for which we do not have ocean data. The 
seasonal changes are a priori expected to be larger than the annual mean and have been 
the focus of interest for mid-Holocene studies. However, we have now also tested the 
ocean-only  annual mean data and do indeed find small positive skill for most models, but 
the values are extremely small, mostly  no more than 0.02 in absolute magnitude with the 
best model only achieving a value of 0.10. The correlations are somewhat larger, 
averaging 0.3 across the ensemble. Therefore, these results seem consistent with 
Schneider et al and Lohmann et al who show model anomalies to be positively correlated 
with (but of far lower amplitude than) the data. We now present and discuss our results 
more clearly in the context of this other literature.

Treatment of effective spatial degrees of freedom unclear: (Page 3498 in the manuscript)

p3498: ESDOF is based on the distribution of spatial patterns arising from the ensemble. 
Thus, instead of having n time slices (for a conventional temporal EOF analysis) we have 
n different model states. The ordering is of course immaterial in either case. 
Mathematically, the analysis follows the same process. We have explained the process 
more fully. Since this is calculated from the model outputs, observational error does not 
influence it.

Missing discussion:
I’m missing a discussion section in which the results (especially  the non-existing skill of 
Holocene simulations) are tied into the literature and hypotheses are shortly  discussed. 
This includes the data error assumptions, the wrong attribution of the proxy data (they 
might represent another season than annual mean), an underestimation of the internal 
variability in the model simulations or an underestimation of the sensitivity to external 
forcing.

We've introduced a discussion section, and some material from the previous results 
sections has also been moved here.

Line by line comments
3482:
Line 22: "representation error" explain or use other word 
Line 22: what about the possibility that internal climate variability  is underestimated in the 
models?
Line 25: as the audience are largely "paleo people", better define what long-term means 
here 
Line 26: define GHG when it is first used

22 We have presented a clearer explanation of representativity  error (p6 left col of 
manuscript)
22 We are assuming equilibrium states, at least for the models.
25 changed to "decadal to centennial"



26 It is actually only mentioned once! Changed to “greenhouse gas”.

3483:
Line 6: believable; is there a better word? maybe reliable although I understand that 
reliable also has a specific statistical meaning.
Line 12, 23, 28, next page line 5 and the whole remaining text. The text would be easier to 
read if the explanations in parentheses could be either omitted or included in the text.
Line 14: good point ...but one also has to ensure that the performance of the models was 
not used in the construction of the forcing datasets... e.g. on the last millenium timescale I 
would suspect that this might happen.

6 changed to "credible" (though that's basically synonymous)
Parentheses - reworded to remove.

3484:
Line 1: "Intercomparison" Line 10: "and global mean insolation forcing is rather small".
Line 11: this is true at least in the climate model world, in the data/proxy world, also other 
region experienced strong changes; I would therefore propose to either remove this 
sentence or extend the description of MH climate changes + including more references.
Line 19: again, avoiding parentheses would improve reading Line 23: remove second "we" 
Line 22: replace comma by full stop  before "Secondly" Line 26: typo "statistics" Line 28" 
omit "In this paper"

3484 
1, 10 Fixed
11 Agreed, reworded and reference added.
19, 22, 23, 26, 28 All corrections made. Sorry for the poor writing here!

Page 3485 The description of models (AOGCMs, AOVGCMs...), Table 1 etc. applies for 
both LGM and MH and is confusing under the headline Last Glacial maximum.. There- 
fore, either combine LGM and MH into one section or separate into three sections.
Line 26: "from centres, which have contributed more than one model": this is confusing at 
this point of the text; 1.) are the "problem" really the centres or are these just very similar 
models? Was this considered or done? (Later = Page 3494 one can see that it was done 
as one specific case).

3485 While there is of course an overlap  in the sets of models, most of this discussion 
relates to LGM-specific details of experimental design. We feel that trying to describe the 
models collectively, and then outlining the relevant LGM vs MH distinctions, would 
increase any possible confusion. We have however rewritten some sentences to improve 
the overall readability of this section.

3486
The data section is hard to follow. Maybe add a table in which data sources, references, 
baseline (against core-rop or modern instrumental data), error estimation method, #data 
points left for comparison, season definition. Try  to avoid the use of too many "shortcuts" 
H11, B11. e.g. B11 is only used two times and can therefore be just left as pollen dataset 
(Bartlein...).
Line 4:" remove "plus" Line 23: grid point area?
Line 29: H11 was defined before but the reader has likely forgotten it. I propose to fully 
write it out once more here. Unclear what "scaled by 1C" means.



3486 We are deliberately using pre-existing gridded compilations, which comprise 
separate land and ocean data sets for both epochs (albeit with the Schmittner et al 
modifications). Again, the text has been modified to highlight this more clearly.

lines 4,23,29 Fixed.

Page 3487:
Line 9: this is not exactly true; 1.) there is a very small change in global annual mean (by 
eccentricity)... so better write ... changes in global annual mean ... are negligible 2.) not the 
global mean but the regional changes matter... so better argue that even regionally the 
annual mean forcing changes are small and therefore, only a small signal is expected
Line 12: which representations; already describe them here Line 14 and Table 1: Is the 
AOGCM really just called ECHAM (as ECHAM is the name of the atmosphere model)? 
Line 16: better the full reference instead of B11

3487 
9 12 16 Agreed, reworded.

We use simplified names in the text as in some cases the models change slightly  between 
experiments, as detailed in Table 1.

3489 Line 6: "random deviates of appropriate magnitude" what exactly? iid normal 
distributed values with a standard deviation given by the data uncertainty?
3489 Yes, this has been reworded to make it clearer.

3492: Line 19-21: It is unclear here if this approach is used in the paper (which it is as one 
can see later) or just a possible method. Also write out the "simple calculations" or cite a 
reference in which they are described.

We’ve improved the description here to make it clear

3493: Results and discussion are mixed together. 16-26 should be moved in a discussion 
section.
3493 We've made a separate discussion section

3494: The discussion about creating an ensemble and similar models should be moved in 
the Models and Data section and just the results should be included here.
3494 this has been moved.

3495: Line 21: "not only reproduce"
Fixed

3497: please shift the discussion of which season (or season difference) to analyse and 
which ensemble to use in the data and model section and only  focus on the results here. 
In the present version, it takes half a page to come to the results. Again, all results have 
either to be shown in figures, or summarized (by  summary  statistics) in a table. The title of 
this subsection could be "reliability, skill and Taylor diagrams" to be consistent with the 
LGM subsections.
3497 We have moved some of this to the models and data section, where we agree it 
seems to fit more naturally.



3498: remove the discussion part here and move it to a separate discussion. Line 20: 
What means "high frequency mismatch"? What is "representation error" missing 
representativeness of the data for gridbox scale variability?
3498 these discussions also moved to the new "discussion" section.

3499: What is meant by "high frequency noise": internal variability? Even "low frequency 
e.g. millenial internal variability could cause such a result.
Line 12: "finer spatial scales" Line 18 and 27: The study just showed that in the mod- els, 
vegetation feedbacks didn’t help... and also did not show evidence for vegetation 
feedbacks in the data; so either present evidence for the vegetation case in the main text, 
or remove this conclusion.
3499 This referred to spatial variability: now reworded (in more than one place).
18 We don't think this is a controversial statement.

Figures:
Figure 2: a and b  have different sizes; in b, the colors of 2 and 3 degree are hard to 
separate. A finer color scale would be more informative
Figs 1 and 2 have been revised for greater clarity (although we are unsure where the 
different sizes of (a) and (b) came from, as our copies of the file seem to not have this 
problem).

Reviewer 2

Overall comments: The paper is well written and well organized and there are very few 
major comments. There are a few places where additional material would be helpful to the 
reader as discussed below. A significant issue is that the figure captions are often not 
descriptive of the figures as stand alone text, which forces the reader to go back and forth 
between the text and the figures.

Thanks for the encouraging comments which are a relief after reviewer 1’s criticisms  of 
the readability  and organisation of the paper. As a result of those criticisms, the 
organisation of the manuscript has been revised with the addition of a Discussion section. 
More detail has been added to the caption to Figure 6. The other figure captions have all 
been checked to see that they describe the figure correctly. I think it would be confusing to 
repeat parts of the discussion of the results in the figure captions, and when the figures 
are placed inline in the final typsetting the “back and forth” issue will hopefully be resolved.   

Minor comments:

Abstract:
- Please add the dates for the Last Glacial Maximum and mid-Holocene periods.
- Please define what “regional scales” means in this paper. As a comment on future 
regional climate change, there is a big difference between 100km and 1000km but both 
could be considered regional given they are sub-continental scales.
Abstract:
LGM, MH dates added
Regional replaced with sub-continental in most of the manuscript.



Page 3483, line 11. It would be useful to have a slightly longer discussion of what 
feedbacks or forcings are considered missing in the models. This could go here in the 
introduction or later in the conclusions.
p3483
Further discussion of "missing feedbacks" has been added to the conclusions, including a 
specific mention of precipitation errors (as distinct from the veg models themselves).

Page 3484 ,line 23-4, change to: These diagrams summarize three. . .”
3484 done

Page 3486, line 29. Please provide an explanation for why a Gaussian error is added 
scaled by 1 degree.
3486 A little more explanation of MARGO data error has been added. We have also 
included a sensitivity analysis and reference to Annan and Hargreaves 2012 (in press) 
where these errors are examined in more detail.

Page 3487, line 3-4. The figure caption does not match the description here. Please fix.
3487 Fixed description of figure in text.

Page 3488, lines 7-13. It would be useful to have a discussion here on whether the equal 
weight assumption is consistent with the expected variability  in various regions where 
observations are available. If higher variability  in high latitudes is expected like in modern 
climate, then a brief discussion of this for paleoclimate would be warranted.
3488 The errors are not due to sampling variability, rather it is calibration error that 
dominates. There is no particular spatial pattern for MARGO (Fig 1b), and further evidence 
(we have added a reference) indicates that we don't consider these values very robust 
anyway. So we don't have any basis for a more complicated approach.

Page 3489, lines 6-7. Please be more clear about the random deviates used in this paper. 
How big are they? and why are they added?
3489 A clarifying sentence has been added.

Page 3491, last paragraph. Please point out that the first reference prediction alternative is 
a very weak one but it is also a reasonable first check. I think this could be clarified.
3491 Agreed. The wording is changed and discussion extended here.

Page 3491, line 24. Replace tests with test.
Done

Page 3492, line 15. “straightforward to calculate” needs to be backed up with equations. 
Please add the equations.
3492 We have added more explanation.

Page 3493, line 23. I don’t know what “under represented” means or the phrase “reso- 
lution at the finest scales there is under-represented.” This should be clarified, please. Is 
this what others call “representativeness error”?
3493 The wording has been changed to improve clarity, "but even so it is likely that the 
models have inadequate spatial variability at the finest scales due to smoothing in the 
forcing, boundary  conditions, and dispersion in the model numerics". Clarification of 
representativeness error has also been added here.



Page 3494, line 19. At the beginning of this paragraph, it should be stated that the results 
are robust. It weaves and bobs around the issue with lots of example robustness tests until 
reaching the end but it would be more to the point if this was mentioned at the beginning.
3494 Agreed. A summary has been added in the second sentence.

Page 3496, line 5-21. It is not clear why the land+ocean data can produce positive skill 
while the others individually can both produce negative skill. This is rather confusing at first 
glance and can use some clarification.
3496 More detailed explanation has been added.

Page 3497, line 8. Delete “the” before “calculating”
–“–, line 23-25. Here, it should be stated what the full set of eight ensembles were. 
Something like: “We tested eight ensembles that included. . .”
3497 Done.
3497  Done.

Page 3498, line 9. Change “analysis” to “analyses”
Line 18-19, Suggest changing “are highly spatially variable” to “have high spatial vari- 
ability”
Both done.

Page 3499, line 8. It is not clear again what “representation error” means.
Figures: General comment 1: I suggest that the maps use an equal-area projection so that 
the tropics (0-30) and extra-tropics (30-90) show that they have roughly equal area. A 
simple linear in sin(latitude) transformation would be ok.
3499 More explanation added earlier (see comment to p3493), also "representativeness" 
is now used, which seems more consistent with established usage.

General comment 2: The filled dots are very difficult to read in the printed version.
Figure 2: Given that “Coldest month” is one of the data sets, it would be useful to show it.
Figure 6: Basic descriptions of the three statistics shown on the Taylor diagram are needed 
in the caption.
Figure 7. What about the other five ensembles? I suggest showing them despite their 
negative results.
Interactive comment on Clim. Past Discuss., 8, 3481, 2012.

Figures: We agree that visualising the data is a challenge, but it seems hard to avoid with 
data on such a fine grid. Figures 1 and 2 have been revised for clarity. We prefer to keep 
the same projection, for consistency with our previous related work published last year in 
CP.

Fig 6 caption fixed

Fig 2 and 7: Rather than include additional figures which would merely  add length while 
not further elucidating the results presented here, we would like to upload a supplement 
comprising the derived model anomalies used in the analyses, along with the data used.
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Abstract. Paleoclimate simulations provide us with an op-
portunity to critically confront and evaluate the performance
of climate models in simulating the response of the climate
system to changes in radiative forcing and other boundary
conditions. Hargreaves et al. (2011) analysed the reliability
of the PMIP2 model ensemble with respect to the MARGO
sea surface temperature data synthesis (MARGO Project
Members, 2009) for the Last Glacial Maximum (LGM,

::::
21ka

::
BP). Here we extend that work to include a new comprehen-
sive collection of land surface data (Bartlein et al., 2011),
and introduce a novel analysis of the predictive skill of the
models. We include output from the PMIP3 experiments,
from the two models for which suitable data are currently
available. We also perform the same analyses for the PMIP2
mid-Holocene

::::
(6ka

:::
BP)

:
ensembles and available proxy data

sets.
Our results are predominantly positive for the LGM, sug-

gesting that as well as the global mean change, the models
can reproduce the observed pattern of change on the broadest
scales, such as the overall land-sea contrast and polar ampli-
fication, although the more detailed regional

::::::::::::
sub-continental

scale patterns of change remains elusive. In contrast, our re-
sults for the mid-Holocene are substantially negative, with
the models failing to reproduce the observed changes with
any degree of skill. One likely cause of this problem may
::::
could

:
be that the globally- and annually-averaged forcing

anomaly is very weak at the mid-Holocene, and so the re-
sults are dominated by the more localised regional patterns
::
in

:::
the

::::
parts

::
of
::::::

globe
:::
for

:::::
which

::::
data

:::
are

::::::::
available. The root

cause of the model-data mismatch at regional
::::
these

:
scales

is unclear. If the proxy calibration is itself reliable, then
representation

::::::::::::
representativity

:
error in the data-model com-

parison, and missing climate feedbacks in the models are
other possible sources of error.

Correspondence to: J.C. Hargreaves
(jules@jamstec.go.jp)

1 Introduction

Much of the current concern over climate change is based
on long-term

::::::
decadal

::
to

:::::::::
centennial

:
forecasts from climate

models forced with increased GHG
:::::::::
greenhouse

:::
gas

:
concen-

trations due to anthropogenic emissions. However, a direct
assessment of the predictive performance of the models is
not generally possible because the time scale of interest for
climate change predictions is typically for decades or cen-
turies into the future, so we cannot build up confidence and
experience via repeated forecasts on a daily basis as is typi-
cal in the field of weather prediction. Therefore, in order to
have confidence in the ability of the ensemble to provide a
believable

::::::
credible projection of future climates, we must try

to develop other methods for assessing the performance of
models in simulating climates which may be very different
to today.

Paleoclimate simulations provide us with an opportunity
to critically confront and evaluate the performance of cli-
mate models in simulating the response of the climate sys-
tem to changes in radiative forcing and other boundary con-
ditions. A particularly attractive feature of using paleocli-
mate simulations is that(,

:
in contrast to the situation regard-

ing more recent climate changes) it is uncontentious that ,
the performance of models over these intervals has not been
::::::
directly

:
used in their development. Therefore, these sim-

ulations provide a truly independent test of model perfor-
mance and predictive skill under substantial changes in ex-
ternal forcing. The extent to which such assessments may
then be used to imply skill for future forecasts is still, how-
ever, open to some debate, since not all the past climate
changes are necessarily relevant for the future. Therefore,
models

::::::
Models

:
which provide the most realistic simulations

of past changes may not necessarily provide the most accu-
rate predictions of future change. Nevertheless, the poten-
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tial of such assessments to help in evaluating model perfor-
mance provides strong motivation for research in this area.
The sparse and semi-qualitative nature of paleoclimatic data
(for example, interpretation as vegetation type) has motivated
the development of advanced but semi-quantitative meth-
ods, such as using fuzzy logic to measure model-data mis-
match (Guiot et al., 1999) and cluster analysis to classify
types of model behaviour (Brewer et al., 2007). With the ad-
vent of new more comprehensive syntheses of gridded paleo-
data (MARGO Project Members, 2009; Bartlein et al., 2011),
it becomes possible (if not compelling) to attempt more di-
rectly quantitative analyses of model performance, which we
undertake here.

The second phase of the Paleoclimate Modelling
Inter-comparison

:::::::::::::
Intercomparison

:
Project, PMIP2 (Bracon-

not et al., 2007a), established a common protocol of bound-
ary conditions for two different paleoclimate intervals, the
Last Glacial Maximum (LGM, 21ka BP) and the mid
Holocene

:::::::::::
mid-Holocene

:
(MH, 6ka BP). Of the two, the

LGM represents by far the greatest change in climate with
significantly decreased concentration of atmospheric carbon
dioxide (and other greenhouse gases)

:::
and

:::::
other

:::::::::
long-lived

:::::::::
greenhouse

::::::
gases, and large ice sheets over the north-

ern hemisphere high latitudes. The
:::::::
climatic

::::::::
response

:::
was

:::::::::::
characterised

::::::::::::
predominantly

::
by

::
a
:::::::::
large-scale

:::::::
cooling,

:::::
albeit

::::
with

:::::::::
substantial

:::::::
regional

::::::::
variation

:
(Annan and Hargreaves,

2012).
::::::

The
:
forcing of the mid-Holocene is more sub-

tle, with the only changes considered by the models being
that of orbital forcing, and a moderate decrease in atmo-
spheric methane. While this results in substantial changes
in the seasonal and spatial pattern of the insolation, the net
change in the annual and global mean

:::::
annual

:::::
mean

::::::
forcing

is rather small. Rather than large global changes, perhaps
the largest climatic changesduring the MH related

::::::
globally

:::::::::::
homogeneous

::::::::
changes,

::::
the

:::::::::::::
mid-Holocene

::::::::::
experienced

::
a

::::::
number

:::
of

:::::
more

:::::::
regional

:::::::
changes

:
(Steig, 1999),

:::::
with

:::
one

::
of

:::
the

:::
the

::::::
largest

:::::::
relating

:
to shifts in monsoon patterns ,

with
:::
and

:::
the associated vegetation changes (Braconnot et al.,

2007b).
In this paper we extend our previous work presented

in Hargreaves et al. (2011), hereafter H11, which assessed
sea surface temperature at the LGM. We use several state of
the art proxy data syntheses for surface temperatures for both
the LGM and MH, and compare them to outputs from the
coupled atmosphere and ocean (AOGCM) and coupled atmo-
sphere, ocean and vegetation (AOVGCM) general circulation
models in the PMIP2 database. For the LGM we additionally
include

:::
the two models from the 3rd phase of PMIP,

::::::
ongoing

PMIP3 (those
:::::::::
experiment

:
for which sufficient output are

available at the present time). We perform analyses based
on quantitative model evaluation methods which are widely
used in numerical weather prediction. We

:::
first present a rank

histogram analysis to indicate reliability, .
:

Secondly we in-
troduce a skill analysis using two different reference base-
lines. We also we present Taylor diagrams (Taylor, 2001).

These diagrams are a way of summarising
:::::::::
summarise three

conventional statistics, and have been widely used to analyse
climate model ensemble output in the context of the modern
climate. In addition, we introduce some simple modifica-
tions to these conventional statisics

:::::::
statistics

:
to account for

observational uncertainty.
In this paper, we

:::
We

:
introduce the models and data used in

the analysis in Section 2. Then we overview the methods for
analysis of reliability and skill in Section 3. In Section 4 we
present the results from the LGM and MH, and this section
is followed by the

::::::::
discussion

::::
and conclusions.

2 Models and Data

2.1 Last Glacial Maximum

All the PMIP2 models analysed here
::
in

:::
this

:::::
paper

:
are either

physical coupled climate models comprising atmosphere,
ocean and sea ice components (AOGCMs), or additionally
including vegetation modules (AOVGCMs). One of the
models, ECBILT, is an intermediate complexity model (see
Table 1). For the LGM, the forcing protocol (Braconnot
et al., 2007a) comprises a set of boundary conditions in-
cluding large northern hemisphere ice sheets, altered green-
house gases including a reduction to 185ppm for atmospheric
carbon dioxide, a small change in orbital forcing, and al-
tered topography. There are some minor changes in the
multi-model ensemble compared to our previous analysis of
this ensemble (

::
in

:
H11). Firstly, the output of the run from

IPSL has been updated. In addition, previously the number
of days in each month (which differs between

:::::
across

:
mod-

els) was not taken into account when calculating the annual
mean from the monthly data. This has been corrected, mak-
ing a small difference to the values of the annual mean ob-
tained. We use

::::::
require

:
both surface air temperature (SAT)

and sea surface temperature (SST) and therefore
::
for

:::
our

::::
main

:::::::
analysis,

:::
and

::::::::
therefore

::::
only

:
use the 9 models in the database

for which both these variables are available. From the new
:::
The

::::::::
boundary

:::::::::
conditions

:::
for

:::
the PMIP3 experiments , which

were downloaded from the Coupled Model Intercomparison
Project (CMIP5) database , we include the two models in the
database for which both SAT and SST are available. Thus
we have a total of 11 models. For PMIP3 the boundary
conditions are slightly revised, primarily in relation to the
ice sheet reconstruction (see :

:::
(see http://pmip3.lsce.ipsl.fr/)

but still
::
are

:::::::
slightly

:::::::
revised,

:::::::::
primarily

:::
in

::::::
respect

:::
of

:::
the

::
ice

:::::
sheet

:::::::::::::
reconstruction,

:::
but

:
remain sufficiently similar to

those for PMIP2 that a priori
:::
that

:
it seems reasonable to

investigate the features of the larger ensemble by combining
both PMIP2 and PMIP3. We also consider downweighting
models from centres which have

::::
also

::::::
include

:::::
these

::::::
models

:::::
where

::::::::
possible.

:::
We

::::::::
therefore

::::
also

::::::
include

::::
two

::::::
models

::::
from

::
the

:::::::
PMIP3

::::::::::
experiments

::
for

::::::
which

::::
SAT

:::
and

::::
SST

::::::
outputs

::::
were

::::::::
available.

::::
Thus

:::
we

::::
have

::
a

::::
total

::
of

::
11

:::::::
models.

:
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:::::
Where

:::::::
centres

:::::
have

:
contributed more than one model

to our ensemble, to account for their likely similarity
::::
there

::
are

:::::::
reasons

::
to

::::::
expect

::::
that

:::::
these

::::::
models

::::
will

::
be

::::::::::
particularly

::::::
similar

::
to

::::
each

:::::
other (Masson and Knutti, 2011) . Table 1

indicates which modelversions are used in each ensemble.
For comparison with the models we use an updated

synthesis of temperature data representing sea surface
temperature, plus land temperature from pollen data and a
small number of estimates from ice cores. This dataset has
been previously used by .

:::
but

:::::
there

:
is
:::::

little
::::::::
consensus

:::::
about

:::
how

:::
to

::::
treat

::::
this.

::::
We

:::::
start

::::
from

:::
the

::::::::
premise

::
of

::::::::
assigning

::::
equal

::::::
weight

::
to
:::::

each
::::::
model.

::::::::
However,

::::::::
including

::::
two

:::::
model

:::::::
versions

:::
that

::::
are

::::::::
identical

::
to

::::
each

:::::
other

::::::
would

:::
be

::::::
clearly

:::::::
pointless

::::
and

::::::
indeed

:::::::
harmful

:::
as

:
it
::::::

would
:::

be
:::::::::
equivalent

::
to

:::::::::::::
double-counting

::::
one

:::::
model

::::
and

:::::
would

::::::::
therefore

::::::
reduce

:::
the

:::::::
effective

::::::
sample

::::
size

::
of

:::
our

:::::::::
ensemble,

::::::::
degrading

:::
the

::::::
results.

:::
The

::::
only

:::::::::
difference

::::::::
between

:::::::::
MIROC3.2

::::
and

:::::::::::
MIROC3.2.2

::::::
(which

:::
are

::::
both

::
in
::::

the
::::::
PMIP2

::::::::
database)

::
is
::::

that
::::
one

:::::
minor

:::
bug

:::
has

::::
been

:::::
fixed

::
in

:::
the

:::::
latter,

::
so

:::
we

:::::::
included

::::
only

:::
the

::::
latter

:::::
model

::
in

:::
the

::::::::
ensemble.

::::
For

::::::::::
substantially

:::::::
updated

:::::::
versions

::
of

::
the

:::::
same

:::::
model

:::::
(such

::
as

:::::
might

:::::
exist

::
in

:::::::::
consecutive

::::::::
iterations

::
of

:::
the

::::::
PMIP

:::::::::::
experiments)

:::
or

:::
AO

::::
and

:::::
AOV

::::::::
versions

:::
we

:::::
would

::::::
expect

::::
the

::::::::::
differences

::
to

:::
be

::::::
rather

:::::::
greater.

:::::
But,

:::::
ideally

:::
we

::::::
should

:::::
wish

:::
for

::::
each

::::
new

::::::
model

:::::::
included

::
in

:::
the

::::::::
ensemble,

::
to

:::
be

:::
not

:::::::::
particularly

:::::
more

::::::
similar

::
to

::::
one

::::::
existing

:::::
model

::::
than

::
it
::
is

::
to
:::

all
:::
the

::::::
others.

::::::::::
Therefore,

::::::::
although

:::
our

::::
main

:::::::
analysis

:::::::
assigns

:::::
equal

::::::
weight

::
to

::::
each

::::::
model,

:::
we

::::
also

:::
test

:::::::
whether

:::
our

::::::
results

::::
are

:::::::
changed

:::
by

:::::::::::::
downweighting

::
or

::::::::
excluding

:::::
some

::::::::
particular

::::
sets

:::
of

::::::
models

:::
in

::
an

:::::::
attempt

::
to

:::::::::
compensate

:::
for

::::::
model

::::::::
similarity.

:

:::
The

::::::
proxy

::::
data

::::::::::::
compilations

::::
that

:::
we

::::
use

::::
are

::::::
largely

:::::
based

:::
on

:::
two

::::::
recent

:::::::::
syntheses

:::
of

::::
land

::::::
(SAT)

::::
and

:::::
ocean

:::::
(SST)

::::
data.

::
The ocean data comprise

:
is

::::::::
primarily

::::
that

::
of

the MARGO synthesis (MARGO Project Members, 2009),
:::
but

:
with a small number of points having been updated

::
by Schmittner et al. (2011). These updated points may not be
fully homogenous

:::::::::::
homogeneous

:
with the original MARGO

dataset as the data error has not necessarily been estimated
in an identical way. The land pollen data points come from
:::
data

:::
is

::::::::
primarily

:::
the

:::::::::::
pollen-based

:::::::::::
compilation

::
of

:
Bartlein

et al. (2011)(hereafter B11), which is a
:
,
:::::
again

::::
with

:::::
some

:::::::
additions

:::
by

:
Schmittner et al. (2011)

:::::
which

:::::::
includes

:::::
some

:::
data

:::::
from

::
ice

:::::
cores.

::::
The

:
Bartlein et al. (2011)

::::
data

::
set

::::
may

::
be

:::::::::
considered somewhat more ad-hoc data set than the MARGO
synthesis, in that the

::::
data

:::
and

:
error estimates have been di-

rectly drawn from the original literature in which the un-
derlying data were presented, rather than being recalculated
homogeneously across the data set as in MARGO Project
Members (2009). In addition, the temperature anomalies
inB11 Bartlein et al. (2011) are taken relative to the core
tops in contrast to the modern World Ocean Atlas data that
were used to anchor the MARGO anomalies. Ice core error
estimate were derived through a variety of methods. The SST
data are analysed on the MARGO 5 degree grid, while all the
land points

::::
SAT

::::
data are on a 2 degree grid. After removing

grid points for which SST information is unavailable in one
or more models (due to their differing land sea masks), there
are 309 SST points left for comparison with PMIP2, and 300
points for comparison with PMIP2+PMIP3. Our goal is to
assess the model response to imposed forcing, rather than
the forcing itself, so for the land data we remove those points
for which 50% or more of the grid point

:::
box

::::
area lies under

the model’s ice sheet. This affects 11 points, leaving 95 land
points for both PMIP2 and PMIP3. Thus we have a total of
404 points for comparison with PMIP2 and 395 for compar-
ison with the combined PMIP2 and PMIP3 ensemble.

Estimates of the data error uncertainty are included for all
the data points, although we note that the MARGO errors are
only defined in terms of their relative reliability, so as

:
.
::
As

:
in

H11, we assume Gaussian uncertainties scaled by 1oC
::::
these

:::::
values

:::
can

:::
be

:::::::::
interpreted

::
as

:::::::
Gaussian

:::::::::::
uncertainties

::
in

::::::
degrees

::::::
Celsius,

::::::
which

:::::
gives

:::
an

:::::::::
apparently

::::::::
plausible

:::::::::
magnitude

::
of

::::::::::
uncertainties. The resulting errors range from 0.24o

:
oC to

6.4o
:
oC across the data set.

:
,
::::
with

::
a

::::
large

:::::::
majority

:::
of

:::::
values

::::
lying

::
in

:::
the

:::::
range

::::
1oC

::
to
::::::

2.5oC.
:::::::::
However, Annan and Har-

greaves (2012)
::::
found

:::::
some

:::::
cause

:::
for

:::::::
concern

::
in

:::::
these

::::
error

:::::::
estimates

::::
and

:::
so

:::
we

::::
also

:::
test

::::
the

::::::::
sensitivity

:::
of

:::
our

::::::
results

::
to

::::
this.

:
The model SST output was interpolated on to the

5 degree MARGO grid and the SAT onto the 2 degreeB11
:
Bartlein et al. (2011) grid. We use equal weighting for each

grid box. The data , multi-model mean and data
:::
and

::::
their

uncertainty are shown in Figure 1.

2.2 Mid Holocene
:::::::::::::
Mid-Holocene

For PMIP2 the mid Holocene
::::::::::::
mid-Holocene

:
protocol in-

cludes only two changes compared to the pre-industrial cli-
mate. The orbital forcing is

::::::
Orbital

:::::::
forcing

:::::::::
parameters

::
are

:
changed, and the atmospheric methane is moderately

decreased
::::::::::
concentration

::
is
:::::::::

decreased
:::::::
slightly (from 760ppb

to 650ppb). The orbital forcing changes the seasonal
and large-scale spatial

::::::
changes

:::
in

::::::
orbital

:::::::::
parameters

:::::
affect

::
the

::::::::
seasonal

:
pattern of insolation. Globally and annually

averaged,
::::::::
Annually

::::::::
averaged,

::::::::
however, the insolation is the

same
:::::::::
everywhere

:::::
very

::::::
similar

:
for pre-industrial and 6ka,

and so we expect to see only a small
::::::
modest

:
signal in

the annual temperature
::::
mean

:::::::::::
temperature

::::
field. Therefore,

in addition to annually averaged temperature, we consider
representations of

:::
our

:::::::
primary

::::::
interest

:::
is

::
in

:
changes in the

seasonal temperature signal
:::::
cycle,

:::::::
although

:::
we

::::
also

:::::::
consider

:::::::
annually

::::::::
averaged

:::::::::::
temperature. There are 11 AOGCM

::::::::
AOGCMs

:
and 6 AOVGCMs in the PMIP MH ensemble

that have both SAT and SST data available. There is only
one AOVGCM

::::
Only

::::
one

::
of

:::
the

:::::::::::
AOVGCMs, ECHAM, that

does not have a counterpart AOGCM in our ensemble (see
Table 1).

::
As

::::
well

:::
as

:::
the

:::
full

:::::::::
ensemble

:::
we

::::
also

:::::::
analyse

:
a

::::::::::
conservative

::::::::
ensemble

::::::
where

::::::::
versions

::
of

::::
the

::::
same

::::::
model

::
are

:::::::::::::
downweighted

:::
(as

::::::::
discussed

::
in

:::::::
Section

:::
2.1)

:::
so

:::
that

::::
each

:::::::::
underlying

:::::
model

:::
has

::
a
::::
total

::::::
weight

::
of

::
1.

:
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For the land temperatures at the MH we use the pollen-
based dataset ofB11 Bartlein et al. (2011). This synthesis
includes estimates of annual average temperature as well as
the temperatures of the hottest and coldest months, which in-
dicate changes in the seasonal cycle. An uncertainty estimate
is also included for all points, which ranges from 0.04

::
oC

:
to

4.8o

:
oC over all the variables. The

:::::
values

::
at
::::

the
:::::
lower

:::
end

::
of

:::
this

:::::
range

::::::
appear

::::::::::
particularly

:::::::::
optimistic,

::::
and

::
so

:::
we

::::
also

::::::
perform

:::::
some

:::::::::
sensitivity

:::::
tests

::
to

:::::::::
investigate

:::
the

:::::::::
robustness

::
of

:::
our

::::::
results

::
to
:::::

these
:::::::

values.
::::

The
:

number of data points
varies slightly between the different variables (between 615
and 638), and the data are very clustered with high density in
Europe and North America. The data, and the data error for
the hottest month are shown in Figure 2.

The “GHOST” SST dataset (Leduc et al., 2010) contains
annual average estimates of annually averaged SST at both
6ka and core-top for only 81 sites, and, while recognising
that the core top is not an ideal or wholly consistent refer-
ence point (as the dates, and therefore climates, represented
by the core tops may vary across the data set), we neverthe-
less take the difference between these two values to represent
the annually averaged MH temperature anomaly with respect
to the pre-industrial climate. Seasonal SST data are, as yet,
unavailable. Many of these points are quite close to the coast,
and due to varying coastlines in the models, SST output from
all models is available for only 42 points. Data uncertainties
are not readily available so for this analysis we assumed a 1
standard deviation error of 2o

:
oC for all the points, which is

representative of the data uncertainty of the MARGO SSTs.

::::
Since

:::
we

::::
have

:::
no

:::::::
seasonal

::::::::::
information

:::
for

::
the

::::::
ocean,

::::
most

::
of

:::
our

:::::::
analyses

:::::
were

:::
for

:::
the

:::
land

:::::
only.

::::::
These

::::::::
comprised

:::
the

:::::::
anomaly

:::
for

:::
the

::::::
annual

:::::::
average,

::::
and

:::
the

::::::
hottest

:::
and

::::::
coldest

::::::
months.

:::::::
Given

::::
the

::::::
nature

::
of

::::
the

:::::::
forcing,

:::
the

:::::::
change

::
in

::
the

::::::::::
magnitude

::
of

:::
the

::::::::
seasonal

:::::
cycle

::::::
would

::::
seem

::::
the

::::
most

::::::
obvious

::::::
target

:::
for

:::
the

::::
MH,

::::
but

::::
there

:::
is

:::::
some

:::::::
concern

:::
that

:::::::::
calculating

:::
the

:::::::
anomaly

:::
of

:::
the

::::::
hottest

::::::
month

:::::
minus

::::::
coldest

::::::
months

::::
may

:::
not

:::::::
provide

:
a
::::::::::
completely

:::
fair

::::::::::
comparison

::::
with

::
the

::::
data

:::
as

::
the

:::::
same

:::::::
proxies

:::
are

:::
not

::::
used

::
to

:::::::
compile

:::
the

:::
two

:::::::
datasets.

::::
For

:::
the

::::
land

::::
and

:::::
ocean

:::::::
together

:::
we

::::::::
analysed

:::
the

:::::
annual

:::::::
average

:::::::
anomaly

:::::
only.

It is clear that for the MH the data
:::::::
although

:::
we

::::
have

::::
more

:::
data

::::::
points

::
in

::::
total,

:::
the

:
coverage is substantially more sparse

and less uniform than for the LGM
:::
and

::::
very

:::::
sparse

::::
over

::::
large

::::
areas. As with the LGM analysis, we give equal weight to
each data point. It is possible that the hottest month in the
tropics may not be the same for the models and data due to
the ways the calendars are configured (Joussaume and Bra-
connot, 1997). We have few data in the tropics, and the ac-
tual error in the value of the anomaly

:::::
arising

::::
from

::::
this

::::
issue

is expected to be small, so we do not expect this to have a
significant effect on our results.

3 Ensemble Analysis Methods

3.1 Reliability

To assess the reliability of the ensembles we adopt the same
approach used in several recent papers (Annan and Harg-
reaves, 2010; Hargreaves et al., 2011; Yokohata et al., 2011),
in which we interpret the ensemble as representing a proba-
bilistic prediction of the climate changes and assess its per-
formance by means of the rank histogram (Annan and Har-
greaves, 2010) formed by ranking each observation in the
ensemble of predictions for each data point. In the case of
a perfectly reliable ensemble (meaning that the truth can be
considered as a draw from the distribution defined by the en-
semble), the rank histogram would be flat to within sampling
uncertainty. For an ensemble that is too wide such that the
truth is close to the mean, the histogram is dome shaped.
Conversely an ensemble that is too narrow (often not includ-
ing the truth) has a U-shaped rank histogram, with large val-
ues in one or both end bins. The analysis for the PMIP2
LGM ensemble using only the MARGO dataset was already
performed in H11, and overall produced encouraging results.
In this analysis we extend this test by including land data. We
also analyse the performance of the ensemble at the MH, for
which a moderately large ensemble of runs

::::
larger

::::::::
ensemble

::
of

:::::
model

::::::::::
simulations is available.

In order to make the models and data comparable, we fol-
low the same procedure as H11 to account for data uncer-
tainty, by adding random deviates of appropriate magnitude
:::::::
(sampled

:::::
from

:::
the

::::::::
assumed

:::::::::::
distributions

:::
of

:::::::::::
observational

:::::
errors)

:
to each model output before calculating the rank his-

togram.
:::
The

:::::::
purpose

:::
of

:::
this

:::::::
process

::
is
:::

so
::::
that,

::
if
::::::

reality
:::
was

:
a
:::::::
sample

::::
from

:::
the

:::::
model

::::::::::
distribution,

::::
then

:::
the

::::::::
imprecise

:::::::::
observation

::::
will

::::
also

:::
be

::
a

::::::
sample

:::::
from

:::
the

::::::::::
distribution

::
of

::::::::
perturbed

:::::
model

:::::::
outputs.

:
We use the same statistical tests as

H11 to quantify the significance of any divergence from flat-
ness of the rank histogram (Jolliffe and Primo, 2008). The
rank histogram test is only a necessary but not sufficient test
of reliability, in that an ensemble which does not have a flat
rank histogram may be considered unreliable, but a flat rank
histogram does not necessitate reliability (Hamill, 2001). In-
deed, with a large enough ensemble and fine data coverage
we generally expect the ensemble to be unreliable at some
level, and thus this test is not whether the ensemble is per-
fect, but rather whether the limitations are so substantial as
to be immediately apparent with this standard test. In previ-
ous applications such as H11 and Yokohata et al. (2011), it
has been found that the ranks of nearby observations are of-
ten highly correlated, and therefore the effective number of
degrees of freedom are substantially lower than the number
of data points. In order to estimate the number of degrees of
freedom, we adopt the EOF analysis approach of Bretherton
et al. (1999), as used by Annan and Hargreaves (2011).

:::
That

::
is,

::::::
rather

::::
than

:::
the

:::::::::::
conventional

:::::::::
approach

:::::
which

::::::::
typically

:::
uses

::
a
:::::::::
sequential

:::::
series

::
of

::::::
fields,

:::
we

::::::::
calculate

:::
the

:::::
EOFs

::
of
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::
the

:::::::::
ensemble

::
of

::::::::
modelled

::::::::::
equilibrium

:::::
states.

:
Analysing the

LGM fields of SAT and SST for the model ensembles, we
estimate a value of 8 degrees of freedom, which we use
throughout our analyses. Our results are insensitive to rea-
sonable changes in this value.

3.2 Skill

The concept of model skill in climate science has been oc-
casionally touched upon, but it has rarely been clearly and
quantitatively defined (Hargreaves, 2010). Here we use the
term skill in the sense in which it is in common use in nu-
merical weather prediction, which is as a relative measure of
performance: skill compares the performance of the forecast
under consideration, to that of a reference technique (Glick-
man, 2000). Perhaps the most straightforward of these is the
skill score (SS) defined by

SS=1�
✓

E

f

E

ref

◆
(1)

where E
f

is the error of the forecast under evaluation, and
E

ref

is the error of the reference technique. A perfect fore-
cast will have a skill score of 1, one which has errors equal
to that of the reference will have a skill score of 0, and a
negative skill score implies that the errors of the forecast are
greater than that of the reference. It is conventional to de-
scribe a forecast with positive skill score as “having skill”,
but note that this is always defined relative to a specific ref-
erence. So for example, using a root mean square difference
to evaluate the forecast, one has,
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where m
i

are the forecast results, o
i

the data and n

i

the ref-
erence. According to this equation, however, in the presence
of error on the data, even a perfect model (where the model
prediction precisely matches reality) would not achieve a
skill of 1. Especially in the case of paleoclimates, the un-
certainty on the data is often substantial (Hargreaves et al.,
2011), and must be taken into account for a fair evaluation.
We therefore modify equation (1) as follows:
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where e

i

are the one standard deviation uncertainties on
the observations. The numerator and denominator in the frac-
tion have here been adjusted to account for the observational
errors, under the assumption that these are independent of the
forecast errors. Note that the skill score here becomes unde-
fined if either the model or the reference agrees more closely
with the data than the data errors indicate should be possible.
Such an event would be evidence either that the data errors
are overestimated, or else that the model had already been

over-tuned to the observations. In principle, no model should
agree with the data with smaller residuals than the observa-
tional errors, since even reality only just achieves this close
a match, and then only

::::
only

::::
then if the observational errors

have not been under-estimated.
For the obvious reason that

::::::::
long-term

:
forecasts are have

not been generally realised in climate models, skill anal-
yses

::
of

::::
this

:::::
nature

:
for climate model predictions are rare.

One simple analysis was performed by Hargreaves (2010),
which indicated that, at least on the global scale, the 30
year forecast made by Hansen to the USA congress in 1988
had some skill(regional data .

:::::::::::::
Unfortunately,

:::::::
regional

::::
data

::::
from

:::
this

:::::::
forecast

:
were not available for testing). We are not

aware of previous analyses of model skill for paleoclimates
and it has not been established what might be an appropri-
ate reference forecast for such calculations. In numerical
weather prediction, persistence (that tomorrow’s weather is
the same as today’s) is a common baseline for short-term
forecast evaluation

:
.
:::::::::

However,
:::
for

:::::::
seasonal

:::::::::
prediction, and

seasonal prediction(where persistence is clearly inappropri-
ate) may use the ,

::
it

:::::
would

:::
be

::::
more

:::::
usual

::
to

:::
use

:::
the

:::::::
seasonal

climatology as a reference. An analogous reference for cli-
mate change predictions might be that the climate persists,
that is, a reference of no change. It should be clear that this
is a rather minimal baseline to beat, only requiring that the
model predicts any forced response at each location to within
a factor of anywhere between 0 and 2 times the correct am-
plitude (on average).

::
On

:::
the

:::::
other

:::::
hand,

:
it
::
is

:::::
worth

::::::::
checking,

::
as

::
it

:::::::
provides

::
a
:::::::
baseline

::::
test

::
as

::
to

:::::::
whether

::::
the

::::::
models

:::
are

:::::::::
responding

::
in

:
a
:::::::::::

qualitatively
::::::::::
appropriate

:::::::
manner.

:
We might

reasonably hope for our models to perform rather better than
this, and provide a useful prediction not only of the overall
magnitude, but also the spatial pattern of change. Thus we
also employ a second reference to tests

::
test

:
the pattern of the

change more directly. For this reference forecast, the climate
change is assumed to be a uniform change equal to the mean
change of the available data. This represents the case of a
perfectly-tuned zero dimensional energy balance, in which
the global mean temperature change is predicted which opti-
mally matches the data, but without any information on the
spatial pattern. In order to have skill with respect to this ref-
erence, the model must also represent the spatial pattern of
change

::::::
relative

::
to

::::
this

:::::
global

:::::
mean.

3.3 Conventional Taylor Diagram analysis

We also present an analysis of the model outputs in terms
of the conventional statistics of (centred) RMS difference,
correlation and field standard deviation which will be fa-
miliar to many readers. Such values are conveniently pre-
sented in a Taylor diagram (Taylor, 2001) which summarises
these three values with a single point. The usual calcu-
lation and presentation of these statistics does not account
for observational uncertainty, and Taylor (2001) only sug-
gests investigating the effect that this might have on the re-
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sults through the use of multiple data sets, which we do
not have here. However, since we do have estimates of
observational uncertainty, we can instead adjust the statis-
tics to account for this. We present our results based on
two approaches. First, we present the conventional results,
without accounting for observational uncertainty, but also
indicate where a hypothetical “perfect model” (which ex-
actly matches the real climate system) should

:::::
would

:
be lo-

cated. This is straightforward to calculate
:::::
(under

:::
the

::::::
natural

:::::::::
assumption

::::
that

:::::::::::
observational

:::::
errors

::::
are

::::::::::
independent

::
of

:::
the

::::::
climatic

:::::::::
variables), as its

:::::::::
normalised

:
RMS difference from

the actual observations should equal the RMS
:::::::
imperfect

::::::::::
observations

::::
will

::
be

:::
just

:::
the

::::
root

:::::
mean

:::::
square

:
of the observa-

tional errors, and the observational standard deviation is the
sum (in quadrature) of that of the underlying (but unknown)
true field

:::::::::::
uncertainties

::::::
divided

:::
by

:::
the

::::::::
standard

::::::::
deviation

::
of

::
the

:::::::::::
observations, and the errors.

An
::::
field

:::::::
standard

::::::::
deviation

::::
will

::::
add

::
in

:::::::::
quadrature

::
to

:::
the

:::::
errors

::
to

:::::
give

:::
the

::::::::::::
observational

::::::::
standard

:::::::::
deviation,

::::
thus

:::::::::::::::::::::
sd

2

real

= sd

2

obs

�sd

2

errors

.
:::
We

::::
also

::::::
present

::
an

:
alternative ap-

proach, is to
::
in

:::::
which

:::
we correct the statistics for each model,

to indicate where they should be
:::::
would

::
be

::::::::
expected

:::
to

::
lie

relative to perfect observations. This is also a
::
an

::::::
equally

simple calculation when error estimates are known
:::::
given,

::
as

::
for

::::::::
example

::
the

:::::
RMS

::::::::::
model-truth

:::::::::
difference

:
is
:::::::::
calculated

::
by

:::::::::
subtracting

::::::
(again,

::
in

::::::::::
quadrature)

:::
the

:::::::::
estimated

:::::
errors

::::
from

::
the

::::::::::
model-data

:::::::::
differences.

4 Results

4.1 Last Glacial Maximum analyses

4.1.1 LGM Reliability

Figure 3 shows the reliability analysis for the combined LGM
ensemble of 11 models for all the points at which we have
data. Overall, the ensemble has a rank histogram which can-
not be statistically distinguished from uniform (Figure 3 (b)),
and the differences between the data and the ensemble mean
(Figure 3 (c)) are mostly of similar magnitude to the uncer-
tainty in the data. Looking at the map in Figure 3 (a), there
are some patches that are predominantly red or blue, indicat-
ing the spatial limit to the reliability. Analysing the ocean
and land data separately (Figure 4) we find that, assuming 8
degrees of freedom, the ensemble is statistically reliable with
respect to both. However we note that the histogram for the
land (Figure 4 (c)) has a fairly large peak at the left hand side,
indicating that the ensemble tends to have a greater anomaly
than the data. It is also apparent that the difference between
the ensemble mean and the data is larger for the land than for
the ocean (Fig 4 (d)). This model-data difference exceeds the
quoted data uncertainty much more frequently for the land
than for the ocean.

Paleoclimate data are derived from measurements made
from cores drilled into the surface of the earth at discrete lo-
cations. The open ocean may be considered

:::::::
laterally quite

well mixed, whereas land has many more local features due
primarily to high resolution topography. Thus it may be
more difficult to derive a representative grid box average
temperature from the

::::
proxy

:
data for direct comparison with

the models over the land, than over the ocean. On the grid
scale of the models, one sees more variation over land than
ocean, but even so it is likely that the resolution at the finest
scales there is under-represented (

:::::
models

:::::
have

:::::::::
inadequate

:::::
spatial

:::::::::
variability

::
at

:::
this

:::::
scale

:
due to smoothing in the forc-

ing, boundary conditions, and dispersion in the model nu-
merics). Thus it is understandable that the model data mis-
match is greater over the land . It is important that more work
is done to identify, quantify and, if possible, reduce these
kinds of representation errors between the models and data
so that future model-data comparisons can be as informative
as possible

:::
due

::
to

::::
this

:::::::::::::::::
“representativeness”

:::::
error

:::
(so

:::::
called

::::::
because

::::
the

:::::
issue

::
is

::::
not

::::
that

:::
the

::::
data

::::
are

:::::::::
erroneous

:::
per

::
se,

:::
but

::::::
rather

:::
that

::::
they

:::::
may

:::
not

::::::::
represent

:::
the

:::::::::::
observational

::::::::
equivalent

::
of

::
a
:::::
model

::::::::
grid-box

::::::::::
climatology).

To create the ensemble, we simply aggregated all the
AOGCM and AOVGCMs available in the PMIP2 and CMIP5
databases. While there has been discussion in the literature
about the similarity of models based on their origins and
design there is little consensus about how to treat this, so
we start from the premise of assigning equal weight to each
model. Including two model versions that are identical to
each other would be clearly pointless and indeed harmful
as it would be equivalent to double-counting one model
and would actually reduce the effective sample size of our
ensemble, thereby degrading the results. We do not have
identical models in this ensemble, but it is possible that
some of the models are very similar. For example, we
already know that the only difference between MIROC3.2
and MIROC3.2.2 (which are both in the PMIP2 database) is
that one minor bug has been fixed in the latter, so we included
only the latter model in the ensemble. For substantially
updated

::::
With

::::
this

::
in

:::::
mind,

:::
we

:::::::::
performed

:::::
some

:::::::::
sensitivity

:::::::
analyses

:::
into

::::
our

::::::::
treatment

::
of

:::
the

:::::::::
ensembles

::::
and

:::
the

:::::
errors,

:::::
which

::::::::::
demonstrate

::::::
overall

:::
that

:::
our

::::::
results

::::::
appear

::
to

::
be

:::::
robust

::
to

:::::
these

:::::::
choices.

::::::::::
Focussing

::::
first

:::
on

::::
the

:::::
issue

::
of

::::::
model

::::::::
similarity

:::::::::
(discussed

:::::
above

::
in
:::::::

Section
::::
2.1)

:::
we

:::
do

::::
find

:::
that

::
in

:::::
terms

:::
of

:::::::::
correlation

::::
and

::::::
RMS

::::::::::
differences,

:::::::::
successive

:::::::::
generations

:::
of

:::::::
models

:::::
from

::
a

:::::
single

:::::::
centre,

:::
or

:::
AO

::::
and

::::
AOV

:
versions of the same model(such as might exist in

consecutive iterations of the PMIP experiments) we would
expect the differences to be rather greater. But, ideally we
should wish for each new model included in the ensemble, to
be not particularly ,

:::
are

::::::::
generally more similar to one existing

model than it is to all the others.
With this in mind, we performed some sensitivity analyses

into our treatment of the ensembles. Excluding the
:::
each

::::
other

::::
than

:::
to

:::::
other

::::::
models

:::
in

:::
the

:::::::
sample.

::::::::::
Therefore,

:::
we
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:::
first

::::::::
excluded

:::
the

:
two PMIP3 models which provide both

SAT and SST
:
.
::::
This

:
does not make a difference to the level

of reliability, a result consistent with the suggestion that
CMIP3 and CMIP5 models do not appear to have substan-
tially different behaviour in distribution (though with only
two PMIP3 models, any difference would be hard to de-
tect in any case). Analysing SAT alone for the four PMIP3
models presently available for which earlier model versions
were also presented in PMIP2, and comparing them to the
combined PMIP2 and PMIP3 database (14 modelsin total)
in terms of bias, correlation and mean square difference,
we find that the PMIP2 version of the same model in the
PMIP3 database is not usually the most similar model but
is usually in the top three, although it may be as low as
sixth. We also analysed the PMIP2 AO and AOV models
in the same way, and found that they were very similar in
terms of RMS difference and spatial correlation, although
they typically have a significant mean bias. From the similar
pairs, it is not clear which model should be excluded. Thus,
in order to make a conservative ensemble on which to test the
robustness of our results, we reanalysed the ensemble giving
::
As

:::
an

:::::::::
alternative

::
to

::::::::
excluding

:::::::
models,

:::
we

::::
also

:::::
tested

:::::
down

::::::::
weighting

::::::
models

::::::
which

::::
were

::::::
related

::
in
::::

this
::::
way,

::::::::
assigning

half weight to each member of each pair of related models in
the ensemble

:::::
model

::
in
:::
the

::::
pair. In the case of our 11 member

ensemble, this means that the PMIP2 and PMIP3 IPSL mod-
els had half-weight each as did the PMIP2 HadCM2 AO and
AOV models. The results of the rank histogram analysis are
not significantly different for those using the whole ensemble
equally weighted.

:::
Due

:::
to

::::
our

::::::::
concerns

:::::
over

:::
the

::::::::::
magnitude

::
of

::::
the

::::
data

::::::::::
uncertainties

:
(Annan and Hargreaves, 2012)

:
,
:::
we

::::
also

::::
tried

::
an

::::::::::
assumption

::
of

:::::::
spatially

:::::::
uniform

::::::
errors,

::::::
setting

:::
this

:::::
value

::
to

:::
2oC

::::::
(close

::
to

:::
the

:::::
mean

::
of

:::
the

:::::::::
individual

::::
error

:::::::::
estimates).

:::
Our

::::::
results

:::
are

:::::::::
unchanged

::
by

::::
this

::::::::
alteration.

:

4.1.2 LGM Skill

Figure 5 shows the results for the skill calculations for the
LGM anomaly. For the PMIP2 and PMIP3 models we anal-
ysed ocean and land both separately and together, and we
also calculated the skill for the multi-model mean along with
each model individually. For the first reference forecast, of
a zero LGM anomaly, there is skill for both the land and the
ocean individually, and both combined. As expected (Annan
and Hargreaves, 2011) the multi-model mean performs rela-
tively well. Thus we can see that in general the models are
producing a cooling that, overall, is of the same scale as the
data. As mentioned above, this is, however, a rather limited
test. A skill score of 0.5 indicates that the modelled anoma-
lies are typically 50% greater or smaller than observed.

The second reference forecast is of a uniform field equal to
the data mean. This provides a much greater challenge to the
models, as they have to not merely

:::
only

:
reproduce a broad-

scale cooling of the correct magnitude (which the reference

forecast already achieves), but must also represent the spa-
tial pattern and magnitude of changes. While on the face of
it, this still does not seem like a highly challenging require-
ment (given the well-known phenomena due to land-ocean
contrast and polar amplification), none of the models have
high skill against this reference, and in fact more than half the
models have negative skill when assessing the land and ocean
separately(which eliminates the strong

:
.
:::::::
Separate

:::::::::
assessment

::
of

::::
these

::::
data

::::
sets

:::::::::
eliminates

:::
the influence of the

::::
large land-

sea contrast )
:::
and

:::::::
thereby

:::::::
provides

::
a
:::::
stiffer

:::::::::
challenge. The

skill of the multi-model mean is generally greater, especially
for the ocean where it outperforms all of the ensemble mem-
bers, and is also positive for the land. This indicates that
the broad scale features which are what remains

:::::
remain

:
after

the models are averaged, do bear some relation to the spatial
pattern in the data.

The combination of land and ocean together shows
much improved skill for all the models compared to

::
the

::::::::::
assessments

::
of land and ocean separately, indicating that the

models are at least to some extent capturing the land-sea
contrast in the changes at the LGM.

::::
The

:::::
main

:::::
reason

:::
for

:::
this

::::::
greatly

::::::::
improved

::::::::::
performance

::
is

:::
that

:::
the

::::::::::
land-ocean

::::::
contrast

::::
itself

::
is

:
a
:::::

fairly
:::::::::

dominant
::::::
feature

::
of

:::
the

:::::::
climate

::::
state

:::::
which

:
is
:::::::::
reasonably

::::
well

::::::::::
represented

::
in

:::
the

:::::::
models,

::::
even

:::::
when

:::
they

:::::
cannot

:::::::::
accurately

::::::::
represent

:::
the

:::::
spatial

:::::::
patterns

::
on

:::::
either

::::
land

::
or

:::::
ocean. This is encouraging, especially in light of recent

work (Schmittner et al., 2011) in which an intermediate com-
plexity model underestimated

:::::::
appeared

::
to

::::::::::::
underestimate this

land-sea contrast significantly. In the data, the LGM anomaly
is larger over the land than the ocean, with the simple aver-
ages of the data points

::::::
(making

:::
no

:::::::
attempt

::
to

:::::::
account

:::
for

:::::
spatial

:::::::::::
distribution) over these regions being -6.53o

:
oC and -

1.98o
:
oC respectively, giving a land-ocean ratio of 3.30. For

the models, the averages over the datapoints
::::
data

:::::
points

:
are

from -3.59o
:
oC to -9.00o

:
oC over the land and from -1.88o

:
oC

to -2.95o

:
oC over the ocean, and the land-ocean ratios range

from 1.90 to 3.09. So the data ratio is outside the model
range, but not necessarily to an alarming degree. It seems
plausible that missing forcings (such as dust forcing) may
have more effect over land than ocean (Schmittner et al.,
2011), which could imply the error is more in boundary con-
ditions rather than models themselves. Overall it must be
noted that the levels of skill are not particularly high based
on either of the two reference forecasts, suggesting that much
of the regional to fine scale

::::::::::::
sub-continental

:
spatial pattern of

the change is not being reproduced by the models and that
there is plenty of scope for improvement.

4.1.3 LGM Taylor Diagram

Conventional statistics are presented in the form of a Taylor
diagram in Figure 6. The modelled LGM anomalies shown
in the top plot have correlations with the data which range
from around 0.4 to almost 0.7, with a centred RMS differ-
ence which is somewhat lower than the standard deviation of
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the data itself (which is 3.5 ooC in this case). However, ob-
servational errors are quite large, as is indicated by the loca-
tion of the theoretical “perfect model”. The lower plot shows
that if instead we had “perfect data” with no observational
uncertainty, we could expect the correlations to mostly lie in
the range 0.6-0.8

::::
–0.8 and the RMS difference from the data

would also be substantially smaller.

4.2 Mid Holocene
::::::::::::
Mid-Holocene

:
analyses -

::
—

:
reliabil-

ityand ,
:
skill,

::::
and

::::::
Taylor

::::::::
diagrams

For the MH we have no seasonal information for the ocean so
most of our analyses were for the land only. These comprised
the anomaly

:::::::
analysed

:::::
eight

::::::::::
ensembles.

::::
For

::::
both

::::
the

:::
full

:::
and

:::::::::::
conservative

:::::::::
ensembles

:::
we

::::::::
analysed

::::
the

::::::::::
temperature

::::::::
anomalies

:
for the annual average, and the hottest and cold-

est months. Given the nature of the forcing, the change in
the magnitude of the seasonal cycle would seem the most
obvious target for the MH, but there is some concern that the
calculating the anomaly of the hottest month minus coldest
months may not provide a completely fair comparison with
the data as the same proxies are not used to compile the two
datasets. For the land and ocean together we analysed the
annual average anomaly only. For the MH we have several
models with both AOGCM and AOVGCMs versions (see
Table 1), so, as well as the full ensemble we also analyse
a conservative ensemble where versions of the same model
are downweighted so that each underlying model has a total
weight of 1.

In comparison with the LGM, for the MH we have far
more land data points and far fewer ocean points. As
discussed in Section 4.1.1, the models tend to match the
dataless well over land than ocean, so a larger overall
model-data mismatch for these analyses does not necessarily
mean that the models are intrinsically worse at simulating
this interval. For the LGM the model skill was poorer
when tested on smaller spatial scales (through the second
reference forecast), but for the MH the climate forcing is not
expected to cause climate change at the larger scales. For
these reasons, we expect this interval to provide a greater
challenge for the ensemble.

:::
For

:::
the

::::::
annual

:::::::
average

:::
we

:::::
made

::::::::
separate

:::::::
analyses

::::
with

:::
and

:::::::
without

::::::::
including

:::
the

:::::::
GHOST

::::::
ocean

::::
data.

:
The results

obtained are indeed
:::
for

:::
the

:::
MH

:::
are

:
mostly negative for both

the reliability and skill analyses. Of all the analyses, only
three ensembles are not shown to be unreliable (through
significantly non-uniform rank histograms), and even these
are clearly

:::::
visibly

:
tending towards being U-shaped (see Fig-

ure 7). These are the mean temperature anomaly for land and
ocean for the conservative ensemble

:::::
(where

:::
we

::::::::::
downweight

::::::
similar

:::::::
models), and the coldest month anomaly for both the

full and conservative ensembles. The anomaly for the hottest
month is unreliable. This anomaly is also considerably larger
in the models than that of the coldest month, and thus al-
though we do not directly test it, we anticipate

::::::
expect that

the anomaly in the seasonal cycle is also unlikely to be reli-
ably predicted by the models.

For the skill analysis
:::::::
analyses, the picture is even worse,

with most models having negative skill
:::
for

::::
most

:::::
target

::::
data

:::
sets,

:
and no models or model means having skill greater

than 0.01
::
0.1

:
(not shown). There is no indication in the

skill results, or in an analysis of the RMS model-data dif-
ferences, that the AOVGCMs models perform any better
than the AOGCMs. This is somewhat disappointing as it is
widely thought that vegetation feedbacks had a strong influ-
ence on the climate of the MH interval. The nearest thing
to a positive result in these analysis is the relatively good
result for the land and ocean together in the conservative
ensemble, which suggest that model-data comparison may be
more successful if better data coverage of the oceans could
be obtained

:::
best

::::::
results

::
in

::::
these

::::::::
analyses

::::
were

:::::
when

::
we

:::::
tested

:::::
ocean

::::::
(annual

::::::
mean)

:::
data

:::::
only,

:::
and

::
in

::::
this

::::
case

:
a
:::::::
majority

::
of

::::::
models

::::::::
exhibited

::::
very

:::::
small

:::::::
positive

::::
skill. The Taylor dia-

gram (Figure 6) also indicates similarly poor results for the
MH hottest month. Correlations are typically negative (albeit
small), and the model fields exhibit substantially too small
variability. In contrast to the situation for the LGM in Sec-
tion 4.1.3, accounting for observational uncertainty (which
is

::::::::
estimated

::
to

:::
be relatively small) does not improve these

results significantly.
The model forcing for the MH is principally a smooth

temporal and latitudinal variation in the insolation, and the
model responses are similarly smooth. The data, however,
are highly spatially variable (Figure 2) . As discussed above
in reference to

::
As

::
is
:::

the
:::::

case
:::
for

:::
the

:::::
LGM

:::::
data,

:::::
some

::
of

::
the

::::::::::::
observational

::::
error

::::::::
estimates

::::::
appear

:::::::::
optimistic,

:::::::
reaching

:::::
values

::
as

::::
low

::
as

:::::::
0.04oC.

:::::::::
Therefore,

:::
we

:::::
tested

:::
the

::::::
impact

::
of

:::::::
replacing

:::
the

::::::
stated

::::
error

::::::::
estimates

::::
with

::
a
:::::::
spatially

:::::::
uniform

::::
value

::
of

:::::
2oC.

::::::::
However,

:::
this

::::::
barely

:::::
affects

::::
our

::::::
results.

5
:::::::::
Discussion

:::
Our

::::::
results

:::
for

:::
the

::::::
LGM

:::
are

::::::::
generally

::::::::
positive,

::::::::
indicating

:::
that

::::
state

:::
of

:::
the

:::
art

::::::
climate

:::::::
models

:::
are

:::::::::
responding

:::
to

::::
these

::::
large

:::::::
changes

:::
in

::::::::
boundary

:::::::::
conditions

:::
in

::
a

:::::::
manner

:::::
which

:
is
::::

not
:::::

only
:::::::::::
qualitatively

:::::::
correct,

::::
but

::::
also

::::::::::::
quantitatively

:::::::::
reasonable.

::::::
The

:::::::::
large-scale

:::::::
cooling

:::::::::
simulated

:::
by

:::::
most

::::::
models

:::
has

::
an

::::::::::
appropriate

:::::::::
magnitude

::::
and

:::
the

::::::
pattern

:::::
shows

:::::::::
reasonable

::::::::
agreement

:::::
with

::
the

:::::
data,

::::::::
primarily

:::::::::
dominated

::
by

:::::::::
land-ocean

:::::::
contrast

::::
and

::::
polar

::::::::::::
amplification.

::::::
These

::::::
results

::
are

::::
not

:::::::::
surprising,

::::::
being

:::::::::
consistent

::::
with

:::::
(and

:::::::::
extending)

::
the

::::::::
analysis

::
of

:::::
H11,

:::
but

::
it
:::::

may
::
be

::::
the

:::
first

:::::
time

::::
that

:::
this

:::
has

::::
been

::::::
shown

:::
in

:
a
::::::::::::

quantitatively
:::::::

detailed
:::::::

manner
:::::

using
::::::::::::
comprehensive

:::::
global

::::
data

::::
sets.

:::::
Even

:::
for the LGM, there are

a number of possible causes of this high frequency mismatch
, including both representation error in the data and a lack
of high frequency information in the model at the smallest
scales. In order to more clearly show the regional patterns
we have

:::::::
however,

:::
the

:::::::::::::
sub-continental

:::::::
patterns

:::::
show

::::::
weaker
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::::::::
agreement

::::
with

:::::
data,

::
as

::
is
::::::::
indicated

:::
by

:::
the

:::::
rather

::::
poor

::::
skill

:::::
scores

:::::::
relative

::
to

:::
the

:::::::
second

::::
null

:::::::::
hypothesis

::
of

::
a
:::::::
uniform

::::::::::
temperature

:::::::
change.

::::
On

:::::::
average,

::::
the

:::::::::
agreement

:::::::
between

::::::
models

:::
and

::::
data

::
at

:::
the

:::::
LGM

::
is
::
a

::::
little

:::::
better

::::
over

:::
the

:::::
ocean

:::
than

:::::
over

:::::
land.

::::
The

:::::
high

::::::
spatial

:::::::::
variability

::
in

:::::
some

::::
land

::::
data,

:::
and

:::::::
limited

:::::
model

:::::::::
resolution,

:::::::
suggests

::::
that

::::
part

::
of

:::
this

::::::::
mismatch

::::
may

::
be

:::
due

:::
to

::::::::::::::::
“representativeness”

::::::
errors.

:

:::
The

::::
MH

:::::
lacks

:::
the

:::::
strong

::::::
annual

:::::
mean

::::::
forcing

:::
at

:::
the

:::
MH

:::
that

::::
was

::::::
present

:::
at

:::
the

::::::
LGM,

:::
and

::::
we

::::
have

::::
seen

:::::
from

:::
the

::::
LGM

:::::::
results

::::
that

:::
the

:::::::
models

:::::::
perform

::::::
better

::
at

:::
the

:::::
large

:::::
spatial

::::::
scales.

:::::
Thus,

:::
we

::::::
expect

:::
the

::::
MH

::::::
interval

::
to

:::::::
provide

:
a

::::::
greater

::::::::
challenge

:::
for

:::
the

::::::::
ensemble.

::::
The

::::::::
challenge

::
is
::::::
further

::::::::
increased

::::::::
beacause,

:::
in

::::::::::
comparison

::::
with

:::
the

::::::
LGM,

:::
for

:::
the

:::
MH

:::
we

:::::
have

::
far

:::::
more

::::
land

::::
data

::::::
points

:::
and

:::
far

:::::
fewer

:::::
ocean

:::::
points.

:::::
Thus

:::
the

:::::::::::::::::
“representativeness”

::::
error

:::::
alone

:::::
could

::::
cause

::
the

::::::::::
model-data

:::::::::::
disagreement

:::
to

::
be

::::::
greater

:::
for

:::
the

::::
MH

::::
than

:::::
LGM.

::::
The

::::
data

:::
are

:::
not

:::::::::
distributed

:::::::
around

:::
the

:::::
globe

::
at

:::
the

::::
MH,

::::
with

::::
high

:::::::
density

::
in

:::::::
Europe

:::
and

::::::
North

::::::::
America,

:::
but

::::
very

::::
poor

:::::::
coverage

:::::::::
elsewhere

::
on

::::
land

::::
and

::
in

:::
the

::::::
oceans.

:

::::::::
Consistent

:::::
with

:::::
these

:::::::::::
expectations,

:::
we

::::
find

:::
that

:::
the

::::
MH

:::::
results

:::
are

:::::::::::
substantially

::::::
poorer

:::
in

::
all

::::::::
respects.

:::::::
Indeed

:::
the

::::::::
ensemble

::
is

::::::
largely

:::::::::
unreliable

::
at

:::
the

:::::
MH,

::::
with

:::::::::
essentially

:::
zero

:::
(or

::::
even

::::::::
negative)

::::
skill.

:::::::::::
Furthermore,

::
it
::::::
appears

:::::::
possible

::::
from

::::::::::
examination

:::
of

:::
the

::::
data

:::
that

:::::
there

:::
are

::::::::
coherent

:::::
spatial

::::::
patterns

:::
in

:::::
reality

::::
that

:::
are

:::
not

::::::::::::
quantitatively

::::::::::
reproduced

::
by

::
the

:::::::
models.

::::
To

:::::
make

:::
this

:::::
point

:::::
more

:::::::
clearly,

:::
we rebinned

the data and the multi-model mean for the hottest month to
:::
into

:
10 degree boxes. The result is shown in Figure 8. In

Europe and Africa, the anomaly appears predominantly pos-
itive and is greater at lower latitudes. In North America, the
anomalies are smaller and more mixed. The data are, how-
ever, generally sparse so it is far from certain whether or not
there is a significant spatial pattern in the data. What is clear
is that to the extent that there is a pattern in the data across
these regions, it is substantially different to that of the multi-
model mean response to the forcing. Thus it appears that
the model-data mismatch is not just due to high frequency
noise. The reasons behind this

:::::::::::
sub-grid-scale

:::::::::
variability.

:
It
::::::

should
:::

be
::::::

noted
:::
that

::::
the

::::::
models

::::
are

::::::::::
responding

::
to

:::
the

::::::
applied

:::::::
forcing

:::::
much

::
in

::::
the

::::
way

::::
that

::::::
would

::
be

::::::::
expected

::::
from

::::::
simple

:::::::
physical

::::::::
intuition,

::::
with

::::::::
changes

::
in

:::::::::
seasonality

::::::
directly

:::::::
relating

::
to

:::
the

:::::::
changes

::
in

:::::::
radiative

:::::::
forcing,

:::
and

::::
little

::::::
change

::
in

::::::
annual

:::::
mean

:::::::::::
temperature.

:::::::::::
Therefore,

::
it

:::::
seems

:::::
likely

:::
that

::::::::
missing

::
or

:::::::::
erroneous

:::::::::
feedbacks

::
in

::::
the

::::::
models

::
are

:::::::::::
contributing

:::
to

:::
the

:::::::::
mismatch.

::::::
Poor

::::::::::::
representation

::
of

::::::::
vegetation

:::::
itself

::
is

:::
one

:::::::
possible

::::::
cause,

::::::
though

::
it

::::::
should

:::
also

::
be

:::::
noted

:::
that

:::::::
climate

::::::
models

::::
have

::::::
limited

::::::
ability

::
to

:::::::
represent

:::
fine

::::::
details

::
of

:::::::::::
precipitation

::::::
which,

:::::
while

:::
not

:::::::
directly

:::::
tested

::::
here,

::::
will

::::
also

:::::
likely

::::
lead

::
to

:::::::::
significant

:::::
errors

::
in
:::::::::

vegetation
:::::
cover.

::::::::
Improved

::::::
global

::::
data

::::::::
coverage

:::::
should

::::
help

:::
to

:::::
clarify

::
the

:::::::
source

::
of

:
model-data mismatch on the regional scale

require further investigation from both the model and data
communities. Better global coverage of data is clearly
required, but it also seems plausible that the model forcings
or feedbacks are inadequate.

:::::::::
mismatch.

:::::
While

:::::
more

:::::::::
qualitative

::::::::::
approaches

::::
have

::::::::
produced

:::::
some

::::::
positive

::::::
results

:::
for

:::
the

::::
MH

:
(Brewer et al., 2007)

:
,
:::
our

:::::
direct

:::::::::
comparison

:::
of

:::::::
gridded

::::
data

::
to

::::::
model

:::::
output

:::::::::
highlights

:::
the

:::::::::
substantial

::::::::::::
discrepancies.

:::::::
When

::::::::::
considering

:::::
only

:::::
ocean

::::
data, Schneider et al. (2010)

:::
and

:
Lohmann et al. (2012)

::::
found

::::::
positive

::::::::::
correlations

::::::::
between

:::::
model

::::::
results

::::
and

:::::
proxy

::::
data,

:::
but

::::
also

::::::
showed

:::::
their

::::::
models

:::
to

::::::
greatly

::::::::::::
underestimate

:::
the

::::::::
magnitude

:::
of

::
the

::::::::
changes.

:::::
When

:::
we

:::
use

::::
only

:::::
ocean

:::::
data,

::
we

:::
find

:::::::::
consistent

::::::
results,

::::
with

::::::
many

::::::
models

:::::::
showing

:::::::
positive

:::
skill

::::
for

:::
the

::::::
annual

:::::
mean

::::::::::
temperature

:::::::
change,

::::
but

::::
only

::
at

::
an

:::::::::
extremely

:::
low

:::::
level

::::::::
(typically

::::
less

::::
than

::::
0.02

::
in

:::::::
absolute

::::::::::
magnitude).

:::
The

::::::::::
correlations

:::
are

:::::::::
somewhat

:::::
larger,

::::::::
averaging

:::
0.3

:::::
across

::::
the

::::::::
ensemble.

::::::::::::::
Understanding

:::
and

::::::::
reducing

:::
the

::::::::::
discrepancy

::
in

:::::::::
magnitude

::
of

::::::::
response

:::::::
between

:::::::
models

:::
and

:::
data

:::::::
remains

::
a

:::::
major

::::::::
challenge.

:

6 Conclusions

In this paper we extended our previous analysis of the LGM
to include more data, more models, and the MH interval.
We also performed the first conventional analysis of predic-
tive skill for paleoclimate GCMs, and present Taylor dia-
gram summaries for both intervals. In these model-data com-
parison exercises, we have obtained generally positive and
encouraging results for the LGM, showing that the models
produce generally reasonable and informative predictions of
the large-scale response to strong forcing. However, limi-
tations are apparent at finer scales. The model-data mis-
match is quite large but it is possible that representation
:::::::::::::::
representativeness error in the data is obscuring the signal,
particularly on land.

The MH, with its much smaller net climate forcing, clearly
highlights the difficulties of reproducing regional-scale
::::::::::::
sub-continental

:::::
scale

:
patterns of climate change. For this

experiment the global climate change signal is very small,
and the changes are regional

::::::::::::
sub-continental

:
and seasonal

in nature, possibly involving significant vegetation feed-
backs. We find that for the MH, the ensemble is largely
unreliable, with zero skill. Furthermore, it appears possible
from examination of the data that there are coherent spatial
patterns in reality that are not quantitatively reproduced by
the models. While more qualitative approaches have found
some positive results , our direct comparison of gridded
data to model output highlights the substantial discrepancies.
On the other hand, it should be noted that the models are
responding to the applied forcing much in the way that
would be expected from simple physical intuition, with
changes in seasonality directly relating to the changes in
radiative forcing. A likely cause of the mismatch is missing
or erroneous feedbacks in the model, perhaps due to poor
representations of vegetation. However, it should also be
noted that the data are not well distributed around the globe,
with high density in Europe and North America, but very
poor coverage elsewhere on land and in the oceans. Data
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coverage must be improved for us to be confident that the
models are really missing some major feedbacks.

For the point of view of directly using existing models
to constrain future climate, the LGM with its large forcing
seems the most promising of the two experiments

:
(eg Harg-

reaves et al., 2012). However, climate science is now facing
the challenge of predicting future changes on regional scales,
which includes the requirement to correctly model vegeta-
tion and many other feedbacks. Our results provide some
sobering evidence of the limits to the ability of current mod-
els to accurately reproduce the local patterns of change that
are seen in paleoclimate data. Therefore, unlocking the rea-
sons for the local to regional model-data mismatch for pa-
leoclimates should be a powerful contribution to furthering
progress in this area.

::::
Both

::::
data

::::
and

::::::
model

::::::::
archives

::::
are

::::::
subject

:::
to

:::::::
change.

:::
The

::::::
model

::::::
output

::::
used

::::
here

:::::
were

:::::::
obtained

:::::
from

:::
the

:::::
model

:::::::
archives

::
in

::::::::
mid-2012.

::::
The

::::
data

::::
were

::::::::
obtained

::::
from

:::::::
Andreas

::::::::::
Schmittner’s

:::::::
website,

::::
and

:::::::
directly

::::
from

:::
Pat

:::::::
Bartlein

::::::
around

::
the

:::::
same

:::::
time.

:::
For

::::::
reasons

:::
of

::::::::::::
reproducibility,

:::
we

::::::
include

:::
the

::::::
derived

:::::
output

:::::
from

:::
the

::::::
models,

::::
and

:::
the

:::
data

::::
that

:::
we

::::
used,

::
in

:
a
::::::::::
supplement

::
to

:::
this

:::::
paper.

:
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LGM anomaly, Data

LGM anomaly, Data Uncertainty

oC

oC

(a)

(b)

Fig. 1. (a) LGM temperature anomaly for the data.The colorbar axes are chosen to best display the data. The actual minimum and maxi-
mum are -16o

:
oC and 6.32o

:
oC (b) The value of the uncertainty on the annual mean included in the data synthesis. Max.=6.42, Min.=0.24

Mean=1.73.
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oC

oC

Data 

Data Error 

(a)

(b)

Fig. 2. Mid Holocene
:::::::::::
Mid-Holocene temperature anomaly for the hottest month: (a) Data, Max.=10.0o

:
oC, Min.=-20.1o

:
oC, (b) Data error,

Max.=3.3, Min.=0.05, Mean=0.96



14 J.C. Hargreaves et al: Paleoclimate multi-model ensemble skill

Rank of data in model ensemble.

Rank histogram Ensemble mean bias

Temperature (oC)Rank

(a)

(b) (c)

Fig. 3. (a) The rank of the data in the 11 member LGM ensemble. (b) Rank histogram of the ranks in plot (a). (c) The histogram of the
difference between the ensemble mean and the data for each data point in plot (a). A low rank indicates that the climate change is greater in
the models than the data.
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(a) Rank histogram for ocean points 

(c) Rank histogram for land points 

Rank

Rank

(d) Ensemble mean bias

(b) Ensemble mean bias

Temperature (oC)

Temperature (oC)

Fig. 4. Rank histograms and mean bias histograms for the LGM anomaly, considering the ocean and land separately.

Table 1. Overview of the model versions used in the different ensembles analysed. The names correspond to the filenames in the PMIP2 and
CMIP5 databases. ⇤ECBILT is the only EMIC in the ensemble. All the other models are full general circulation models.

Model PMIP2 LGM AOGCM PMIP2 LGM AOVGCM PMIP3 LGM PMIP2 MH AOGCM PMIP2 MH AOVGCM

CCSM CCSM3 CCSM3
CNRM CNRM-CM33
CSIRO CSIRO-Mk3L-1.1*
ECBILT⇤ ECBILTCLIO ECBILTLOVECODE ECBILTLOVECODE
ECHAM ECHAM53-MPIOM127-LPJ ECHAM53-MPIOM127-LPJ
FGOALS FGOALS-1.0g FGOALS-1.0g
FOAM FOAM FOAM
GISS GISSmodelE
HadCM3 HadCM3M2 HadCM3M2 UBRIS-HadCM3M2a UBRIS-HadCM3M2
IPSL IPSL-CM4-V1-MR IPSL-CM5A-LR IPSL-CM4-V1-MR
MIROC MIROC3.2.2
MPI MPI-ESM-P
MRI-nfa MRI-CGCM2.3.4nfa MRI-CGCM2.3.4nfa
MRI-fa MRI-CGCM2.3.4fa MRI-CGCM2.3.4fa
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Fig. 5. Skill for the LGM anomaly. The top plot shows the result using the first reference, that the LGM anomaly is zero, and the lower plot
the results using the second reference, that the LGM anomaly is equal to the data mean.
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(a) Conventional Taylor Diagram
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(b) Adjusted Taylor Diagram
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Fig. 6. Taylor diagrams for the LGM mean temperature anomaly and MH hottest month anomaly.
::::::
Distance

::::
from

:::::
origin

:::::::
indicates

:::::::
standard

:::::::
deviation

::
of

::::
field,

::::::
distance

::::
from

:::::::
reference

:::::
point

::::::
indicates

::::::
centred

:::::
RMS

:::::::
difference

:::::::
between

:::::
model

:::
and

::::
data,

:::
and

:::::
pattern

:::::::::
correlation

:
is
:::::
given

::
by

:::
the

:::::::
azimuthal

:::::::::
coordinate. The top plot shows conventional analysis, with the location of the “perfect model” indicated for comparison.

The lower plot shows the analysis where model statistics are corrected to account for observational errors. All results are normalised by the
standard deviation of the data fields.
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Coldest Month (land)

Annual Mean (land+ocean)

Coldest Month (land)

“Reliable” Mid Holocene Rank Histograms

Conservative Ensemble

Full Ensemble

(a)

(b) (c)

Fig. 7. Rank histograms for the three out of the eight ensembles analysed for the mid-Holocene which passed the statistical test for reliability.
They nevertheless show a tendency towards being too narrow.
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Multi-Model Mean
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Fig. 8. The hottest month MH anomaly rebinned onto a 10 degree grid, to more clearly illustrate the model-data mismatch on the regional

:::::::::::
sub-continental

:
scale.


