
Reviewer #1 (Anders Carlson) 

 

In the intro, there is now geochemical data from Hudson Strait (Carlson et al., 2009, GRL) and 

northwest Labrador Sea (Hoffman et al., 2012, GRL) that directly constrain the timing and 

forcing of the 8.2 ka event; be good to mention these (although it is asking to reference my work, 

these studies pertain to arguments that the 8.2 event wasn’t caused by Lake Agassiz; e.g., Alley 

& Augustdottir and Rohling & Palike reviews in 2005, plus more recent arguments by Condron 

& Winsor, 2011, GRL). 

 

We now reference the geochemical data and also added a sentence about some of the 

remaining uncertainties about the forcing of the 8.2 ka event (e.g., Rohling and Palike, 

2005; Condron and Winsor, 2011; Gregoire et al., 2012; Tornqvist and Hijma et al., 2012). 

 

Also in the intro, I would at least mention that there is still a Laurentide ice sheet before/during 

the 8.2 event that was still affecting climate (Carlson et al., 2008, Nature Geoscience; Renssen et 

al., 2009, Nature Geoscience). 

 

We added these references and now mention the remnant Laurentide ice sheet as one way 

in which the background climate of the early Holocene was different from that of today. 

 

In terms of North Atlantic records, two papers are either published/or in press from the Labrador 

Sea that include Mg/Ca temps and d18Osw records covering the 8.2 ka event (Hoffman et al. 

2012 GRL, northwest LS; Winsor et al., 2012/in press, G3 northeast LS) that show cooling and 

decreased d18Osw; the cooling is likely a summer signal given the foraminifera habitat. Another 

two papers of Young et al. (2011 GRL; 2012 Science) provide evidence for at least ice-margin 

standstills in west Greenland and Baffin Island, respectively, during the 8.2 ka event; again likely 

summer signals. 

 

As the resolution of these records is lower than our selection criteria, they were not 

included in the analysis.  But, we now highlight these records in the discussion.  

 

In the methods, over what interval must the record have </= 50 yr resolution? For many records, 

resolution varies. Also, some records that may not make this cutoff could be included in Fig. 5 

(i.e., Cariaco Mg/Ca and Ti records for instance). 

 

We added that the resolution criterion applies to the interval from 7.9 to 8.5 calendar ka.  

We agree that records with somewhat lower resolution (up to perhaps ~100 yrs resolution) 

can still contribute some information about the event, particularly those records with 

quantitative reconstructions of climate anomalies, and we have included more of these in 

our discussion section (see also comments from Reviewer #2 on this subject). We decided 

not to include them in Figure 5 because our goal was to focus on higher-resolution 

anomalies. 

 

Also in terms of methods, with all these records, have the authors thought of using EOF analysis 

to see if these patterns hold up under such an objective analysis? EOF analysis has proven useful 

in defining the Younger Dryas (Clark et al., 2002, Nature; Shakun & Carlson, 2010, QSR, Clark 



et al., 2012, PNAS). Just a thought that may be worth trying and easy to do if they have the 

records already in digital format. 

 

We tried Principal Component (EOF) analysis, but none of the PCs showed a clear 8.2 ka 

event.  This is likely because the duration of the event (~150-200 yrs) is similar to the 

uncertainty in absolute ages of the time series, so that the event anomalies don’t “line up” 

very well across records. The analysis we present in the paper has enough flexibility to 

accommodate age model uncertainties and is also objective. 

 

And, in defining magnitude of the event, I do not see a discussion of proxy uncertainty. For 

calibrated temps which I am more familiar with, this is no better than at least 1 C and more likely 

1.2-1.5 C. Are the anomalies significant in terms of the proxy used? This should be addressed. 

This is an important point that was also raised by reviewer #2.  

 

We added columns to Tables 1 and 2 with estimates of the calibration uncertainty.  The 

calibration uncertainties are similar in size to the 8.2 ka anomalies, a significant point that 

we now note in a new paragraph in the discussion.   
 

Finally, the d18O comparison, the authors mix together marine and terrestrial records; are the 

marine records d18Osw or just raw d18O? the former is the hydrologic record, the latter is both 

temp and hydrologic changes. Sufficient records exist now to define d18Osw changes during the 

8.2 event (e.g., see Hoffman et al., 2012 for the North Atlantic); maybe worth breaking this down 

a bit more if the paper is supposed to be a benchmark for models, the users of which often 

mistake one proxy for another. 

 

We separated the d18O records in Table 3 and Figure 6 into three categories: precipitation, 

surface waters and carbonate. These categories and their different climatic meanings are 

now described in more detail in the text. 

 

Reviewer #2 (Anonymous) 

 

Other high-resolution data which have recorded the 8.2 ka event are missing in your paper; they 

should be included in your synthesis. I mean: - France, lake Annecy (Magny et al, 2003); 

Furthermore, Magny also proposed in the same paper a regional synthesis on the 8.2 ka based on 

various paleoclimate records. Could you mention (discuss) this paper in your text? - Balkans: 

lake Malik (Bordon et al., 2009), lake Prespa (Aufgebauer et al., 2012); - Aegean Sea: SL 152 

(Kotthoff et al., 2008; Dormoy et al., 2009); - Alboran Sea (Combourieu-Nebout et al.„ 2009 : 

pollen and SST; Dormoy et al., 2009). It is of note that several transfer functions have been 

applied to lot of these data to produce quantitative estimates of seasonal temperature and 

precipitation. I think that you can add them in your study to refine your spatial coverage in the 

Mediterranean area (area where models and data are not in agreement). 

 

Thank you for pointing us to these records. The Aegean Sea and Alboran Sea records met 

our selection criteria and we included them in our analysis. The other records, while lower 

resolution, are also quite useful in that they have quantitative reconstructions. The Magny 

et al. 2003 synthesis, in particular, presents important ideas directly related to our 



discussion of precipitation changes over Europe.  So, we now reference the rest of these 

studies in our discussion.  

 

Your discussion is concise but very (too?) short. In my point of view, important points are 

missing in a paper which focuses on proxies data: -a discussion about the seasonality: your study 

is a compilation of different climate signals based on pollen data, speleothems, ice records, 

alkenones, Mg/Ca, chironomids, forams, and isotopic data. However, some proxies reconstruct 

seasonal parameters (for example, lake-levels indicate summer precipitations, chironomids 

record summer temperatures) while other proxies rather record an annual signal. Lakes, pollen, 

and isotopic data can produce an opposite climate trend which can be explained by the fact that 

these proxies may reflect processes linked to seasonality. This is an important point which needs 

to be discussed. - I invite you to add a point in your discussion about the proxy uncertainties. 

 

We added information about seasonality, where available, to the new “Climate signal” 

column of Table S1 and now highlight this general point about seasonal signatures in a new 

paragraph in the discussion.  

 

Is the cooling of 1.0 to 1.2 _C statistically significant? For example, with such a value obtained 

by applying transfer functions to pollen data, you can be inside the error bar. I invite you to 

check this point.  

 

This point was also raised by reviewer #1, and we have added columns to Tables 1 and 2 

with estimates of the calibration uncertainty.  The calibration uncertainties are similar in 

size to the 8.2 ka anomalies, a significant point that we now note in a new paragraph in the 

discussion.   

 

Could you add more details on the methods used to provide the climate anomalies (MAT, 

WA/PLS. . .)? It’s a very important point, because the choice of the method can induce different 

results (see Peyron et al 2011, for more details). You can just add a column with the method used 

in your table 1. 

 

We added this information to the “Proxies analyzed” column of Table S1 and referenced 

Peyron et al. 2011 in the discussion. 
 

Figure 3 a: colder (warmer) than what? Please be more precise.  

We added “relative to early Holocene background climate (defined as the average between 

7.4-7.9 and 8.5-9.0 calendar ka).” 

 

Figure 4 a: drier (wetter) than what? Please be more precise.  

We added “relative to early Holocene background climate (defined as the average between 

7.4-7.9 and 8.5-9.0 calendar ka).” 

 

Table S1: use the same term as in figure 1: cave or speleothem.  

We changed the word “speleothem” in figure 1 to “cave.” 

 



Be careful with the terminology: pollen data is a proxy which can be analysed from lakes or 

marine cores (first column). I invite you to be more precise, put pollen in the column “proxies 

analysed” , and also add and fill another column entitled “climate signal” after the column 

“proxies analysed”. 

 

We reclassified all records from the “pollen” archive in Figure 1 and Table S1 to belong to 

the lake, marine or peat archive, as appropriate.  These records now are specified as 

“pollen” in the “Proxies analyzed” column of Table S1 and a new column for “Climate 

signal” is provided for all records. 
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Abstract 10 

The Paleoclimate Modelling Intercomparison Project (PMIP3) now includes the 8.2 ka event 11 

as a test of model sensitivity to North Atlantic freshwater forcing. To provide benchmarks for 12 

intercomparison, we compiled and analyzed high-resolution records spanning this event. Two 13 

previously-described anomaly patterns that emerge are cooling around the North Atlantic and 14 

drier conditions in the Northern Hemisphere tropics. Newer to this compilation are more 15 

robustly-defined wetter conditions in the Southern Hemisphere tropics and regionally-limited 16 

warming in the Southern Hemisphere. Most anomalies around the globe lasted on the order of 17 

100 to 150 years. More quantitative reconstructions are now available and indicate cooling of 18 

1.0 to 1.2 °C and a ~ 20% decrease in precipitation in parts of Europe, as well as spatial 19 

gradients in δ
18

O from the high to low latitudes. Unresolved questions remain about the 20 

seasonality of the climate response to freshwater forcing and the extent to which the bipolar 21 

seesaw operated in the early Holocene.  22 

 23 

1 Introduction 24 

The 8.2 ka event is likely one of the best examples from the past of the climate system’s 25 

reponse to North Atlantic freshwater forcing. Several lines of evidence support the hypothesis 26 

that the drainage of proglacial Lake Agassiz into the Hudson Bay at about 8.2 calendar 27 

kiloyears before present (calendar ka BP) slowed the Atlantic Meridional Overturning 28 

Circulation (AMOC) and caused the climate anomalies observed in a wide variety of proxy 29 
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records. This evidence includes the stratigraphic record of lake drainage (Barber et al., 1999), 1 

reconstructions of sea level rise (Li et al., 2012;Tornqvist and Hijma, 2012), geochemical 2 

reconstructions from the Hudson Strait and northwest Labrador Sea of freshwater discharge 3 

(Carlson et al., 2009;Hoffman et al., 2012), proxy indicators of AMOC weakening (Ellison et 4 

al., 2006;Kleiven et al., 2008), and climate model experiments testing the linkage between 5 

freshwater forcing and climate change (LeGrande et al., 2006;Wiersma and Renssen, 2006). 6 

There are some remaining uncertainties about the forcing of the 8.2 ka event, including the 7 

the possibility of multiple freshwater releases (Gregoire et al., 2012;Teller et al., 8 

2002;Tornqvist and Hijma, 2012), the pathway of freshwater once it reached the North 9 

Atlantic (Condron and Winsor, 2011), and the contribution of other climate forcings around 10 

that time (Rohling and Pälike, 2005). Yet, tThe 8.2 ka event is unique among past meltwater 11 

events in that the hypothesized forcing is has been relatively well quantified, the background 12 

climate state is not too dissimilar from the present, and the duration is short enough to make 13 

model simulations of the event very feasible. Also, the early Holocene background climate 14 

state was not too dissimilar from the present, with one main difference being the presence of a 15 

remnant Laurentide Ice Sheet both before and after the 8.2 ka event (Carlson et al., 16 

2008;Renssen et al., 2009). For these reasons, the the 8.2 ka event was selected for a model 17 

intercomparison for the third phase of the Paleoclimate Modelling Intercomparison Project 18 

(PMIP3; Morrill et al., 2012).  19 

Paleoclimate proxy data are essential as a benchmark for the model intercomparison. The last 20 

global syntheses of proxy data around 8.2 ka were published in 2005-2006 and came to 21 

several common conclusions (Alley and Ágústsdóttir, 2005;Wiersma and Renssen, 22 

2006;Morrill and Jacobsen, 2005;Rohling and Pälike, 2005). The most robust finding was 23 

cold anomalies in Greenland of up to 7°C and in Europe of about 1°C. All also agreed on the 24 

lack of signal in the Southern Hemisphere, though few records were available at the time. 25 

Differing conclusions were reached about precipitation changes in the Northern Hemisphere 26 

tropics, with some studies arguing for drying in specific regions and another claiming that 27 

these anomalies were too long-lived to be the actual 8.2 ka event (Rohling and Pälike, 2005).  28 

Since these previous syntheses were published, the number of high-resolution records 29 

spanning the 8.2 ka event has doubled. In this paper, we compile and analyze these proxy 30 

records. Our main goals are to update previous conclusions reached about climate anomalies 31 

at 8.2 ka, particularly those regarding the tropics and Southern Hemisphere. We also place 32 
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special attention on presenting measures of the duration and magnitude of climate anomalies 1 

that can be used to evaluate model output quantitatively.  2 

 3 

2 Dataset description and analysis methods 4 

We selected previously-published proxy records for our analysis based on several criteria. 5 

First, the records have a sampling resolution of 50 years or better over the interval 7.9 to 8.5 6 

calendar ka. This cutoff was chosen so that detection of a short event (~150 years) would be 7 

feasible. Second, the records have age models with an estimated precision of better than 8 

several hundred years taking into account the precision of radiocarbon or U-Th dating and 9 

uncertainties that arise from age model interpolation between age control points. This is long 10 

relative to the estimated duration of the 8.2 ka event, but better precision is not currently 11 

available for the majority of paleoclimate records spanning this time. Third, the proxies 12 

measured have well-supported climatic interpretations based on knowledge of modern 13 

processes. A total of 249 time-series from 112 sites met the above criteria (Figure 1, Table 14 

S1).  15 

The number of sites has doubled since the last global syntheses of the 8.2 ka event were 16 

published in 2005-2006 (Figure 1), both globally and for each continent. A large proportion of 17 

the sites meeting our selection criteria are from Europe. North America is also fairly well-18 

represented, and other regions more sparsely sampled. The majority of sites included in this 19 

study are either lacustrine or marine. This, too, is relatively unchanged from previous 20 

syntheses. Data from about half of the sites have been publically archived and are now 21 

available as a consolidated dataset from the World Center for Paleoclimatology 22 

(ftp://ftp.ncdc.noaa.gov/pub/data/paleo/8.2ka/8.2ka-data.csv) and as supplementary material 23 

to this article. For the other half, we digitized records for the statistical analysis.  24 

Climate anomalies were identified in these records using a statistical test following the 25 

approach of Morrill and Jacobsen (2005). First, we detrended those records with significant 26 

long-term linear trends using linear regression; this is necessary because our statistical 27 

approach loses sensitivity when background trends are present. Then, for each individual 28 

record, we measured the mean and variability of the background climate state surrounding 29 

each event by calculating the mean ( x ) and standard deviation (σ) of proxy values for two 30 

windows between 8.5-9.0 and 7.4-7.9 calendar ka BP (Figure 2). These windows were chosen 31 

to bracket the event, while accommodating errors in the age models of several hundred years. 32 
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A small number of time-series contained too few data points in one of these windows for a 1 

robust calculation of x and σ; for these records, we shifted the windows by 100-200 years 2 

after making certain that this would not impinge upon any possible anomalous event. Given 3 

that many of these proxy records contain substantial noise and that just one outlier data point 4 

can have a large impact on the calculated standard deviation, we also calculated a series of 5 

standard deviations for each window that successively left out one data value at a time. Then, 6 

we used the lowest standard deviation along with its corresponding mean to define the upper 7 

and lower bounds of background climate variability as x + 2σ and x - 2σ. The two windows 8 

commonly had different values for x  and σ, so we used the maximum and minimum values 9 

for x + 2σ and x - 2σ, respectively, in order to make the stricter test (Figure 2). Next, we 10 

identified all values in the proxy time-series between 7.9-8.5 calendar ka that were beyond 11 

these respective bounds. Since, on average, about 5% of data points will fall outside the 2σ 12 

bound, other criteria were set for limiting false positives. Only excursions with at least two 13 

(three for records with sub-decadal resolution) adjacent anomalous values with the same 14 

signed anomaly were indentified. This condition makes it statistically unlikely (p < 0.05) that 15 

the excursions are due to random variations in the time-series (Feller, 1966). 16 

For records with a detected climate anomaly and a resolution of 15 years or better, we also 17 

report on event duration using the moving two-tailed z-test method of Wiersma et al. (2011). 18 

We limited this analysis to the highest-resolution records because only these were sampled 19 

densely enough in time to be meaningfully compared to climate model output. Data between 20 

7.9-8.5 calendar ka BP were sampled in overlapping 30-year increments and their means 21 

compared to the mean and variance of the background climate, defined as the periods between 22 

7.4-7.9 and 8.5-9.0 calendar ka BP. Like Wiersma et al. (2011), we defined the duration of the 23 

8.2 ka event as the longest stretch of consecutive overlapping windows whose z-values were 24 

all significant at the 99% level. 25 

The number of proxies that quantitatively estimate temperature and precipitation has grown 26 

greatly since 2005. We used these to calculate anomalies near 8.2 ka by again comparing 27 

values between 7.9-8.5 calendar ka BP to the average of all data falling between 7.4-7.9 and 28 

8.5-9.0 calendar ka BP. We report quantitative estimates in two ways: as the single maximum 29 

anomaly value and as a mean value calculated over a subjectively-determined time interval 30 

covering the 8.2 ka event. The subjective approach is necessary because the resolution of 31 

many of these records is not high enough to permit a more objective measure of event 32 
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duration, such as the z-test.  We note that the mean anomaly over a defined time interval is a 1 

measure that has been useful for discussing the magnitude of the 8.2 ka event (e.g., Thomas et 2 

al., 2007;Kobashi et al., 2007) and is a quantity that is easily compared to model output. 3 

 4 

3 Climate anomaly patterns at 8.2 ka 5 

3.1 Temperature 6 

Temperature-sensitive proxies indicate cold anomalies around the North Atlantic at 8.2 ka 7 

(Figure 3a), a result common to previous syntheses. New to this study is some evidence for 8 

warm anomalies in the Southern Hemisphere (Figure 3a). These occur in lake records from 9 

Nightingale Island in the south Atlantic (Ljung et al., 2008) and Amery Oasis in Antarctica 10 

(Cremer et al., 2007), as well as the deuterium record from Vostok (Petit et al., 1999). At the 11 

same time, however, several additional records from the Southern Hemisphere indicate cooler 12 

conditions at 8.2 ka. Thus, temperature change in the Southern Hemisphere appears to have 13 

been regionally heterogeneous.  14 

Isotopic records from the annual-resolved Greenland ice cores estimate the duration of 15 

temperature anomalies at 8.2 ka very precisely at 150-160 years (Thomas et al., 2007;Kobashi 16 

et al., 2007). Our analysis of event duration using the moving z-test yields similar values for 17 

the GISP2 and NGRIP ice cores in Greenland (160-180 years, Figure 3b). According to the 18 

moving z-test, event durations in Europe appear to be somewhat shorter than those in 19 

Greenland (100-160 years; Figure 3b). 20 

Reconstructed mean annual temperature anomalies (MAT) around the circum-North Atlantic 21 

are between -0.6 and -1.2 °C with the exception of Greenland, which seems to have 22 

experienced larger cooling (Table 1, Figure 3a). A few estimates are available for summer and 23 

winter temperatures. Two Three pollen records of winter temperature from the Aegean Sea, 24 

Greece and Romania have 8.2 ka anomalies that are greater than those for MAT in the same 25 

region (Table 1; Pross et al., 2009;Feurdean et al., 2008;Dormoy et al., 2009). A third site in 26 

northern Europe, Vanndalsvatnet (Nesje et al., 2006), shows a winter warming, which may 27 

not be coeval with the 8.2 ka event since it immediately precedes a significant cooling. At 28 

another site, Gardar Drift (Ellison et al., 2006), the magnitude of winter cooling is quite 29 

similar to the amount of summer cooling. Lower-resolution records with quantitative 30 

reconstructions paint an equally complex picture, including inferences of greatest cooling in 31 
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summer (Magny et al., 2001), greatest cooling in the winter (Bordon et al., 2009) and equal 1 

summer and winter cooling (Rousseau et al., 1998). Thus, from these data, it is still 2 

ambiguous whether winter temperatures cooled more than summer temperatures, as suggested 3 

for the 8.2 ka event (Rohling and Pälike, 2005) and for other past freshwater events (Denton 4 

et al., 2005). 5 

3.2 Precipitation 6 

The pattern of precipitation anomalies at 8.2 ka includes drier conditions over Greenland, the 7 

Mediterranean, and Northern Hemisphere tropics and wetter conditions over northern Europe 8 

and parts of the Southern Hemisphere tropics (Figure 4a). While reduced rainfall in the 9 

Northern Hemisphere tropics at 8.2 ka was noted in previous syntheses, new records from 10 

South America showing wetter conditions strengthen support for the idea that the mean 11 

position of the Intertropical Convergence Zone shifted southward (Cheng et al., 2009;van 12 

Breukelen et al., 2008). The pattern of precipitation anomalies over Europe is also a new 13 

finding. While previous syntheses documented decreased precipitation in the Mediterranean 14 

(Magny et al., 2003), the pattern of wetter conditions in northern Europe is a newer result. 15 

Many of the records from northern Europe are indicators of increased runoff associated with 16 

the spring snowmelt (Hammarlund et al., 2005;Hede et al., 2010;Zillén and Snowball, 17 

2009;Snowball et al., 1999;Snowball et al., 2010) while the inference of dry conditions in 18 

southern Europe comes from pollen-based reconstructions for mean annual precipitation 19 

(Pross et al., 2009;Feurdean et al., 2008;Dormoy et al., 2009). 20 

According to the moving z-test, most of the high-resolution precipitation anomalies last on the 21 

order of 100 to 150 years (Figure 4b). The exceptions to this general conclusion are two 22 

shorter anomalies of 30 to 50 years in Sweden (Snowball et al., 1999;Snowball et al., 2010) 23 

and two longer anomalies of 230 to 280 years in the Asian monsoon region (Dykoski et al., 24 

2005;Wang et al., 2005;Fleitmann et al., 2003). The Swedish lake records likely record 25 

changes in erosion related to spring snowmelt runoff and their shorter event duration might 26 

reflect differences in sampling for extreme events as opposed to a change in the mean state. 27 

Longer anomalies in Asia were originally discussed by Rohling and Pälike (2005) and 28 

attributed to a multi-century cooling upon which the 8.2 ka event might be superimposed. 29 

Since 2005, however, there are new precipitation records from the Northern Hemisphere 30 

tropics with event durations of < 150 years (Figure 4b), lending support to the conclusion that 31 

precipitation did decrease in these areas coincident with the 8.2 ka event.  32 
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There are just five six sites with quantitative precipitation reconstructions, all of which are 1 

mean annual quantities in either Greenland or Europe. Four Five of these sites show 2 

precipitation decreases, including 8% in central Greenland and 13-17% in southeastern 3 

Europe (Table 2; Hammer et al., 1997;Rasmussen et al., 2007;Pross et al., 2009;Feurdean et 4 

al., 2008). The fifth sixth record, Vanndalsvatnet, shows a precipitation increase, but again 5 

there is some ambiguity in the record as to which of several fluctuations might actually be the 6 

8.2 ka event (Nesje et al., 2006).    7 

3.3 Other changes 8 

Some of the proxy records we analyzed reflect climate variables other than temperature and 9 

precipitation, or show the combined influences of temperature and precipitation (e.g., glacier 10 

advances). These records and their detected 8.2 ka anomalies are shown in Figure 5. Of 11 

particular interest are indications of reduced AMOC (Arz et al., 2001;Ellison et al., 2006), 12 

glacier advances in Europe and North America (Menounos et al., 2004;Matthews et al., 13 

2000;Nesje et al., 2001) and strengthening of the Asian winter monsoon (Yancheva et al., 14 

2007). We also included sea ice in this discussion, even though it has a strong connection to 15 

temperature, because it is a variable predicted by climate models and because it participates in 16 

important ocean feedbacks. Significantly, several records near convection areas in the North 17 

Atlantic indicate sea ice expansion at 8.2 ka (Jennings et al., 2002;Moros et al., 2004;Hald 18 

and Korsun, 2008;Sarnthein et al., 2003). Lastly, two varved lake records in central North 19 

America show an increase in dust flux at 8.2 ka, possibly related to exposure of Lake Agassiz 20 

sediments (Hu et al., 1999;Dean et al., 2002). 21 

With the advent of oxygen isotope-enabled climate models, one of the more comprehensive 22 

tests of 8.2 ka simulations uses δ
18

O anomalies. In Table 3, we present 
18

O anomalies 23 

separated into three categories: precipitation, surface water and carbonate. Each of these 24 

categories reflects different climatic signals. The 
18

O of carbonate, which is precipitated 25 

from groundwater or surface water, combines the greatest number of signals. These include 26 

the 
18

O signature of the host water, which records the combined influence of precipitation 27 


18

O and any evaporative enrichment, as well as the temperature-dependent fractionation of 28 

oxygen that occurs during carbonate formation. The 
18

O of surface water is derived from 29 

carbonate 
18

O using an independent temperature time series to subtract this temperature-30 

related fractionation. It is most direct to compare modeled δ
18

O to reconstructed seawater or 31 
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precipitation values, but for some proxies, such as speleothemscave 
18

O, it is sometimes 1 

reasonable to assume that measured values can accurately reflect precipitation δ
18

O changes if 2 

changes in ambient temperature and evaporative enrichment are negligible. This may be less 3 

true for δ
18

O of lake carbonates, which depending on the residence time of water in the lake, 4 

are can be significantly changed through evaporative enrichment. While keeping in mind 5 

these differences, we present all δ
18

O values together in Table 3.  6 

We also note that some of these δ
18

O values were measured relative to the Standard Mean 7 

Ocean Water (SMOW) standard while others were relative to the PeeDee Belemnite (PDB) 8 

standard. The SMOW and PDB scales are offset by ~30 ‰, but are otherwise linearly related 9 

on a nearly 1:1 line (Coplen et al., 1983;Clark and Fritz, 1997). Thus, Table 3 combines 10 

anomaly values from the SMOW and PDB scales with no conversion between the two. 11 

In Greenland, ice cores record a decrease of -0.8 to -1.2 ‰ (Figure 6, Table 3). In the North 12 

Atlantic and Europe, the decrease is generally less, on the order of -0.4 to -0.8 ‰. These 13 

isotopic anomalies are generally thought to reflect temperature changeseffects on the δ
18

O of 14 

precipitation, although there could be some source effect from the meltwater added to the 15 

North Atlantic, as well (LeGrande et al., 2006). The smaller changes outside of Greenland are 16 

in line with the smaller temperature changes reconstructed quantitatively from Europe 17 

(section 3.1). The Northern Hemisphere tropics record an increase of 0.4 to 0.8 ‰, indicating 18 

decreased precipitation amount. Conversely, the Southern Hemisphere tropics experienced a 19 

decrease of -0.5 to -1.3 ‰, as precipitation likely increased. 20 

 21 

4 Discussion and conclusions 22 

The most robust features of the 8.2 ka event from proxy records include: mean annual cooling 23 

in the North Atlantic and Europe of abouton the order of ~1 1.0 to 1.2 °C; event duration 24 

generally of 100 to 150 years for both temperature and precipitation; decreased precipitation 25 

in the Asian monsoon region, Central America and northern South America; and decreases in 26 

δ
18

O of -0.8 to -1.2 ‰ in Greenland, -0.4 to -0.8 ‰ in Europe and 0.4 to 0.8 ‰ in Northern 27 

Hemisphere tropics. These anomalies are all supported by consistent evidence from multiple 28 

sites and are unambiguous enough that simulations of the 8.2 ka event should reproduce them.  29 

There are a number of proxy observations that seem likely to hold true, but are somewhat less 30 

certain because they have been found at only a few sites. These include: strengthened Asian 31 
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winter monsoon; increased precipitation in the Southern Hemisphere tropics; and reductions 1 

in precipitation on the order of 10% and 20% for Greenland and southern Europe, 2 

respectively. We have enough confidence in these observations that they could be used for 3 

model-proxy comparison, but we would not necessarily make strong statements about model 4 

skill based on whether a model can reproduce these anomalies.  5 

Both of these sets of proxy anomalies are changes that are expected given our current 6 

understanding of how freshwater forcing of the North Atlantic impacts climate. When the 7 

AMOC slows, reduction in northward oceanic heat transport cools the Northern Hemisphere 8 

(e.g., Manabe and Stouffer, 1997). Decreased precipitation in the Northern Hemisphere is, in 9 

general, expected due to cooler sea surface temperatures and more sea ice, both leading to less 10 

evaporation from the North Atlantic, as well as decreased specific humidity in a colder 11 

atmosphere according to the Clausius-Clayperon relationship (Vellinga and Wood, 2002). 12 

Strengthening of the Asian winter monsoon is another expected consequence of a colder 13 

Northern Hemisphere (Sun et al., 2012).  14 

It is important to emphasize that the uncertainty in the quantitative calibrations of climate is 15 

similar to the magnitude of the reconstructed climate anomalies at 8.2 ka (Table 1,2). For 16 

example, standard errors for most of the mean annual temperature calibrations are ~1 °C 17 

regardless of proxy type (Table 1). Also for the pollen calibrations, the magnitude of 18 

reconstructed climate anomalies depends strongly on the particular reconstruction technique 19 

used, particularly for seasonal temperature (Table 1; Dormoy et al., 2009;Peyron et al., 2011). 20 

This level of uncertainty reduces the confidence that can be placed in the quantitative 21 

reconstructions and limits to some extent their usefulness for model comparison. The fact that 22 

the reconstructed anomalies in mean annual temperature are consistent across vastly different 23 

proxy types does suggest, however, that they still have some utility. 24 

Another consideration in reducing discrepancies between nearby proxy sites as well as 25 

between models and data is the seasonality of proxy records. Some proxies necessarily 26 

indicate seasonal patterns (e.g., organisms that grow during the summer will only record 27 

warm season conditions) while others reflect annual means (e.g., lake water balance integrates 28 

over the annual cycle). However, our temperature and precipitation compilations presented in 29 

Figures 3 and 4 do not discriminate between annual mean and seasonal signatures. Table S1 30 

indicates the seasonality of each proxy, if this information is known. One goal for future 31 

compilations is to improve the separation of seasonal signals. 32 
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 1 

Some other patterns are suggested by proxy records, but so far are too uncertain to be used as 2 

benchmarks. These include: winter temperature decreases in Europe of up to 4 to 5.5 °C that 3 

are larger than summer temperature decreases; and regional variability in cold and warm 4 

anomalies in the Southern Hemisphere high latitudes. Each relates to unresolved questions 5 

about the impacts of North Atlantic freshwater forcing. Denton et al. (2005) suggest that 6 

wintertime changes were more extreme than those in summer during abrupt events of the last 7 

glacial because the Northern Hemisphere was closer to a sea-ice related temperature threshold 8 

in the winter. While some proxy records support this seasonal pattern, others indicate 9 

substantial summer changes (e.g., Hoffman et al., 2012;Winsor et al., 2012;Young et al., 10 

2012). It is unclear whether a similar sea-ice threshold was in play during the early Holocene. 11 

While reduction of northward heat transport in the Atlantic might be expected to warm the 12 

Southern Hemisphere, as happened at times of North Atlantic freshwater forcing during the 13 

last glacial (EPICA community members, 2006), this pattern is ambiguous in proxy records of 14 

the 8.2 ka event. It remains to be explained whether oceanic heat transport changes were not 15 

large enough at 8.2 ka to cause widespread Southern Hemisphere warming, or if fundamental 16 

differences between Holocene and last glacial climate determine the likelihood of a bipolar 17 

see-saw response. 18 
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Table 1. Quantitative temperature anomalies from early Holocene background values. 1 

Site Proxy  

type 

Maximum 

(°C) 

Mean 

(°C) 

Error*  

(°C) 

Duration 

(years) 

  Mean Annual Temperature 

GISP2 δ
15

N -3.3 -2.2 1.1 120 

Ammersee, Germany δ
18

O -1.3 -1.1 N/A 90 

Lake Rõuge, Estonia pollen -2.6 -1.2 0.9 280 

Lake Arapisto, Finland pollen -2.2 -1.2 0.9 200 

South Iceland (thermocline) Mg/Ca -1.2 -1.0 1.0 80 

Steregoiu, Romania pollen -1.6 -1.1 N/A 190 

Gulf of Mexico (surface) Mg/Ca -1.3 -0.9 1.1 120 

Cape Ghir (surface) alkenone -0.7 -0.6 ~1 250 

Cape Ghir (thermocline) Mg/Ca -1.0 -0.6 0.7 80 

Gulf of Guinea (surface) Mg/Ca -1.9 -1.1 1.2 140 

  Winter Temperature 

Tenaghi Philippon, Greece pollen -4.0 -2.8 2.5 140 

Aegean Sea pollen -9.1 -5.9 6.4 120 

Gardar Drift (surface) forams -1.6 -1.3 ~1 80 

Vanndalsvatnet, Norway pollen 2.5 1.7 2.6 240 

Steregoiu, Romania pollen -5.6 -4.2 2.6 110 

  Summer Temperature 

Aegean Sea pollen -4.2 -2.6 3.7 120 

Hawes Water, UK chironomid -1.5 -0.8 1.0 90 

Gardar Drift (surface) forams -2.1 -1.7 ~1 60 

* Root mean square errors for the calibration as reported by original investigators, N/A = not 2 

available 3 
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Table 2. Quantitative mean annual precipitation anomalies from early Holocene background 1 

values. 2 

Site Proxy type Maximum 

(%) 

Mean 

(%) 

Error* 

(%) 

Duration 

(years) 

GRIP ice accum-

ulation 

-28 -8 ~5 120 

NGRIP ice accum-

ulation 

-18 -8 ~5 150 

Tenaghi Philippon, Greece pollen -27 -17 14 110 

Aegean Sea pollen -24 -13 35 120 

Vanndalsvatnet, Norway pollen 20 12 24 240 

Steregoiu, Romania pollen -25 -17 17 110 

* Root mean square errors for the calibration as reported by original investigators and scaled 3 

as a percentage of reconstructed early Holocene background precipitation.4 
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Table 3. Oxygen isotope anomalies from early Holocene background values. 1 

Site Material Maximum 

(‰) 

Mean 

(‰) 

Duration 

(years) 

18
O of precipitation 

GISP2 ice -1.9 -1.1 140 

GRIP ice -2.0 -1.1 140 

NGRIP ice -1.9 -1.0 140 

Agassiz ice -2.0 -1.0 140 

Camp Century ice -1.3 -0.8 160 

Renland ice -1.8 -0.9 120 

Dye 3 ice -1.9 -1.2 140 

Nordan’s Pond Bog, Canada peat cellulose  -3.0 -2.6 80 

18
O of surface water 

Gulf of Mexico seawater  -0.6 -0.4 150 

Hawes Water, UK lake water -0.9 -0.6 110 

Gardar Drift seawater -0.7 -0.4 180 

18
O of carbonate 

Ammersee, Germany ostracod  -0.8 -0.6 90 

Katerloch Cave, Austria cave  -1.3 -0.7 130 

Igelsjon Lake, Sweden bulk lake -2.7 -2.0 250 

Okshola Cave, Norway cave  -1.0 -0.8 20 

Svalbard benthic forams -0.4 -0.2 70 

Pink Panther Cave, USA cave  -0.8 -0.4 270 

Venado Cave, Costa Rica cave  2.0 1.0 80 

Tigre Perdido Cave, Peru cave  -1.0 -0.5 170 
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Padre Cave, Brazil cave  -1.8 -1.3 60 

Qunf Cave, Oman cave  0.7 0.4 250 

Hoti Cave, Oman cave  1.1 0.8 30 

Dongge Cave, China cave  0.9 0.4 170 

Heshang Cave, China cave  1.1 0.8 130 

South China Sea planktic forams 0.4 0.4 40 

1 
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 1 

Figure 1. Location of high-resolution proxy records spanning 8.2 ka that were available in (a) 2 

2005 (Morrill and Jacobsen, 2005) and (b) 2012. 3 

4 



 23 

 1 

 2 

Figure 2. Schematic diagram of method used to detect climate anomalies at 8.2 ka, as 3 

described in text.  4 

5 
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 3 

Figure 3. (a) Temperature anomalies relative to early Holocene background climate (defined 4 

as the average between 7.4-7.9 and 8.5-9.0 calendar ka) detected near 8.2 ka by the method 5 

described in text. Black dots indicate sites with temperature proxies that did not have an 6 

identifiable anomaly. Values plotted are quantitative mean annual temperature estimates in 7 

degrees Celsius and are also provided in Table 1. (b) Duration of temperature anomalies in 8 

high-resolution (better than 15 yrs/sample) proxies, as determined using the method of 9 

Wiersma et al. (2011). 10 

11 
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 2 

 3 

Figure 4. (a) Precipitation anomalies relative to early Holocene background climate (defined 4 

as the average between 7.4-7.9 and 8.5-9.0 calendar ka) detected near 8.2 ka by the method 5 

described in text. Black dots indicate sites with precipitation proxies that did not have an 6 

identifiable anomaly. Values plotted are quantitative mean annual precipitation estimates, 7 

expressed as a percent difference from values averaged for 7.4-7.9 and 8.5-9.0 calendar ka 8 

BP, and are also presented in Table 2. (b) Duration of precipitation anomalies in high-9 

resolution (better than 15 yrs/sample) proxies, as determined using the method of Wiersma et 10 

al. (2011). 11 

12 
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 1 

 2 

Figure 5. Climate anomalies detected near 8.2 ka that were not easily categorized in terms of 3 

temperature or precipitation. Small black dots indicate sites without an identifiable climate 4 

anomaly. 5 

6 
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 1 

Figure 6. Anomalies in δ
18

O detected using method described in text. Sites plotted here are 2 

also provided in Table 3. 3 



Table S1.  Records used in compilation 
 

Site name Archive Lat Lon Proxies analyzed
1,2

 Climate signal
1
 Reference 

Adélie Land  

(MD03-2601) 

Marine -66.0 138.6 F. curta/F. kerguelensis 

Chaetoceras resting spore 

Sortable silt 

Number of laminae 

Al 

Growing season temperature 

Meltwater input 

Bottom water production 

Bottom water production 

Bottom water production 

Denis et al. (2009) 

Aegean Sea 

(GeoTü SL152) 

Marine 40.1 24.6 Tree pollen 

Quercus index 

Sediment lightness 

Pollen (PLS) 

Pollen (PLS) 

Pollen (PLS) 

Pollen (PLS) 

Pollen (PLS) 

Winter precipitation 

Precipitation seasonality 

Runoff 

Annual precipitation 

Summer precipitation 

Winter precipitation 

Coldest month temperature 

Warmest month temperature 

Kotthoff et al. (2008), 

Dormoy et al. (2009) 

Agassiz Ice 80.7 -73.1 
18

O Temperature Fisher et al. (1995),  

Vinther et al. (2008) 

Ahung Lake 31.4 92.0 % Total organic carbon 

% Carbonate 

Carbonate
13

C 

Precipitation 

Precipitation 

Precipitation 

Morrill et al. (2006) 

Alboran Sea (ODP 976) Marine 36.2 -4.3 % Temperate pollen 

Pollen (PLS) 

Pollen (PLS) 

Pollen (PLS) 

Pollen (PLS) 

Pollen (PLS) 

Temperature, precipitation 

Annual precipitation 

Summer precipitation 

Winter precipitation 

Coldest month temperature 

Warmest month temperature 

Dormoy et al. (2009), 

Combourieu Nebout et al. 

(2009) 

Amery Oasis Lake -70.6 68.0 % Total carbon Summer temperature Cremer et al. (2007) 

Ammersee Lake 48.1 11.5 Ostracod
18

O Annual temperature von Grafenstein et al. (1998) 

Arabian Sea (63KA) Marine 24.0 66.0 Globigerinoides ruber
18

O Annual precipitation Staubwasser et al. (2002) 

Arabian Sea  

(NIOP 905) 

Marine 12.0 52.0 Globigerina bulloides 
18

O Summer sea surface temperature Jung et al. (2004) 

Arapisto Lake 60.6 24.1 Pollen (WA-PLS) Mean annual temperature Sarmaja-Korjonen and Seppä 

(2007) 

Arolik Lake 59.5 -161.1 Biogenic silica Temperature, precipitation Hu et al. (2003) 



 2 
Atlantic (ODP 1078C) Marine -11.9 13.4 Cibicidoides wuellerstorfi

18
O Intermediate water temperature Rühlemann et al. (2004) 

Atlantic (VM29-191) Marine 54.3 -16.8 Hematite-stained grains  

Icelandic glass 

Temperature 

Temperature 

Bond et al. (2001) 

Barents Shelf  

(GIK23258-2) 

Marine 75.0 14.0 Planktic forams (ANN) 

Planktic forams (ANN) 

Planktic forams (SIMMAX) 

Planktic forams (SIMMAX) 

Grain size >63 m 

Planktic forams/g 

Benthic forams/g 

Winter sea surface temperature 

Summer sea surface temperature 

Winter sea surface temperature 

Summer sea surface temperature 

Winter sea ice formation 

Winter sea ice formation 

Winter sea ice formation 

Sarnthein et al. (2003) 

Big  Lake 51.7 -121.5 Beta carotene amount Temperature Bennett et al. (2001) 

Brazilian Shelf  

(GeoB 3910-2) 

Marine -4.2 -36.3 Ca Atlantic Meridional 

Overturning Circulation 

Arz et al. (2001) 

Brunnboden Peat 46.8 10.8 Pollen concentration 

% Cyperaceae 

Summer temperature 

Summer temperature 

Kofler et al. (2005) 

Bunger Oasis (PG1173) Marine -66.3 100.8 % Ice diatoms Temperature Kulbe et al. (2001) 

Camp Century Ice 77.2 -61.1 
18

O Temperature Vinther et al. (2009) 

Cape Ghir  

(GeoB 6007-2) 

Marine 30.8 -10.3 Alkenone Uk’37 

Hyalinea balthica Mg/Ca 

Hyalinea balthica 
18

O 

Hyalinea balthica 
13

C 

Annual sea surface temperature 

Intermediate water 

temperature 


18

Oseawater 

Local upwelling 

Kim et al. (2007),  

Bamberg et al. (2010) 

Cape Yubi  

(GeoB 5546-2) 

Marine 27.5 -13.7 K Precipitation Kuhlmann et al. (2004) 

Cariaco Basin  

(ODP 1002) 

Marine 10.7 -65.2 Grayscale 

% Ti 

Trade wind intensity 

Precipitation 

Hughen et al. (2000) 

Haug et al. (2001) 

Chichancanab Lake 19.8 -88.8 % S 

%CaCO3 

Precipitation-evaporation 

Precipitation-evaporation 

Hodell et al. (1995) 

Cold Air  Cave -24.0 29.2 
18

O 


13

C 

Precipitation 

Vegetation 

Holmgren et al. (2003) 

Dalsvatnet Lake 61.7 8.0 % Loss on ignition Glacier advance Matthews et al. (2000) 

Danntjorn Lake 61.6 9.0 % Loss on ignition Summer temperature Nesje et al. (2004) 

Deep  Lake 47.7 -95.6 Varve thickness Dust availability Hu et al. (1999) 



 3 
Djupall Trough 

(KN 158-4-72GGC) 

Marine 66.7 -24.2 Basalt/plagioclase Storminess Andresen et al. (2005) 

Dongge Cave 25.3 108.1 
18

O Precipitation Dykoski et al. (2005),  

Wang et al. (2005) 

Duck and Melles Lake 76.3 -18.7 % Sulfur 

% Total organic carbon 

Summer temperature 

Summer temperature 

Klug et al. (2009b), Klug et al. 

(2009a) 

Dye 3 Ice 65.2 -43.8 
18

O Temperature Vinther et al. (2009) 

El Junco Lake -0.9 -89.5 % Clay 

% Silt 

% Sand 

Precipitation 

Precipitation 

Precipitation 

Conroy et al. (2008) 

Elk Lake 47.0 -95.5 Varve thickness Dust availability Dean et al. (2002) 

EPICA Dome C Ice -75.1 123.4 D 


18

O 

Deuterium excess 

Non sea-salt Ca 

Sea-salt Na 

Dust 

CH4 

Temperature 

Temperature 

Sea surface temperature 

Dust availability, transport vigor 

Sea ice area, transport vigor 

Dust availability, transport vigor 

Tropical wetland area 

Stenni et al. (2001),  

Röthlisberger et al. (2002),  

EPICA community members 

(2004),  Jouzel et al. (2007) 

Etang de la Gruere Peat 47.2 7.0 % Absorbance Precipitation-evaporation Roos-Barraclough et al. 

(2004) 

Fayetteville Green  Lake 43.0 -79.0 Carbonate
18

O 

Carbonate
13

C 

Winter precipitation 

Summer precipitation 

Kirby et al. (2002) 

Fiskvatnet Lake 69.6 19.9 S-ratio 

% Loss on ignition 

Summer temperature 

Summer temperature 

Paasche et al. (2004) 

Foy Lake 48.2 -114.4 Benthic diatoms Precipitation Stone and Fritz (2006) 

Gardar Drift  

(MD99-2251) 

Marine 57.4 -27.9 Planktic forams (MAT) 

Planktic forams (MAT) 

Sortable silt 

% N. pachyderma s. 

Globigerina bulloides
18

O 

Globigerina bulloides Mg/Ca 

Summer sea surface 

temperature 

Winter sea surface temperature 

Bottom current speed 

Summer temperature 


18

O seawater 

Summer sea surface temperature 

Ellison et al. (2006),  

Farmer et al. (2008) 
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GISP2 Ice 72.6 -38.5 

18
O 

Na 

Ca 

CH4 


15

N 

Temperature 

Sea ice area, transport vigor 

Dust availability, transport vigor 

Tropical wetland area 

Temperature 

Grootes et al. (1993) 

Cuffey and Clow (1997), 

Mayewski et al. (1997),  

Kobashi et al. (2007) 

Green  Lake 50.0 -123.0 % Loss on ignition Glacier advance Menounos et al. (2004) 

Greenland NAUJG1 Lake 66.7 -52.0 % Residue on ignition Summer temperature Willemse and Tornqvist 

(1999) 

GRIP Ice 72.5 -38.5 

 


18

O 

Accumulation 

Temperature 

Precipitation 

Hammer et al. (1997),  

Rasmussen et al. (2006) 

Gulf of Guinea 

(GeoB4905-4) 

Marine 2.5 9.4 Globigerinoides ruber Mg/Ca 

Globigerinoides ruber 
18

O 

Globigerinoides ruber Ba/Ca 

Annual sea surface temperature 

Annual sea surface salinity 

Precipitation 

Weldeab et al. (2007) 

Gulf of Mexico  

(MD02-2550) 

Marine 27.0 -91.4 Globigerinoides ruber Mg/Ca 

Globigerinoides ruber 
8

O  

Annual sea surface temperature 

Annual 
18

O seawater 

Lo Dico et al. (2006) 

Hani  Peat 42.2 126.5 Peat cellulose
13

C 

Peat cellulose
18

O 

Summer precipitation 

Mean annual temperature 

Hong et al. (2005), Hong et al. 

(2009)  

Hawes Water Lake 54.2 -2.8 Chironomids (WA-PLS) 

Calcite
18

O

July temperature 


18

O lakewater 

Marshall et al. (2007) 

Heshang Cave 30.4 110.4 
18

O Precipitation Hu et al. (2008) 

Hojby So Lake 55.9 11.6 Thermophilous trees 

Mineral accumulation rate 

Chlorophyll A 

Diatom accumulation rate

Temperature 

Precipitation 

Precipitation 

Precipitation 

Hede et al. (2010) 

Holebudalen Lake 59.8 7.0 Tychoplanktonic diatoms 

Periphytic diatoms 

Temperature 

Temperature 

Panizzo et al. (2008) 

Holzmaar Lake 50.1 6.9 Organic matter 
13

C 

Pollen (PDF) 

Pollen (PDF) 

Pollen (PDF) 

Productivity 

July temperature 

January temperature 

Mean annual precipitation 

Lücke et al. (2003),  

Litt et al. (2009) 

Hongyuan Peat 32.8 102.5 Carex mulieensis 
13

C Summer precipitation Hong et al. (2003) 

Hoti  Cave 23.1 57.4 
18

O Precipitation Neff et al. (2001) 
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Huguang Maar Lake 21.2 110.3 Ti 

Magnetic susceptibility 

S-ratio

Winter monsoon strength 

Winter monsoon strength 

Winter monsoon strength 

Yancheva et al. (2007) 

Iceland Shelf  

(MD99-2269) 

Marine 66.6 -23.8 Coccolithus pelagicus  

Irminger Water species 

% Quartz 

Temperature 

Temperature 

Temperature 

Giraudeau et al. (2004),  

Moros et al. (2006) 

Igelsjon Lake 58.5 13.7 % Total organic carbon 

% Minerogenic 

Bulk carbonate
13

C 

Bulk carbonate
18

O 

Summer precipitation 

Summer precipitation 

Precipitation-evaporation 

Precipitation-evaporation 

Hammarlund et al. (2005) 

Jarbuvatnet Lake 61.7 6.8 % Loss on ignition Glacier advance Nesje et al. (2001) 

Jones  Lake 46.1 -113.2 Bulk carbonate
18

O Precipitation-evaporation Shapley et al. (2009) 

Kalksjon Lake 60.2 13.0 %Total organic carbon 

Ti 

Winter precipitation 

Winter precipitation 

Snowball et al. (2010) 

Katerloch  Cave 47.1 15.6 
18

O Annual temperature Boch et al. (2009) 

Kilimanjaro Ice -3.1 37.3 
18

O 

Cl, F, Na, NO3, Ca, K, Mg, SO4 

Temperature 

Precipitation 

Thompson et al. (2002) 

Laihalampi Lake 61.5 26.1 Pollen (WA-PLS) Mean annual temperature Heikkila and Seppä (2003) 

Lisa  Lake 61.8 8.2 % Loss on ignition Summer temperature Nesje and Dahl (2001) 

Lykkjuvotn Lake 61.9 -6.8 Biogenic silica Temperature Andresen et al. (2006) 

Malawi Lake -10.3 34.3 Biogenic silica Wind strength Johnson et al. (2002) 

Masoko Lake -9.3 33.8 Magnetic susceptibility Precipitation Garcin et al. (2006) 

Moon Lake 47.0 -98.2 Diatoms (WA) Precipitation-evaporation Laird et al. (1998) 

Motterudsjarnet Lake 59.6 12.7 Magnetic susceptibility Winter precipitation Zillén and Snowball (2009) 

Murray Canyon  

(MD03-2611) 

Marine -36.7 136.6 Globigerinoides ruber
18

O 

G. ruber-G. bulloides
18

O 

Surface water temperature 

Depth of thermocline 

Moros et al. (2009) 

Nansen Trough  

(JM96-1206) 

Marine 68.1 -29.4 # Ice-rafted grains Sea ice amount Jennings et al. (2002) 

Nautajarvi Lake 61.8 24.7 Pollen (WA-PLS) Growing degree days Ojala et al. (2008) 

NGRIP Ice 75.1 -42.3 
18

O 

Accumulation 

Temperature 

Precipitation 

Rasmussen et al. (2006), 

Rasmussen et al. (2007) 

Nightingale Lake -37.4 -12.5 %Total inorganic carbon 

C/N 

Temperature, precipitation 

Temperature, precipitation 

Ljung et al. (2008) 

Nordan’s Pond  Peat 49.2 -53.6 Sphagnum
18

O 
18

O precipitation Daley et al. (2009) 
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North Sea (Core 28-03) Marine 60.5 3.5 % N. pachyderma s. Summer sea surface 

temperature 

Klitgaard-Kristensen et al. 

(1998) 

Norwegian Sea  

(MD 95-2011) 

Marine 66.9 7.6 % >63m 

Quartz/plagioclase 

Planktic forams (WA-PLS, IK) 

Sea ice amount 

Sea ice amount 

August sea surface temperature 

Moros et al. (2004),  

Berner et al. (2011) 

Okshola Cave 67 15 
18

O 


13

C 

Annual temperature 

Precipitation 

Linge et al. (2009) 

Padre Cave -13.2 -44.0 
18

O Precipitation Cheng et al. (2009) 

Pallcacocha Lake -2.8 -79.2 Redscale Precipitation Moy et al. (2002) 

Peru-Chile margin  Marine -15.2 -76.0 Alkenone Uk’37 

Alkenone C37 

Biogenic silica 

Annual sea surface temperature 

Productivity 

Productivity 

Chazen et al. (2009) 

Peten-Itza Lake 16.9 -89.8 Cochliopina sp.
18

O 

Pyrgophorus sp. 
18

O 

% CaCO3 

% Total organic carbon 

Sediment density 

Precipitation-evaporation 

Precipitation-evaporation 

Precipitation-evaporation 

Precipitation-evaporation 

Precipitation-evaporation 

Curtis et al. (1998),  

Hillesheim et al. (2005) 

Pink Panther  Cave 32.1 -105.2 
18

O Precipitation Asmerom et al. (2007) 

Potrok Aike Lake -52.0 -70.4 %Total inorganic carbon 

Ca, Ti/Ca 

% Andean pollen taxa 

Precipitation-evaporation 

Runoff 

Westerly strength 

Haberzettl et al. (2007),  

Mayr et al. (2007) 

Pupuke Lake -36.8 175.8 Mean grain size 

> 32 microns 

C/N 

Runoff 

Runoff 

Runoff 

Augustinus et al. (2008) 

Qunf  Cave 17.2 54.3 
18

O Precipitation Fleitmann et al. (2003) 

Raigastvere Lake 58.6 26.6 Pollen (WA-PLS) Mean annual temperature Seppä and Poska (2004) 

Renland Ice 71.3 -26.7 
18

O Temperature Johnsen et al. (1992),  

Vinther et al. (2008) 

Rouge Lake 57.4 26.5 Pollen (WA-PLS) Mean annual temperature Veski et al. (2004) 

Sagistalsee Lake 46.7 8.0 C-ratio Runoff Hirt et al. (2003) 

Sanbao Cave 31.7 110.4 
18

O Precipitation Dong et al. (2010) 



 7 
Santa Barbara  

(AII-125 JPC-76) 

Marine 34.3 -120.0 Globigerina bulloides 
18

O 

Neogloboquadrina pachyderma 
18

O 

Neogloboquadrina dextral:sinistral  

% Globigerina quinqueloba 

% Planktic foram warm species 

Mixed layer temperature 

Thermocline temperature 

Sea surface temperature 

Upwelling 

Surface temperature 

Friddell et al. (2003), 

Fisler and Hendy (2008) 

Sarsjon Lake 64.0 19.6 Paramagnetic susceptibility Winter precipitation Snowball et al. (1999) 

Sihailongwan Lake 42.3 126.6 Biogenic silica Summer precipitation Schettler et al. (2006) 

Sjuodjijaure Lake 67.4 18.1 Pollen (WA-PLS) 

Chironomids (WA) 

Diatoms (WA-PLS) 

July temperature 

July temperature 

July temperature 

Rosen et al. (2001) 

Snoheim Lake 62.3 9.2 % Loss on ignition Glacier advance Nesje and Dahl (2001) 

Sofular Cave 41.4 31.9 
18

O, 
13

C Temperature, precipitation Fleitmann et al. (2009) 

Soreq  Cave 31.4 35.0 
18

O Precipitation Bar-Matthews et al. (1999) 

South China Sea 

(17940) 

Marine 20.1 117.4 % Clay 

Globogerinoides ruber
18

O 

Modal grain size

Summer precipitation 

Summer precipitation 

Winter monsoon strength 

Wang et al. (1999a), Wang et 

al. (1999b) 

South Iceland Rise 

 (RAPiD-12-1k) 

Marine 62.1 -17.8 Globigerina bulloides Mg/Ca 

Globigerina bulloides 
18

O 

 

Globorotalia inflata Mg/Ca 

Globorotalia inflata 
18

O 

 

Sea surface temperature 

Sea surface salinity 

Sea surface density 

Thermocline temperature 

Thermocline salinity 

Thermocline density 

Thermocline-surface density 

Thornalley et al. (2009) 

Southern Ocean 

(TTN057-13) 

Marine -53.2 5.1 Ice-rafted quartz Temperature Hodell et al. (2001) 

Southern Ocean 

(TTN057-17) 

Marine -50 6 Diatoms (MAT) 

Diatoms (MAT) 

Diatoms (MAT) 

Feb sea surface temperature 

August sea surface temperature 

Months of sea ice 

Nielsen et al. (2004) 

Steregoiu Lake 47.8 23.6 Pollen (MAT) 

Pollen (MAT) 

Pollen (MAT) 

Pollen (MAT) 

Mean annual precipitation 

Mean annual temperature 

Warm month temperature 

Cold month temperature 

Feurdean et al. (2008) 

Svalbard (MD99-2305) Marine 77.8 15.3 Cassidulina reniforme
18

O Sea ice amount Hald and Korsun (2008) 
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Taylor Dome Ice -77.8 158.7 

18
O 

D 

Na 

Ca 

Temperature 

Temperature 

Sea ice area, transport vigor 

Dust availability, transport vigor 

Mayewski et al. (1996), Steig 

et al. (1998),  Steig et al. 

(2000) 

Tenaghi Philipon Peat 40.6 24.2 Pollen (MAT) 

Pollen (MAT) 

Pollen (MAT) 

Mean annual precipitation  

DJF temperature 

JJA temperature 

Pross et al. (2009) 

Tigre Perdido Cave -5.9 -77.3 
18

O Precipitation van Breukelen et al. (2008) 

Tilo Lake 7.1 38.1 Diatom (G) Precipitation-evaporation Telford and Lamb (1999) 

Titicaca Lake -16.0 -69.4 Bulk organic
13

C Precipitation-evaporation Baker et al. (2005) 

Valencia Lake 10.2 -67.8 Heterocypris communis
18

O 

% CaCO3 

Precipitation-evaporation 

Precipitation-evaporation 

Curtis et al. (1999) 

Vanndalsvatnet Lake 61.6 7.7 Pollen (WA-PLS) 

Pollen (WA-PLS) 

Pollen (WA-PLS) 

July temperature 

January temperature 

Mean annual precipitation 

Nesje et al. (2006) 

Venado  Cave 10.6 -84.8 
18

O Precipitation Lachniet et al. (2004) 

Victoria Lake 0.1 32.8 Principal components of diatoms Precipitation-evaporation Stager and Mayewski (1997) 

Vostok Ice -78.5 106.8 D Temperature Petit et al. (1999) 

Zhuyeze Lake 39.0 103.3 % Picea+Pinus  

Mountain pollen concentration 

Runoff 

Runoff 

Chen et al. (2006) 

 

 

1
 Proxies with detected 8.2 ka anomaly in bold. 

 

2
 Method used for climate reconstruction in parentheses: PLS=Partial least-squares regression, WA-PLS=Weighted-averaging partial 

least-squares regression, ANN=Artificial Neural Network Technique, SIMMAX=SIMMAX transfer function, MAT=Modern 

Analogue Technique, WA=Weighted-averaging, IK=Imbrie and Kipp transfer function, G=Gasse transfer function 
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