Reviewer #1 (Anders Carlson)

In the intro, there is now geochemical data from Hudson Strait (Carlson et al., 2009, GRL) and northwest Labrador Sea (Hoffman et al., 2012, GRL) that directly constrain the timing and forcing of the 8.2 ka event; be good to mention these (although it is asking to reference my work, these studies pertain to arguments that the 8.2 event wasn't caused by Lake Agassiz; e.g., Alley & Augustdottir and Rohling & Palike reviews in 2005, plus more recent arguments by Condron & Winsor, 2011, GRL).

We now reference the geochemical data and also added a sentence about some of the remaining uncertainties about the forcing of the 8.2 ka event (e.g., Rohling and Palike, 2005; Condron and Winsor, 2011; Gregoire et al., 2012; Tornqvist and Hijma et al., 2012).

Also in the intro, I would at least mention that there is still a Laurentide ice sheet before/during the 8.2 event that was still affecting climate (Carlson et al., 2008, Nature Geoscience; Renssen et al., 2009, Nature Geoscience).

We added these references and now mention the remnant Laurentide ice sheet as one way in which the background climate of the early Holocene was different from that of today.

In terms of North Atlantic records, two papers are either published/or in press from the Labrador Sea that include Mg/Ca temps and d18Osw records covering the 8.2 ka event (Hoffman et al. 2012 GRL, northwest LS; Winsor et al., 2012/in press, G3 northeast LS) that show cooling and decreased d18Osw; the cooling is likely a summer signal given the foraminifera habitat. Another two papers of Young et al. (2011 GRL; 2012 Science) provide evidence for at least ice-margin standstills in west Greenland and Baffin Island, respectively, during the 8.2 ka event; again likely summer signals.

As the resolution of these records is lower than our selection criteria, they were not included in the analysis. But, we now highlight these records in the discussion.

In the methods, over what interval must the record have </= 50 yr resolution? For many records, resolution varies. Also, some records that may not make this cutoff could be included in Fig. 5 (i.e., Cariaco Mg/Ca and Ti records for instance).

We added that the resolution criterion applies to the interval from 7.9 to 8.5 calendar ka. We agree that records with somewhat lower resolution (up to perhaps ~100 yrs resolution) can still contribute some information about the event, particularly those records with quantitative reconstructions of climate anomalies, and we have included more of these in our discussion section (see also comments from Reviewer #2 on this subject). We decided not to include them in Figure 5 because our goal was to focus on higher-resolution anomalies.

Also in terms of methods, with all these records, have the authors thought of using EOF analysis to see if these patterns hold up under such an objective analysis? EOF analysis has proven useful in defining the Younger Dryas (Clark et al., 2002, Nature; Shakun & Carlson, 2010, QSR, Clark

et al., 2012, PNAS). Just a thought that may be worth trying and easy to do if they have the records already in digital format.

We tried Principal Component (EOF) analysis, but none of the PCs showed a clear 8.2 ka event. This is likely because the duration of the event (~150-200 yrs) is similar to the uncertainty in absolute ages of the time series, so that the event anomalies don't "line up" very well across records. The analysis we present in the paper has enough flexibility to accommodate age model uncertainties and is also objective.

And, in defining magnitude of the event, I do not see a discussion of proxy uncertainty. For calibrated temps which I am more familiar with, this is no better than at least 1 C and more likely 1.2-1.5 C. Are the anomalies significant in terms of the proxy used? This should be addressed. This is an important point that was also raised by reviewer #2.

We added columns to Tables 1 and 2 with estimates of the calibration uncertainty. The calibration uncertainties are similar in size to the 8.2 ka anomalies, a significant point that we now note in a new paragraph in the discussion.

Finally, the d18O comparison, the authors mix together marine and terrestrial records; are the marine records d18Osw or just raw d18O? the former is the hydrologic record, the latter is both temp and hydrologic changes. Sufficient records exist now to define d18Osw changes during the 8.2 event (e.g., see Hoffman et al., 2012 for the North Atlantic); maybe worth breaking this down a bit more if the paper is supposed to be a benchmark for models, the users of which often mistake one proxy for another.

We separated the d18O records in Table 3 and Figure 6 into three categories: precipitation, surface waters and carbonate. These categories and their different climatic meanings are now described in more detail in the text.

Reviewer #2 (Anonymous)

Other high-resolution data which have recorded the 8.2 ka event are missing in your paper; they should be included in your synthesis. I mean: - France, lake Annecy (Magny et al, 2003); Furthermore, Magny also proposed in the same paper a regional synthesis on the 8.2 ka based on various paleoclimate records. Could you mention (discuss) this paper in your text? - Balkans: lake Malik (Bordon et al., 2009), lake Prespa (Aufgebauer et al., 2012); - Aegean Sea: SL 152 (Kotthoff et al., 2008; Dormoy et al., 2009); - Alboran Sea (Combourieu-Nebout et al., 2009 : pollen and SST; Dormoy et al., 2009). It is of note that several transfer functions have been applied to lot of these data to produce quantitative estimates of seasonal temperature and precipitation. I think that you can add them in your study to refine your spatial coverage in the Mediterranean area (area where models and data are not in agreement).

Thank you for pointing us to these records. The Aegean Sea and Alboran Sea records met our selection criteria and we included them in our analysis. The other records, while lower resolution, are also quite useful in that they have quantitative reconstructions. The Magny et al. 2003 synthesis, in particular, presents important ideas directly related to our

discussion of precipitation changes over Europe. So, we now reference the rest of these studies in our discussion.

Your discussion is concise but very (too?) short. In my point of view, important points are missing in a paper which focuses on proxies data: -a discussion about the seasonality: your study is a compilation of different climate signals based on pollen data, speleothems, ice records, alkenones, Mg/Ca, chironomids, forams, and isotopic data. However, some proxies reconstruct seasonal parameters (for example, lake-levels indicate summer precipitations, chironomids record summer temperatures) while other proxies rather record an annual signal. Lakes, pollen, and isotopic data can produce an opposite climate trend which can be explained by the fact that these proxies may reflect processes linked to seasonality. This is an important point which needs to be discussed. - I invite you to add a point in your discussion about the proxy uncertainties.

We added information about seasonality, where available, to the new "Climate signal" column of Table S1 and now highlight this general point about seasonal signatures in a new paragraph in the discussion.

Is the cooling of 1.0 to 1.2 _C statistically significant? For example, with such a value obtained by applying transfer functions to pollen data, you can be inside the error bar. I invite you to check this point.

This point was also raised by reviewer #1, and we have added columns to Tables 1 and 2 with estimates of the calibration uncertainty. The calibration uncertainties are similar in size to the 8.2 ka anomalies, a significant point that we now note in a new paragraph in the discussion.

Could you add more details on the methods used to provide the climate anomalies (MAT, WA/PLS. . .)? It's a very important point, because the choice of the method can induce different results (see Peyron et al 2011, for more details). You can just add a column with the method used in your table 1.

We added this information to the "Proxies analyzed" column of Table S1 and referenced Peyron et al. 2011 in the discussion.

Figure 3 a: colder (warmer) than what? Please be more precise. We added "relative to early Holocene background climate (defined as the average between 7.4-7.9 and 8.5-9.0 calendar ka)."

Figure 4 a: drier (wetter) than what? Please be more precise. We added "relative to early Holocene background climate (defined as the average between 7.4-7.9 and 8.5-9.0 calendar ka)."

Table S1: use the same term as in figure 1: cave or speleothem. We changed the word "speleothem" in figure 1 to "cave." Be careful with the terminology: pollen data is a proxy which can be analysed from lakes or marine cores (first column). I invite you to be more precise, put pollen in the column "proxies analysed", and also add and fill another column entitled "climate signal" after the column "proxies analysed".

We reclassified all records from the "pollen" archive in Figure 1 and Table S1 to belong to the lake, marine or peat archive, as appropriate. These records now are specified as "pollen" in the "Proxies analyzed" column of Table S1 and a new column for "Climate signal" is provided for all records.

Proxy benchmarks for intercomparison of 8.2 ka

2 simulations

3

C. Morrill^{1,2}, D.M. Anderson², B.A. Bauer², R. Buckner², E.P. Gille^{1,2}, W.S.
Gross², M. Hartman^{1,2}, A. Shah^{1,2}

6 [1]{CIRES, University of Colorado, Boulder, Colorado USA}

7 [2] {NOAA's National Climatic Data Center, Boulder, Colorado USA}

8 Correspondence to: C. Morrill (carrie.morrill@colorado.edu)

9

10 Abstract

11 The Paleoclimate Modelling Intercomparison Project (PMIP3) now includes the 8.2 ka event as a test of model sensitivity to North Atlantic freshwater forcing. To provide benchmarks for 12 intercomparison, we compiled and analyzed high-resolution records spanning this event. Two 13 14 previously-described anomaly patterns that emerge are cooling around the North Atlantic and drier conditions in the Northern Hemisphere tropics. Newer to this compilation are more 15 robustly-defined wetter conditions in the Southern Hemisphere tropics and regionally-limited 16 17 warming in the Southern Hemisphere. Most anomalies around the globe lasted on the order of 18 100 to 150 years. More quantitative reconstructions are now available and indicate cooling of 1.0 to 1.2 °C and a ~ 20% decrease in precipitation in parts of Europe, as well as spatial 19 gradients in δ^{18} O from the high to low latitudes. Unresolved questions remain about the 20 21 seasonality of the climate response to freshwater forcing and the extent to which the bipolar 22 seesaw operated in the early Holocene.

23

24 **1** Introduction

The 8.2 ka event is <u>likely</u> one of the best examples from the past of the climate system's reponse to North Atlantic freshwater forcing. Several lines of evidence support the hypothesis that the drainage of proglacial Lake Agassiz into the Hudson Bay at about 8.2 calendar kiloyears before present (calendar ka BP) slowed the Atlantic Meridional Overturning Circulation (AMOC) and caused the climate anomalies observed in a wide variety of proxy

1 records. This evidence includes the stratigraphic record of lake drainage (Barber et al., 1999), 2 reconstructions of sea level rise (Li et al., 2012; Tornqvist and Hijma, 2012), geochemical 3 reconstructions from the Hudson Strait and northwest Labrador Sea of freshwater discharge (Carlson et al., 2009;Hoffman et al., 2012), proxy indicators of AMOC weakening (Ellison et 4 5 al., 2006;Kleiven et al., 2008), and climate model experiments testing the linkage between freshwater forcing and climate change (LeGrande et al., 2006; Wiersma and Renssen, 2006). 6 7 There are some remaining uncertainties about the forcing of the 8.2 ka event, including the 8 the possibility of multiple freshwater releases (Gregoire et al., 2012;Teller et al., 9 2002; Torngvist and Hijma, 2012), the pathway of freshwater once it reached the North Atlantic (Condron and Winsor, 2011), and the contribution of other climate forcings around 10 11 that time (Rohling and Pälike, 2005). Yet, tThe 8.2 ka event is unique among past meltwater 12 events in that the hypothesized forcing is has been relatively well quantified, the background 13 climate state is not too dissimilar from the present, and the duration is short enough to make model simulations of the event very feasible. Also, the early Holocene background climate 14 15 state was not too dissimilar from the present, with one main difference being the presence of a remnant Laurentide Ice Sheet both before and after the 8.2 ka event (Carlson et al., 16 2008; Renssen et al., 2009). For these reasons, the the 8.2 ka event was selected for a model 17 18 intercomparison for the third phase of the Paleoclimate Modelling Intercomparison Project (PMIP3; Morrill et al., 2012). 19

20 Paleoclimate proxy data are essential as a benchmark for the model intercomparison. The last 21 global syntheses of proxy data around 8.2 ka were published in 2005-2006 and came to 22 several common conclusions (Alley and Ágústsdóttir, 2005;Wiersma and Renssen, 23 2006;Morrill and Jacobsen, 2005;Rohling and Pälike, 2005). The most robust finding was 24 cold anomalies in Greenland of up to 7°C and in Europe of about 1°C. All also agreed on the lack of signal in the Southern Hemisphere, though few records were available at the time. 25 26 Differing conclusions were reached about precipitation changes in the Northern Hemisphere 27 tropics, with some studies arguing for drying in specific regions and another claiming that these anomalies were too long-lived to be the actual 8.2 ka event (Rohling and Pälike, 2005). 28

Since these previous syntheses were published, the number of high-resolution records spanning the 8.2 ka event has doubled. In this paper, we compile and analyze these proxy records. Our main goals are to update previous conclusions reached about climate anomalies at 8.2 ka, particularly those regarding the tropics and Southern Hemisphere. We also place special attention on presenting measures of the duration and magnitude of climate anomalies
 that can be used to evaluate model output quantitatively.

3

4 2 Dataset description and analysis methods

5 We selected previously-published proxy records for our analysis based on several criteria. 6 First, the records have a sampling resolution of 50 years or better over the interval 7.9 to 8.5 7 calendar ka. This cutoff was chosen so that detection of a short event (~150 years) would be 8 feasible. Second, the records have age models with an estimated precision of better than 9 several hundred years taking into account the precision of radiocarbon or U-Th dating and 10 uncertainties that arise from age model interpolation between age control points. This is long 11 relative to the estimated duration of the 8.2 ka event, but better precision is not currently 12 available for the majority of paleoclimate records spanning this time. Third, the proxies 13 measured have well-supported climatic interpretations based on knowledge of modern 14 processes. A total of 249 time-series from 112 sites met the above criteria (Figure 1, Table 15 S1).

16 The number of sites has doubled since the last global syntheses of the 8.2 ka event were 17 published in 2005-2006 (Figure 1), both globally and for each continent. A large proportion of 18 the sites meeting our selection criteria are from Europe. North America is also fairly well-19 represented, and other regions more sparsely sampled. The majority of sites included in this 20 study are either lacustrine or marine. This, too, is relatively unchanged from previous 21 syntheses. Data from about half of the sites have been publically archived and are now 22 available as a consolidated dataset from the World Center for Paleoclimatology (ftp://ftp.ncdc.noaa.gov/pub/data/paleo/8.2ka/8.2ka-data.csv) and as supplementary material 23 24 to this article. For the other half, we digitized records for the statistical analysis.

25 Climate anomalies were identified in these records using a statistical test following the 26 approach of Morrill and Jacobsen (2005). First, we detrended those records with significant long-term linear trends using linear regression; this is necessary because our statistical 27 28 approach loses sensitivity when background trends are present. Then, for each individual 29 record, we measured the mean and variability of the background climate state surrounding 30 each event by calculating the mean (\bar{x}) and standard deviation (σ) of proxy values for two 31 windows between 8.5-9.0 and 7.4-7.9 calendar ka BP (Figure 2). These windows were chosen 32 to bracket the event, while accommodating errors in the age models of several hundred years.

A small number of time-series contained too few data points in one of these windows for a 1 2 robust calculation of \bar{x} and σ ; for these records, we shifted the windows by 100-200 years after making certain that this would not impinge upon any possible anomalous event. Given 3 that many of these proxy records contain substantial noise and that just one outlier data point 4 5 can have a large impact on the calculated standard deviation, we also calculated a series of standard deviations for each window that successively left out one data value at a time. Then, 6 7 we used the lowest standard deviation along with its corresponding mean to define the upper 8 and lower bounds of background climate variability as $\bar{x} + 2\sigma$ and $\bar{x} - 2\sigma$. The two windows commonly had different values for \bar{x} and σ , so we used the maximum and minimum values 9 for $\overline{x} + 2\sigma$ and $\overline{x} - 2\sigma$, respectively, in order to make the stricter test (Figure 2). Next, we 10 11 identified all values in the proxy time-series between 7.9-8.5 calendar ka that were beyond these respective bounds. Since, on average, about 5% of data points will fall outside the 2σ 12 13 bound, other criteria were set for limiting false positives. Only excursions with at least two 14 (three for records with sub-decadal resolution) adjacent anomalous values with the same 15 signed anomaly were indentified. This condition makes it statistically unlikely (p < 0.05) that 16 the excursions are due to random variations in the time-series (Feller, 1966).

17 For records with a detected climate anomaly and a resolution of 15 years or better, we also report on event duration using the moving two-tailed z-test method of Wiersma et al. (2011). 18 19 We limited this analysis to the highest-resolution records because only these were sampled densely enough in time to be meaningfully compared to climate model output. Data between 20 7.9-8.5 calendar ka BP were sampled in overlapping 30-year increments and their means 21 22 compared to the mean and variance of the background climate, defined as the periods between 23 7.4-7.9 and 8.5-9.0 calendar ka BP. Like Wiersma et al. (2011), we defined the duration of the 8.2 ka event as the longest stretch of consecutive overlapping windows whose z-values were 24 all significant at the 99% level. 25

The number of proxies that quantitatively estimate temperature and precipitation has grown greatly since 2005. We used these to calculate anomalies near 8.2 ka by again comparing values between 7.9-8.5 calendar ka BP to the average of all data falling between 7.4-7.9 and 8.5-9.0 calendar ka BP. We report quantitative estimates in two ways: as the single maximum anomaly value and as a mean value calculated over a subjectively-determined time interval covering the 8.2 ka event. The subjective approach is necessary because the resolution of many of these records is not high enough to permit a more objective measure of event duration, such as the z-test. We note that the mean anomaly over a defined time interval is a
 measure that has been useful for discussing the magnitude of the 8.2 ka event (e.g., Thomas et
 al., 2007;Kobashi et al., 2007) and is a quantity that is easily compared to model output.

4

5 3 Climate anomaly patterns at 8.2 ka

6 3.1 Temperature

7 Temperature-sensitive proxies indicate cold anomalies around the North Atlantic at 8.2 ka 8 (Figure 3a), a result common to previous syntheses. New to this study is some evidence for 9 warm anomalies in the Southern Hemisphere (Figure 3a). These occur in lake records from Nightingale Island in the south Atlantic (Ljung et al., 2008) and Amery Oasis in Antarctica 10 11 (Cremer et al., 2007), as well as the deuterium record from Vostok (Petit et al., 1999). At the 12 same time, however, several additional records from the Southern Hemisphere indicate cooler 13 conditions at 8.2 ka. Thus, temperature change in the Southern Hemisphere appears to have 14 been regionally heterogeneous.

Isotopic records from the annual-resolved Greenland ice cores estimate the duration of temperature anomalies at 8.2 ka very precisely at 150-160 years (Thomas et al., 2007;Kobashi et al., 2007). Our analysis of event duration using the moving z-test yields similar values for the GISP2 and NGRIP ice cores in Greenland (160-180 years, Figure 3b). According to the moving z-test, event durations in Europe appear to be somewhat shorter than those in Greenland (100-160 years; Figure 3b).

21 Reconstructed mean annual temperature anomalies (MAT) around the circum-North Atlantic 22 are between -0.6 and -1.2 °C with the exception of Greenland, which seems to have 23 experienced larger cooling (Table 1, Figure 3a). A few estimates are available for summer and winter temperatures. Two-Three pollen records of winter temperature from the Aegean Sea, 24 25 Greece and Romania have 8.2 ka anomalies that are greater than those for MAT in the same region (Table 1; Pross et al., 2009; Feurdean et al., 2008; Dormoy et al., 2009). A third site in 26 27 northern Europe, Vanndalsvatnet (Nesje et al., 2006), shows a winter warming, which may 28 not be coeval with the 8.2 ka event since it immediately precedes a significant cooling. At 29 another site, Gardar Drift (Ellison et al., 2006), the magnitude of winter cooling is quite similar to the amount of summer cooling. Lower-resolution records with quantitative 30 reconstructions paint an equally complex picture, including inferences of greatest cooling in 31

summer (Magny et al., 2001), greatest cooling in the winter (Bordon et al., 2009) and equal
summer and winter cooling (Rousseau et al., 1998). Thus, from these data, it is still
ambiguous whether winter temperatures cooled more than summer temperatures, as suggested
for the 8.2 ka event (Rohling and Pälike, 2005) and for other past freshwater events (Denton
et al., 2005).

6 3.2 Precipitation

The pattern of precipitation anomalies at 8.2 ka includes drier conditions over Greenland, the 7 8 Mediterranean, and Northern Hemisphere tropics and wetter conditions over northern Europe 9 and parts of the Southern Hemisphere tropics (Figure 4a). While reduced rainfall in the 10 Northern Hemisphere tropics at 8.2 ka was noted in previous syntheses, new records from 11 South America showing wetter conditions strengthen support for the idea that the mean 12 position of the Intertropical Convergence Zone shifted southward (Cheng et al., 2009;van Breukelen et al., 2008). The pattern of precipitation anomalies over Europe is also a new 13 14 finding. While previous syntheses documented decreased precipitation in the Mediterranean (Magny et al., 2003), the pattern of wetter conditions in northern Europe is a newer result. 15 Many of the records from northern Europe are indicators of increased runoff associated with 16 17 the spring snowmelt (Hammarlund et al., 2005;Hede et al., 2010;Zillén and Snowball, 18 2009;Snowball et al., 1999;Snowball et al., 2010) while the inference of dry conditions in 19 southern Europe comes from pollen-based reconstructions for mean annual precipitation (Pross et al., 2009;Feurdean et al., 2008;Dormoy et al., 2009). 20

21 According to the moving z-test, most of the high-resolution precipitation anomalies last on the 22 order of 100 to 150 years (Figure 4b). The exceptions to this general conclusion are two 23 shorter anomalies of 30 to 50 years in Sweden (Snowball et al., 1999; Snowball et al., 2010) 24 and two longer anomalies of 230 to 280 years in the Asian monsoon region (Dykoski et al., 25 2005; Wang et al., 2005; Fleitmann et al., 2003). The Swedish lake records likely record 26 changes in erosion related to spring snowmelt runoff and their shorter event duration might 27 reflect differences in sampling for extreme events as opposed to a change in the mean state. 28 Longer anomalies in Asia were originally discussed by Rohling and Pälike (2005) and 29 attributed to a multi-century cooling upon which the 8.2 ka event might be superimposed. 30 Since 2005, however, there are new precipitation records from the Northern Hemisphere tropics with event durations of < 150 years (Figure 4b), lending support to the conclusion that 31 precipitation did decrease in these areas coincident with the 8.2 ka event. 32

There are just <u>five-six</u> sites with quantitative precipitation reconstructions, all of which are mean annual quantities in either Greenland or Europe. <u>Four-Five</u> of these sites show precipitation decreases, including 8% in central Greenland and <u>13-</u>17% in southeastern Europe (Table 2; Hammer et al., 1997;Rasmussen et al., 2007;Pross et al., 2009;Feurdean et al., 2008). The <u>fifth-sixth</u> record, Vanndalsvatnet, shows a precipitation increase, but again there is some ambiguity in the record as to which of several fluctuations might actually be the 8.2 ka event (Nesje et al., 2006).

8 3.3 Other changes

9 Some of the proxy records we analyzed reflect climate variables other than temperature and 10 precipitation, or show the combined influences of temperature and precipitation (e.g., glacier advances). These records and their detected 8.2 ka anomalies are shown in Figure 5. Of 11 12 particular interest are indications of reduced AMOC (Arz et al., 2001;Ellison et al., 2006), glacier advances in Europe and North America (Menounos et al., 2004; Matthews et al., 13 14 2000; Nesje et al., 2001) and strengthening of the Asian winter monsoon (Yancheva et al., 2007). We also included sea ice in this discussion, even though it has a strong connection to 15 temperature, because it is a variable predicted by climate models and because it participates in 16 17 important ocean feedbacks. Significantly, several records near convection areas in the North 18 Atlantic indicate sea ice expansion at 8.2 ka (Jennings et al., 2002; Moros et al., 2004; Hald and Korsun, 2008;Sarnthein et al., 2003). Lastly, two varved lake records in central North 19 20 America show an increase in dust flux at 8.2 ka, possibly related to exposure of Lake Agassiz 21 sediments (Hu et al., 1999;Dean et al., 2002).

22 With the advent of oxygen isotope-enabled climate models, one of the more comprehensive tests of 8.2 ka simulations uses δ^{18} O anomalies. In Table 3, we present δ^{18} O anomalies 23 separated into three categories: precipitation, surface water and carbonate. Each of these 24 categories reflects different climatic signals. The δ^{18} O of carbonate, which is precipitated 25 from groundwater or surface water, combines the greatest number of signals. These include 26 the δ^{18} O signature of the host water, which records the combined influence of precipitation 27 δ^{18} O and any evaporative enrichment, as well as the temperature-dependent fractionation of 28 oxygen that occurs during carbonate formation. The δ^{18} O of surface water is derived from 29 carbonate δ^{18} O using an independent temperature time series to subtract this temperature-30 related fractionation. It is most direct to compare modeled δ^{18} O to reconstructed seawater or 31

1 precipitation values, but for some proxies, such as speleothemscave δ^{18} O, it is sometimes 2 reasonable to assume that measured values <u>can accurately</u> reflect precipitation δ^{18} O changes <u>if</u> 3 <u>changes in ambient temperature and evaporative enrichment are negligible</u>. This may be less 4 true for δ^{18} O of lake carbonates, which depending on the residence time of water in the lake, 5 <u>are can be significantly</u> changed through evaporative enrichment. While keeping in mind 6 these differences, we present all δ^{18} O values together in Table 3.

We also note that some of these δ^{18} O values were measured relative to the Standard Mean Ocean Water (SMOW) standard while others were relative to the PeeDee Belemnite (PDB) standard. The SMOW and PDB scales are offset by ~30 ‰, but are otherwise linearly related on a nearly 1:1 line (Coplen et al., 1983;Clark and Fritz, 1997). Thus, Table 3 combines anomaly values from the SMOW and PDB scales with no conversion between the two.

12 In Greenland, ice cores record a decrease of -0.8 to -1.2 ‰ (Figure 6, Table 3). In the North Atlantic and Europe, the decrease is generally less, on the order of -0.4 to -0.8 ‰. These 13 14 isotopic anomalies are generally thought to reflect temperature changes effects on the δ^{18} O of precipitation, although there could be some source effect from the meltwater added to the 15 16 North Atlantic, as well (LeGrande et al., 2006). The smaller changes outside of Greenland are in line with the smaller temperature changes reconstructed quantitatively from Europe 17 (section 3.1). The Northern Hemisphere tropics record an increase of 0.4 to 0.8 ‰, indicating 18 decreased precipitation amount. Conversely, the Southern Hemisphere tropics experienced a 19 decrease of -0.5 to -1.3 ‰, as precipitation likely increased. 20

21

22 **4** Discussion and conclusions

The most robust features of the 8.2 ka event from proxy records include: mean annual cooling in the North Atlantic and Europe of abouton the order of ~1 1.0 to 1.2 °C; event duration generally of 100 to 150 years for both temperature and precipitation; decreased precipitation in the Asian monsoon region, Central America and northern South America; and decreases in δ^{18} O of -0.8 to -1.2 ‰ in Greenland, -0.4 to -0.8 ‰ in Europe and 0.4 to 0.8 ‰ in Northern Hemisphere tropics. These anomalies are all supported by consistent evidence from multiple sites and are unambiguous enough that simulations of the 8.2 ka event should reproduce them.

There are a number of proxy observations that seem likely to hold true, but are somewhat less certain because they have been found at only a few sites. These include: strengthened Asian winter monsoon; increased precipitation in the Southern Hemisphere tropics; and reductions in precipitation on the order of 10% and 20% for Greenland and southern Europe, respectively. We have enough confidence in these observations that they could be used for model-proxy comparison, but we would not necessarily make strong statements about model skill based on whether a model can reproduce these anomalies.

6 Both of these sets of proxy anomalies are changes that are expected given our current 7 understanding of how freshwater forcing of the North Atlantic impacts climate. When the 8 AMOC slows, reduction in northward oceanic heat transport cools the Northern Hemisphere 9 (e.g., Manabe and Stouffer, 1997). Decreased precipitation in the Northern Hemisphere is, in 10 general, expected due to cooler sea surface temperatures and more sea ice, both leading to less 11 evaporation from the North Atlantic, as well as decreased specific humidity in a colder 12 atmosphere according to the Clausius-Clayperon relationship (Vellinga and Wood, 2002). 13 Strengthening of the Asian winter monsoon is another expected consequence of a colder 14 Northern Hemisphere (Sun et al., 2012).

15 It is important to emphasize that the uncertainty in the quantitative calibrations of climate is 16 similar to the magnitude of the reconstructed climate anomalies at 8.2 ka (Table 1,2). For 17 example, standard errors for most of the mean annual temperature calibrations are ~ 1 °C regardless of proxy type (Table 1). Also for the pollen calibrations, the magnitude of 18 19 reconstructed climate anomalies depends strongly on the particular reconstruction technique 20 used, particularly for seasonal temperature (Table 1; Dormoy et al., 2009; Peyron et al., 2011). This level of uncertainty reduces the confidence that can be placed in the quantitative 21 22 reconstructions and limits to some extent their usefulness for model comparison. The fact that 23 the reconstructed anomalies in mean annual temperature are consistent across vastly different 24 proxy types does suggest, however, that they still have some utility.

Another consideration in reducing discrepancies between nearby proxy sites as well as 25 between models and data is the seasonality of proxy records. Some proxies necessarily 26 27 indicate seasonal patterns (e.g., organisms that grow during the summer will only record warm season conditions) while others reflect annual means (e.g., lake water balance integrates 28 29 over the annual cycle). However, our temperature and precipitation compilations presented in 30 Figures 3 and 4 do not discriminate between annual mean and seasonal signatures. Table S1 indicates the seasonality of each proxy, if this information is known. One goal for future 31 32 compilations is to improve the separation of seasonal signals.

2 Some other patterns are suggested by proxy records, but so far are too uncertain to be used as 3 benchmarks. These include: winter temperature decreases in Europe of up to 4 to 5.5 °C that 4 are larger than summer temperature decreases; and regional variability in cold and warm 5 anomalies in the Southern Hemisphere high latitudes. Each relates to unresolved questions 6 about the impacts of North Atlantic freshwater forcing. Denton et al. (2005) suggest that 7 wintertime changes were more extreme than those in summer during abrupt events of the last 8 glacial because the Northern Hemisphere was closer to a sea-ice related temperature threshold 9 in the winter. While some proxy records support this seasonal pattern, others indicate 10 substantial summer changes (e.g., Hoffman et al., 2012; Winsor et al., 2012; Young et al., 2012). It is unclear whether a similar sea-ice threshold was in play during the early Holocene. 11 12 While reduction of northward heat transport in the Atlantic might be expected to warm the Southern Hemisphere, as happened at times of North Atlantic freshwater forcing during the 13 14 last glacial (EPICA community members, 2006), this pattern is ambiguous in proxy records of 15 the 8.2 ka event. It remains to be explained whether oceanic heat transport changes were not 16 large enough at 8.2 ka to cause widespread Southern Hemisphere warming, or if fundamental 17 differences between Holocene and last glacial climate determine the likelihood of a bipolar 18 see-saw response.

19

1

20 Acknowledgements

We thank Anders Carlson and an anonymous reviewer for their helpful comments. This work
was supported by a NSF Office of Polar Programs grant to CM (ARC-0713951). We thank all
of the scientists who have archived their data at the World Data Center for Paleoclimatology.
Visualizations were created with the NCAR Command Language version 6.0.0
(http://dx.doi.org/10.5065/D6WD3XH5).

1 References

- Alley, R. B., and Ágústsdóttir, A. M.: The 8k event: Cause and consequence of a major
 Holocene abrupt climate change, Quaternary Science Reviews, 24, 1123-1149, 2005.
- Arz, H. W., Gerhardt, S., Patzold, J., and Rohl, U.: Millennial-scale changes of surface- and
 deep-water flow in the western tropical Atlantic linked to northern hemisphere high-latitude
 climate during the Holocene, Geology, 29, 239-242, 2001.
- 7 Barber, D. C., Dyke, A., Hillaire-Marcel, C., Jennings, A. E., Andrews, J. T., Kerwin, M. W.,
- 8 Bilodeau, G., McNeely, R., Southon, J., Morehead, M. D., and Gagnon, J.-M.: Forcing of the
- 9 cold event of 8,200 years ago by catastrophic drainage of Laurentide lakes, Nature, 400, 344-
- 10 348, 1999.
- 11 Bordon, A., Peyron, O., Lézine, A.-M., Brewer, S., and Fouache, E.: Pollen-inferred Late-
- 12 Glacial and Holocene climate in southern Balkans (Lake Maliq), Quaternary International,
- 13 200, 19-30, 2009.
- 14 Carlson, A. E., LeGrande, A. N., Oppo, D. W., Came, R. E., Schmidt, G. A., Anslow, F. S.,
- Licciardi, J. M., and Obbink, E. A.: Rapid early Holocene deglaciation of the Laurentide ice
 sheet, Nature Geoscience, 1, 620-624, 2008.
- Carlson, A. E., Clark, P. U., Haley, B. A., and Klinkhammer, G. P.: Routing of western
 Canadian Plains runoff during the 8.2 ka cold event, Geophysical Research Letters, 36,
 L14704, 2009.
- 20 Cheng, H., Fleitmann, D., Edwards, R. L., Wang, X., Cruz, F. W., Auler, A. S., Mangini, A.,
- Wang, Y., Kong, X., Burns, S. J., and Matter, A.: Timing and structure of the 8.2 kyr B.P.
 event inferred from d18O records of stalagmites from China, Oman, and Brazil, Geology, 37,
 1007-1010, 2009.
- Clark, I., and Fritz, P.: Environmental Isotopes in Hydrogeology, Lewis Publishers, New
 York, 328 pp., 1997.
- 26 Condron, A., and Winsor, P.: A subtropical fate awaited freshwater discharged from glacial
- 27 Lake Agassiz, Geophysical Research Letters, 38, L03705, 10.1029/2010GL046011, 2011.
- 28 Coplen, T. B., Kendall, C., and Hopple, J.: Comparison of stable isotope reference samples,
- 29 Nature, 302, 236-238, 1983.

- Cremer, H., Heiri, O., Wagner, B., and Wagner-Cremer, F.: Abrupt climate warming in East
 Antarctica during the early Holocene, Quaternary Science Reviews, 26, 2012-2018,
 10.1016/j.quascirev.2006.09.011, 2007.
- Dean, W. E., Forester, R. M., and Bradbury, J. P.: Early Holocene change in atmospheric
 circulation in the Northern Great Plains: an upstream view of the 8.2 ka cold event,
 Quaternary Science Reviews, 21, 1763-1775, 2002.
- Denton, G. H., Alley, R. B., Comer, G. C., and Broecker, W. S.: The role of seasonality in
 abrupt climate change, Quaternary Science Reviews, 24, 1159-1182, 2005.
- Dormoy, I., Peyron, O., Combourieu Nebout, N., Goring, S., Kotthoff, U., Magny, M., and
 Pross, J.: Terrestrial climate variability and seasonality changes in the Mediterranean region
 between 15000 and 4000 years BP deduced from marine pollen records, Climate of the Past,
 5, 615-632, 2009.
- 13 Dykoski, C. A., Edwards, R. L., Cheng, H., Yuan, D., Cai, Y., Zhang, M., Lin, Y., Qing, J.,
- 14 An, Z., and Revenaugh, J.: A high-resolution, absolute-dated Holocene and deglacial Asian
- monsoon record from Dongge Cave, China, Earth and Planetary Science Letters, 233, 71-86,2005.
- Ellison, C. R. W., Chapman, M. R., and Hall, I. R.: Surface and deep ocean interactions
 during the cold climate event 8200 years ago, Science, 312, 1929-1932, 2006.
- EPICA community members: One-to-one coupling of glacial climate variability in Greenlandand Antarctica, Nature, 444, 195-198, 2006.
- Feller, W.: An Introduction to Probability Theory and Its Applications, John Wiley, Hoboken,
 N.J., 626 pp., 1966.
- Feurdean, A., Klotz, S., Mosbrugger, V., and Wolhfarth, B.: Pollen-based quantitative
 reconstructions of Holocene climate variability in NW Romania, Palaeogeography,
 Palaeoclimatology, Palaeoecology, 260, 494-504, 2008.
- 26 Fleitmann, D., Burns, S. J., Mudelsee, M., Neff, U., Kramers, J., Mangini, A., and Matter, A.:
- 27 Holocene forcing of the Indian monsoon recorded in a stalagmite from Southern Oman,
- 28 Science, 300, 1737-1739, 2003.
- 29 Gregoire, L. J., Payne, A. J., and Valdes, P. J.: Deglacial rapid sea level rises caused by ice-
- 30 sheet saddle collapses, Nature, 487, 219-223, 2012.

- Hald, M., and Korsun, S.: The 8200 cal. yr BP event reflected in the Arctic fjord, Van
 Mijenfjorden, Svalbard, The Holocene, 18, 981-990, 2008.
- Hammarlund, D., Björck, S., Buchardt, B., and Thomsen, C. T.: Limnic responses to
 increased effective humidity during the 8200 cal. yr BP cooling event in southern Sweden,
 Journal of Paleolimnology, 34, 471-480, 10.1007/s10933-005-5614-z, 2005.
- 6 Hammer, C. U., Andersen, K. K., Clausen, H. B., Dahl-Jensen, D., Hvidberg, C. S., and
- 7 Iversen, P.: The stratigraphic dating of the GRIP ice core, Special Report of the Geophysical
- 8 Department, Niels Bohr Institute for Astronomy, Physics and Geophysics, University of
- 9 Copenhagen, 1997.
- 10 Hede, M. U., Rasmussen, P., Noe-Nygaard, N., Clarke, A. L., Vinebrooke, R. D., and Olsen,
- 11 J.: Multiproxy evidene for terrestrial and aquatic ecosystem responses during the 8.2 ka cold
- 12 event as recorded at Højby Sø, Denmark, Quaternary Research, 73, 485-495, 2010.
- 13 Hoffman, J. S., Carlson, A. E., Winsor, K., Klinkhammer, G. P., LeGrande, A. N., Andrews,
- 14 J. T., and Strasser, J. C.: Linking the 8.2 ka event and its freshwater forcing in the Labrador
- 15 Sea, Geophysical Research Letters, 39, L18703, 2012.
- 16 Hu, F. S., Slawinski, D., Wright, H. E., Ito, E., Johnson, R. G., Kelts, K. R., McEwan, R. F.,
- 17 and Boedigheimer, A.: Abrupt changes in North American climate during early Holocene
- 18 times, Nature, 400, 437-440, 1999.
- Jennings, A. E., Knudsen, K. L., Hald, M., Hansen, C. V., and Andrews, J. T.: A midHolocene shift in Arctic sea-ice variability on the East Greenland Shelf, The Holocene, 12,
 49-58, 2002.
- 22 Kleiven, H. F., Kissel, C., Laj, C., Ninnemann, U. S., Richter, T. O., and Cortijo, E.: Reduced
- North Atlantic Deep Water coeval with the Glacial lake Agassiz freshwater outburst, Science,
 319, 60-64, 2008.
- 25 Kobashi, T., Severinghaus, J. P., Brook, E. J., Barnola, J.-M., and Grachev, A. M.: Precise
- timing and characterization of abrupt climate change 8200 years ago from air trapped in polar
- 27 ice, Quaternary Science Reviews, 26, 1212-1222, 2007.
- 28 LeGrande, A. N., Schmidt, G. A., Shindell, D. T., Field, C. V., Miller, R. L., Koch, D. M.,
- 29 Faluvegi, G., and Hoffmann, G.: Consistent simulations of multiple proxy responses to an

- abrupt climate change event, Proceedings of the National Academy of Sciences, 103, 837 842, 2006.
- 3 Li, Y.-X., Tornqvist, T. E., Nevitt, J. M., and Kohl, B.: Synchronizing a sea-level jump, final
- 4 Lake Agassiz drainage, and abrupt cooling 8200 years ago, Earth and Planetary Science
- 5 Letters, 315-316, 41-50, 2012.
- Ljung, K., Björck, S., Renssen, H., and Hammarlund, D.: South Atlantic island record reveals
 a South Atlantic response to the 8.2 kyr event, Climate of the Past, 4, 35-45, 2008.
- 8 Magny, M., Guiot, J., and Schoellammer, P.: Quantitative reconstruction of Younger Dryas to
- 9 mid-Holocene paleoclimates at Le Locle, Swiss Jura, using pollen and lake-level data,
- 10 Quaternary Research, 56, 170-180, 2001.
- 11 Magny, M., Bégeot, C., Guiot, J., and Peyron, O.: Contrasting patterns of hydrological
- 12 changes in Europe in response to Holocene climate cooling phases, Quaternary Science
- 13 Reviews, 22, 1589-1596, 2003.
- Manabe, S., and Stouffer, R. J.: Coupled ocean-atmosphere model response to freshwater
 input: Comparison to Younger Dryas event, Paleoceanography, 12, 321-336, 1997.
- 16 Matthews, J. A., Dahl, S. O., Nesje, A., Berrisford, M. S., and Andersson, C.: Holocene
- 17 glacier variations in central Jotunheimen, southern Norway based on distal glaciolacustrine
- 18 sediment cores, Quaternary Science Reviews, 19, 1625-1647, 2000.
- 19 Menounos, B., Koch, J., Osborn, G., Clague, J. J., and Mazzucchi, D.: Early Holocene glacier
- 20 advance, southern Coast Mountains, British Columbia, Canada, Quaternary Science Reviews,
- 21 23, 1543-1550, 2004.
- Moros, M., Emeis, K., Risebrobakken, B., Snowball, I., Kuijpers, A., McManus, J., and
 Jansen, E.: Sea surface temperatures and ice rafting in the Holocene North Atlantic: Climate
 influences on northern Europe and Greenland, Quaternary Science Reviews, 23, 2113-2126,
- 25 2004.
- 26 Morrill, C., and Jacobsen, R. M.: How widespread were climate anomalies 8200 years ago?,
- 27 Geophysical Research Letters, 32, L19701, 2005.
- 28 Morrill, C., LeGrande, A. N., Renssen, H., Bakker, P., and Otto-Bliesner, B. L.: Model
- 29 sensitivity to North Atlantic freshwater forcing at 8.2 ka, Climate of the Past Discussion, 8,
- 30 3949-3976, 2012.

- Nesje, A., Matthews, J. A., Dahl, S. O., Berrisford, M. S., and Andersson, C.: Holocene
 glacier fluctuations of Flatebreen and winter-precipitation changes in the Jostedalsbreen
 region, western Norway, based on glaciolacustrine sediment records, The Holocene, 11, 267 280, 2001.
- Nesje, A., Bjune, A. E., Bakke, J., Dahl, S. O., Lie, O., and Birks, H. J. B.: Holocene
 palaeoclimate reconstructions at Vanndalsvatnet, western Norway, with particular reference to
 the 8200 cal yr BP event, The Holocene, 16, 717-729, 2006.
- •
- 8 Petit, J. R., Jouzel, J., Raynaud, D., Barkov, N. I., Barnola, J.-M., Basile, I., Bender, M.,
- 9 Chappellaz, J., Davis, M., Delaygue, G., Delmotte, M., Kotlyakov, V. M., Legrand, M.,
- 10 Lipenkov, V. Y., Lorius, C., Pepin, L., Ritz, C., Saltzmann, E., and Stievenard, M.: Climate
- 11 and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica,
- 12 Nature, 399, 429-436, 1999.
- 13 Peyron, O., Goring, S., Dormoy, I., Kotthoff, U., Pross, J., de Beaulieu, J.-L., Drescher-
- 14 Schneider, R., Vannière, B., and Magny, M.: Holocene seasonality changes in the central
- 15 Mediterranean region reconstructed from the pollen sequences of Lake Accesa (Italy) and
- 16 Tenaghi Philippon (Greece), The Holocene, 21, 131-146, 2011.
- 17 Pross, J., Kutthoff, U., Muller, U. C., Peyron, O., Dormoy, I., Schmiedl, G., Kalaitzidis, S.,
- and Smith, A. M.: Massive perturbation in terrestrial ecosystems of the Eastern Mediterranean
- region associated with the 8.2 kyr B.P. climatic event, Geology, 37, 887-890, 2009.
- 20 Rasmussen, S. O., Vinther, B. M., Clausen, H. B., and Andersen, K. K.: Early Holocene 21 climate oscillations recorded in three Greenland ice cores, Quaternary Science Reviews, 26,
- 22 1907-1914, 2007.
- Renssen, H., Seppa, H., Heiri, O., Roche, D. M., Goosse, H., and Fichefet, T.: The spatial and
 temporal complexity of the Holocene thermal maximum, Nature Geoscience, 2, 411-414,
 2009.
- Rohling, E. J., and Pälike, H.: Centennial-scale climate cooling with a sudden cold event
 around 8,200 years ago, Nature, 434, 975-979, 2005.
- 28 Rousseau, D.-D., Preece, R., and Limondin-Lozouet, N.: British late glacial and Holocene
- 29 climatic history reconstructed from land snail assemblages, Geology, 26, 651-654, 1998.

- 1 Sarnthein, M., van Kreveld, S., Erlenkeuser, H., Grootes, P. M., Kucera, M., Pflaumann, U.,
- 2 and Schulz, M.: Centennial-to-millennial scale periodicities of Holocene climate and sediment
- 3 injections off the western Barents shelf, 75 N, Boreas, 32, 447-461, 2003.
- 4 Snowball, I., Sandgren, P., and Petterson, G.: The mineral magnetic properties of an annually
- 5 laminated Holocene lake-sediment sequence in northern Sweden, The Holocene, 9, 353-362,
 6 1999.
- 7 Snowball, I., Muscheler, R., Zillén, L., Sandgren, P., Stanton, T., and Ljung, K.: Radiocarbon
- 8 wiggle matching of Swedish lake varves reveals asynchronous climate changes around the 8.2
- 9 kyr cold event, Boreas, 39, 720-733, 10.1111/j.1502-3885.2010.00167.x, 2010.
- 10 Sun, Y., Clemens, S. C., Morrill, C., Lin, X., Wang, X., and An, Z.: Influence of Atlantic
- 11 meridional overturning circulation on the East Asian winter monsoon, Nature Geoscience, 5,
- 12 46-49, 10.1038/NGEO1326, 2012.
- 13 Teller, J. T., Leverington, D. W., and Mann, J. D.: Freshwater outbursts to the oceans from
- 14 glacial Lake Agassiz and their role in climate change during the last deglaciation, Quaternary
- 15 Science Reviews, 21, 879-887, 2002.
- 16 Thomas, E. R., Wolff, E. W., Mulvaney, R., Steffensen, J. P., Johnsen, S. J., Arrowsmith, C.,
- 17 White, J. W. C., Vaughn, B., and Popp, T.: The 8.2 ka event from Greenland ice cores,
- 18 Quaternary Science Reviews, 26, 70-81, 2007.
- Tornqvist, T. E., and Hijma, M. P.: Links between early Holocene ice-sheet decay, sea-level
 rise and abrupt climate change, Nature Geoscience, 5, 601-606, 2012.
- 21 van Breukelen, M. R., Vonhof, H. B., Hellstrom, J. C., Wester, W. C. G., and Kroon, D.:
- 22 Fossil dripwater in stalagmites reveals Holocene temperature and rainfall variation in
- 23 Amazonia, Earth and Planetary Science Letters, 275, 54-60, 2008.
- Vellinga, M., and Wood, R. A.: Global climatic impacts of a collapse of the Atlantic
 thermohaline circulation, Climatic Change, 54, 251-267, 2002.
- 26 Wang, Y., Cheng, H., Edwards, R. L., He, Y., Kong, X., An, Z., Wu, J., Kelly, M. J.,
- 27 Dykoski, C. A., and Li, X.: The Holocene Asian monsoon: Links to solar changes and North
- 28 Atlantic climate, Science, 308, 854-857, 2005.

- Wiersma, A. P., and Renssen, H.: Model-data comparison for the 8.2 ka B.P. event:
 confirmation of a forcing mechanism by catastrophic drainage of Laurentide lakes,
 Quaternary Science Reviews, 25, 63-88, 2006.
- Wiersma, A. P., Roche, D. M., and Renssen, H.: Fingerprinting the 8.2 ka event climate
 response in a coupled climate model, Journal of Quaternary Science, 26, 118-127,
 10.1002/jqs.1439, 2011.
- 7 Winsor, K., Carlson, A. E., Klinkhammer, G. P., Stoner, J. S., and Hatfield, R. G.: Evolution
- 8 of the northeast Labrador Sea during the last interglaciation, Geochemistry, Geophysics,
- 9 Geosystems, 13, Q11006, 10.1029/2012GC004263, 2012.
- 10 Yancheva, G., Nowaczyk, N. R., Mingram, J., Dulski, P., Schettler, G., Negendank, J. F. W.,
- 11 Liu, J., Sigman, D. M., Peterson, L. C., and Haug, G. H.: Influence of the intertropical
- 12 convergence zone on the East Asian monsoon, Nature, 445, 74-77, 2007.
- 13 Young, N. E., Briner, J. P., Rood, D. H., and Finkel, R. C.: Glacier extent during the Younger
- 14 Dryas and 8.2-ka event on Baffin Island, Arctic Canada, Science, 337, 1330-1333, 2012.
- 15 Zillén, L., and Snowball, I.: Complexity of the 8 ka climate event in Sweden recorded by
- 16 varved lake sediments, Boreas, 38, 493-503, 10.1111/j.1502-3885.2009.00086.x, 2009.
- 17
- 18

Site	Proxy	Maximum	Mean	Error*	Duration
	type	(°C)	(°C)	<u>(°C)</u>	(years)
	Ĭ	Mean Annual Z	Temperatu	re	
GISP2	$\delta^{15}N$	-3.3	-2.2	<u>1.1</u>	120
Ammersee, Germany	$\delta^{18}O$	-1.3	-1.1	<u>N/A</u>	90
Lake Rõuge, Estonia	pollen	-2.6	-1.2	<u>0.9</u>	280
Lake Arapisto, Finland	pollen	-2.2	-1.2	<u>0.9</u>	200
South Iceland (thermocline)	Mg/Ca	-1.2	-1.0	<u>1.0</u>	80
Steregoiu, Romania	pollen	-1.6	-1.1	<u>N/A</u>	190
Gulf of Mexico (surface)	Mg/Ca	-1.3	-0.9	<u>1.1</u>	120
Cape Ghir (surface)	alkenone	-0.7	-0.6	<u>~1</u>	250
Cape Ghir (thermocline)	Mg/Ca	-1.0	-0.6	<u>0.7</u>	80
Gulf of Guinea (surface)	Mg/Ca	-1.9	-1.1	<u>1.2</u>	140
		Winter Tem	iperature		
Tenaghi Philippon, Greece	pollen	-4.0	-2.8	<u>2.5</u>	140
Aegean Sea	pollen	<u>-9.1</u>	<u>-5.9</u>	<u>6.4</u>	<u>120</u>
Gardar Drift <u>(surface)</u>	forams	-1.6	-1.3	<u>~1</u>	80
Vanndalsvatnet, Norway	pollen	2.5	1.7	<u>2.6</u>	240
Steregoiu, Romania	pollen	-5.6	-4.2	<u>2.6</u>	110
		Summer Ter	nperature		
Aegean Sea	<u>pollen</u>	<u>-4.2</u>	<u>-2.6</u>	<u>3.7</u>	<u>120</u>
Hawes Water, UK	chironomid	-1.5	-0.8	<u>1.0</u>	90
Gardar Drift <u>(surface)</u>	forams	-2.1	-1.7	<u>~1</u>	60

1 Table 1. Quantitative temperature anomalies <u>from early Holocene background values</u>.

* Root mean square errors for the calibration as reported by original investigators, N/A = not

2 <u>* Root m</u>3 <u>available</u>

Table 2. Quantitative mean annual precipitation anomalies from early Holocene background 1

Site	Proxy type	Maximum (%)	Mean (%)	<u>Error*</u> (%)	Duration (years)
GRIP	ice accum <u>-</u> ulation	-28	-8	<u>~5</u>	120
NGRIP	ice accum <u>-</u> ulation	-18	-8	<u>~5</u>	150
Tenaghi Philippon, Greece	pollen	-27	-17	<u>14</u>	110
Aegean Sea	pollen	<u>-24</u>	<u>-13</u>	<u>35</u>	<u>120</u>
Vanndalsvatnet, Norway	pollen	20	12	<u>24</u>	240
Steregoiu, Romania	pollen	-25	-17	<u>17</u>	110

2 values.

* Root mean square errors for the calibration as reported by original investigators and scaled 3 as a percentage of reconstructed early Holocene background precipitation.

4

Site	Material	Maximum	Mean	Duration
		(‰)	(‰)	(years)
	$\delta^{8}O$ of precipitation	<u>on</u>		
GISP2	ice	-1.9	-1.1	140
GRIP	ice	-2.0	-1.1	140
NGRIP	ice	-1.9	-1.0	140
Agassiz	ice	-2.0	-1.0	140
Camp Century	ice	-1.3	-0.8	160
Renland	ice	-1.8	-0.9	120
Dye 3	ice	-1.9	-1.2	140
Nordan's Pond Bog, Canada	peat cellulose	-3.0	-2.6	80
	$\delta^{18}O$ of surface wat	<u>er</u>		
Gulf of Mexico	seawater	-0.6	-0.4	150
Hawes Water, UK	lake water	-0.9	-0.6	110
Gardar Drift	seawater	-0.7	-0.4	180
	$\delta^{18}O$ of carbonate	2		
Ammersee, Germany	ostracod	-0.8	-0.6	90
Katerloch Cave, Austria	cave	-1.3	-0.7	130
Igelsjon Lake, Sweden	bulk <u>lake</u>	-2.7	-2.0	250
Okshola Cave, Norway	cave	-1.0	-0.8	20
Svalbard	benthic <u>forams</u>	-0.4	-0.2	70
Pink Panther Cave, USA	cave	-0.8	-0.4	270
Venado Cave, Costa Rica	cave	2.0	1.0	80
Tigre Perdido Cave, Peru	cave	-1.0	-0.5	170

1 Table 3. Oxygen isotope anomalies <u>from early Holocene background values</u>.

Padre Cave, Brazil	cave	-1.8	-1.3	60
Qunf Cave, Oman	cave	0.7	0.4	250
Hoti Cave, Oman	cave	1.1	0.8	30
Dongge Cave, China	cave	0.9	0.4	170
Heshang Cave, China	cave	1.1	0.8	130
South China Sea	planktic <u>forams</u>	0.4	0.4	40

- 2 Figure 1. Location of high-resolution proxy records spanning 8.2 ka that were available in (a)
- 3 2005 (Morrill and Jacobsen, 2005) and (b) 2012.

Figure 2. Schematic diagram of method used to detect climate anomalies at 8.2 ka, as

- described in text.

Figure 3. (a) Temperature anomalies <u>relative to early Holocene background climate (defined</u> <u>as the average between 7.4-7.9 and 8.5-9.0 calendar ka)</u> detected near 8.2 ka by the method described in text. Black dots indicate sites with temperature proxies that did not have an identifiable anomaly. Values plotted are quantitative <u>mean annual</u> temperature estimates in degrees Celsius and are also provided in Table 1. (b) Duration of temperature anomalies in high-resolution (better than 15 yrs/sample) proxies, as determined using the method of Wiersma et al. (2011).

Figure 4. (a) Precipitation anomalies relative to early Holocene background climate (defined as the average between 7.4-7.9 and 8.5-9.0 calendar ka) detected near 8.2 ka by the method described in text. Black dots indicate sites with precipitation proxies that did not have an identifiable anomaly. Values plotted are quantitative mean annual precipitation estimates, expressed as a percent difference from values averaged for 7.4-7.9 and 8.5-9.0 calendar ka BP, and are also presented in Table 2. (b) Duration of precipitation anomalies in high-resolution (better than 15 yrs/sample) proxies, as determined using the method of Wiersma et al. (2011).

Event duration (years)

100 120 140 160 180 200

Figure 5. Climate anomalies detected near 8.2 ka that were not easily categorized in terms of
temperature or precipitation. Small black dots indicate sites without an identifiable climate
anomaly.

1

2 Figure 6. Anomalies in δ^{18} O detected using method described in text. Sites plotted here are

3 also provided in Table 3.

Table S1. Records used in compilation

Site name	Archive	Lat	Lon	Proxies analyzed ^{1,2}	Climate signal ¹	Reference
Adélie Land	Marine	-66.0	138.6	F. curta/F. kerguelensis	Growing season temperature	Denis et al. (2009)
(MD03-2601)				Chaetoceras resting spore	Meltwater input	
				Sortable silt	Bottom water production	
				Number of laminae	Bottom water production	
				Al	Bottom water production	
Aegean Sea	Marine	40.1	24.6	Tree pollen	Winter precipitation	Kotthoff et al. (2008),
(GeoTü SL152)				Quercus index	Precipitation seasonality	Dormoy et al. (2009)
				Sediment lightness	Runoff	
				Pollen (PLS)	Annual precipitation	
				Pollen (PLS)	Summer precipitation	
				Pollen (PLS)	Winter precipitation	
				Pollen (PLS)	Coldest month temperature	
				Pollen (PLS)	Warmest month temperature	
Agassiz	Ice	80.7	-73.1	δ ¹⁸ Ο	Temperature	Fisher et al. (1995),
						Vinther et al. (2008)
Ahung	Lake	31.4	92.0	% Total organic carbon	Precipitation	Morrill et al. (2006)
				% Carbonate	Precipitation	
				Carbonate δ ¹³ C	Precipitation	
Alboran Sea (ODP 976)	Marine	36.2	-4.3	% Temperate pollen	Temperature, precipitation	Dormoy et al. (2009),
				Pollen (PLS)	Annual precipitation	Combourieu Nebout et al.
				Pollen (PLS)	Summer precipitation	(2009)
				Pollen (PLS)	Winter precipitation	
				Pollen (PLS)	Coldest month temperature	
				Pollen (PLS)	Warmest month temperature	
Amery Oasis	Lake	-70.6	68.0	% Total carbon	Summer temperature	Cremer et al. (2007)
Ammersee	Lake	48.1	11.5	Ostracod δ ¹⁸ O	Annual temperature	von Grafenstein et al. (1998)
Arabian Sea (63KA)	Marine	24.0	66.0	Globigerinoides ruber δ^{18} O	Annual precipitation	Staubwasser et al. (2002)
Arabian Sea	Marine	12.0	52.0	Globigerina bulloides δ^{18} O	Summer sea surface temperature	Jung et al. (2004)
(NIOP 905)				-		
Arapisto	Lake	60.6	24.1	Pollen (WA-PLS)	Mean annual temperature	Sarmaja-Korjonen and Seppä (2007)
Arolik	Lake	59.5	-161.1	Biogenic silica	Temperature, precipitation	Hu et al. (2003)

						2
Atlantic (ODP 1078C)	Marine	-11.9	13.4	Cibicidoides wuellerstorfi δ^{18} O	Intermediate water temperature	Rühlemann et al. (2004)
Atlantic (VM29-191)	Marine	54.3	-16.8	Hematite-stained grains	Temperature	Bond et al. (2001)
				Icelandic glass	Temperature	
Barents Shelf	Marine	75.0	14.0	Planktic forams (ANN)	Winter sea surface temperature	Sarnthein et al. (2003)
(GIK23258-2)				Planktic forams (ANN)	Summer sea surface temperature	
				Planktic forams (SIMMAX)	Winter sea surface temperature	
				Planktic forams (SIMMAX)	Summer sea surface temperature	
				Grain size >63 μm	Winter sea ice formation	
				Planktic forams/g	Winter sea ice formation	
				Benthic forams/g	Winter sea ice formation	
Big	Lake	51.7	-121.5	Beta carotene amount	Temperature	Bennett et al. (2001)
Brazilian Shelf	Marine	-4.2	-36.3	Ca	Atlantic Meridional	Arz et al. (2001)
(GeoB 3910-2)					Overturning Circulation	
Brunnboden	Peat	46.8	10.8	Pollen concentration	Summer temperature	Kofler et al. (2005)
				% Cyperaceae	Summer temperature	
Bunger Oasis (PG1173)	Marine	-66.3	100.8	% Ice diatoms	Temperature	Kulbe et al. (2001)
Camp Century	Ice	77.2	-61.1	δ ¹⁸ Ο	Temperature	Vinther et al. (2009)
Cape Ghir	Marine	30.8	-10.3	Alkenone Uk' ₃₇	Annual sea surface temperature	Kim et al. (2007),
(GeoB 6007-2)				<i>Hyalinea balthica</i> Mg/Ca	Intermediate water	Bamberg et al. (2010)
				Hyalinea balthica δ^{18} O	temperature	
				Hyalinea balthica δ^{13} C	$\delta^{18}O_{seawater}$	
					Local upwelling	
Cape Yubi	Marine	27.5	-13.7	К	Precipitation	Kuhlmann et al. (2004)
(GeoB 5546-2)						
Cariaco Basin	Marine	10.7	-65.2	Grayscale	Trade wind intensity	Hughen et al. (2000)
(ODP 1002)				% Ti	Precipitation	Haug et al. (2001)
Chichancanab	Lake	19.8	-88.8	% S	Precipitation-evaporation	Hodell et al. (1995)
				%CaCO ₃	Precipitation-evaporation	
Cold Air	Cave	-24.0	29.2	δ^{18} O	Precipitation	Holmgren et al. (2003)
				$\delta^{13}C$	Vegetation	
Dalsvatnet	Lake	61.7	8.0	% Loss on ignition	Glacier advance	Matthews et al. (2000)
Danntjorn	Lake	61.6	9.0	% Loss on ignition	Summer temperature	Nesje et al. (2004)
Deep	Lake	47.7	-95.6	Varve thickness	Dust availability	Hu et al. (1999)

Djupall Trough (KN 158-4-72GGC)	Marine	66.7	-24.2	Basalt/plagioclase	Storminess	Andresen et al. (2005)
Dongge	Cave	25.3	108.1	δ ¹⁸ Ο	Precipitation	Dykoski et al. (2005),
					_	Wang et al. (2005)
Duck and Melles	Lake	76.3	-18.7	% Sulfur	Summer temperature	Klug et al. (2009b), Klug et al.
				% Total organic carbon	Summer temperature	(2009a)
Dye 3	Ice	65.2	-43.8	δ ¹⁸ Ο	Temperature	Vinther et al. (2009)
El Junco	Lake	-0.9	-89.5	% Clay	Precipitation	Conroy et al. (2008)
				% Silt	Precipitation	
				% Sand	Precipitation	
Elk	Lake	47.0	-95.5	Varve thickness	Dust availability	Dean et al. (2002)
EPICA Dome C	Ice	-75.1	123.4	δD	Temperature	Stenni et al. (2001),
				δ^{18} O	Temperature	Röthlisberger et al. (2002),
				Deuterium excess	Sea surface temperature	EPICA community members
				Non sea-salt Ca	Dust availability, transport vigor	(2004), Jouzel et al. (2007)
				Sea-salt Na	Sea ice area, transport vigor	
				Dust	Dust availability, transport vigor	
				CH_4	Tropical wetland area	
Etang de la Gruere	Peat	47.2	7.0	% Absorbance	Precipitation-evaporation	Roos-Barraclough et al. (2004)
Fayetteville Green	Lake	43.0	-79.0	Carbonate δ^{18} O	Winter precipitation	Kirby et al. (2002)
				Carbonate δ^{13} C	Summer precipitation	
Fiskvatnet	Lake	69.6	19.9	S-ratio	Summer temperature	Paasche et al. (2004)
				% Loss on ignition	Summer temperature	
Foy	Lake	48.2	-114.4	Benthic diatoms	Precipitation	Stone and Fritz (2006)
Gardar Drift	Marine	57.4	-27.9	Planktic forams (MAT)	Summer sea surface	Ellison et al. (2006),
(MD99-2251)				Planktic forams (MAT)	temperature	Farmer et al. (2008)
				Sortable silt	Winter sea surface temperature	
				% N. pachyderma s.	Bottom current speed	
				Globigerina bulloides $\delta^{18}O$	Summer temperature	
				Globigerina bulloides Mg/Ca	δ^{18} O seawater	
				-	Summer sea surface temperature	

GISP2	Ice	72.6	-38.5	δ ¹⁸ Ο	Temperature	Grootes et al. (1993)
				Na	Sea ice area, transport vigor	Cuffey and Clow (1997),
				Ca	Dust availability, transport vigor	Mayewski et al. (1997),
				CH_4	Tropical wetland area	Kobashi et al. (2007)
				$\delta^{15}N$	Temperature	
Green	Lake	50.0	-123.0	% Loss on ignition	Glacier advance	Menounos et al. (2004)
Greenland NAUJG1	Lake	66.7	-52.0	% Residue on ignition	Summer temperature	Willemse and Tornqvist (1999)
GRIP	Ice	72.5	-38.5	δ ¹⁸ Ο	Temperature	Hammer et al. (1997),
				Accumulation	Precipitation	Rasmussen et al. (2006)
Gulf of Guinea	Marine	2.5	9.4	Globigerinoides ruber Mg/Ca	Annual sea surface temperature	Weldeab et al. (2007)
(GeoB4905-4)				Globigerinoides ruber δ^{18} O	Annual sea surface salinity	
				Globigerinoides ruber Ba/Ca	Precipitation	
Gulf of Mexico	Marine	27.0	-91.4	Globigerinoides ruber Mg/Ca	Annual sea surface temperature	Lo Dico et al. (2006)
(MD02-2550)				Globigerinoides ruber $\delta^{18}O$	Annual δ ¹⁸ O seawater	
Hani	Peat	42.2	126.5	Peat cellulose δ ¹³ C	Summer precipitation	Hong et al. (2005), Hong et al.
				Peat cellulose δ^{18} O	Mean annual temperature	(2009)
Hawes Water	Lake	54.2	-2.8	Chironomids (WA-PLS)	July temperature	Marshall et al. (2007)
				Calcite δ ¹⁸ Ο	δ ¹⁸ O lakewater	
Heshang	Cave	30.4	110.4	δ ¹⁸ Ο	Precipitation	Hu et al. (2008)
Hojby So	Lake	55.9	11.6	Thermophilous trees	Temperature	Hede et al. (2010)
				Mineral accumulation rate	Precipitation	
				Chlorophyll A	Precipitation	
				Diatom accumulation rate	Precipitation	
Holebudalen	Lake	59.8	7.0	Tychoplanktonic diatoms	Temperature	Panizzo et al. (2008)
				Periphytic diatoms	Temperature	
Holzmaar	Lake	50.1	6.9	Organic matter δ^{13} C	Productivity	Lücke et al. (2003),
				Pollen (PDF)	July temperature	Litt et al. (2009)
				Pollen (PDF)	January temperature	
				Pollen (PDF)	Mean annual precipitation	
Hongyuan	Peat	32.8	102.5	Carex mulieensis δ^{13} C	Summer precipitation	Hong et al. (2003)
Hoti	Cave	23.1	57.4	δ ¹⁸ Ο	Precipitation	Neff et al. (2001)

						5
Huguang Maar	Lake	21.2	110.3	Ti	Winter monsoon strength	Yancheva et al. (2007)
				Magnetic susceptibility	Winter monsoon strength	
				S-ratio	Winter monsoon strength	
Iceland Shelf	Marine	66.6	-23.8	Coccolithus pelagicus	Temperature	Giraudeau et al. (2004),
(MD99-2269)				Irminger Water species	Temperature	Moros et al. (2006)
				% Quartz	Temperature	
Igelsjon	Lake	58.5	13.7	% Total organic carbon	Summer precipitation	Hammarlund et al. (2005)
				% Minerogenic	Summer precipitation	
				Bulk carbonate $\delta^{13}C$	Precipitation-evaporation	
				Bulk carbonate δ ¹⁸ Ο	Precipitation-evaporation	
Jarbuvatnet	Lake	61.7	6.8	% Loss on ignition	Glacier advance	Nesje et al. (2001)
Jones	Lake	46.1	-113.2	Bulk carbonate δ^{18} O	Precipitation-evaporation	Shapley et al. (2009)
Kalksjon	Lake	60.2	13.0	%Total organic carbon	Winter precipitation	Snowball et al. (2010)
				Ti	Winter precipitation	
Katerloch	Cave	47.1	15.6	δ ¹⁸ Ο	Annual temperature	Boch et al. (2009)
Kilimanjaro	Ice	-3.1	37.3	$\delta^{18}O$	Temperature	Thompson et al. (2002)
				$Cl, F, Na, NO_3, Ca, K, Mg, SO_4$	Precipitation	
Laihalampi	Lake	61.5	26.1	Pollen (WA-PLS)	Mean annual temperature	Heikkila and Seppä (2003)
Lisa	Lake	61.8	8.2	% Loss on ignition	Summer temperature	Nesje and Dahl (2001)
Lykkjuvotn	Lake	61.9	-6.8	Biogenic silica	Temperature	Andresen et al. (2006)
Malawi	Lake	-10.3	34.3	Biogenic silica	Wind strength	Johnson et al. (2002)
Masoko	Lake	-9.3	33.8	Magnetic susceptibility	Precipitation	Garcin et al. (2006)
Moon	Lake	47.0	-98.2	Diatoms (WA)	Precipitation-evaporation	Laird et al. (1998)
Motterudsjarnet	Lake	59.6	12.7	Magnetic susceptibility	Winter precipitation	Zillén and Snowball (2009)
Murray Canyon	Marine	-36.7	136.6	Globigerinoides ruber δ^{18} O	Surface water temperature	Moros et al. (2009)
(MD03-2611)				G. ruber-G. bulloides δ^{18} O	Depth of thermocline	
Nansen Trough	Marine	68.1	-29.4	# Ice-rafted grains	Sea ice amount	Jennings et al. (2002)
(JM96-1206)						
Nautajarvi	Lake	61.8	24.7	Pollen (WA-PLS)	Growing degree days	Ojala et al. (2008)
NGRIP	Ice	75.1	-42.3	δ ¹⁸ Ο	Temperature	Rasmussen et al. (2006),
				Accumulation	Precipitation	Rasmussen et al. (2007)
Nightingale	Lake	-37.4	-12.5	%Total inorganic carbon	Temperature, precipitation	Ljung et al. (2008)
				C/N	Temperature, precipitation	
Nordan's Pond	Peat	49.2	-53.6	<i>Sphagnum</i> δ ¹⁸ O	δ ¹⁸ O precipitation	Daley et al. (2009)

						6
North Sea (Core 28-03)	Marine	60.5	3.5	% N. pachyderma s.	Summer sea surface temperature	Klitgaard-Kristensen et al. (1998)
Norwegian Sea	Marine	66.9	7.6	% >63µm	Sea ice amount	Moros et al. (2004),
(MD 95-2011)				Quartz/plagioclase	Sea ice amount	Berner et al. (2011)
				Planktic forams (WA-PLS, IK)	August sea surface temperature	
Okshola	Cave	67	15	δ ¹⁸ Ο	Annual temperature	Linge et al. (2009)
				δ ¹³ C	Precipitation	
Padre	Cave	-13.2	-44.0	δ ¹⁸ Ο	Precipitation	Cheng et al. (2009)
Pallcacocha	Lake	-2.8	-79.2	Redscale	Precipitation	Moy et al. (2002)
Peru-Chile margin	Marine	-15.2	-76.0	Alkenone Uk' ₃₇	Annual sea surface temperature	Chazen et al. (2009)
				Alkenone C ₃₇	Productivity	
				Biogenic silica	Productivity	
Peten-Itza	Lake	16.9	-89.8	<i>Cochliopina sp.</i> δ ¹⁸ Ο	Precipitation-evaporation	Curtis et al. (1998),
				Pyrgophorus sp. δ^{18} O	Precipitation-evaporation	Hillesheim et al. (2005)
				% CaCO ₃	Precipitation-evaporation	
				% Total organic carbon	Precipitation-evaporation	
				Sediment density	Precipitation-evaporation	
Pink Panther	Cave	32.1	-105.2	δ ¹⁸ Ο	Precipitation	Asmerom et al. (2007)
Potrok Aike	Lake	-52.0	-70.4	%Total inorganic carbon	Precipitation-evaporation	Haberzettl et al. (2007),
				Ca, Ti/Ca	Runoff	Mayr et al. (2007)
				% Andean pollen taxa	Westerly strength	
Pupuke	Lake	-36.8	175.8	Mean grain size	Runoff	Augustinus et al. (2008)
				> 32 microns	Runoff	
				C/N	Runoff	
Qunf	Cave	17.2	54.3	δ ¹⁸ Ο	Precipitation	Fleitmann et al. (2003)
Raigastvere	Lake	58.6	26.6	Pollen (WA-PLS)	Mean annual temperature	Seppä and Poska (2004)
Renland	Ice	71.3	-26.7	δ ¹⁸ Ο	Temperature	Johnsen et al. (1992),
						Vinther et al. (2008)
Rouge	Lake	57.4	26.5	Pollen (WA-PLS)	Mean annual temperature	Veski et al. (2004)
Sagistalsee	Lake	46.7	8.0	C-ratio	Runoff	Hirt et al. (2003)
Sanbao	Cave	31.7	110.4	δ ¹⁸ Ο	Precipitation	Dong et al. (2010)

Santa Barbara	Marine	34.3	-120.0	Globigerina bulloides δ^{18} O	Mixed layer temperature	Friddell et al. (2003),
(AII-125 JPC-76)				Neogloboquadrina pachyderma δ^{18} O	Thermocline temperature	Fisler and Hendy (2008)
				Neogloboquadrina dextral:sinistral	Sea surface temperature	
				% Globigerina quinqueloba	Upwelling	
				% Planktic foram warm species	Surface temperature	
Sarsjon	Lake	64.0	19.6	Paramagnetic susceptibility	Winter precipitation	Snowball et al. (1999)
Sihailongwan	Lake	42.3	126.6	Biogenic silica	Summer precipitation	Schettler et al. (2006)
Sjuodjijaure	Lake	67.4	18.1	Pollen (WA-PLS)	July temperature	Rosen et al. (2001)
				Chironomids (WA)	July temperature	
				Diatoms (WA-PLS)	July temperature	
Snoheim	Lake	62.3	9.2	% Loss on ignition	Glacier advance	Nesje and Dahl (2001)
Sofular	Cave	41.4	31.9	$\delta^{18}O, \delta^{13}C$	Temperature, precipitation	Fleitmann et al. (2009)
Soreq	Cave	31.4	35.0	δ ¹⁸ Ο	Precipitation	Bar-Matthews et al. (1999)
South China Sea	Marine	20.1	117.4	% Clay	Summer precipitation	Wang et al. (1999a), Wang et
(17940)				Globogerinoides ruber δ ¹⁸ Ο	Summer precipitation	al. (1999b)
				Modal grain size	Winter monsoon strength	
South Iceland Rise	Marine	62.1	-17.8	Globigerina bulloides Mg/Ca	Sea surface temperature	Thornalley et al. (2009)
(RAPiD-12-1k)				Globigerina bulloides $\delta^{18} O$	Sea surface salinity	
					Sea surface density	
				Globorotalia inflata Mg/Ca	Thermocline temperature	
				<i>Globorotalia inflata</i> δ ¹⁸ Ο	Thermocline salinity	
					Thermocline density	
					Thermocline-surface density	
Southern Ocean (TTN057-13)	Marine	-53.2	5.1	Ice-rafted quartz	Temperature	Hodell et al. (2001)
Southern Ocean	Marine	-50	6	Diatoms (MAT)	Feb sea surface temperature	Nielsen et al. (2004)
(TTN057-17)				Diatoms (MAT)	August sea surface temperature	
				Diatoms (MAT)	Months of sea ice	
Steregoiu	Lake	47.8	23.6	Pollen (MAT)	Mean annual precipitation	Feurdean et al. (2008)
				Pollen (MAT)	Mean annual temperature	
				Pollen (MAT)	Warm month temperature	
				Pollen (MAT)	Cold month temperature	
Svalbard (MD99-2305)	Marine	77.8	15.3	Cassidulina reniforme δ^{18} O	Sea ice amount	Hald and Korsun (2008)

Taylor Dome	Ice	-77.8	158.7	δ^{18} O	Temperature	Mayewski et al. (1996). Steig
			· · ·	δD	Temperature	et al. (1998), Steig et al.
				Na Na	Sea ice area, transport vigor	(2000)
					Dust availability transport vigor	
				Ca	Dust availability, transport vigor	
Tenaghi Philipon	Peat	40.6	24.2	Pollen (MAT)	Mean annual precipitation	Pross et al. (2009)
				Pollen (MAT)	DJF temperature	
				Pollen (MAT)	JJA temperature	
Tigre Perdido	Cave	-5.9	-77.3	δ ¹⁸ Ο	Precipitation	van Breukelen et al. (2008)
Tilo	Lake	7.1	38.1	Diatom (G)	Precipitation-evaporation	Telford and Lamb (1999)
Titicaca	Lake	-16.0	-69.4	Bulk organic δ^{13} C	Precipitation-evaporation	Baker et al. (2005)
Valencia	Lake	10.2	-67.8	<i>Heterocypris communis</i> δ ¹⁸ O	Precipitation-evaporation	Curtis et al. (1999)
				% CaCO ₃	Precipitation-evaporation	
Vanndalsvatnet	Lake	61.6	7.7	Pollen (WA-PLS)	July temperature	Nesje et al. (2006)
				Pollen (WA-PLS)	January temperature	
				Pollen (WA-PLS)	Mean annual precipitation	
Venado	Cave	10.6	-84.8	δ ¹⁸ Ο	Precipitation	Lachniet et al. (2004)
Victoria	Lake	0.1	32.8	Principal components of diatoms	Precipitation-evaporation	Stager and Mayewski (1997)
Vostok	Ice	-78.5	106.8	δD	Temperature	Petit et al. (1999)
Zhuyeze	Lake	39.0	103.3	% Picea+Pinus	Runoff	Chen et al. (2006)
				Mountain pollen concentration	Runoff	

¹ Proxies with detected 8.2 ka anomaly in bold.

² Method used for climate reconstruction in parentheses: PLS=Partial least-squares regression, WA-PLS=Weighted-averaging partial least-squares regression, ANN=Artificial Neural Network Technique, SIMMAX=SIMMAX transfer function, MAT=Modern Analogue Technique, WA=Weighted-averaging, IK=Imbrie and Kipp transfer function, G=Gasse transfer function

References

- Andresen, C. S., Bond, G., Kuijpers, A., Knutz, P. C., and Björck, S.: Holocene climate variability at multidecadal time scales detected by sedimentological indicators in a shelf core NW off Iceland, Marine Geology, 214, 323-338, 2005.
- Andresen, C. S., Björck, S., Rundgren, M., Conley, D. J., and Jessen, C.: Rapid Holocene climate changes in the North Atlantic: evidence from lake sediments from the Faroe Islands, Boreas, 35, 23-34, 2006.
- Arz, H. W., Gerhardt, S., Patzold, J., and Rohl, U.: Millennial-scale changes of surface- and deep-water flow in the western tropical Atlantic linked to northern hemisphere high-latitude climate during the Holocene, Geology, 29, 239-242, 2001.
- Asmerom, Y., Polyak, V., Burns, S., and Rassmussen, J.: Solar forcing of Holocene climate: New insights from a speleothem record, southwestern United States, Geology, 35, 1-4, 2007.
- Augustinus, P., Bleakley, N., Deng, Y., Shane, P., and Cochran, U.: Rapid change in early Holocene environments inferred from Lake Pupuke, Auckland City, New Zealand, Journal of Quaternary Science, 23, 435-447, 10.1002/jqs.1153, 2008.
- Baker, P. A., Fritz, S. C., Garland, J., and Ekdahl, E.: Holocene hydrologic variation at Lake Titicaca, Bolivia/Peru, and its relationship to North Atlantic climate variation, Journal of Quaternary Science, 20, 655-662, 2005.
- Bamberg, A., Rosenthal, Y., Paul, A., Heslop, D., Mulitza, S., Rühlemann, C., and Schulz, M.: Reduced North Atlantic Central Water formation in response to early Holocene ice-sheet melting, Geophysical Research Letters, 37, L17705, 10.1029/2010GL043878, 2010. Bar-Matthews, M., Ayalon, A., Kaufman, A., and Wasserburg, G. J.: The Eastern Mediterranean paleoclimate as a reflection of regional events: Soreq Cave, Israel, Earth and Planetary Science Letters, 166, 85-95, 1999.
- Bennett, J. R., Cumming, B. F., Leavitt, P. R., Chiu, M., Smol, J. P., and Szeicz, J.: Diatom, pollen, and chemical evidence of postglacial climatic change at Big Lake, South-Central British Columbia, Canada, Quaternary Research, 55, 332-343, 2001.
- Berner, K. S., Koç, N., Godtliebsen, F., and Divine, D.: Holocene climate variability of the Norwegian Atlantic Current during high and low solar insolation forcing, Paleoceanography, 26, PA2220, 10.1029/2010PA002002, 2011.
- Boch, R., Spotl, C., and Kramers, J.: High-resolution isotope records of early Holocene rapid climate change from two coeval stalagmites of Katerloch Cave, Austria, Quaternary Science Reviews, 28, 2527-2538, 2009.

Bond, G., Kromer, B., Beer, J., Muscheler, R., Evans, M. N., Showers, W., Hoffmann, S., Lotti-Bond, R., Hajdas, I., and Bonani, G.: Persistent solar influence on North Atlantic climate during the Holocene, Science, 294, 2130-2136, 2001.

Chazen, C. R., Altabet, M. A., and Herbert, T. D.: Abrupt mid-Holocene onset of centennial-scale climate variability on the Peru-Chile Margin, Geophysical Research Letters, 36, L18704, 10.1029/2009GL039749, 2009.

Chen, F.-H., Cheng, B., Zhao, Y., Zhu, Y., and Madsen, D. B.: Holocene environmental change inferred from a high-resolution pollen record, Lake Zhuyeze, arid China, The Holocene, 16, 675-684, 2006.

Cheng, H., Fleitmann, D., Edwards, R. L., Wang, X., Cruz, F. W., Auler, A. S., Mangini, A., Wang, Y., Kong, X., Burns, S. J., and Matter, A.: Timing and structure of the 8.2 kyr B.P. event inferred from d18O records of stalagmites from China, Oman, and Brazil, Geology, 37, 1007-1010, 2009.

Combourieu Nebout, N., Peyron, O., Dormoy, I., Desprat, S., Beaudouin, C., Kotthoff, U., and Marret, F.: Rapid climatic variability in the west Mediterranean during the last 25000 years from high resolution pollen data, Climate of the Past, 5, 503-521, 2009.

Conroy, J. L., Overpeck, J. T., Cole, J. E., Shanahan, T. M., and Steinitz-Kannan, M.: Holocene changes in eastern tropical Pacific climate inferred from a Galapagos lake sediment record, Quaternary Science Reviews, 27, 1166-1180, 2008.

Cremer, H., Heiri, O., Wagner, B., and Wagner-Cremer, F.: Abrupt climate warming in East Antarctica during the early Holocene, Quaternary Science Reviews, 26, 2012-2018, 10.1016/j.quascirev.2006.09.011, 2007.

Cuffey, K. M., and Clow, G. D.: Temperature, accumulation, and ice sheet elevation in central Greenland through the last deglacial transition, Journal of Geophysical Research, 102, 26383-26396, 1997.

Curtis, J. H., Brenner, M., Hodell, D. A., Balser, R. A., Islebe, G. A., and Hooshiemstra, H.: A multi-proxy study of Holocene environmental change in the Maya Lowlands of Peten, Guatemala, Journal of Paleolimnology, 19, 139-159, 1998.

Curtis, J. H., Brenner, M., and Hodell, D. A.: Climate change in the Lake Valencia Basin, Venezuela, ~12600 yr BP to present, The Holocene, 9, 609-619, 1999.

Daley, T. J., Street-Perrott, F. A., Loader, N. J., Barber, K. E., Hughes, P. D. M., Fisher, E. H., and Marshall, J. D.: Terrestrial climate signal of the "8200 yr B.P. cold event" in the Labrador Sea region, Geology, 37, 831-834, 10.1130/G30043A.1, 2009.

Dean, W. E., Forester, R. M., and Bradbury, J. P.: Early Holocene change in atmospheric circulation in the Northern Great Plains: an upstream view of the 8.2 ka cold event, Quaternary Science Reviews, 21, 1763-1775, 2002.

Denis, D., Crosta, X., Schmidt, S., Carson, D. S., Ganeshram, R. S., Renssen, H., Bout-Roumazeilles, V., Zaragosi, S., Martin, B., Cremer, M., and Giraudeau, J.: Holocene glacier and deep water dynamics, Adélie Land region, East Antarctica, Quaternary Science Reviews, 28, 1291-1303, 2009.

Dong, J., Wang, Y., Cheng, H., Hardt, B., Edwards, R. L., Kong, X., Wu, J., Chen, S., Liu, D., Jiang, X., and Zhao, K.: A high-resolution stalagmite record of the Holocene East Asian monsoon from Mt Shennongjia, central China, The Holocene, 20, 257-264, 2010.

Dormoy, I., Peyron, O., Combourieu Nebout, N., Goring, S., Kotthoff, U., Magny, M., and Pross, J.: Terrestrial climate variability and seasonality changes in the Mediterranean region between 15000 and 4000 years BP deduced from marine pollen records, Climate of the Past, 5, 615-632, 2009.

Dykoski, C. A., Edwards, R. L., Cheng, H., Yuan, D., Cai, Y., Zhang, M., Lin, Y., Qing, J., An, Z., and Revenaugh, J.: A high-resolution, absolute-dated Holocene and deglacial Asian monsoon record from Dongge Cave, China, Earth and Planetary Science Letters, 233, 71-86, 2005.

Ellison, C. R. W., Chapman, M. R., and Hall, I. R.: Surface and deep ocean interactions during the cold climate event 8200 years ago, Science, 312, 1929-1932, 2006.

EPICA community members: Eight glacial cycles from an Antarctic ice core, Nature, 429, 623-628, 2004.

Farmer, E. J., Chapman, M. R., and Andrews, J. E.: Centennial-scale Holocene North Atlantic surface temperatures from Mg/Ca ratios in Globigerina bulloides, Geochemistry, Geophysics, Geosystems, 9, Q12029, 10.1029/2008GC002199, 2008.

Feurdean, A., Klotz, S., Mosbrugger, V., and Wolhfarth, B.: Pollen-based quantitative reconstructions of Holocene climate variability in NW Romania, Palaeogeography, Palaeoclimatology, Palaeoecology, 260, 494-504, 2008.

Fisher, D. A., Koerner, R. M., and Reeh, N.: Holocene climatic records from Agassiz Ice Cap, Ellesmere Island, NWT, Canada, The Holocene, 5, 19-24, 1995.

Fisler, J., and Hendy, I. L.: California current system response to late Holocene climate cooling in southern California, Geophysical Research Letters, 35, L09702, 10.1029/2008GL033902, 2008.

Fleitmann, D., Burns, S. J., Mudelsee, M., Neff, U., Kramers, J., Mangini, A., and Matter, A.: Holocene forcing of the Indian monsoon recorded in a stalagmite from Southern Oman, Science, 300, 1737-1739, 2003.

Fleitmann, D., Cheng, H., Badertscher, S., Edwards, R. L., Mudelsee, M., Gokturk, O. M., Fankhauser, A., Pickering, R., Raible, C. C., Matter, A., Kramers, J., and Tuysuz, O.: Timing and climatic impact of Greenland interstadials recorded in stalagmites from northern Turkey, Geophysical Research Letters, 36, L19707, 2009.

Friddell, J. E., Thunell, R. C., Guilderson, T. P., and Kashgarian, M.: Increased northeast Pacific climate variability during the warm middle Holocene, Geophysical Research Letters, 30, 10.1029/2002GL016834, 2003.

Garcin, Y., Vincens, A., Williamson, D., Guiot, J., and Buchet, G.: Wet phases in tropical southern Africa during the last glacial period, Geophysical Research Letters, 33, 10.1029/2005GL025531, 2006.

Giraudeau, J., Jennings, A. E., and Andrews, J. T.: Timing and mechanisms of surface and intermediate water circulation changes in the Nordic Seas over the last 10000 cal years: A view from the North Iceland Shelf, Quaternary Science Reviews, 23, 2127-2139, 2004.

Grootes, P. M., Stuiver, M., White, J. W. C., Johnsen, S., and Jouzel, J.: Comparison of oxygen isotope records from the GISP2 and GRIP Greenland ice cores, Nature, 366, 552-554, 1993.

Haberzettl, T., Corbella, H., Fey, M., Janssen, S., Lücke, A., Mayr, C., Ohlendorf, C., Schabitz, F., Schleser, G. H., Wille, M., Wulf, S., and Zolitschka, B.: Lateglacial and Holocene wet-dry cycles in southern Patagonia: chronology, sedimentology and geochemistry of a lacustrine record from Laguna Potrok Aike, Argentina, The Holocene, 17, 297-310, 2007.

Hald, M., and Korsun, S.: The 8200 cal. yr BP event reflected in the Arctic fjord, Van Mijenfjorden, Svalbard, The Holocene, 18, 981-990, 2008.

Hammarlund, D., Björck, S., Buchardt, B., and Thomsen, C. T.: Limnic responses to increased effective humidity during the 8200 cal. yr BP cooling event in southern Sweden, Journal of Paleolimnology, 34, 471-480, 10.1007/s10933-005-5614-z, 2005.

Hammer, C. U., Andersen, K. K., Clausen, H. B., Dahl-Jensen, D., Hvidberg, C. S., and Iversen, P.: The stratigraphic dating of the GRIP ice core, Special Report of the Geophysical Department, Niels Bohr Institute for Astronomy, Physics and Geophysics, University of Copenhagen, 1997.

Haug, G. H., Hughen, K. A., Sigman, D. M., Peterson, L. C., and Rohl, U.: Southward migration of the intertropical convergence zone through the Holocene, Science, 293, 1304-1308, 2001.

Hede, M. U., Rasmussen, P., Noe-Nygaard, N., Clarke, A. L., Vinebrooke, R. D., and Olsen, J.: Multiproxy evidene for terrestrial and aquatic ecosystem responses during the 8.2 ka cold event as recorded at Højby Sø, Denmark, Quaternary Research, 73, 485-495, 2010. Heikkilä, M., and Seppä, H.: A 11,000-year palaeotemperature reconstruction from the southern boreal zone in Finland, Quaternary Science Reviews, 22, 541-554, 2003.

Hillesheim, M. B., Hodell, D. A., Leyden, B. W., Brenner, M., Curtis, J. H., Anselmetti, F. S., Ariztegui, D., Buck, D. G., Guilderson, T. P., Rosenmeier, M. F., and Schnurrenberger, D. W.: Climate change in lowland central America during the late deglacial and early Holocene, Journal of Quaternary Science, 20, 363-376, 2005.

Hirt, A. M., Lanci, L., and Koinig, K.: Mineral magnetic record of Holocene environmental changes in Sagistalsee, Switzerland, Journal of Paleolimnology, 30, 321-331, 2003.

Hodell, D. A., Curtis, J. H., and Brenner, M.: Possible role of climate in the collapse of Classic Maya civilization, Nature, 375, 391-394, 1995.

Hodell, D. A., Kanfoush, S. L., Shemesh, A., Crosta, X., Charles, C. D., and Guilderson, T. P.: Abrupt cooling of Antarctic surface waters and sea ice expansion in the South Atlantic sector of the southern ocean at 5000 cal yr BP, Quaternary Research, 56, 191-198, 2001.

Holmgren, K., Lee-Thorp, J. A., Cooper, G. R. J., Lundblad, K., Partridge, T. C., Scott, L., Sithaldeen, R., Talma, A. S., and Tyson, P. D.: Persistent millennial-scale climatic variability over the past 25,000 years in Southern Africa, Quaternary Science Reviews, 22, 2311-2326, 2003.

Hong, Y. T., Hong, B., Lin, Q. H., Zhu, Y. X., Shibata, Y., Hirota, M., Uchida, M., Leng, X. T., Jiang, H. B., Xu, H., Wang, H., and Yi, L.: Correlation between Indian Ocean summer monsoon and North Atlantic climate during the Holocene, Earth and Planetary Science Letters, 211, 371-380, 2003.

Hong, Y. T., Hong, B., Lin, Q. H., Shibata, Y., Hirota, M., Zhu, Y. X., Leng, X. T., Wang, Y., Wang, H., and Yi, L.: Inverse phase oscillations between the East Asian and Indian Ocean summer monsoons during the last 12000 years and paleo-El Nino, Earth and Planetary Science Letters, 231, 337-346, 2005.

Hong, Y. T., Hong, B., Lin, Q. H., Shibata, Y., Zhu, Y. X., Leng, X. T., and Wang, Y.: Synchronous climate anomalies in the western North Pacific and North Atlantic regions during the last 14,000 years, Quaternary Science Reviews, 28, 840-849, 2009.

Hu, C., Henderson, G. M., Huang, J., Xie, S., Sun, Y., and Johnson, K. R.: Quantification of Holocene Asian monsoon rainfall from spatially separated cave records, Earth and Planetary Science Letters, 266, 221-232, 2008.

Hu, F. S., Slawinski, D., Wright, H. E., Ito, E., Johnson, R. G., Kelts, K. R., McEwan, R. F., and Boedigheimer, A.: Abrupt changes in North American climate during early Holocene times, Nature, 400, 437-440, 1999.

- Hu, F. S., Kaufman, D., Yoneji, S., Nelson, D., Shemesh, A., Huang, Y., Tian, J., Bond, G., Clegg, B., and Brown, T.: Cyclic variation and solar forcing of Holocene climate in the Alaskan Subarctic, Science, 301, 1890-1893, 2003.
- Hughen, K. A., Southon, J. R., Lehman, S. J., and Overpeck, J. T.: Synchronous radiocarbon and climate shifts during the last deglaciation, Science, 290, 1951-1954, 2000.
- Jennings, A. E., Knudsen, K. L., Hald, M., Hansen, C. V., and Andrews, J. T.: A mid-Holocene shift in Arctic sea-ice variability on the East Greenland Shelf, The Holocene, 12, 49-58, 2002.
- Johnsen, S. J., Clausen, H. B., Dansgaard, W., Fuhrer, K., Gundestrup, N., Hammer, C. U., Iversen, P., Jouzel, J., Stauffer, B., and Steffensen, J. P.: Irregular glacial interstadials in a new Greenland ice core, Nature, 359, 311-313, 1992.
- Johnson, T. C., Brown, E. T., McManus, J., Barry, S., Barker, P., and Gasse, F.: A high-resolution paleoclimate record spanning the past 25,000 years in southern east Africa, Science, 296, 113-114,131-132, 2002.
- Jouzel, J., Masson-Delmotte, V., Cattani, O., Dreyfus, G., Falourd, S., Hoffmann, G., Minster, B., Nouet, J., Barnola, J.-M., Chappellaz, J., Fischer, H., Gallet, J. C., Johnsen, S., Leuenberger, M., Loulergue, L., Luethi, D., Oerter, H., Parrenin, F., Raisbeck, G., Raynaud, D., Schilt, A., Schwander, J., Selmo, E., Souchez, R., Spahni, R., Stauffer, B., Steffensen, J. P., Stenni, B., Stocker, T. F., Tison, J. L., Werner, M., and Wolff, E. W.: Orbital and millennial Antarctic climate variability over the past 800,000 years, Science, 317, 793-796, 2007.
- Jung, S. J. A., Davies, G. R., Ganssen, G. M., and Kroon, D.: Synchronous Holocene sea surface temperature and rainfall variations in the Asian monsoon system, Quaternary Science Reviews, 23, 2207-2218, 2004.
- Kim, J.-H., Meggers, H., Rimbu, N., Lohmann, G., Freudenthal, T., Muller, P. J., and Schneider, R. R.: Impacts of the North Atlantic gyre circulation on Holocene climate off northwest Africa, Geology, 35, 387-390, 2007.

Kirby, M. E., Mullins, H. T., Patterson, W. P., and Burnett, A. W.: Late glacial-Holocene atmospheric circulation and precipitation in the northeast United States inferred from modern calibrated stable oxygen and carbon isotopes, Geological Society of America Bulletin, 114, 1326-1340, 2002.

Klitgaard-Kristensen, D., Sejrup, H. P., Haflidason, H., Johnsen, S., and Spurk, M.: A regional 8200 cal. yr BP cooling event in northwest Europe, induced by the final stages of the Laurentide ice-sheet deglaciation?, Journal of Quaternary Science, 13, 165-169, 1998.

Klug, M., Bennike, O., and Wagner, B.: Repeated short-term bioproductivity changes in a coastal lake on Store Koldeway, northeast Greenland: an indicator of varying sea-ice coverage?, The Holocene, 19, 653-663, 2009a.

Klug, M., Schmidt, S., Bennike, O., Heiri, O., Melles, M., and Wagner, B.: Lake sediments from Store Koldeway, Northeast Greeland, as archive of Late Pleistocene and Holocene climatic and environmental changes, Boreas, 38, 59-71, 110.1111/j.1502-3885.2008.00038, 2009b.

Kobashi, T., Severinghaus, J. P., Brook, E. J., Barnola, J.-M., and Grachev, A. M.: Precise timing and characterization of abrupt climate change 8200 years ago from air trapped in polar ice, Quaternary Science Reviews, 26, 1212-1222, 2007.

Kofler, W., Krapf, V., Oberhuber, W., and Bortenschlager, S.: Vegetation responses to the 8200 cal. BP cold event and to long-term climatic changes in the Eastern Alps: possible influence of solar activity and North Atlantic freshwater pulses, The Holocene, 15, 779-788, 2005.

Kotthoff, U., Pross, J., Müller, U. C., Peyron, O., Schmiedl, G., Schulz, H., and Bordon, A.: Climate dynamics in the borderlands of the Aegean Sea during formation of sapropel S1 deduced from a marine pollen record, Quaternary Science Reviews, 27, 832-845, 2008.

Kuhlmann, H., Meggers, H., Freudenthal, T., and Wefer, G.: The transition of the monsoonal and the N Atlantic climate system off NW Africa during the Holocene, Geophysical Research Letters, 31, 10.1029/2004GL021267, 2004.

Kulbe, T., Melles, M., Verkulich, S. R., and Pushina, Z. V.: East Antarctic climate and environmental variability over the last 9400 years inferred from marine sediments of the Bunger Oasis, Arctic, Antarctic and Alpine Research, 33, 223-230, 2001.

Lachniet, M. S., Asmerom, Y., Burns, S. J., Patterson, W. P., Polyak, V. J., and Seltzer, G. O.: Tropical response to the 8200 yr BP cold event? Speleothem isotopes indicate a weakened early Holocene monsoon in Costa Rica, Geology, 32, 957-960, 2004.

Laird, K. R., Fritz, S. C., Cumming, B. F., and Grimm, E. C.: Early-Holocene limnological and climatic variability in the Northern Great Plains, The Holocene, 8, 275-285, 1998.

Linge, H., Lauritzen, S.-E., Andersson, C., Hansen, J. K., Skoglund, R. Ø., and Sundqvist, H. S.: Stable isotope records for the last 10000 years from Okshola cave (Fauske, northern Norway) and regional comparisons, Climate of the Past, 5, 667-682, 2009.

Litt, T., Schölzel, C., Kühl, N., and Brauer, A.: Vegetation and climate history in the Westeifel Volcanic Field (Germany) during the past 11000 years based on annually laminated lacustrine sediments, Boreas, 38, 679-690, 10.1111/j.1502-3885.2009.00096, 2009.

Ljung, K., Björck, S., Renssen, H., and Hammarlund, D.: South Atlantic island record reveals a South Atlantic response to the 8.2 kyr event, Climate of the Past, 4, 35-45, 2008.

LoDico, J. M., Flower, B. P., and Quinn, T. M.: Subcentennial-scale climatic and hydrologic variability in the Gulf of Mexico during the early Holocene, Paleoceanography, 21, 10.1029/2005PA001243, 2006.

Lücke, A., Schlesser, G. H., Zolitschka, B., and Negendank, J. F. W.: A lateglacial and Holocene organic carbon isotope record of lacustrine palaeoproductivity and climatic change derived from varved lake sediments of Lake Holzmaar, Germany, Quaternary Science Reviews, 22, 569-580, 2003.

Marshall, J. D., Lang, B., Crowley, S. F., Weedon, G. P., van Calsteren, P., Fisher, E. H., Holme, R., Holmes, J. A., Jones, R. T., Bedford, A., Brooks, S. J., Bloemendal, J., Kiriakoulakis, K., and Ball, J. D.: Terrestrial impact of abrupt changes in the North Atlantic thermohaline circulation: Early Holocene, UK, Geology, 35, 639-642, 2007.

Matthews, J. A., Dahl, S. O., Nesje, A., Berrisford, M. S., and Andersson, C.: Holocene glacier variations in central Jotunheimen, southern Norway based on distal glaciolacustrine sediment cores, Quaternary Science Reviews, 19, 1625-1647, 2000.

Mayewski, P. A., Twickler, M. S., Whitlow, S. I., Meeker, L. D., Yang, Q., Thomas, J., Kreutz, K., Grootes, P. M., Morse, D. L., Steig, E. J., Waddington, E. D., Saltzman, E. S., Whung, P.-Y., and Taylor, K. C.: Climate change during the last deglaciation in Antarctica, Science, 272, 1636-1638, 1996.

Mayewski, P. A., Meeker, L. D., Twickler, M. S., Whitlow, S., Yang, Q., Lyons, W. B., and Prentice, M.: Major features and forcing of high-latitude northern hemisphere atmospheric circulation using a 110,000-year long glaciochemical series, Journal of Geophysical Research, 102, 26345-26366, 1997.

Mayr, C., Wille, M., Haberzettl, T., Fey, M., Janssen, S., Lücke, A., Ohlendorf, C., Oliva, G., Schabitz, F., Schleser, G. H., and Zolitschka, B.: Holocene variability of the Southern Hemisphere westerlies in Argentinean Patagonia (52 S), Quaternary Science Reviews, 26, 579-584, 2007.

Menounos, B., Koch, J., Osborn, G., Clague, J. J., and Mazzucchi, D.: Early Holocene glacier advance, southern Coast Mountains, British Columbia, Canada, Quaternary Science Reviews, 23, 1543-1550, 2004.

Moros, M., Emeis, K., Risebrobakken, B., Snowball, I., Kuijpers, A., McManus, J., and Jansen, E.: Sea surface temperatures and ice rafting in the Holocene North Atlantic: Climate influences on northern Europe and Greenland, Quaternary Science Reviews, 23, 2113-2126, 2004.

Moros, M., Andrews, J. T., Eberl, D. D., and Jansen, E.: Holocene history of drift ice in the northern North Atlantic: Evidence for different spatial and temporal modes, Paleoceanography, 21, PA2017, 10.1029/2005PA001214, 2006.

Moros, M., De Deckker, P., Jansen, E., Perner, K., and Telford, R. J.: Holocene climate variability in the Southern Ocean recorded in a deep-sea sediment core off South Australia, Quaternary Science Reviews, 28, 1932-1940, 2009.

Morrill, C., Overpeck, J. T., Cole, J. E., Liu, K.-B., Shen, C., and Tang, L.: Holocene variations in the Asian monsoon inferred from the geochemistry of lake sediments in central Tibet, Quaternary Research, 65, 232-243, 2006.

Moy, C. M. S., G. O., Rodbell, D. T., and Anderson, D. M.: Variability of El Nino/Southern Oscillation activity at millennial timescales during the Holocene epoch, Nature, 420, 162-165, 2002.

Neff, U., Burns, S. J., Mangini, A., Mudelsee, M., Fleitmann, D., and Matter, A.: Strong coherence between solar variability and the monsoon in Oman between 9 and 6 kyr ago, Nature, 411, 290-293, 2001.

Nesje, A., and Dahl, S. O.: The Greenland 8200 cal. yr Bp event detected in loss-on-ignition profiles in Norwegian lacustrine sediment sequences, Journal of Quaternary Science, 16, 155-166, 2001.

Nesje, A., Matthews, J. A., Dahl, S. O., Berrisford, M. S., and Andersson, C.: Holocene glacier fluctuations of Flatebreen and winterprecipitation changes in the Jostedalsbreen region, western Norway, based on glaciolacustrine sediment records, The Holocene, 11, 267-280, 2001.

Nesje, A., Dahl, S. O., and Li, O.: Holocene millennial-scale summer temperature variability inferred from sediment parameters in a non-glacial mountain lake: Danntjorn, Jotunheimen, central southern Norway, Quaternary Science Reviews, 23, 2183-2205, 2004.

Nesje, A., Bjune, A. E., Bakke, J., Dahl, S. O., Lie, O., and Birks, H. J. B.: Holocene palaeoclimate reconstructions at Vanndalsvatnet, western Norway, with particular reference to the 8200 cal yr BP event, The Holocene, 16, 717-729, 2006.

Nielsen, S. H. H., Koç, N., and Crosta, X.: Holocene climate in the Atlantic sector of the Southern Ocean: Controlled by insolation or oceanic circulation?, Geology, 32, 317-320, 2004.

Ojala, A. E. K., Alenius, T., Seppä, H., and Giesecke, T.: Integrated varve and pollen-based temperature reconstruction from Finland: evidence for Holocene seasonal temperature patterns at high latitudes, The Holocene, 18, 529-538, 2008.

Paasche, O., Lovlie, R., Dahl, S. O., Bakke, J., and Nesje, A.: Bacterial magnetite in lake sediments: late glacial to Holocene climate and sedimentary changes in northern Norway, Earth and Planetary Science Letters, 223, 319-333, 2004.

Panizzo, V. N., Jones, V. J., Birks, H. J. B., Boyle, J. F., Brooks, S. J., and Leng, M. J.: A multiproxy palaeolimnological investigation of Holocene environmental change, between c. 10700 and 7200 years BP, at Holebudalen, southern Norway, The Holocene, 18, 805-817, 10.1177/0959683608089217, 2008.

Petit, J. R., Jouzel, J., Raynaud, D., Barkov, N. I., Barnola, J.-M., Basile, I., Bender, M., Chappellaz, J., Davis, M., Delaygue, G., Delmotte, M., Kotlyakov, V. M., Legrand, M., Lipenkov, V. Y., Lorius, C., Pepin, L., Ritz, C., Saltzmann, E., and Stievenard, M.: Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica, Nature, 399, 429-436, 1999.

Pross, J., Kutthoff, U., Muller, U. C., Peyron, O., Dormoy, I., Schmiedl, G., Kalaitzidis, S., and Smith, A. M.: Massive perturbation in terrestrial ecosystems of the Eastern Mediterranean region associated with the 8.2 kyr B.P. climatic event, Geology, 37, 887-890, 2009.

Rasmussen, S. O., Andersen, K. K., Svensson, A. M., Steffensen, J. P., Vinther, B. M., Clausen, H. B., Siggaard-Andersen, M.-L., Johnsen, S. J., Larsen, L. B., Dahl-Jensen, D., Bigler, M., Röthlisberger, R., Fischer, H., Goto-Azuma, K., Hansson, M. E., and Ruth, U.: A new Greenland ice core chronology for the last glacial termination, Journal of Geophysical Research, 111, 10.1029/2005JD006079, 2006.

Rasmussen, S. O., Vinther, B. M., Clausen, H. B., and Andersen, K. K.: Early Holocene climate oscillations recorded in three Greenland ice cores, Quaternary Science Reviews, 26, 1907-1914, 2007.

Roos-Barraclough, F., van der Knaap, W. O., van Leeuwen, J. F. N., and Shotyk, W.: A late-glacial and Holocene record of climatic change from a Swiss peat humification profile, The Holocene, 14, 7-19, 2004.

Rosen, P., Segerstrom, U., Eriksson, L., Renberg, I., and Birks, H. J. B.: Holocene climatic change reconstructed from diatoms, chironomids, pollen and near-infrared spectroscopy at an alpine lake (Sjuodjijaure) in northern Sweden, The Holocene, 11, 551-562, 2001.

Röthlisberger, R., Mulvaney, R., Wolff, E. W., Hutterli, M. A., Bigler, M., Sommer, S., and Jouzel, J.: Dust and sea salt variability in central East Antarctica (Dome C) over the last 45 kyrs and its implications for southern high-latitude climate, Geophysical Research Letters, 29, 10.1029/2002GL015186, 2002.

Rühlemann, C., Mulitza, S., Lohmann, G., Paul, A., Prange, M., and Wefer, G.: Intermediate depth warming in the tropical Atlantic related to weakened thermohaline circulation: Combining paleoclimate data and modeling results for the last deglaciation, Paleoceanography, 19, 10.1029/2003PA000948, 2004.

Sarmaja-Korjonen, K., and Seppä, H.: Abrupt and consistent responses of aquatic and terrestrial ecosystems to the 8200 cal. yr cold event: a lacustrine record from Lake Arapisto, Finland, The Holocene, 17, 457-467, 2007.

Sarnthein, M., van Kreveld, S., Erlenkeuser, H., Grootes, P. M., Kucera, M., Pflaumann, U., and Schulz, M.: Centennial-to-millennial scale periodicities of Holocene climate and sediment injections off the western Barents shelf, 75 N, Boreas, 32, 447-461, 2003.

Schettler, G., Liu, Q., Mingram, J., Stebich, M., and Dulski, P.: East-Asian monsoon variability between 15000 and 2000 cal yr BP recorded in varved sediments of Lake Sihailongwan (northeastern China, Long Gang volcanic field), The Holocene, 16, 1043-1057, 2006.

Seppä, H., and Poska, A.: Holocene annual mean temperature changes in Estonia and their relationship to solar insolation and atmospheric circulation patterns, Quaternary Research, 61, 22-31, 2004.

Shapley, M. D., Ito, E., and Donovan, J. J.: Lateglacial and Holocene hydroclimate inferred from a groundwater flow-through lake, Northern Rocky Mountains, USA, The Holocene, 19, 523-535, 2009.

Snowball, I., Sandgren, P., and Petterson, G.: The mineral magnetic properties of an annually laminated Holocene lake-sediment sequence in northern Sweden, The Holocene, 9, 353-362, 1999.

Snowball, I., Muscheler, R., Zillén, L., Sandgren, P., Stanton, T., and Ljung, K.: Radiocarbon wiggle matching of Swedish lake varves reveals asynchronous climate changes around the 8.2 kyr cold event, Boreas, 39, 720-733, 10.1111/j.1502-3885.2010.00167.x, 2010.

Stager, J. C., and Mayewski, P. A.: Abrupt early to mid-Holocene climatic transition registered at the equator and the poles, Science, 276, 1834-1836, 1997.

Staubwasser, M., Sirocko, F., Grootes, P. M., and Erlenkeuser, H.: South Asian monsoon climate change and radiocarbon in the Arabian Sea during early and middle Holocene, Paleoceanography, 17, 10.1029/2000PA000608, 2002.

Steig, E. J., Brook, E. J., White, J. W. C., Sucher, C. M., Bender, M. L., Lehman, S. J., Morse, D. L., Waddington, E. D., and Clow, G. D.: Synchronous climate changes in Antarctica and the North Atlantic, Science, 282, 92-95, 1998.

Steig, E. J., Morse, D. L., Waddington, E. D., Stuiver, M., Grootes, P. M., Mayewski, P. A., Twickler, M. S., and Whitlow, S. I.: Wisconsin and Holocene climate history from an ice core at Taylor Dome, Western Ross Embayment, Antarctica, Geografiska Annaler, 82A, 213-235, 2000.

Stenni, B., Masson-Delmotte, V., Johnsen, S., Jouzel, J., Longinelli, A., Monnin, E., Rothlisberger, R., and Selmo, E.: An oceanic cold reversal during the last deglaciation, Science, 293, 2074-2077, 2001.

Stone, J. R., and Fritz, S. C.: Multidecadal drought and Holocene climate instability in the Rocky Mountains, Geology, 34, 409-412, 2006.

Telford, R. J., and Lamb, H. F.: Groundwater-mediated response to Holocene climatic change recorded by the diatom stratigraphy of an Ethiopian crater lake, Quaternary Research, 52, 63-75, 1999.

Thompson, L. G., Mosley-Thompson, E., Davis, M. E., Henderson, K. A., Brecher, H. H., Zagorodnov, V. S., Mashiotta, T. A., Lin, P.-N., Mikhalenko, V. N., Hardy, D. R., and Beer, J.: Kilimanjaro ice core records: Evidence of Holocene climate change in tropical Africa, Science, 298, 589-593, 2002.

Thornalley, D. J. R., Elderfield, H., and McCave, I. N.: Holocene oscillations in temperature and salinity of the surface subpolar North Atlantic, Nature, 457, 711-714, 2009.

van Breukelen, M. R., Vonhof, H. B., Hellstrom, J. C., Wester, W. C. G., and Kroon, D.: Fossil dripwater in stalagmites reveals Holocene temperature and rainfall variation in Amazonia, Earth and Planetary Science Letters, 275, 54-60, 2008.

Veski, S., Seppä, H., and Ojala, A. E. K.: Cold event at 8200 yr BP recorded in annually laminated lake sediments in eastern Europe, Geology, 32, 681-684, 2004.

Vinther, B. M., Clausen, H. B., Fisher, D. A., Koerner, R. M., Johnsen, S. J., Andersen, K. K., Dahl-Jensen, D., Rasmussen, S. O., Steffensen, J. P., and Svensson, A. M.: Synchronizing ice cores from the Renland and Agassiz ice caps to the Greenland Ice Core Chronology, Journal of Geophysical Research, 113, D08115, 10.1029/2007JD009143, 2008.

Vinther, B. M., Buchardt, S. L., Clausen, H. B., Dahl-Jensen, D., Johnsen, S. J., Fisher, D. A., Koerner, R. M., Raynaud, D., Lipenkov, V., Andersen, K. K., Blunier, T., Rasmussen, S. O., Steffensen, J. P., and Svensson, A. M.: Holocene thinning of the Greenland ice sheet, Nature, 461, 385-388, 10.1038/nature08355, 2009.

von Grafenstein, U., Erlenkeuser, H., Muller, J., Jouzel, J., and Johnsen, S.: The cold event 8200 years ago documented in oxygen isotope records of precipitation in Europe and Greenland, Climate Dynamics, 14, 73-81, 1998.

Wang, L., Sarnthein, M., Erlenkeuser, H., Grootes, P. M., Grimalt, J. O., Pelejero, C., and Linck, G.: Holocene variations in Asian monsoon moisture: A bidecadal sediment record from the South China Sea, Geophysical Research Letters, 26, 2889-2892, 1999a.

Wang, L., Sarnthein, M., Grootes, P. M., and Erlenkeuser, H.: Millennial reoccurrence of century-scale abrupt events of East Asian monsoon: A possible heat conveyor for the global deglaciation, Paleoceanography, 14, 725-731, 1999b.

Wang, Y., Cheng, H., Edwards, R. L., He, Y., Kong, X., An, Z., Wu, J., Kelly, M. J., Dykoski, C. A., and Li, X.: The Holocene Asian monsoon: Links to solar changes and North Atlantic climate, Science, 308, 854-857, 2005.

Weldeab, S., Lea, D. W., Schneider, R. R., and Andersen, N.: Centennial scale climate instabilities in a wet early Holocene West African monsoon, Geophysical Research Letters, 34, 10.1029/2007GL031898, 2007.

Willemse, N. W., and Törnqvist, T. E.: Holocene century-scale temperature variability from West Greenland lake records, Geology, 27, 580-584, 1999.

Yancheva, G., Nowaczyk, N. R., Mingram, J., Dulski, P., Schettler, G., Negendank, J. F. W., Liu, J., Sigman, D. M., Peterson, L. C., and Haug, G. H.: Influence of the intertropical convergence zone on the East Asian monsoon, Nature, 445, 74-77, 2007.

Zillén, L., and Snowball, I.: Complexity of the 8 ka climate event in Sweden recorded by varved lake sediments, Boreas, 38, 493-503, 10.1111/j.1502-3885.2009.00086.x, 2009.