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Abstract. Are simulations and reconstructions of past climate and its variability comparable with
each other? We assess i-whether simulations and reconstructions for the climate of the last millennium
are consistent under the paradigm of a statistically indistinguishable ensemble. Ensemble consis-
tency is assessed for Northern Hemisphere mean temperature, Central European mean temperature
and for global temperature fieldsfer-the-elimate-of-the lastmillennium. Reconstructions available for
these regions are-evaluated-against-the simulation-data-from-the-community-serve as verification data
for a set of simulations of the climate of the last millennium performed at the Max Planck Institute
for Meteorology.

The distributions of ensemble simulated temperatures are generally-too-wide-atmestlocations-and
on-meost-time-seales-often too wide relative to the employed reconstructions. Similarly-an-ensemble

inst-An ensemble of Northern Hemisphere reconstructions

is possibly consistent with the simulation ensemble mean —
target. Only the ensemble simulated and reconstructed annual Central European mean tempera-

tures for the second half of the last millennium demonstrates eensisteney-unambiguous consistency.

Otherwise probabilistic and climatological ensemble consistency is generally limited to sub-domains
and sub-periods,

status-of truth-can-be-assumed-forIf we treat simulations and reconstructions as equitable hypotheses

about past climate variability, a lack of their consistency weakens our confidence in inferences
about past climate evolutions on the considered spatial and temporal scalesand;—thus;—assessing
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perteds. Therefore a univocal estimation of accuracy is not possible if we acknowledge that our

available estimates of past climate evolutions are on an equal footing but, as shown here, inconsistent
with each other.

1 Introduction

Inferences about the spatio-temporal climate variability in periods without instrumental coverage
rely on two tools: (i) reconstructions from (e.g.) biogeochemical and cultural (e.g. documentary)
data that approximate the climate during the time of interest at a certain location in terms of a pseudo-
observation; (ii) simulators (that is, models) of varying complexity that produce discretely resolved
spatio-temporal climate variables considered to represent a climate aggregation over regional spa-

tial scales. Confidence in the inference ef-on a past climate state requires reconciling both esti-

. As 2
first step we may apply methods from numerical weather forecast verification (see, e.g., Toth et al.,
2003; Marzban et al., 2010; Persson, 2011) to evaluate the consistency of the-ensemble-with-relevant
validation-an ensemble of estimates with relevant verification data.

Similar-to-measurements—by—instrumental-sensors;—our-Our_pseudo-observations by proxies or
paleo-sensors (as coined by Braconnot et al., 2012) are subject to “measurement” uncertainty similar
to measurements by instrumental sensors. Uncertainties enter our reconstructions, among other
ways, through the dating of the non-climate-observationpseudo-observation, the transfer function
and the assumption of a relatively stable “proxy”’-climate relationship through time (e.g. Wilson
et al., 2007; Bradley, 2011). Simulated climate estimates are uncertain within the range of the
mathematical and numerical approximations of physical and biogeochemical processes (Randall
et al., 2007). Additional uncertainty comes from the reconstructions of the external factors driving
the climate system simulation. These again are subject to dating and transfer uncertainty (Schmidt
et al., 2011) resulting in diverse estimates of, e.g., past solar (e.g. Steinhilber et al., 2009; Shapiro
etal., 2011; Schrijver et al., 2011) and volcanic (e.g. Gao et al., 2008; Crowley and Unterman, 2012)
variations.

Hne-status-of“truth”ecan-be-assigned-sinee; forexampleThus, we have no independentdirect and

reliable observational knowledge on the climate in the pre-instrumental period;—the-assessment-of

“trath™. We can increase our confidence in the two tools by applying (weather-)forecast verification
methods which are less subjective than by-eye evaluations. Practically we select a verification data
target from the available reconstructions (simulations)to verify an available ensemble of simulations,
and vice versa. For a —specific task at hand, the analysis ef-censisteney—identifies whether the

simulated-and-reconstructed-climate-estimates—ensemble and the verification target can be consid-
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ered to be compatible rea

compatibility has to consider probabilistic and climatological properties. Note, to be compatible does
not imply to be identical (see for example Annan et al., 2011). Here we consider compatibility in
terms of the concept of ensemble consistency as used in the field of weather-forecast verification (e.g.

Marzban et al., 2010). Reconstructions and simulations are therefore treated as different but equi-

table hypotheses—Ensem

the-assessment-of-the-consistency—of reconstructions—and-simulations—,_and there consistency is
assessed within the framework of a statistically indistinguishable ensemble (Toth et al., 2003).
Annan and Hargreaves (2010) and Hargreaves et al. (2011) discuss, respectively, the reliability
consistency of the CMIP3 ensemble and the ensemble consistency of the PMIP1/2 (Joussaume and
Taylor, 2000; Braconnot et al., 2007) simulations in terms of this probabilistic interpretation. We
adopt the Annan and Hargreaves (2010) approach to assess the mutual consistency among the-en-

sembles of reconstructed and simulated estimates of nerthern-hemispherie-Northern Hemisphere

mean temperature for the last millennium. Relevant ensembles are available for reconstructions
(Frank et al., 2010) and for the PMIP3-compliant Community Simulations of the last millennium
(COSMOS-Mill, Jungclaus et al., 2010), We further evaluate the consistency of temporal evolutions
over the last millennium of the COSMOS-Mill ensemble with reconstructions for Central European
mean temperature (Dobrovolny et al., 2010) and a temperature field reconstruction (Mann et al.,
2009).

The following analysis is similar to the ensemble forecast verification in numerical weather pre-
diction (Toth et al., 2003) and extends the application of the paradigm of statistical indistinguisha-
bility in the climate modelling context from elimate-means-the assessment of mean-state quantities
(Annan and Hargreaves, 2010; Hargreaves et al., 2011) to temporally varying climate trajecto-
ries. Probabilistic reconstruction-simulation consistency is assessed over the pre-industrial period
of the last millennium using rank histograms (e.g. Anderson, 1996) and the decomposition of the x?
-statistie-goodness-of-fit test-statistic (Jolliffe and Primo, 2008). The restrictions-of-the-approach-are

considered—climatological component of ensemble consistency is evaluated by presenting residual

quantile-quantile plots (Marzban et al., 2010; Wilks, 2010)te-evaluate-theclimatological-consisteney.
The methods are discussed in Sect. 2 which further introduces the necessary terminology. Section 3

first discusses the robustness of the approach and then presents results concerning the consistency of

reconstructions and simulations;




2 Methods and data
2.1 Methods

An ensemble of (climate) estimates can be validated either by considering individually the accuracy

of each ensemble member against the—true”—observation-a suitable verification data target or by
95 evaluating the reliability—consistency of the full ensemble ;-that-is-the-compliance-between—true”

Marzban et al., 2010), We use the term “consistency” in the sense as used by, e.g. Annan and Harg-
reaves (2010) and Marzban et al. (2010). This usage is similar to verifying the reliability of numerical
100 weather forecast ensembles. Thus, consistency refers to the agreement between the frequencies of
the ensemble estimated data and the verification target. We assume an ensemble to be consistent
if we cannot reject the hypothesis that the frequencies of occurrence of events in the ensemble are
equal to the frequencies in the verification data. Since large uncertainties are associated with our
data and we lack an observed verification target, the assessment of ensemble consistency provides
105 a necessary condition for our evaluation of ensemble accuracy —In-thefollowing—if-we-mention

. 99 13 29

truthin paleoclimate-studies (following Annan and Hargreaves, 2010).

There are two components of consistency to be considered, probabilistic and climatological consistency
(Johnson and Bowler, 2009; Marzban et al., 2010). That is, we have not only to evaluate whether
110 within-ensemble frequencies are consistent with those of the verification data, but also whether the
variance of the ensemble member climatologies agree with the verification climatology.

The probabilistic component is
commonly evaluated under the paradigm of statistical indistinguishability by ranking true-observational

the verification target data against the ensemble data (Anderson, 1996; Jolliffe and Primo, 2008; An-
115 nan and Hargreaves, 2010; Marzban et al., 2010; Hargreaves et al., 2011). True-Target data and
ensemble-simulated data are sorted by value and the calculated ranks counted and plotted as a rank

histogram (Anderson, 1996).

outeomes-Indistinguishability refers to the assumption that the verification data may be exchanged
120 for any member of the ensemble without changing the characteristics of the ensemble, Verification
target and ensemble estimated (e.g, forecasted) frequencies agree for a consistent (or reliable) ensemble
(Murphy, 1973). That is, we expect equiprobable outcomes for an ideal ensemble, and the rank-
ing should result in a uniform, flat histogram. Fer-a—reliable”-ensemble-observed-and-ensemble
estimated-(e-g—forecasted)frequencies-agree—Notes-however—The underlying null hypothesis is
125 of an overarching distribution for verification and ensemble data; for any data point, the ensemble
and the verification data are assumed to originate from distributions which are similar enough to be
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indistinguishable. Note that a flat histogram of ranks does not neeessarily—imply-rekability-imply
consistency (see discussions by e.g. Hamill, 2001; Marzban et al., 2010).

. 2 .
the-test-statistic-enables-tests for-individual-deviationsfrom-flatness;-test is suitable to test for the

oodness of fit of the rank histogram relative to the flat expectation. Furthermore, Jolliffe and Primo

eounts—The =

(2008) meresb—eos s b el e s e Dbl ol e e e S

the simulation-ensemblepresent a decomposition of the test statistic which enables tests for individual
deviations from flatness resulting from biases or from different widths of the distributions; see Jol-
liffe and Primo (2008) for a comprehensive delineation. Thus, we are able to test the consistency of
an ensemble by considering the goodness-of-fit x* statistics and the respective p-values dependent
on the degrees of freedom of the distribution (e.g. Jolliffe and Primo, 2008). Distributional degrees
of freedom equal 12 - 1 for the full test (with n being the number of classes in the rank histogram) and
1 for the single deviation test (Jolliffe and Primo, 2008; Annan and Hargreaves, 2010), We reject
terms of a reversed null hypothesis, where appropriate, to test the hypothesis that there is a deviation
from uniformity. This refers to the general goodness-of-fit 2 statistic or to a specific deviation for
the decomposed statistic, It is reasonable to consider significance at a conservative one-sided 90%
level due to the large uncertainties associated with the data, Thus, critical x* values become 2.706
for the single deviation test. For the full test for consistency, we subsequently are going to consider

ensembles of eleven, nine, five and three members (see Section 2.2). Critical values are respectivel
17.275, 14.684, 9.236 and 6.251.

ANARARAANARRARAARSRNAAANAAAA AR

Meaningful-statisties require-to-account-Marzban et al. (2010, see also Wilks, 2010) recommend
to evaluate the climatological component of consistency using residual quantile-quantile plots (r-g-q

lots). These are similar to common quantile-quantile plots since they also evaluate estimates
for the climatological quantiles for the ensemble members against the verification data quantiles.
Here, however, the differences between the simulated distribution quantiles and the verification data
quantiles are displayed to emphasise deviations in the climatological distributions. These deviations
include, among others, differences in the tails, the skewness and the mean of the distributions.

The visualization of estimated quantiles against a theoretical quantile distribution allows to assess
whether the generating process for the estimates is of a similar structure as the theoretically assumed
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process. Thus, for the present consideration, quantiles allow to identify whether for each individual
ensemble member the structure of the (empirical) cumulative probability distribution agrees with
that of the verification data sample. Plotting the residuals of the estimated quantiles eases the
interpretation since agreement of estimated and verification quantiles is signalled by vanishing

residuals;

A number of further assumptions enter our analyses. First, meaningful statistics require accounting
for dependencies in the data (Jolliffe and Primo, 2008; Annan and Hargreaves, 2010) by e.g. evaluat-
ing the effective degrees-of-freedom-size of independent samples in the time series. A-highernumber
of-degrees-offreedom-All analyses account for effective sample-size (see discussions by and refer-

ences of Bretherton et al., 1999). Nevertheless, the results are sensitive to the assumptions made
especially with respect to the included uncertainty estimates (see below in this section). A larger

effective sample size essentially leads to a higher chance of rejecting the hypothesis of uniformity.
If ensemble and verification data are smoothed (as for the global data by Mann et al., 2009), either
the sample size or the expected number of rank counts may be small compared with the theoretical

requirements (but see e.g. Bradley et al., 1979, and references therein).

‘Temporal correlations in the data may further af-
fect the structure of the rank histograms in the assessment of the consistency of time series (Marzban
et al., 2010; Wilks, 2010).-Accounting for the sampling variability reduces the risk of drawing

Sampling variability can result in erroneous conclusions from the rank counts. We display, for area-
averaged time series, quantile statistics of block-bootstrapped rank histograms (Marzban et al., 2010;
Efron and Tibshirani, 1994). We apply a block length of 50 yr, calculate 2000 bootstrap replicates

and display 0.5, 50 and 99.5 percentileswhich-. This also allows for a secondary test of uniformity.

The results are sensitive to the chosen block length and 50 yr are possibly too short according to
the auto-correlation functions for some reconstructions. However, 50 yr appear to be a reasonable

compromise if we consider that the optimal length may also be shorter for some records.
The rank histogram approach further-assumes that the true validation data includes an error (An-

derson, 1996), which has to be included in the ensemble data. If the reconstructions are reported

with an uncertainty estimate, this is used to inflate the simulated data.

plots{Both methods, rank histograms and r-q-q plets)—Similar-te-commeon-quantile-quantile plots;

identifying discrepancies between the ensemble data and the verification data. For the probabilistic
assessment, a rank histogram of apparent dome-shape (u-shape) indicates that the verification data
is sampling from a distribution narrower (wider) than the ensemble, thus the spread of the ensemble
is overly wide (too narrow). Too wide (narrow) ensembles are referred to as over-(under-)dispersive.
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If the ensemble is biased to positive (negative) values, a negative (positive) trend is seen in the rank

counts,

Consequently, a rank histogram with substantial clustering on one end of the counts suggests that
the ensemble data is less likely to come from the high (negative bias) or small classes (positive bias)
of the distribution. The dome- or u-shapes. on the other hand, signify that the ensemble data has,
respectively, a larger or smaller variance compared to the verification data. As discussed by, e.g.,
Jolliffe and Primo (2008), there are other possible deviations, but we concentrate on these two.

In the climatological r-q-q plots-and-climatologieatplots, differences in the mean of the distributions,

that is biases, are seen as horizontal displacements from the expectation of vanishing quantiles.
Climatological over- and under-dispersion (too wide or too narrow distributions) relate to positive

or negative slopes (Marzban et al., 2010). That is, if an individual ensemble member features a

larger climatological variance than the verification data, a positive slope in the residual quantile
oceurs since the ensemble data systematically overestimates the distance between the mean and the
closer to the mean., Marzban et al. (2010) give more details on the interpretation of the pattern of
residual guantiles.

Thus, the rank histograms are a tool to disclose whether a probabilistically interpreted ensemble
and its verification data represent different climates. Quantiles or residual quantiles complement
the analysis to account for differences in the climatologies of the ensemble members. In climate
studies, they are especially able to highlight differences in the resolved values close to the tails.
The rank histograms provide a means for evaluating the consistency of the joint distribution for the
ensemble and verification data (see Wilks, 2010), and the residual quantiles highlight deviations
between climatologies for individual simulations,

In addition, the ranking of the verification against the ensemble assists in evaluating gridded
spatial data. Therefore, the position of the verification data within the ensemble can be visualized
in maps (Sects. 3.3.1 and 3.3.2). At each grid-point the rank of the verification data is plotted for
individual time steps or climatological periods. Individual low ranks of the target hint to a localised
overestimation of the climate parameter by the ensemble in such spatially mapped verification ranks,
whereas high ranks imply a negative bias in the simulation ensemble.

2.2 Data

We employ the ensemble of the COSMOS-Mill simulations for the last millennium performed
with the Max Planck Institute Earth System Model (MPI-ESM) based on the atmosphere model
ECHAMS, the ocean model MPI-OM, a land-surface module including vegetation (JSBACH), a mod-
ule for ocean biogeochemistry (HAMOCC) and an interactive carbon cycle; details of the simula-
tions have been published by Jungclaus et al. (2010). The set specifically includes single forcing sim-

ulations for volcanic, strong solar and weak solar forcing, five full-forcing simulations with weak so-
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lar forcing and three full-forcing simulations with strong solar forcings (full ensemble: eleven mem-
bers). We include the single forcing simulations as valid hypotheses about the pre-industrial climate
trajectory assuming that uncertainty is high in the respective forcing series and in our knowledge of
the influence of the forcing components on the pre-instrumental climate. If a strong or weak ensem-
ble is mentioned, this consists of the respective full-forcing simulations with strong and weak solar

forcing. Additionally, we take advantage of the 3100-year control run describing an unperturbed
climate.

Considered-reconstructions-are-All reconstructions are for annual mean temperature. We use
a regional annual-temperature-series for Central Europe (Dobrovolny et al., 2010), the ensemble data
for annual-Northern Hemisphere temperature by Frank et al. (2010) and the global temperature field
reconstruction by Mann et al. (2009). Forthe-data~we-Whereas all data have an annual resolution,
some are temporally smoothed (e.g. Mann et al., 2009). We reverse the approach for the Frank et al.
(2010) data to study additionally the consistency of a reconstruction sub-ensemble-ensemble with
respect to the-a simulation ensemble mean;-we-. Note that such an ensemble of reconstructions is
only available for the hemispheric mean data, Frank et al. (2010) recalibrate the reconstructions
by Jones et al. (1998), Briffa (2000), Mann and Jones (2003), Moberg et al. (2005), D’ Arrigo et al.
(2006), Hegerl et al. (2007), Frank et al. (2007), Juckes et al. (2007) and Mann et al. (2008) to various
periods of instrumental observations, The last available annual data differ among the reconstructions
considered by Frank et al. (2010), We use the sub-ensemble ealibrated-re-calibrated to the period
1920 to +960—-1960 for our reverse-analysis (in the following just referred to as sub-ensemble; see
Frank et al., 2010, for discussion on the ensemble construction). This period likely presents the most

reliable observational data if we want to use all nine reconstructions. The choice of the calibration

window strongly influences the variability of the reconstructions which is going to influence the
assessment of consistency. Assumed uncertainties generally base on the full ensemble and therefore

should account for this sensitivity.
Spatial field data are interpolated on a 5 x 5 degree grid. As our interest is in the consistency

of paleoclimate reconstructions and simulations for the last millennium, anomalies are taken with
respect to the common period of reconstructions and simulations but excluding the period of overlap
with the modern observations: (i) for the European temperature time series (period 1500 to 1854)
with respect to the mean from 1500 to 1849, (ii) for the Northern Hemisphere temperature series for
and with respect to the period 1000 to 1849, and (iii) for the decadal smooth global field the records
for the years 805 to 1845 with respect to the mean for 800 to 1849. Additionally, four sub-periods

are considered for the global field data consisting of non-overlapping 250 records. The first three
periods cover the first 750 records of the full data and the last period covers the last 250 records of
the data sets; Thus there is a gap between the first three and the last sub-period,

For the Central European data. the uncertainty is sampled from a normal distribution with zero
mean and standard deviation equal to the one standard error estimate given by Dobrovolny et al.
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(2010)._ For an ensemble of data, an observational uncertainty can be randomly sampled from a
distribution with zero mean and standard deviation equal to the ensemble standard deviation at each
point. For the ensemble-mean approach, we additionally use additive internal variability estimates
for the target data (see Sect. 2.3 for details). No uncertainty estimate is given for the global field
data, We choose to inflate the ensemble by a random uncertainty estimate drawn from a Gaussian
distribution with standard deviation equal to the largest standard error (ie. o =0.1729) of the
unscreened Northern Hemisphere mean temperature series provided by Mann et al. (2009)._

2.3 Discussion of the chosen approach

The simulation-reconstruction-consistency can possibly be evaluated on three levels of resolution:
area-averaged time series, gridded spatio(-temporal) data and individual grid points of the gridded
data. Results may differ between these and it is not obvious at which level the consistency should be
largest. Even if we find an ensemble of simulations to be consistent at the grid point level, we cannot

say whether the covariance between individual grid points or within the whole field is consistent

with the true covariability-covariability in the verification data.
Anderson, 1996) not least because of the uncertainties in the verification data, More recently Hamill
(2001), Marzban et al. (2010) and others discussed the influence of, ¢.g., the underlying distributions
or temporal correlations on the results; see also Wilks (2010) and the references in these publications.
Marzban et al. (2010) further discuss the influence of intra-ensemble correlations and correlations
between the ensemble and the verification on the rank histogram.

Uniformity in rank histograms may result from opposite biases or opposite deviations in spread
in different periods or areas which cancel out (Hamill, 2001). On-the-otherhand;—indications—of

oo-narrow-cnscmble-may-as-wellresultfrom-different-biases-in-different periods. Temporal cor-

relations in the data can result in premature rejection of flatress-consistency (Marzban et al., 2010).
Using bootstrapped estimates or analysing different sub-periods at individual grid points helps to
address these problems. We also follow Marzban et al. (2010) in displaying residual quantiles.

of the climatological anomaly distributions. The amount of correlations between verification and

ensemble or within the ensemble and the differences between both can result in misleading rank
histograms under idealised conditions (see Marzban et al., 2010, for details). We do not discuss
this effect here. However, we note that the intra-ensemble-correlations do not allow a priori to
exclude a uniform outcome, while the ensemble-verification-correlations suggest that we may expect
a u-shaped rank-count for some cases. These expectations are made under idealised assumptions
which do not necessarily hold for the considered ensembles, We do not perform sensitivity analyses
on how the correlations may affect the results for the considered ensembles. We assume that these
caveats increase the general uncertainty in the comparison between simulations and reconstructions



310 of past climate states and variability, At this point we stress that we see consistency as a necessary
condition for the comparability between simulations and reconstructions, Caveats and inconsistencies_
have to be considered in subsequent analyses of the simulated and reconstructed data.

Altheugh-the The data sets are a priori assumed to represent annuallyreselved-values;thisinter-annual
variations of the data. This is not necessarily valid—H-the-target-/truth—, if the target is an en-

315 semble mean, the-target-displays—reduced-inter-annual-since this is going to display reduced vari-
ability compared to the ensemble members —This—has—to-be-taken—into—accountin—interpreting
the-resultsespecially on the inter-annual time scale. It is therefore likely that using an ensemble
mean as trath-verification data will change the ensemble consistency. Considering an error-in-the
truth-can-compensate-such-problemsuncertainty estimate in the target can compensate this. If re-

320 construction and simulation ensemble estimates are thought to include the same externallyforeced
externally-forced variability, the true-target ensemble mean should essentially recover the forced sig-

nal within the propagated uncertainties, and the probabilistic ensemble estimates (including the un-

certainty of the truthtarget) should reliably represent the true-distribution—Similarly-members-target
distribution. However, an alternative approach to compensate for the reduced variability is to add an

325 estimate of the internal variability to the ensemble mean estimate, In the following we pursue this
approach, Thus, for the evaluation of the simulation ensemble, we fit autoregressive-moving-average
models to the residual deviations of the full reconstruction ensemble from the ensemble mean.
Thereby we obtain 521 possible fits, We produce for each fit 10 random representations of the
process to add to the ensemble mean, For the reverse analyses, we add one section of the control

330 run (Jungelaus et al., 2010) to the ensemble mean simulation. We regard using only one segment
robust enough for evaluating the internal variability of the simulations since we further account for
the sampling variability,

Members of the reconstruction ensemble are to some extent time-filtered and by construction

exhibit reduced variability on inter-annual time-scales. As the properties differ for the reconstruction

335 ensemble members, this filtering is not considered. On the other hand, the decadal smoothing of the
global field data (Mann et al., 2009) is taken into account by using decadal moving means for the

simulation ensemble data.

3 Results

We evaluate the ensemble consistency of the COSMOS-Mill simulation ensemble for area-averaged

340 and grid point time series with respect to temperature reconstructions. In prineiple;—al-Hevels—of

reconstruetions—on-one-of theselevels-and-our assessment, we test for the consistency of the rank

histograms for our ensembles with the hypothesis of a uniform outcome. We start by looking at the
intra-ensemble consistency before assessing the area-averaged and field estimates.

10



345 3.1 Intra-ensemble consistenc

Before we evaluate the consistency of the chosen simulation and reconstruction data sets, it is in
place to describe the within-ensemble consistencies. We construct a surrogate simulation ensemble
from the control-run, This ensemble is found to be probabilistically consistent with 2201 equivalent

350 and the volcanic-forcing only simulation, The full test rejects uniformity in less than one percent of
the tested surrogate targets (see Figure 1a). Spread and bias tests are significant for less than 50 tests
(see Figure 1a). Here, we do not include uncertainty estimates.

Sect. 3.2 will consider the ensemble mean of the Northern Hemisphere reconstruction ensemble

(Frank et al., 2010), but we may question the consistency of the single reconstructions with one
355 another. The reconstruction sub-ensemble recalibrated to 19201960 is only probabilistically consistent
with respect to the recalibrated Frank et al. (2007) reconstruction (Fig. 2). Here, we consider
the target uncertainty and account for the reduced internal variability in the data by Hegerl et al.
(2007), yet. be suflicient for climate reconstructions on-another- Implications and-origins of found
i i Mann and Jones (2003) and Mann et al. (2008). The results
360 notably differ, if we exclude the uncertainty estimate (not shown).

Thus, we see from Figure Ia that pairs of ensemble and verification appear to be generally
consistent if variability is restricted to the internal variability of the simulated system or variability
that is only marginally different from the internal variability (compare Zanchettin et al., 2010). In
line with similar considerations in seasonal and medium-range weather forecasting (Johnson and

365  Bowler, 2009), ensembles are consistent as long as the target variability and the projected variability
are similar. Figure 2 additionally highlights that the reconstruction ensemble apparently does not

3.2 Area-averaged time series

3.2.1 Ensemble-eonsisteney-of-area-averaged-estimates

370 Figure3-displays-the-Figures 3 to 5 display the verification data time series and their variability

together with the range of the ensembles.

375 for-the-Central Buropean—temperature-We see that the European data for the simulations and the

reconstruction cover a similar range and show similar variability (Fig. 3), while the hemispheric

11
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5). Similarly the hemispheric simulation ensemble mean differs in the temporal evolution from the
reconstructions but, on the other hand, is in the range of their variability (Fig. 6e)—On-the-otherhand;

N
The range of possible reconstructed evolutions covers a notably wider range than the simula-
385 tion ensemble estimates—for-the NorthernHemisphere—temperature—are—from—a—notably—too—wid

of internal variability in the reconstructions (Fig. 6¢5). The bootstrapped-ranks-{(shadingin-inclusion
of an estimate of internal variability does not excessively change the simulation ensemble mean

climate trajectory (Fig.
390 an he—si
arenotuntikely-withrespeetto-auniformouteome)). Nevertheless it provides a pronounced increase
in the variability of the simulation ensemble mean target. Sections 3.2.2 and 4 discuss the influence
of the resolved variability on the results.
395 by Fig, 6 and the climatological component of consistency by Fig. 7. Both figures account for

the uncertainty in the verification target. Uncertainty estimates are the reported standard errors for
the Central European temperature data-target (Dobrovolny et al., 2010) and the spread of the mutual

ensembles for the Northern Hemisphere data —Aeecountingfor-these“errors™in-targets. If we neglect
these “observational” uncertaintics in the verification data the “verificationdata-alters the result-for

400 thereconstruction-ensemble—Theranksinresults change for the hemispheric data (not discussed).

3.2.1 Ensemble consistency of area-averaged estimates

Visually, no probabilistic differences arise between the ensemble simulated and reconstructed estimates
for the Central European temperature (Fig. 6a). Nevertheless, the x? statistics for the spread-test are
significant which would imply a lack of consistency. The bootstrapped rank count intervals however

405 are not incompatible with a uniform result. The contrast between bootstrap and goodness-of-fit test
possibly highlights the problem of sampling variability,
is accounted for in the target data with differing results for the reconstruction and simulation ensembles
(Fig. 6 . ' . . . ' . .

410 We first consider the case where the assessment does not include the estimates of internal variability.
Then, the reconstruction ensemble mean occupies too often the central ranks ef-the-histogram—This
behavior-is-alsofoundfor-the-ensemble-mean—reconstruetion+n-and consequently we may term
the full simulation ensemble significantly over-dispersive. The bootstrapped intervals confirm this

(cyan overlay in Fig. 6b). Under the same conditions also the reconstruction sub-ensemble (cali-
415 bration period 1920-1960, see Frank et al., 2010) for the northern hemispheric mean temperature is
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too wide relative to the ensemble mean simulated Northern Hemisphere temperature (Fig. 6d—The

If we include an estimate of the internal variability in the analyses of the hemispheric data-

420 » mixed results are

obtained, The simulation ensemble may be consistent with some of the constructed reconstruction-targets,
but the median of assessments against all targets still emphasises an over-dispersive relation, Furthermore,
the 90% envelope (dark grey in Fig. 6b) and-the-99range-of-the-bootstrapped-ranks-is-stilh-compatible
with-a-flat-histogram.—Centrarily;-is incompatible with probabilistic consistency, We note that we
425  cannot reject consistency according to the 99% envelope (light grey in Fig, 6b).
On the other hand, if we consider the internal variability for the presentedx? test gives significant

of-simulation ensemble mean target in the evaluation of the Xz—{estggggggtvrgvcgv()vnvggvsgvrg@lve\,vg\lg

analysis suggests that the sub-ensemble recalibrated to the period 1920-1960 is indeed consistent
430 with the simulation ensemble mean (continuous black line in Fig. 6¢). The bootstrapped ranks

emphasise the good probabilistic agreement under the assumptions made (grey shading in Fig. 6¢).

Results are insensitive to the inclusion of an arbitrarily chosen estimate of internal variability in the
data by Hegerl et al. (2007), Mann and Jones (2003) and Mann et al. (2008).

Similarly-the-The residual quantiles of the climatological distributions in Fig. 7a -agree-generally
435 wellfor-indicate good agreement between simulated and reconstructed European temperatures;

altheugh-thesimulations-. Some simulations appear to underestimate very warm anntal-anomalies
and overestimate very cold

440 melud%{h%effer—esmﬂa{esm a slight Mslope occurs in the residual quan-

tilesin

the-t6th-century-remains-exeeptional—, which is indicative of over-dispersion. However, bootstrapped
intervals still include the zero line, which clarifies that the slope is not significant.

Larger climatological deviations occur between the simulation ensemble and the reconstructions

445 eceurfor the Northern Hemisphere temperature data¢, If we do not account for the reduced internal

variability in the ensemble reconstruction mean target, the simulation ensemble gives overly wide
distributions (grey overlay in Fig. 7b:-), Similarly, reconstruction ensemble members generally
overestimate at least the positive anomaly quantiles relative to the simulation ensemble mean target
excluding the internal variability estimate (transparent grey in Fig. 7c). Independentof-

450  Results change for the northern hemispheric data under considerations on the recenstruction
uneertainty;—internal variability. Figure 7b plots residual quantiles for the simulation ensemble
eives-overly—wide-distributions—Similarly,—relative to the reconstruction ensemble everestimates
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455 quantilesifuncertaintiesare-includedmean target with added estimates of internal variability for all
calculated estimates. In the multitude of possible patterns we can find consistent residuals as well as
under-dispersive (negative slope) or over-dispersive ones (positive slope). Furthermore, simulated
quantiles appear to commonly agree in the tails but to overestimate the variability closer to the mean.
These also include simulated quantiles which besides being more variable close to the mean feature

460  lighter tails. The overestimation appears to be largest for the strong forcing simulations. From our
point of view, the multitude of possible deviations leads to a conditional rejection of climatological
consistency especially due to the notable overestimation of variability. Rejecting consistency is
in line with the probabilistic assessment in Fig, 6b already stressing the generally over-dispersive
character of the ensemble.

465  The analysis of the climatological consistency for the reconstruction sub-ensemble details that
most reconstructions agree well with the simulation ensemble mean target when we include an
estimate of internal variability in the assessment (Fig. 7¢). The bootstrapped intervals emphasise
this general consistency, However, deviations are notable in the tails, which become pronounced for
large negative anomalies and the reconstruction by DArrigo et al. (2006). Residuals for the data

470 by Jones et al. (1998) diverge from the common description by being strongly over-dispersive. The
strength of the over-dispersion originates in the size of the considered uncertainties.

Considering—the—twe-Next, we shortly discuss the two individual full-forcing simulation sub-
ensembles separately-(five simulations with weak, three with strong solar forcing)eenfirms-. Respective

analyses confirm the results with respect to the European temperature data although both ensembles
475 display specific behaviers-behaviours (not shown). H-uncertaintiesin-the-truth-are-accounted-forthe

The weak solar full-forcing ensemble is unambiguously probabilistically consistent with the Euro-

pean reconstructions, whereas the strong solar forcing ensemble is slightly too wide (not shown).

The spread is significant according to the goodness-of-fit test, but the bootstrapped ranks suggest

that this may be due to sampling variability. The residual quantiles do not differ too much between
480 both ensembles as seen in Fig. 7(red;-weak-ensemble;blue;strong-ensemble)—Relative b,

The weak solar full-forcing ensemble is likely too wide probabilistically relative to the Northern
Hemisphere temperature reconstruction ensemble mean (not shown);-beth-full-fercing-sub-ensembles

485  For the strong solar full forcing ensemble the bootstrapped quantiles and the small ensemble size
allow only ambiguous statements although the single deviation test for spread and the rank counts
suggest significant over-dispersion (not shown). The residual quantiles display streng-a wide range
of possible deviations for the strong forcing ensemble (compare Fig. 7)—Reversing-the-verification

task '1ﬂd eeﬂf‘id%fjﬂg errors iﬂ the H:chb\)\'N
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490 For the reversed verification on hemispheric data, the reconstruction ensemble distribution is

too—wide—slightly (strongly) too narrow relative to the weak fercing-ensemble—but-is—consistent
relative-to-thestrongforeing-ensemble-(strong) solar full-forcing ensemble mean according to the
2 statistics and the rank histograms if we consider the uncertainties and the internal variabilit
shown). However, the bootstrapped quantiles again prevent unambiguous conclusions on the relation
495  between ensemble and verification data, Climatologically most reconstruction ensemble members
are consistent with the weak and the strong solar full-forcing ensemble means if uncertainties and
internal variability are considered (not shown).

500

the reconstruction by Jones et al. (1998) are again distinct from those for the other reconstructions.
That is, the climatological deviations relative to the simulation sub-ensembles generally agree with
those for the full ensemble displayed in Fig. 7c, but deviations are eutside-the-99rangeforthe-positive
tails-otherwise—larger relative to the full ensemble mean target.

505 Next, we shortly give results on the assessment of pairs of simulation ensembles (all, weak, strong
solar full-forcing) and single reconstructions (Frank et al., 2010, recalibrated to the 1920-1960
period). We include uncertainty estimates. Furthermore, we choose an arbitrary member of the
ensemble of internal variability estimates to add to the three reconstructions by Hegerl et al. (2007),
Mann and Jones (2003) and Mann et al. (2008)&5@&%%%

510 Obviously, the full ensemble lacks probabilistic consistency with all reconstructions under the
made assumptions on internal variability and uncertainty, according to the x? test. The bootstrapped
intervals confirm this (not shown). Deviations are least obvious for the data by Moberg et al. (2005).
Climatological quantiles confirm these probabilistic findings (not shown),

The weak solar full-forcing ensemble appears to be probabilistically consistent with the Moberg

515 etal. (2005) reconstruction. The bootstrapped intervals suggest that the ensemble is not probabilistically
inconsistent with the data by Mann et al. (2008) under the made assumptions (not shown). Residual
quantiles are generally large (except for Moberg et al., 2005).

The cCoh t oh—gdan e—festaua crattve 1oty

520  strong solar full-forcing ensemble is a special case. Bootstrapped intervals do not permit to reject
probabilistic consistency for any of the nine reconstructions under the assumptions made. Results
summarized in Figure 8¢ indicate consistency of the ensemble with the data by Frank et al. (2007),
Moberg et al. (2005) and Mann et al. (2008). Again, residual guantiles are large except for the
reconstruction by Moberg et al. (2005)., We note that the results differ for all three ensembles (all,

525  weak, strong solar full-forcing) if we do not include uncertainty estimates.

If the surrogate ensemble generated from control-run data (see Sect. 3.1) is assessed against the
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521 members of the Frank et al. (2010, uncertainty estimate included) recalibration ensemble, about

14 % of the pairs arise as consistent with respect to the full test although they are unrelated (Figure
1b). Single spread test statistics are not significant in about 35 cases (Figure 1b). We include
530 an estimate of internal variability for the reconstructions by Hegerl et al. (2007), Mann and Jones
(2003) and Mann et al. (2008). Similarly, the climatological analyses displays larger consistency
for the surrogate ensemble than for the real ensemble, with some members of the reconstruction
ensemble (not shown) indicating strong deviations between reconstructed and simulated climate
evolutions. Thus, the unperturbed internal climate variability may be indistinguishable from forced

535 simulated or reconstructed variability.
ThusIn summary, verification of the simulation ensemble suggests that it is generallytoo-wide

too wide relative to the northern hemispheric mean temperature reconstructions. Strong discrepan-
540 cies arise not only with respect to the probabilistic analysis but also in the climatological assess-

ment. Fhese:-however-do-notchallenge-theconsisteney-of- There, the Central European-temperature
estimates—On-the-otherhandresults are very diverse relative to the possible representations of internal

variability for the reconstruction ensemble mean target. When we account for uncertainties and
internal variability, the reconstruction ensemble i tati i 2

545  the-sin

and-reconstructionappears to be consistent with the simulation ensemble mean target but most

550  reconstruction ensemble members deviate climatologically in the tails. Thus, the large uncertainties
in the ensembles and also in the verification targets prohibit to generally reject consistency for the
northern hemispheric data. On the other hand, the Central European temperature estimates appear
to be unambiguously consistent.

3.2.2 Addressing origins of the lack of consistency

555 Figure3-displays{i)}thatAs described above, the European data for-the simulations-and-the reconstruction
cover a similar range and show similar variability ;H-that-the-hemispheric reconstructionensemble

the-hemispheric simulation-ensemble-mean-tfor the simulations and the reconstruction, Figure 3b
further displays that the low-frequency variability differs notably between the simulations and the

560 reconstruction,
Figure 5 and 3 also highlight prominent differences between the hemispheric targets and the
hemispheric ensemble data, When we account for the reduced internal variability in the hemispheric
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570
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580
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590

595

ensemble mean targets we find that the range of possible reconstructed evolutions is relatively wide
compared to the recenstruction-ensemble)—which-en-simulation ensemble. The moving standard

deviations emphasise the disagreement in variability. On the other handis—in-the-range-of-, the
inclusion of an estimate of internal variability does not unduely change the simulation ensemble
mean climate trajectory, but it provides a distinct increase in the variability of the reconstruction
ensemble—However;simulation ensemble mean target (Fig, 5b)._

‘We note that under the uncertainties associated with elimate-reconstructions, climate simulations

and the forcing reconstructions, even saeh-strongly differing estimates may be probabilistically and

climatologically compatible with one another.

Thus, although the-inset+in-Fig. 3¢ shows that European temperature evolves notably different
before 1800 in the ensemble simulations and in the reconstruction, both datasets are in the above
sense comparable. That is, the strong differences in the 18th century (or similarly the late 1500s)
are likely compatible with our knowledge about internal and externallyforced-elimate—~variability
externally-forced climate variability for the continent.

On the other hand, the distributions—differ-between—the-nerthern-hemispherie-probabilistic and

climatological evaluations emphasise the disagreement between the Northern Hemisphere tempera-
ture reconstruction ensemble mean and the full simulation ensemble;-if-we-consider-the-uncertainty

in-the-verification-ensemble-meanreconstruction. The time series in Figures 5 and 5 clarify that part
of the over-dispersive character of the ensemble may relate (i) to biases in the periods 1000 to 1300
and 1500 to 1650, where reconstructions and simulations evolve to some extent oppositely, and to

(i) less warming in the reconstruction verification in the 18th century. The same biases act oppo-

sitely in the mutually reverse assessment and-alse-influence-the-assessmentoflowfrequentsmoothed

e a O he d h Mo h not-on due-to-the-eveo avallral he fataVe Maval a\ no
v-CH510H510 aata- S O ERSA% Oot-©O &t O vVO1tdtoh—©O StHoRE-501d t O D

simulation-ensemble—but are not large enough to reject consistency. They rather compensate over
the full period.

{Fig—3d—H—Verification data and the respective ensembles differ in the warming intensities in the

19th and 20th century for Europe and also in the last 100 yr for the Northern Hemisphere (Fig. 3
a—band 5). For Europe, especially the strong solar forcing simulations differ in recent temper-

ature evolutions.
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Appropriate representation of internal variability is fundamental for our assessment, and internal
climate variability can be as large as forced signals. In Figures 6 and 7. we followed different
approaches. As mentioned before, panels b-c of both figures display the assessment of the respective
ensemble relative to an ensemble-mean estimate which presents only a reduced amount of internal
variability. Even after including the estimates of the internal variability, results for simulations
and reconstructions describe to some extent different aspects of our uncertain knowledge, While

+Oth-centuries;compare-also-—and-reconstruction ensemble relates to different methodologies and
different climate proxies, the intra-ensemble variability for the simulations represents the differences
in the considered forcing estimates and the different initial conditions of the ensemble but also
depends on the formulation of the numerical code. The added internal variability for the simulation
target describes one unperturbed climate trajectory under similar constraints, The internal variability
adjustments for the reconstructions may still represent the different methodologies and types of
proxy data although they are generated as stochastic processes.

In_our analyses, we accounted for the reduced internal variability in ensemble mean targets.
However, we note that strong discrepancies in variability may also occur with respect to inter-annually
representative temperature reconstructions (not shown).

3.3 Spatial fields

3.3.1 Ensemble consistency of field estimates

In the following, we extend the analyses of consistency are-extended-to the decadally smoothed
global temperature fieldreconstruction-by—We-fields. We thus note again that deviations from
uniformity of the histograms may be due to deviations in one particular period, while other periods
may display consistency between reconstructions and simulations. These discrepancies can easily be
identified in the analysis of time series data. For the assessment of the spatial field data we consider
the question of consistency at the grid-point level and do so for different time periods to highlight

the possible deviations.

inFig—9-a-and-Sub-periods of non-overlapping 250 records are considered in the range from 805 to
1845 CE, The first three periods cover the first 750 records of the full data (about 800 to 1050, 1050
10,1300, 1300 to 1550), but the last period covers the last 250 records of the data sets (about 1595 to
1843). Thus, there is a gap between the earlier three periods and the late period.
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Figure 9 provides a first impression of the relation between simulated and reconstructed data
635 for the global temperatures. Fig. 9e-shews-the-rank-of the-reconstruction-data-in-the- COSMOS-Mill

ensemble-of surface-temperature-data-for this-climatelogy—From-a displays the reconstructed climatology
map for an arbitrarily chosen sub-period (1390s to 1690s) from the decadally smoothed global
temperature field data (reconstruction by Mann et al., 2009). The ranks in Fig. 9c suggest strong
deviations between the ensemble and the reconstruction over wide regions of the globe for this
640 sub-period with the ensemble being biased low over the tropical Pacific ocean and high over most
other oceanic regions, North America and eastern and western Eurasia. These biases are not representative
as we discuss below (compare Fig. 12). Rather the ranks in Fig. 9c highlight how strongly simulated
mean anomalies may disagree with the reconstructed patterns for specific periods. Variability is
as often comparable as not for the data set not only in the sub-period but also over the full period
645 (Fig. 9bit-eanbeseen—that-thesimulations ! —vary : Sty a
However, slight changes may of course be found in the specific size of over- or under-estimation of
variations in the sub-periods.

3.3.1 Ensemble consistency of field estimates

650 Figures 10 to 12 display a selection of results for the evaluation of consistency —Although-no-at
individual grid-points. No uncertainty estimate is given for the global field data, we-so we choose to
inflate the ensemble by a random errerestimate drawn from a distribution with a-standard-deviation
equaling-standard deviation equal to the largest standard error of the unscreened Northern Hemi-
sphere mean temperature series provided by Mann et al. (2009). Without errer-uncertainty infla-

655 tion, expected effective rank frequencies can be very small eensidering-due to the temporal auto-
correlations in the data. The number of independent samples is always largest over the Tropical
Pacific (not shown) probably due to the too strong and too regular ENSO in MPI-ESM (Jungclaus
et al., 20006).

As for the time series data, the most common deviation is a too wide simulation ensemble for rank

660 counts (Fig. 10 for a random selection of grid points) and residual quantiles (Fig. 11 for a random
selection of grid points). However, the ensemble may arise as too narrow at individual grid points
over the full period due to opposite probabilistic biases. Objectively flat rank counts are found as
well for sub-periods and the full period, although again opposite biases may lead to this result. The
notable shifts in probabilistic consistency are highlighted by considering different perieds-of250

665 records-in-therangefrom-805-to-1845CEsub-periods (Fig. 10). Outstanding changes occur between
opposing biases, as the ensemble is found to be moderately (or even extremely) biased in at least one
sub-period.

The prominent lack of consistency between simulations and the field reconstruction becomes even

more obvious in the climatological residuals (Fig. 11). Ameng-the-individual-ensemble-members;
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the-elimatelogical-behaviorThe climatological behaviour is mostly comparable among the individual

ensemble members relative to the reconstruction. The prominently sloped residual quantiles high-
light the stronger variability in the ensemble even for decadal moving averages. However, at certain
grid points under-dispersive or consistent climatologies can be seen. Changes in the r-q-q plots are
diverse-between-periods-between the sub-periods are diverse but can be rather small between the
first and the last 250 records (compare Fig. 11). Some improvement is seen towards more lim-
ited deviations or nearly vanishing residuals in the late-periedlast sub-period. At other grid points,
biases increase, change sign or deviating spread characteristics become more pronounced. In com-
pliance with the shifts in the probabilistic deviations, there are grid points where either the recon-
structed quantile distributions or the anomaly quantile deviations or both are completely different

between €

atathe first and the
last sub-period. Thus, results for sub-periods are often not comparable with each other in neither-the

probabilistie-nor-the-climatogie-¢ither the probabilistic or the climatological evaluation. Occurring
shifts-emphasize-subsequent shifts emphasise the general lack of a common signal, i.e. differences
in the long-term trend component.

Decadal smoothing reduces the width of the climatological quantile distributions, and a number
of grid points display only very-smal-a very small range of quantiles as a sign of very weak inter-
decadal variability (not shown). Ateertain-grid-points;-the- The extremely narrow reconstructed quan-
tile distributions result in particularly strong climatological over-dispersion at certain grid points.
Quantile distributions are in parts broader in higher Northern Hemisphere latitudes for both recon-
structions and simulations.

selection of grid-points provides
only a snapshot of the results for the global field data. Fig. 12 grid-eells-are-colored-with-respeetto

-provides a summary of the full and single deviation goodness-of-fit tests for the full period and
the truth-are-considered(not-shewmsub-periods defined above. We include the target uncertainties

in all results displayed, but first discuss the results without them. Then, the full test generally does
not reject uniformity for the full period. However, the single deviations are frequently significant

especially over the oceans for the early and late perieds—ef-the-datasub-periods as defined above.
Thus, while eentering-centring the data over the full period leads to consistent estimates from the

late 11th to the early 16th century, the long-term trends are-netably-different-differ notably at the
beginning and at the end.

If a moderate random error-uncertainty inflation is used (g =0.1729, see Sect. 2.2), spatially
extended eensisteney-probabilistic consistency for the full period is mainly restricted, according to
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the full test, to Central Eurasia and the Tropical Pacific for-thefull-peried-(Fig. 12a). Ferfour

Diverging results become visible in the sub-periods of 250 recordsdivergingresults-become-visible.
For example, the pair of reconstruction and ensemble simulations is consistent in the North Atlantic

sub-polar gyre region for the early peried-(sub-period (about 800 to 1050, Fig. 12b), but uniformity
is rejected for the following 250reecords-one (Fig. 12c). Overall, prominently opposite results arise in
the full test for these early two periods, with wide regions of Eurasia and North America consistent
in the latter but not in the early one. During the peried-sub-period from about 1300 to 1550 (the
early Little Ice Age, Fig. 12d), the ensemble appears to be consistent in Northern North America,
the Tropical Pacific and South of Greenland. In the last period (Fig. 12e, about 1595 to 1845),
Eurasia and the North Atlantic again arise as the most consistent regions according to the full test
including the uncertainty of the truthtarget. On the other hand, single deviations are nearly always
and everywhere significant (Fig. 12f—j). Deviations are least prominent close to the regions where
the original proxy density was largest in the analysis of Mann et al. (2009).

If probabilistic and climatological consistency are assessed for all data points in space and time
together, over-dispersion is again pronounced with respect to both aspects (ranks plotted in Fig. 9d)

if we consider the uncertainties in the reconstruction. Otherwise the rank histogram displays an

overpopulation of central and outer ranks, which is an effect of the accumulation of the individual
rid point deviations (not shown). The i i s—different biased,

under- and over-dispersive relations suggest strongly differing relations between reconstructed and

simulated decadal temperatures en-global-seales(netshewn)in different regions.
In summary, asfer-the-even more prominent than for the area-averaged time series, the utilized

simulation ensemble displays a lack of consistency with the global reconstruction. However, uni-
formity cannot be rejected for some regions and certain periods based on the full test, which may
be to some extent due to a very small number of independent samples. Fhe-meost-prominenttack
Lack of consistency is seea-most prominent over the southern oceans. Tests for the single deviations
of bias and spread are nearly everywhere significant after inclusion of an errer-estimate-uncertainty
estimate following our description in Sect, 2.2. Thus, general consistency between simulations and
reconstructions remains very weak. Note, (lack of) consistency is not homogeneous in time, but may
differ between selected periods. The simple assumption of increasing consistency with decreasing

temporal distance to the present is not necessarily valid.

3.3.2 Comparison of patterns and grid point variability of the spatial field

reconstruction

be-inferredfrom-the-mapped-ranks—in-Fig. 9e-whichreferto-a—a presents the reconstructed mean
anomaly map for an arbitrary sub-period of-the-Little fee-Age-(1390s to 1690s) —The-reconstructed
elimatelogy-map-for-this-period-is-shewn-encompassing part of the Little Ice Age. Mapped ranks in
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Fig. 9a—While-thec exemplify possible differences in simulated and reconstructed mean anomalies

patterns. The amplitudes of mean anomalies are comparable between reconstructions and strong
solar full-forcing simulations except in the Tropical Pacific, but the weak solar full-forcing simula-
tions display less cooling in the selected period (not shown, compare example map in Fig. 9a and
rank map in Fig. 9c).

vary-mere-While variability is often comparable, the simulations display more variability than the
reconstruction over oceanic regions (middle-blue-in-see Fig. 9b). This relation is reverted over the

Southern Hemisphere ocean, particularly the South Atlantic and in-the Southern Indian ocean as
seen in the relative standard deviations for the full period in Fig. 9b.

The ranks in Fig. 9c indicate a particularly strong and spatially extended mismatch between sim-
ulations and reconstructions in the tropical Pacific during the Little Ice Age. This strong signal is
less due to the strong ENSO variability in MPI-ESM (compare Jungclaus et al., 2006), but more due
to the contrast between the reconstructed mean warm anomaly and the diverse but generally much
weaker simulated mean anomalies. The strong solar single and full-forcing simulations even display
notable negative anomalies (not shown). We note that this La Nifia-like response not only contrasts
the results by Mann et al. (2009) but that such a La Nifia signature during periods of solar forcing
minima is further in contrast to the findings of Meehl et al. (2009) and Emile-Geay et al. (2007)
studying, respectively, the effect of peak solar activity in the observed 11 yr cycle on the climate in
the Pacific sector and the role of ENSO in the climate impact of changes in the solar forcing; see also
the discussions by Misios and Schmidt (2012) on the relationship between solar insolation maxima
and Tropical Pacific sea surface temperatures.

Generally, the spatially-resolved temperature reconstruction represents the largest absolute mean

anomalies in the selected periods-as-seenin-the-sub-periods as exemplified by the decadally smoothed
lobal data over the ocean regions (see mapped ranks in Fig. 9c). This holds also for other field re-

constructions (not shown).

data—(Fig—9e)—Thus, either (i) the considered ensemble of simulations generally underestimates
the size of the mean anomalies over the periods of interest with reconstructed warm anomalies be-
ing warmest and cold anomalies coldest, or (ii) the simulations vary notably more in the averaging
periods, or (iii) the comparison between anomaly patterns are-is of reduced value due to a gen-
eral dissimilarity between reconstructions and simulations. In the first two cases, the impression of
over-dispersion results from a general misrepresentation of the mean climate.

In summing up, the simple comparison indicates limitations in the correspondence between sim-
ulated and reconstructed climate states, limitations that also encompass their variability. The assess-
ment of the consistency on the other hand ebjectifies-the-reduces the subjectivity of a comparison
between simulations and reconstructions, and the goodness-of-fit test allows to summarise;in-one
Figures-summarize the (dis-)agreement in terms of ensemble-consistency—ensemble consistency in
one figure,
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4 Discussions of the results

Jungclaus et al. (2010) show good agreement between the full-forcing simulations in the COSMOS-
Mill ensemble and the HadCRUT3v Northern Hemisphere temperature data for the 20th century;-but
they-. They also highlight periods in which the simulations are rather warm compared to temperature
reconstructions when anemalies—temperature deviations are considered with respect to the period
1961-1990 (e.g. in the 12th and 13th centuries). Thus, the-optimal-case-of comparable-non-linearwe
realign the simulations and the reconstructions to the mean of a common period to correct systematic

differences in long-term

periodfor-the-testofconsisteney—trends before applying tests of consistency (similarly to traditional

simulation-reconstruction comparisons, e.g. Jansen et al., 2007; Brazdil et al., 2010; Luterbacher

et al., 2010; Jungclaus et al., 2010; Zorita et al., 2010; Zanchettin et al., 2012). We accept that the

choice of the reference period influences the results.
Further-data-sets—strong-Strong probabilistic and climatological deviations can arise between
the data-presented-above-simulations and the reconstructions for the utilized uncertainty estimates,

the reference periods and the non-smoothed hemispheric data. Results for the seasonal European
temperature reconstructions by Luterbacher et al. (2002, 2004) and Xoplaki et al. (2005) and the
South American austral summer temperature reconstructions by Neukom et al. (2011) eenfirm-this
also indicate a generally over-dispersive character of the ensemble (not shown). We-can-generally
Even if we cannot reject uniformity at the grid point level and for area average series the associated
uncertainties lessen the value of such consistency. Only the annual Central European temperature
time series data arises as pessiblyfully-consistent—

selarfull-foreing-ensemble-appears—also-to-be-consistent-with-the—fully consistent between the

simulation ensemble and reconstructions—
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Further-disenssions=—Thus, the only data that yields reasonable consistency with the simulation

ensemble (the Central European temperature reconstructions by Dobrovolny et al., 2010) is an esti-
mate for the last 500 yr and, therefore, may benefit from a more stable number of reliable available

830 proxy indicators than longer period reconstructions. The forcing data fer-this-peried-used to drive the
simulations can also be assumed to be less uncertain in this period compared to the full millennium.
We remark that part of the large simulated climate variability is possibly due to the well known too
strong and too regular El Nifio variability and the related teleconnections in the considered climate
simulator (Jungclaus et al., 2006)and-the-related-teleconnections.

835 As noted in Sect. 2.3, it is convenient, but not necessarily appropriate, to employ the raw ensemble
reconstructions (Frank et al., 2010) as annually-reselved-datarepresenting inter-annual variations.
Similarly, it is arguable whether an ensemble mean represents unfiltered-annually—resoelved-data-
change notably whether uncertainties and/or internal variability estimates are included in the assessment

840 of the reconstruction sub-ensemble against the specific simulation ensemble meanwith-this-particular

a ataN h O he
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consideration. Although the temporal evolutions notably deviate, it appears likely that the reconstruction
ensemble and most of its members are indeed consistent, i.e. comparable, with the chosen ensemble
simulation mean verification target under the assumptions made on internal variability and the
845 uncertainties. However, the simulation ensemble displays pronounced deviations from consistency
relative to the ensemble mean reconstruction target including various estimates of internal variability.

Interestingly, the moving standard deviations of the ensemble means (simulations and reconstruc-
tions) evolve to some extent similarly in the period 1400 to +960—1900 (compare Figs. 3-5). The

20th century disagreement is possibly due to the evolution of the simulations with strong solar forc-

850 ing. Including estimates for internal variability introduces an additional source of uncertainty. While
it reduces the problems in employing ensemble mean targets, it also highlights the ambiguity of our
estimates of past climate trajectories.

Sundberg et al. (2012) and Hind et al. (2012)
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provide a statistical framework for assessing climate simulations against paleoclimate proxy recon-
structions allowing for an irregular spatio-temporal distribution of proxy series. Their frameweork
concentrates-goal is similar to the approach utilized here. Their framework focusses on the similar-
ity between simulated and reconstructed series by analysing two newly developed correlation-based
and distance-based test statistics. Hind et al. apply their approach in a pseudo-proxy experiment
within the virtual reality of the COSMOS-Mill sub-ensembles to test-for-assess the distinguishabil-
ity of the two sub-ensembles. They conclude that prior to drawing resilient conclusions from our

model simulations we need more proxy series with high signal-to-noise ratios. We propose that, in

arallel, we need to address the compatibility of reconstructions and simulations by evaluating their

robabilistic and climatological consistency.
Finally, with more and more simulations becoming available, the CMIP5/PMIP3 ensemble of

past1000-simulations (Taylor et al., 2012; Braconnot et al., 2012) offers the opportunity to evaluate
our simulated and reconstructed knowledge in a multi-model context. Similarly, the PAGES 2K
Network (http://www.pages-igbp.org/) aims to provide new regional reconstructions for all conti-
nental areas and the global ocean allowing for a detailed assessment of the consistency of our two
tools. Preliminary analyses for the available CMIPS5/PMIP3-past1000-simulations indicate that the
multi-model-ensemble behaves similar to the COSMOS-Mill ensemble with respect to probabilis-
tic and climatological consistency relative to the European and northern hemispheric temperature

reconstructions considered in the present manuseriptstudy.

5 Concluding remarks

Rank histograms, x? goodness-of-fit test decomposition and residual quantile-quantile plots help to
assess the probabilistic and climatological consistency of ensemble projections against an-ebserved
truth-a verification data set (e.g. Annan and Hargreaves, 2010; Marzban et al., 2010). If no state-of
truthreliable observable target can be identified, as is the case in periods and regions without instru-
mental observations, such statistical analyses add-an-ebjective-componenttoreduce the subjectivity
of the evaluation of simulation ensembles and statistical approximations from paleo-sensor data
(Braconnot et al., 2012) under uncertainty and go beyond “wiggle matching”. The approach permits
a succinct visualization of the consistency between an ensemble of estimates and an uncertain ver-
ification truthtarget. Ideally, it also reduces the dependence on the reference climatology which is
present in many visual and mathematical methods that aim to qualify the correspondence between
simulations and (approximated) observations.

Ceonsidering-We consider the COSMOS-Mill-ensemble (Jungclaus et al., 2010) and various re-
constructions within the described approach;-we-. We find the simulation ensemble to be consistent,
within sampling variability, with the Central European temperature reconstruction by Dobrovolny

et al. (2010). Hoewever—the-ensemble-The ensemble possibly lacks consistency with respect to the
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mean of the ensemble of Northern Hemisphere mean temperature reconstructions by Frank et al.

(2010) due to probabilistic and-climatological-over-dispersion;-as-the-ensemble-over-dispersion and

various climatological deviations. The ensemble generally samples from a significantly wider dis-
tribution than the reconstruction ensemble mean. The distribution of the reconstruction ensemble in

turn is tee-wide-possibly consistent relative to the simulation ensemble mean.
SimitarlyFurthermore, the simulation ensemble is found to be statistically distinguishable from the
global field temperature reconstruction by Mann et al. (2009). Although prebabilistic-consisteney
is-found-the data is probabilistically consistent for multi-centennial sub-periods and certain regions
according to the applied full test, aceounting-for-analyses of single probabilistic deviations and cli-
matological differences emphasizes-emphasise a general lack of consistency. The-We find the largest,
but still limitedeensisteney-is-seen—, consistency over areas of Eurasia and North America for both
full and sub-periods. For some periods, we also cannot reject consistency for most tropical and
northern hemispheric ocean regions. The profound lack of climatological and probabilistic consis-
tency between the simulation ensembles and reconstructions stresses the importance of improving
our two tools to investigate past climates in order to achieve a more resilient estimate of the trathtrue
If our estimates are not consistent with each other for certain periods and areas, it is unclear how
we should compare their accuracy. Thus, if these reconstructions and these simulation ensembles
are employed in dynamical comparisons and in studies on climate processes, we have to account
for the climatological and probabilistic discrepancies between both data sets, that-which have been

described in the present work.
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Fig. 1. (a—e)—Surrogate ensemble: (a) Testing against 2201 surrogate targets: p-values for the full

oodness-of-fit 2 test plotted against the maximum of the p-values obtained from the tests for bias and spread

deviations. In (a) orange (blue, see top right corner) numbers 1-5 (1-3) give values for the five full-forcin

simulations with weak (strong) solar forcing; red W, blue S and magenta V show values for weak and stron

solar forcing only and volcanic onl

simulations. a) but for

No uncertainties are considered in (a). (b) as

the test against the 521 members of the Frank et al. (2010) ensemble as targets. Horizontal and vertical lines
indicate a conservative 10% level for the probability of the rank histograms to agree with the null hypothesis.

(b) accounts for uncertainties and reduced internal variability in data by Hegerl et al. (2007), Mann and Jones
(2003) and Mann et al. (2008).
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Fig. 2. The Northern Hemisphere reconstruction sub-ensemble re-calibrated to 1920-1960: Test for consistency
Uncertainty inflation was chosen to be proportional to the full ensemble spread. Results change if we consider
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truthtarget. In-all-panels;-black-Black is the respeetive-verification data and transparent light grey shading is
the range of the ensemblesensemble. In<a;byds-e; ) red-Red (blue) lines are for the weak (strong) solar full-

forcing simulation ensemble means. tn{e;)-Dark grey shading is the range of the reconstruction sub-ensemble
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of-the European-ensemble-mean target with added internal variability estimates;-and-we-choose-to-present-the

internal variability is only shown
the period of 56-yr)—Blue-horizontal

tines-give-analysis from the expeeted-average-count-for-a-perfectly-uniform-histogramstart of the millennium to
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Fig. 6. Rank histogram counts (black line with points) for temperature data: (a) Central European

annual temperatures, (b) Northern Hemisphere simulation ensemble temperature, (¢) Northern Hemisphere

reconstruction sub-ensemble calibrated to the period 1920 to 1960. Analysis does include the uncertainties in

2

the target. Numbers are statistics accounting for auto-correlation. In (b) they are the median relative to

all representations of ensemble-mean reconstruction plus internal variability estimate; in (c) they are relative

to the ensemble-mean simulation plus internal variability estimate. We use the same representation for equal

approaches. Different representations are for different approaches. Cyan shading (grey lines with points) are

50 yr). Light grey shading and dashed line in (b) are equivalent quantiles for the various estimates of internal
variability, dark grey shading adds 5 % and 95 % quantiles. In (c) black continuous line is rank count for
the ensemble-mean simulation with added internal variability estimate, Grey shading and continyous line add
for a perfectly uniform histogram. Single test critical values are 2.706 for a x° distribution with one degree of

freedom (see Sect. 2.1 and Jolliffe and Primo, 2008; Annan and Hargreaves, 2010) and a conservative one-sided

90% level.
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Fig. 9. Global fields of decadally smoothed temperature: (a) reconstructed mean anomaly map for a cold

eriod (for the 1390s to 1690s), (b) ensemble mean of relative standard deviations (reconstruction standard

deviation divided by simulation standard deviation at each grid point for the full period), (¢) mapped ranks for

the cold period (1390s to 1690s). Panel (d) presents rank counts for all points in space and time considerin
uncertainties in the data for the full period. Numbers in (d) are

for spatial and temporal auto-correlation in the data. We assume 15 spatial degrees of freedom (calculated
following Bretherton et al., 1999).
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Fig. 10. Rank histogram counts for a random selection of 25 grid points from the decadal smooth global
temperature data and the first, second, third and last 250 non-overlapping records of the decadally smoothed
annual data (grey to black lines, about 800 to 1050, 1050 to 1300, 1300 to 1550, and 1595 to 1845). Large

(small) red squares mark grid points where spread or bias deviations are significant over the full (the individual

sub-)period. Blue squares are-notsignificantindicate non-significant deviations. Squares in each panel from left

to right for the first, second, third and last sub-period. Locations given in titles of individual panels.
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Fig. 12. Global assessment of the goodness-of-fit test for the decadal smooth data considering errors

uncertainties in the trathtarget. Plotted are lower p-values. In the left column: full x? test, in the right col-

umn: maximum of p-values for single deviation tests for bias and spread. Blue smaller than 0.1, dark to light

grey in steps of 0.2 the range between 0.1 and 0.9, red larger than 0.9. (a, f) full period and (b—e) and (g—j) for

the first, second, third and last period of 250 records.
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