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Abstract. Are simulations and reconstructions of past climate and its variability comparable with

each other? We assess if
:::::::
whether

:
simulations and reconstructions

::
for

:::
the

:::::::
climate

::
of

:::
the

::::
last

::::::::::
millennium

are consistent under the paradigm of a statistically indistinguishable ensemble. Ensemble consis-

tency is assessed for Northern Hemisphere mean temperature, Central European mean temperature

and for global temperature fieldsfor the climate of the last millennium. Reconstructions available for5

these regions are evaluated against the simulation data from the community
::::
serve

::
as
:::::::::::
verification

::::
data

:::
for

:
a
:::
set

:::
of simulations of the climate of the last millennium performed at the Max Planck Institute

for Meteorology.

The distributions of ensemble simulated temperatures are generally too wide at most locations and

on most time-scales
::::
often

::::
too

::::
wide

:
relative to the employed reconstructions. Similarly, an ensemble10

of reconstructions is too wide when evaluated against
:::
An

::::::::
ensemble

:::
of

::::::::
Northern

:::::::::::
Hemisphere

::::::::::::::
reconstructions

:
is
::::::::
possibly

::::::::::
consistent

::::
with

:
the simulation ensemble mean .

Probabilistic and climatological ensemble consistency is limited to sub-domains and sub-periods
::::::::::
verification

:::::
target. Only the ensemble simulated and reconstructed annual Central European mean tempera-

tures for the second half of the last millennium demonstrates consistency.
::::::::::::
unambiguous

:::::::::::
consistency.15

:::::::::
Otherwise

:::::::::::
probabilistic

::::
and

:::::::::::::
climatological

:::::::::
ensemble

::::::::::
consistency

::
is

:::::::::
generally

::::::
limited

::
to
::::::::::::
sub-domains

:::
and

:::::::::::
sub-periods.

:

The lack of consistency found in our analyses implies that, on the basis of the studied data sets, no

status of truth can be assumed for
::
If

:::
we

::::
treat

:::::::::::
simulations

:::
and

::::::::::::::
reconstructions

::
as

:::::::::
equitable

::::::::::
hypotheses

:::::
about

::::
past

::::::::
climate

::::::::::
variability,

::
a
::::
lack

:::
of

:::::
their

:::::::::::
consistency

::::::::
weakens

::::
our

:::::::::::
confidence

::
in

::::::::::
inferences20

:::::
about

::::
past

:
climate evolutions on the considered spatial and temporal scalesand, thus, assessing

the accuracy of reconstructions and simulations is so far of limited feasibility in pre-instrumental
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periods
:
.
::::::::::

Therefore
::
a
::::::::
univocal

::::::::::
estimation

::
of

:::::::::
accuracy

::
is

::::
not

::::::::
possible

::
if

:::
we

::::::::::::
acknowledge

::::
that

::::
our

::::::::
available

::::::::
estimates

:::
of

::::
past

::::::
climate

::::::::::
evolutions

:::
are

:::
on

::
an

:::::
equal

:::::::
footing

::::
but,

::
as

::::::
shown

:::::
here,

:::::::::::
inconsistent

::::
with

::::
each

:::::
other.25

1 Introduction

Inferences about the spatio-temporal climate variability in periods without instrumental coverage

rely on two tools: (i) reconstructions from (e.g.) biogeochemical and cultural (e.g. documentary)

data that approximate the climate during the time of interest at a certain location in terms of a pseudo-

observation; (ii) simulators (that is, models) of varying complexity that produce discretely resolved30

spatio-temporal climate variables considered to represent a climate aggregation over regional spa-

tial scales. Confidence in the inference of
::
on

:
a past climate state requires reconciling both esti-

matesin terms of accuracy and reliability. In case of an ensemble of estimates, we have .
::::

As
::
a

:::
first

:::::
step

:::
we

::::
may

:::::
apply

::::::::
methods

:::::
from

::::::::::
numerical

:::::::
weather

::::::::
forecast

::::::::::
verification

:
(see, e.g., Toth et al.,

2003; Marzban et al., 2010; Persson, 2011) to evaluate the consistency of the ensemble with relevant35

validation
::
an

:::::::::
ensemble

::
of

:::::::::
estimates

:::::
with

:::::::
relevant

::::::::::
verification

:
data.

Similar to measurements by instrumental sensors, our
:::
Our

:
pseudo-observations by proxies or

paleo-sensors (as coined by Braconnot et al., 2012) are subject to “measurement” uncertainty
::::::
similar

::
to

:::::::::::::
measurements

:::
by

::::::::::::
instrumental

:::::::
sensors. Uncertainties enter our reconstructions, among other

ways, through the dating of the non-climate observation
:::::::::::::::::
pseudo-observation, the transfer function40

and the assumption of a relatively stable “proxy”-climate relationship through time (e.g. Wilson

et al., 2007; Bradley, 2011). Simulated climate estimates are uncertain within the range of the

mathematical and numerical approximations of physical and biogeochemical processes (Randall

et al., 2007). Additional uncertainty comes from the reconstructions of the external factors driving

the climate system simulation. These again are subject to dating and transfer uncertainty (Schmidt45

et al., 2011) resulting in diverse estimates of
:
,
::::
e.g.,

:
past solar (e.g. Steinhilber et al., 2009; Shapiro

et al., 2011; Schrijver et al., 2011) and volcanic (e.g. Gao et al., 2008; Crowley and Unterman, 2012)

variations.

If no status of “truth” can be assigned since, for example
:::::
Thus, we have no independent

:::::
direct

:
and

reliable observational knowledge
::
on

::::
the

:::::::
climate in the pre-instrumental period, the assessment of50

the statistical consistency provides an objective measure of confidence in our two tools . Thus, if we

have an ensemble of simulations (reconstructions)we have to define a representation of the status of

“truth” .
::::
We

:::
can

::::::::
increase

:::
our

::::::::::
confidence

::
in
::::
the

:::
two

:::::
tools

:::
by

::::::::
applying

:::::::::::::::::
(weather-)forecast

::::::::::
verification

:::::::
methods

::::::
which

::::
are

:::
less

::::::::::
subjective

::::
than

:::::::
by-eye

:::::::::::
evaluations.

::::::::::
Practically

:::
we

::::::
select

:
a
:::::::::::
verification

::::
data

:::::
target from the available reconstructions (simulations)

:
to
::::::
verify

:::
an

::::::::
available

:::::::::
ensemble

::
of

:::::::::::
simulations,55

:::
and

:::::
vice

:::::
versa. For a specific task at hand, the analysis of consistency identifies whether the

simulated and reconstructed climate estimates
::::::::
ensemble

::::
and

:::
the

:::::::::::
verification

:::::
target

:
can be consid-
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ered to be compatible realizations of an unknown “true” distribution, though not necessarily identical

with it
::::::::::
realisations

:::
of

:::
the

:::::::::
unknown

::::
past

:::::::::::
climatology

:::
or

:::
the

:::::::::
unknown

::::
past

:::::::
climate

::::::::::
evolution.

:::::
Such

::::::::::::
compatibility

:::
has

::
to

::::::::
consider

:::::::::::
probabilistic

::::
and

:::::::::::::
climatological

:::::::::
properties.

::::::
Note,

::
to

::
be

:::::::::::
compatible

::::
does60

:::
not

::::::
imply

::
to

:::
be

::::::::
identical

:
(see for example Annan et al., 2011)

:
.
:::::
Here

:::
we

::::::::
consider

:::::::::::::
compatibility

::
in

:::::
terms

::
of

:::
the

:::::::
concept

:::
of

::::::::
ensemble

:::::::::::
consistency

::
as

:::::
used

::
in

:::
the

::::
field

::
of

:::::::::::::::
weather-forecast

:::::::::::
verification (e.g.

Marzban et al., 2010). Reconstructions and simulations are therefore treated as different but equi-

table hypotheses. Ensembles of hypotheses are available for northern hemispheric mean temperature

reconstructions and for the PMIP3-compliant Community Simulations of the last millennium allowing65

the assessment of the consistency of reconstructions and simulations ,
::::

and
::::::

there
:::::::::::
consistency

::
is

:::::::
assessed

:
within the framework of a statistically indistinguishable ensemble (Toth et al., 2003).

Annan and Hargreaves (2010) and Hargreaves et al. (2011) discuss, respectively, the reliability

::::::::::
consistency

:
of the CMIP3 ensemble and the ensemble consistency of the PMIP1/2 (Joussaume and

Taylor, 2000; Braconnot et al., 2007) simulations in terms of this probabilistic interpretation. We70

adopt the Annan and Hargreaves (2010) approach to assess the mutual consistency among the en-

sembles of reconstructed and simulated estimates of northern hemispheric
::::::::
Northern

:::::::::::
Hemisphere

mean temperature for the last millennium.
:::::::
Relevant

::::::::::
ensembles

::::
are

::::::::
available

::::
for

::::::::::::::
reconstructions

(Frank et al., 2010)
:::
and

:::
for

::::
the

::::::::::::::::
PMIP3-compliant

:::::::::::
Community

::::::::::::
Simulations

::
of

:::
the

::::
last

:::::::::::
millennium

(COSMOS-Mill, Jungclaus et al., 2010).
:
We further evaluate the consistency of temporal evolutions75

over the last millennium of the COSMOS-Mill ensemble with reconstructions for Central European

mean temperature (Dobrovolný et al., 2010) and a temperature field reconstruction (Mann et al.,

2009).

The following analysis is similar to the ensemble forecast verification in numerical weather pre-

diction (Toth et al., 2003) and extends the application of the paradigm of statistical indistinguisha-80

bility in the climate modelling context from climate means
:::
the

::::::::::
assessment

:::
of

::::::::::
mean-state

:::::::::
quantities

(Annan and Hargreaves, 2010; Hargreaves et al., 2011) to temporally varying climate trajecto-

ries. Probabilistic reconstruction-simulation consistency is assessed over the pre-industrial period

of the last millennium using rank histograms (e.g. Anderson, 1996) and the decomposition of the χ2

-statistic
:::::::::::::
goodness-of-fit

:::::::::::
test-statistic

:
(Jolliffe and Primo, 2008). The restrictions of the approach are85

considered
:::::::::::::
climatological

::::::::::
component

:::
of

:::::::::
ensemble

::::::::::
consistency

:::
is

:::::::::
evaluated by presenting residual

quantile-quantile plots (Marzban et al., 2010; Wilks, 2010)to evaluate the climatological consistency.

The methods are discussed in Sect. 2
:::::
which

:::::::
further

:::::::::
introduces

:::
the

:::::::::
necessary

::::::::::::
terminology. Section 3

:::
first

:::::::::
discusses

:::
the

::::::::::
robustness

::
of

:::
the

:::::::::
approach

::::
and

::::
then presents results concerning the consistency of

reconstructions and simulations, and the sensitivity of the chosen approach is discussed in Sect. 4. .
:

90

3



2 Methods and data

2.1 Methods

An ensemble of (climate) estimates can be validated either by considering individually the accuracy

of each ensemble member against the “true” observation
:
a
:::::::
suitable

:::::::::::
verification

:::::
data

:::::
target

:
or by

evaluating the reliability
::::::::::
consistency

:
of the full ensemble , that is the compliance between “true”95

and ensemble estimated probability distributions . Considering the multiple sources of uncertainties

in paleo-climate reconstructions and simulations, assessing ensemble consistency objectifies (e.g.

Marzban et al., 2010).
::::
We

:::
use

:::
the

:::::
term

:::::::::::::
”consistency”

::
in

:::
the

:::::
sense

:::
as

::::
used

:::
by,

::::
e.g.

:
Annan and Harg-

reaves (2010)
:::
and

:
Marzban et al. (2010)

:
.
::::
This

::::::
usage

::
is

::::::
similar

::
to

:::::::::
verifying

:::
the

:::::::::
reliability

::
of

:::::::::
numerical

:::::::
weather

:::::::
forecast

:::::::::::
ensembles.

::::::
Thus,

:::::::::::
consistency

:::::
refers

::
to
::::

the
::::::::::
agreement

:::::::
between

::::
the

:::::::::::
frequencies

::
of100

:::
the

:::::::::
ensemble

:::::::::
estimated

::::
data

::::
and

:::
the

:::::::::::
verification

::::::
target.

::::
We

::::::::
assume

::
an

:::::::::
ensemble

:::
to

:::
be

:::::::::
consistent

:
if
::::
we

::::::
cannot

::::::
reject

:::
the

::::::::::
hypothesis

::::
that

:::
the

:::::::::::
frequencies

::
of

::::::::::
occurrence

:::
of

::::::
events

::
in
::::

the
:::::::::
ensemble

:::
are

:::::
equal

::
to

::::
the

::::::::::
frequencies

:::
in

:::
the

:::::::::::
verification

:::::
data.

::::::
Since

:::::
large

::::::::::::
uncertainties

:::
are

::::::::::
associated

::::
with

::::
our

::::
data

:::
and

::::
we

::::
lack

:::
an

::::::::
observed

:::::::::::
verification

::::::
target,

:::
the

:::::::::::
assessment

::
of

:::::::::
ensemble

:::::::::::
consistency

::::::::
provides

:
a
:::::::::
necessary

:::::::::
condition

::::
for our evaluation of ensemble accuracy . In the following, if we mention105

a “truth” or a “true” dataset, this can only represent an uncertain approximation of the observable

truth
::
in

::::::::::::::::::
paleoclimate-studies

:
(following Annan and Hargreaves, 2010).

:

:::::
There

:::
are

::::
two

:::::::::::
components

::
of

:::::::::::
consistency

::
to

::
be

:::::::::::
considered,

:::::::::::
probabilistic

::::
and

:::::::::::::
climatological

::::::::::
consistency

(Johnson and Bowler, 2009; Marzban et al., 2010).
:::::

That
:::

is,
:::
we

:::::
have

:::
not

:::::
only

::
to
::::::::

evaluate
::::::::
whether

:::::::::::::::
within-ensemble

::::::::::
frequencies

:::
are

::::::::::
consistent

::::
with

::::::
those

::
of

:::
the

:::::::::::
verification

:::::
data,

:::
but

::::
also

::::::::
whether

:::
the110

:::::::
variance

:::
of

:::
the

:::::::::
ensemble

:::::::
member

:::::::::::::
climatologies

:::::
agree

::::
with

::::
the

::::::::::
verification

:::::::::::
climatology.

The reliability of a probabilistic ensemble is commonly validated
:::::::::::
probabilistic

:::::::::::
component

::
is

:::::::::
commonly

:::::::::
evaluated under the paradigm of statistical indistinguishability by ranking true observational

:::
the

::::::::::
verification

:::::
target

:
data against the ensemble data (Anderson, 1996; Jolliffe and Primo, 2008; An-

nan and Hargreaves, 2010; Marzban et al., 2010; Hargreaves et al., 2011). True
::::::
Target

::::
data

:
and115

ensemble-simulated data are sorted by value and the calculated ranks counted and plotted as a rank

histogram (Anderson, 1996).

A null hypothesis of a common overarching distribution for truth and ensemble implies equiprobable

outcomes
:::::::::::::::::
Indistinguishability

::::::
refers

::
to

:::
the

:::::::::::
assumption

::::
that

:::
the

:::::::::::
verification

::::
data

::::
may

:::
be

::::::::::
exchanged

:::
for

:::
any

::::::::
member

::
of

::::
the

:::::::::
ensemble

:::::::
without

::::::::
changing

::::
the

:::::::::::::
characteristics

::
of

::::
the

:::::::::
ensemble.

:::::::::::
Verification120

:::::
target

::::
and

::::::::
ensemble

:::::::::
estimated

::::
(e.g.

::::::::::
forecasted)

:::::::::::
frequencies

:::::
agree

:::
for

:
a
:::::::::
consistent

:::
(or

::::::::
reliable)

:::::::::
ensemble

(Murphy, 1973)
:
.
:::::
That

:::
is,

:::
we

::::::
expect

::::::::::::
equiprobable

::::::::::
outcomes

:::
for

:::
an

:::::
ideal

:::::::::
ensemble,

:
and the rank-

ing should result in a uniform, flat histogram. For a “reliable” ensemble , observed and ensemble

estimated (e.g. forecasted) frequencies agree . Note , however,
:::
The

:::::::::::
underlying

::::
null

::::::::::
hypothesis

::
is

::
of

:::
an

:::::::::::
overarching

::::::::::
distribution

:::
for

:::::::::::
verification

::::
and

:::::::::
ensemble

:::::
data;

:::
for

::::
any

::::
data

::::::
point,

:::
the

:::::::::
ensemble125

:::
and

:::
the

:::::::::::
verification

::::
data

:::
are

::::::::
assumed

:::
to

::::::::
originate

:::::
from

:::::::::::
distributions

::::::
which

:::
are

:::::::
similar

:::::::
enough

::
to

:::
be
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:::::::::::::::
indistinguishable.

::::::
Note

:
that a flat histogram of ranks does not necessarily imply reliability

:::::
imply

::::::::::
consistency

:
(see discussions by e.g. Hamill, 2001; Marzban et al., 2010).

Already visually, rank histograms assist in identifying discrepancies between the simulated probabilistic

ensemble and the truth. If the truth is sampling from a distribution narrower (wider) than the130

ensemble, thus the spread of the ensemble is overly wide (too narrow), the rank histogram will appear

dome-shaped (u-shaped). Too wide (narrow)ensembles are referred to as over-(under-)dispersive. If

the ensemble is biased to positive (negative) values, a negative (positive) trend is seen in the rank

counts. The “flatness” of the histogram can be assessed by a χ2 goodness-of-fit test. Decomposing

the test statistic enables tests for individual deviations from flatness;
:::
test

::
is

:::::::
suitable

:::
to

:::
test

::::
for

:::
the135

::::::::
goodness

::
of

:::
fit

::
of

:::
the

:::::
rank

:::::::::
histogram

:::::::
relative

::
to

:::
the

::::
flat

:::::::::::
expectation.

::::::::::::
Furthermore, Jolliffe and Primo

(2008) present a comprehensive delineation. In mapping spatial fields of verification ranks for

climatological periods of interest (Sects. 3.3.1 and 3.3.2), individual low ranks of the truth hint to an

overestimation of the climate parameter by the ensemble, whereas high ranks imply a negative bias in

the simulation ensemble
::::::
present

::
a
:::::::::::::
decomposition

::
of

:::
the

::::
test

:::::::
statistic

::::::
which

::::::
enables

:::::
tests

:::
for

:::::::::
individual140

:::::::::
deviations

:::::
from

:::::::
flatness

::::::::
resulting

:::::
from

::::::
biases

::
or

:::::
from

::::::::
different

:::::::
widths

::
of

::::
the

::::::::::::
distributions;

:::
see

:
Jol-

liffe and Primo (2008)
:::
for

:
a
::::::::::::::
comprehensive

:::::::::::
delineation.

:::::
Thus,

:::
we

::::
are

::::
able

::
to

::::
test

:::
the

:::::::::::
consistency

::
of

::
an

:::::::::
ensemble

:::
by

:::::::::::
considering

:::
the

::::::::::::::
goodness-of-fit

:::
χ2

::::::::
statistics

::::
and

:::
the

:::::::::
respective

::::::::
p-values

::::::::::
dependent

::
on

:::
the

::::::::
degrees

::
of

::::::::
freedom

::
of

::::
the

::::::::::
distribution

:
(e.g. Jolliffe and Primo, 2008)

:
.
:::::::::::::
Distributional

:::::::
degrees

::
of

::::::::
freedom

:::::
equal

:::::
n−1

:::
for

:::
the

:::
full

::::
test

:::::
(with

::
n

:::::
being

:::
the

:::::::
number

::
of

:::::::
classes

::
in

:::
the

::::
rank

::::::::::
histogram)

::::
and145

:
1
:::
for

::::
the

::::::
single

::::::::
deviation

::::
test

:
(Jolliffe and Primo, 2008; Annan and Hargreaves, 2010).

::::
We

::::::
reject

::::::::::
consistency

:::
for

:::::::
certain

:::::
right

::::::::
p-values

:::
of

:::
the

:::::
test.

:::::::::
However,

::::
we

::::
also

::::::::
interpret

:::
the

::::
test

:::::::::
statistics

::
in

:::::
terms

::
of

::
a
:::::::
reversed

::::
null

:::::::::::
hypothesis,

::::::
where

:::::::::::
appropriate,

::
to

:::
test

:::
the

::::::::::
hypothesis

::::
that

:::::
there

::
is

:
a
:::::::::
deviation

::::
from

:::::::::::
uniformity.

::::
This

::::::
refers

::
to

:::
the

::::::::
general

:::::::::::::
goodness-of-fit

:::
χ2

::::::::
statistic

::
or

::
to

::
a
:::::::
specific

:::::::::
deviation

:::
for

:::
the

:::::::::::
decomposed

::::::::
statistic.

::
It
::
is
::::::::::

reasonable
:::

to
::::::::
consider

:::::::::::
significance

::
at

::
a
:::::::::::
conservative

:::::::::
one-sided

:::::
90%150

::::
level

::::
due

::
to

::::
the

::::
large

::::::::::::
uncertainties

::::::::::
associated

::::
with

::::
the

::::
data.

::::::
Thus,

:::::::
critical

:::
χ2

::::::
values

:::::::
become

::::::
2.706

:::
for

:::
the

::::::
single

::::::::
deviation

::::
test.

::::
For

:::
the

::::
full

::::
test

:::
for

:::::::::::
consistency,

:::
we

::::::::::::
subsequently

:::
are

::::::
going

::
to

::::::::
consider

:::::::::
ensembles

::
of

:::::::
eleven,

:::::
nine,

::::
five

:::
and

:::::
three

:::::::::
members

::::
(see

:::::::
Section

::::
2.2).

::::::::
Critical

::::::
values

:::
are

:::::::::::
respectively

:::::::
17.275,

:::::::
14.684,

:::::
9.236

::::
and

::::::
6.251.

Meaningful statistics require to account Marzban et al. (2010, see also Wilks, 2010)
::::::::::
recommend155

::
to

:::::::
evaluate

::::
the

:::::::::::::
climatological

::::::::::
component

::
of

:::::::::::
consistency

:::::
using

:::::::
residual

::::::::::::::::
quantile-quantile

::::
plots

::::::
(r-q-q

::::::
plots).

:::::::
These

:::
are

:::::::
similar

:::
to

::::::::
common

::::::::::::::::
quantile-quantile

:::::
plots

::::::
since

::::
they

:::::
also

::::::::
evaluate

:::::::::
estimates

:::
for

:::
the

:::::::::::::
climatological

:::::::::
quantiles

:::
for

::::
the

:::::::::
ensemble

::::::::
members

:::::::
against

::::
the

::::::::::
verification

:::::
data

:::::::::
quantiles.

:::::
Here,

::::::::
however,

:::
the

:::::::::::
differences

:::::::
between

::::
the

:::::::::
simulated

::::::::::
distribution

::::::::
quantiles

::::
and

:::
the

:::::::::::
verification

::::
data

::::::::
quantiles

:::
are

:::::::::
displayed

::
to

::::::::::
emphasise

:::::::::
deviations

::
in
::::
the

:::::::::::::
climatological

::::::::::::
distributions.

::::::
These

:::::::::
deviations160

:::::::
include,

::::::
among

:::::::
others,

::::::::::
differences

::
in

::::
the

::::
tails,

:::
the

:::::::::
skewness

::::
and

:::
the

:::::
mean

:::
of

:::
the

::::::::::::
distributions.

:

::::
The

:::::::::::
visualization

:::
of

::::::::
estimated

:::::::::
quantiles

:::::::
against

:
a
::::::::::
theoretical

:::::::
quantile

:::::::::::
distribution

::::::
allows

::
to

::::::
assess

:::::::
whether

:::
the

::::::::::
generating

:::::::
process

:::
for

:::
the

:::::::::
estimates

::
is

::
of

:
a
:::::::
similar

::::::::
structure

::
as

::::
the

:::::::::::
theoretically

::::::::
assumed
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:::::::
process.

::::::
Thus,

:::
for

:::
the

:::::::
present

:::::::::::::
consideration,

::::::::
quantiles

::::::
allow

::
to

:::::::
identify

::::::::
whether

:::
for

:::::
each

:::::::::
individual

::::::::
ensemble

::::::::
member

::::
the

::::::::
structure

:::
of

:::
the

::::::::::
(empirical)

:::::::::::
cumulative

::::::::::
probability

:::::::::::
distribution

::::::
agrees

:::::
with165

:::
that

:::
of

::::
the

::::::::::
verification

:::::
data

::::::::
sample.

::::::::
Plotting

::::
the

:::::::::
residuals

::
of

::::
the

:::::::::
estimated

:::::::::
quantiles

:::::
eases

::::
the

::::::::::::
interpretation

:::::
since

::::::::::
agreement

:::
of

:::::::::
estimated

::::
and

:::::::::::
verification

:::::::::
quantiles

:::
is

::::::::
signalled

::::
by

:::::::::
vanishing

::::::::
residuals.

:

::
A

:::::::
number

::
of

::::::
further

::::::::::::
assumptions

::::
enter

::::
our

::::::::
analyses.

:::::
First,

:::::::::::
meaningful

::::::::
statistics

::::::
require

::::::::::
accounting

for dependencies in the data (Jolliffe and Primo, 2008; Annan and Hargreaves, 2010) by e.g. evaluat-170

ing the effective degrees of freedom
:::
size

::
of

:::::::::::
independent

::::::::
samples in the time series. A higher number

of degrees of freedom
:::
All

::::::::
analyses

:::::::
account

:::
for

::::::::
effective

:::::::::::
sample-size

:
(see discussions by and refer-

ences of Bretherton et al., 1999)
:
.
:::::::::::::
Nevertheless,

:::
the

::::::
results

::::
are

::::::::
sensitive

:::
to

:::
the

::::::::::::
assumptions

:::::
made

:::::::::
especially

::::
with

:::::::
respect

:::
to

:::
the

::::::::
included

:::::::::::
uncertainty

:::::::::
estimates

::::
(see

::::::
below

::
in
::::

this
::::::::
section).

:::
A

::::::
larger

:::::::
effective

:::::::
sample

::::
size

:
essentially leads to a higher chance of rejecting the hypothesis of uniformity.175

If ensemble and verification data are smoothed (as for the global data by Mann et al., 2009), either

the sample size or the expected number of rank counts may be small compared with the theoretical

requirements (but see e.g. Bradley et al., 1979, and references therein).

In assessing consistency for time series, temporal
::::::::
Temporal

:
correlations in the data may further af-

fect the structure of the rank histograms
::
in

:::
the

::::::::::
assessment

::
of

:::
the

:::::::::::
consistency

::
of

:::::
time

:::::
series (Marzban180

et al., 2010; Wilks, 2010). Accounting for the sampling variability reduces the risk of drawing
:
.

::::::::
Sampling

::::::::::
variability

:::
can

::::::
result

::
in

:
erroneous conclusions from the rank counts. We display, for area-

averaged time series, quantile statistics of block-bootstrapped rank histograms (Marzban et al., 2010;

Efron and Tibshirani, 1994). We apply a block length of 50 yr, calculate 2000 bootstrap replicates

and display 0.5, 50 and 99.5 percentileswhich .
:::::

This
:
also allows for a secondary test of uniformity.185

:::
The

:::::::
results

:::
are

::::::::
sensitive

:::
to

:::
the

:::::::
chosen

::::::
block

::::::
length

::::
and

:::
50

::
yr

::::
are

::::::::
possibly

:::
too

:::::
short

::::::::::
according

::
to

:::
the

::::::::::::::
auto-correlation

:::::::::
functions

:::
for

::::::
some

::::::::::::::
reconstructions.

:::::::::
However,

:::
50

:::
yr

::::::
appear

:::
to

::
be

::
a
::::::::::
reasonable

:::::::::::
compromise

::
if

:::
we

::::::::
consider

::::
that

:::
the

:::::::
optimal

::::::
length

::::
may

::::
also

:::
be

:::::::
shorter

:::
for

:::::
some

:::::::
records.

:

The rank histogram approach further assumes that the true validation data includes an error (An-

derson, 1996), which has to be included in the ensemble data. If the reconstructions are reported190

with an uncertainty estimate, this is used to inflate the simulated data.

recommend to evaluate the climatological component of reliability using residual quantile-quantile

plots (
::::
Both

::::::::
methods,

:::::
rank

::::::::::
histograms

::::
and r-q-q plots) . Similar to common quantile-quantile plots,

the estimated climatological quantiles are assessed against the true quantiles. Displaying the differences

between the simulated distributionquantiles and the true quantiles emphasizes deviationsin the climatological195

distributions. Biases result in a horizontal displacement from zero in the
::::
plots

::::::::
visually

:::::
assist

:::
in

::::::::::
identifying

::::::::::::
discrepancies

::::::::
between

:::
the

:::::::::
ensemble

::::
data

::::
and

:::
the

:::::::::::
verification

::::
data.

::::
For

:::
the

::::::::::::
probabilistic

::::::::::
assessment,

::
a
::::
rank

::::::::::
histogram

::
of

::::::::
apparent

::::::::::::
dome-shape

::::::::
(u-shape)

:::::::::
indicates

::::
that

:::
the

:::::::::::
verification

::::
data

:
is
:::::::::
sampling

:::::
from

:
a
:::::::::::
distribution

::::::::
narrower

:::::::
(wider)

::::
than

::::
the

:::::::::
ensemble,

::::
thus

:::
the

:::::::
spread

::
of

:::
the

:::::::::
ensemble

:
is
::::::
overly

:::::
wide

::::
(too

::::::::
narrow).

::::
Too

:::::
wide

::::::::
(narrow)

::::::::::
ensembles

:::
are

:::::::
referred

::
to

:::
as

:::::::::::::::::::::
over-(under-)dispersive.200
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:
If
::::
the

:::::::::
ensemble

::
is

::::::
biased

::
to

:::::::
positive

::::::::::
(negative)

::::::
values,

::
a
::::::::
negative

::::::::
(positive)

::::::
trend

::
is

::::
seen

::
in

::::
the

::::
rank

::::::
counts.

:

:::::::::::::
Consequently,

:
a
:::::
rank

:::::::::
histogram

::::
with

::::::::::
substantial

:::::::::
clustering

:::
on

::::
one

:::
end

:::
of

:::
the

::::::
counts

::::::::
suggests

::::
that

:::
the

::::::::
ensemble

:::::
data

::
is

:::
less

::::::
likely

::
to

:::::
come

:::::
from

:::
the

:::::
high

::::::::
(negative

:::::
bias)

::
or

::::::
small

::::::
classes

::::::::
(positive

:::::
bias)

::
of

:::
the

:::::::::::
distribution.

:::::
The

::::::
dome-

:::
or

:::::::::
u-shapes,

::
on

::::
the

:::::
other

:::::
hand,

:::::::
signify

::::
that

::::
the

:::::::::
ensemble

::::
data

::::
has,205

:::::::::::
respectively,

::
a

:::::
larger

:::
or

:::::::
smaller

::::::::
variance

:::::::::
compared

:::
to

:::
the

:::::::::::
verification

:::::
data.

:::
As

:::::::::
discussed

::::
by,

::::
e.g.,

Jolliffe and Primo (2008)
:
,
:::::
there

:::
are

:::::
other

:::::::
possible

::::::::::
deviations,

::::
but

:::
we

::::::::::
concentrate

:::
on

:::::
these

:::::
two.

::
In

:::
the

:::::::::::::
climatological r-q-q plots, and climatological

:::::
plots,

::::::::::
differences

::
in

:::
the

:::::
mean

::
of

:::
the

::::::::::::
distributions,

:::
that

:::
is

::::::
biases,

::::
are

:::::
seen

::
as

::::::::::
horizontal

:::::::::::::
displacements

:::::
from

::::
the

:::::::::::
expectation

::
of

::::::::::
vanishing

:::::::::
quantiles.

:::::::::::::
Climatological

:
over- and under-dispersion (too wide or too narrow distributions) relate to positive210

or negative slopes (Marzban et al., 2010).
::::
That

:::
is,

::
if
:::
an

::::::::::
individual

:::::::::
ensemble

::::::::
member

:::::::
features

::
a

:::::
larger

:::::::::::::
climatological

:::::::::
variance

::::
than

::::
the

::::::::::
verification

:::::
data,

::
a
::::::::

positive
:::::
slope

:::
in

:::
the

::::::::
residual

::::::::
quantile

::::::
occurs

:::::
since

:::
the

:::::::::
ensemble

::::
data

:::::::::::::
systematically

:::::::::::::
overestimates

:::
the

::::::::
distance

:::::::
between

::::
the

:::::
mean

::::
and

:::
the

:::::::
quantile

:::::::::
locations.

:::::::
Smaller

:::::::::::::
climatological

::::::::
variance

:::::::
results

::
in

:
a
::::::::
negative

:::::
slope

:::::
since

:::
the

:::::::::
quantiles

:::
are

:::::
closer

:::
to

:::
the

::::::
mean.

:
Marzban et al. (2010)

::::
give

:::::
more

::::::
details

:::
on

:::
the

:::::::::::::
interpretation

::
of

::::
the

::::::
pattern

:::
of215

:::::::
residual

:::::::::
quantiles.

:

:::::
Thus,

:::
the

:::::
rank

::::::::::
histograms

:::
are

::
a
::::
tool

::
to

::::::::
disclose

::::::::
whether

:
a
:::::::::::::::
probabilistically

::::::::::
interpreted

:::::::::
ensemble

:::
and

:::
its

:::::::::::
verification

::::
data

:::::::::
represent

::::::::
different

:::::::::
climates.

:::::::::
Quantiles

:::
or

::::::::
residual

::::::::
quantiles

::::::::::::
complement

:::
the

:::::::
analysis

:::
to

:::::::
account

::::
for

::::::::::
differences

:::
in

:::
the

::::::::::::
climatologies

:::
of

:::
the

:::::::::
ensemble

::::::::::
members.

:::
In

:::::::
climate

:::::::
studies,

::::
they

::::
are

:::::::::
especially

:::::
able

::
to

:::::::::
highlight

::::::::::
differences

:::
in

:::
the

::::::::
resolved

:::::::
values

:::::
close

:::
to

:::
the

:::::
tails.220

:::
The

:::::
rank

::::::::::
histograms

:::::::
provide

::
a
::::::
means

:::
for

::::::::::
evaluating

:::
the

:::::::::::
consistency

::
of

:::
the

:::::
joint

:::::::::::
distribution

:::
for

:::
the

::::::::
ensemble

::::
and

:::::::::::
verification

::::
data

:
(see Wilks, 2010)

:
,
::::
and

:::
the

::::::::
residual

:::::::::
quantiles

::::::::
highlight

::::::::::
deviations

:::::::
between

:::::::::::::
climatologies

:::
for

:::::::::
individual

:::::::::::
simulations.

:

::
In

:::::::::
addition,

:::
the

::::::::
ranking

::
of

::::
the

:::::::::::
verification

:::::::
against

:::
the

::::::::::
ensemble

::::::
assists

:::
in

:::::::::
evaluating

::::::::
gridded

::::::
spatial

:::::
data.

::::::::::
Therefore,

:::
the

::::::::
position

::
of

::::
the

::::::::::
verification

:::::
data

::::::
within

:::
the

:::::::::
ensemble

::::
can

::
be

::::::::::
visualized225

::
in

:::::
maps

:::::::
(Sects.

:::::
3.3.1

:::
and

:::::::
3.3.2).

:::
At

:::::
each

:::::::::
grid-point

::::
the

::::
rank

:::
of

:::
the

:::::::::::
verification

::::
data

::
is

:::::::
plotted

:::
for

:::::::::
individual

::::
time

:::::
steps

:::
or

:::::::::::::
climatological

:::::::
periods.

::::::::::
Individual

::::
low

:::::
ranks

::
of

:::
the

::::::
target

::::
hint

::
to

::
a
::::::::
localised

:::::::::::::
overestimation

::
of

:::
the

:::::::
climate

:::::::::
parameter

:::
by

:::
the

:::::::::
ensemble

::
in

:::::
such

:::::::
spatially

::::::::
mapped

::::::::::
verification

::::::
ranks,

:::::::
whereas

:::::
high

:::::
ranks

:::::
imply

::
a
::::::::
negative

::::
bias

::
in

:::
the

::::::::::
simulation

:::::::::
ensemble.

:

2.2 Data230

We employ the ensemble of the COSMOS-Mill simulations for the last millennium performed

with the Max Planck Institute Earth System Model (MPI-ESM) based on
:::
the

:::::::::::
atmosphere

::::::
model

ECHAM5,
:::
the

:::::
ocean

::::::
model MPI-OM, a land-surface module including vegetation (JSBACH), a mod-

ule for ocean biogeochemistry (HAMOCC) and an interactive carbon cycle; details of the simula-

tions have been published by Jungclaus et al. (2010). The set specifically includes single forcing sim-235

ulations for volcanic, strong solar and weak solar forcing, five full-forcing simulations with weak so-
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lar forcing and three full-forcing simulations with strong solar forcings (full ensemble: eleven mem-

bers). We include the single forcing simulations as valid hypotheses about the pre-industrial climate

trajectory assuming that uncertainty is high in the respective forcing series and in our knowledge of

the influence of the forcing components on the pre-instrumental climate. If a strong or weak ensem-240

ble is mentioned, this consists of the respective full-forcing simulations with strong and weak solar

forcing.
::::::::::::
Additionally,

:::
we

::::
take

::::::::::
advantage

::
of

::::
the

:::::::::
3100-year

:::::::
control

::::
run

::::::::::
describing

:::
an

:::::::::::
unperturbed

:::::::
climate.

:

Considered reconstructions are
:::
All

::::::::::::::
reconstructions

:::
are

::::
for

::::::
annual

::::::
mean

::::::::::::
temperature.

::::
We

::::
use

a regional annual temperature series for Central Europe (Dobrovolný et al., 2010), the ensemble data245

for annual Northern Hemisphere temperature by Frank et al. (2010) and the global temperature field

reconstruction by Mann et al. (2009). For the data , we
:::::::
Whereas

:::
all

::::
data

:::::
have

:::
an

::::::
annual

::::::::::
resolution,

:::::
some

:::
are

::::::::::
temporally

:::::::::
smoothed (e.g. Mann et al., 2009).

::::
We reverse the approach

::
for

::::
the Frank et al.

(2010)
:::
data

:
to study additionally the consistency of a reconstruction sub-ensemble

::::::::
ensemble

:
with

respect to the
:
a simulation ensemble mean; we

:
.
:::::
Note

::::
that

:::::
such

::
an

:::::::::
ensemble

:::
of

::::::::::::::
reconstructions

::
is250

::::
only

::::::::
available

::::
for

:::
the

::::::::::::
hemispheric

:::::
mean

:::::
data.

:
Frank et al. (2010)

:::::::::
recalibrate

::::
the

::::::::::::::
reconstructions

::
by

:
Jones et al. (1998),

:
Briffa (2000),

:
Mann and Jones (2003)

:
,
:
Moberg et al. (2005),

:
D’Arrigo et al.

(2006),
:
Hegerl et al. (2007),

:
Frank et al. (2007)

:
, Juckes et al. (2007)

:::
and Mann et al. (2008)

::
to

:::::::
various

::::::
periods

:::
of

:::::::::::
instrumental

::::::::::::
observations.

::::
The

::::
last

::::::::
available

::::::
annual

::::
data

::::::
differ

::::::
among

:::
the

::::::::::::::
reconstructions

:::::::::
considered

:::
by

:
Frank et al. (2010).

::::
We

:
use the sub-ensemble calibrated

:::::::::::
re-calibrated

:
to the period255

1920 to 1960.
:::::
1960

:::
for

:::
our

:::::::::::::::
reverse-analysis (in the following just referred to as sub-ensemble; see

Frank et al., 2010, for discussion on the ensemble construction).
:::::

This
::::::
period

:::::
likely

::::::::
presents

:::
the

:::::
most

:::::::
reliable

::::::::::::
observational

::::
data

::
if
:::
we

:::::
want

::
to
::::

use
:::
all

::::
nine

:::::::::::::::
reconstructions.

::::
The

::::::
choice

:::
of

:::
the

::::::::::
calibration

:::::::
window

::::::::
strongly

::::::::::
influences

:::
the

::::::::::
variability

::
of

::::
the

::::::::::::::
reconstructions

::::::
which

::
is
::::::

going
:::
to

:::::::::
influence

:::
the

::::::::::
assessment

::
of

:::::::::::
consistency.

:::::::::
Assumed

::::::::::::
uncertainties

::::::::
generally

:::::
base

::
on

::::
the

:::
full

:::::::::
ensemble

::::
and

::::::::
therefore260

::::::
should

:::::::
account

:::
for

::::
this

::::::::::
sensitivity.

:

Spatial field data are interpolated on a 5×5 degree grid. As our interest is in the consistency

of paleoclimate reconstructions and simulations for the last millennium, anomalies are taken with

respect to the common period of reconstructions and simulations but excluding the period of overlap

with the modern observations: (i) for the European temperature time series (period 1500 to 1854)265

with respect to the mean from 1500 to 1849, (ii) for the Northern Hemisphere temperature series for

and with respect to the period 1000 to 1849, and (iii) for the decadal smooth global field the records

for the years 805 to 1845 with respect to the mean for 800 to 1849.
::::::::::::
Additionally,

::::
four

:::::::::::
sub-periods

:::
are

::::::::::
considered

:::
for

:::
the

:::::::
global

::::
field

:::::
data

:::::::::
consisting

:::
of

:::::::::::::::
non-overlapping

::::
250

:::::::
records.

:::::
The

::::
first

:::::
three

::::::
periods

::::::
cover

:::
the

::::
first

::::
750

:::::::
records

::
of

::::
the

:::
full

:::::
data

:::
and

::::
the

:::
last

::::::
period

:::::::
covers

:::
the

::::
last

::::
250

:::::::
records

::
of270

:::
the

::::
data

::::
sets.

:::::
Thus

:::::
there

::
is
::
a
:::
gap

::::::::
between

:::
the

::::
first

:::::
three

::::
and

:::
the

::::
last

::::::::::
sub-period.

:

:::
For

::::
the

:::::::
Central

:::::::::
European

:::::
data,

:::
the

:::::::::::
uncertainty

::
is

::::::::
sampled

:::::
from

:
a
:::::::
normal

:::::::::::
distribution

:::::
with

::::
zero

:::::
mean

::::
and

::::::::
standard

:::::::::
deviation

:::::
equal

:::
to

:::
the

::::
one

::::::::
standard

:::::
error

::::::::
estimate

::::::
given

:::
by Dobrovolný et al.
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(2010).
:::::

For
:::
an

:::::::::
ensemble

::
of

:::::
data,

:::
an

:::::::::::::
observational

::::::::::
uncertainty

::::
can

:::
be

:::::::::
randomly

::::::::
sampled

:::::
from

::
a

::::::::::
distribution

::::
with

:::::
zero

:::::
mean

::::
and

::::::::
standard

::::::::
deviation

::::::
equal

::
to

:::
the

:::::::::
ensemble

::::::::
standard

::::::::
deviation

::
at
:::::
each275

:::::
point.

::::
For

:::
the

:::::::::::::::
ensemble-mean

:::::::::
approach,

:::
we

:::::::::::
additionally

::::
use

:::::::
additive

::::::::
internal

:::::::::
variability

:::::::::
estimates

:::
for

:::
the

::::::
target

::::
data

::::
(see

:::::
Sect.

::::
2.3

:::
for

::::::::
details).

::::
No

::::::::::
uncertainty

::::::::
estimate

::
is
::::::
given

:::
for

:::
the

::::::
global

:::::
field

::::
data.

::::
We

:::::::
choose

::
to

::::::
inflate

::::
the

::::::::
ensemble

:::
by

::
a
:::::::
random

:::::::::::
uncertainty

::::::::
estimate

::::::
drawn

:::::
from

:
a
:::::::::
Gaussian

::::::::::
distribution

:::::
with

::::::::
standard

:::::::::
deviation

::::::
equal

::
to
::::

the
:::::::
largest

::::::::
standard

:::::
error

::::
(i.e.

:::::::::::::
σ=0.1729)

::
of

::::
the

::::::::::
unscreened

::::::::
Northern

:::::::::::
Hemisphere

::::::
mean

:::::::::::
temperature

:::::
series

::::::::
provided

:::
by

:
Mann et al. (2009).

:
280

2.3 Discussion of the chosen approach

The simulation-reconstruction-consistency can possibly be evaluated on three levels of resolution:

area-averaged time series, gridded spatio(-temporal) data and individual grid points of the gridded

data. Results may differ between these and it is not obvious at which level the consistency should be

largest. Even if we find an ensemble of simulations to be consistent at the grid point level, we cannot285

say whether the covariance between individual grid points or within the whole field is consistent

with the true covariability
:::::::::::
covariability

::
in

:::
the

:::::::::::
verification

:::::
data.

:::::::
Already

::::
the

::::
first

:::::::::::
applications

:::
of

::::
the

::::
rank

::::::::::
histogram

:::::::
advised

::::::::
caution

::
in

::::
the

::::::::::::
interpretation

:
(e.g.

Anderson, 1996)
:::
not

::::
least

::::::::
because

::
of

:::
the

::::::::::::
uncertainties

::
in

:::
the

:::::::::::
verification

::::
data.

::::::
More

:::::::
recently

:
Hamill

(2001),
:
Marzban et al. (2010)

:::
and

::::::
others

:::::::::
discussed

:::
the

::::::::
influence

:::
of,

:::::
e.g.,

:::
the

::::::::::
underlying

:::::::::::
distributions290

::
or

::::::::
temporal

:::::::::::
correlations

::
on

:::
the

:::::::
results;

:::
see

::::
also

:
Wilks (2010)

:::
and

:::
the

:::::::::
references

::
in
:::::
these

::::::::::::
publications.

Marzban et al. (2010)
::::::
further

:::::::
discuss

:::
the

:::::::::
influence

::
of
::::::::::::::

intra-ensemble
:::::::::::
correlations

::::
and

:::::::::::
correlations

:::::::
between

:::
the

:::::::::
ensemble

::::
and

:::
the

:::::::::::
verification

::
on

::::
the

::::
rank

:::::::::
histogram.

Uniformity in rank histograms may result from opposite biases or opposite deviations in spread

in different periods or areas which cancel out (Hamill, 2001). On the other hand, indications of295

a too narrow ensemble may as well result from different biases in different periods. Temporal cor-

relations in the data can result in premature rejection of flatness
::::::::::
consistency

:
(Marzban et al., 2010).

Using bootstrapped estimates or analysing different sub-periods at individual grid points helps to

address these problems. We also follow Marzban et al. (2010) in displaying residual quantiles.

Similar caveats exist for these
::::
The

::::::::
problem

::
of

:::::::::
sampling

::::::::::
variability

::::
may

::::
also

::::::
affect

:::
the

::::::::::
evaluation300

::
of

:::
the

:
climatological anomaly distributions.

::::
The

:::::::
amount

::
of

:::::::::::
correlations

::::::::
between

:::::::::::
verification

::::
and

::::::::
ensemble

:::
or

::::::
within

::::
the

:::::::::
ensemble

::::
and

:::
the

::::::::::
differences

::::::::
between

:::::
both

::::
can

::::::
result

::
in

::::::::::
misleading

:::::
rank

::::::::::
histograms

:::::
under

:::::::::
idealised

::::::::::
conditions

:
(see Marzban et al., 2010, for details).

::::
We

:::
do

::::
not

:::::::
discuss

:::
this

::::::
effect

:::::
here.

::::::::::
However,

:::
we

:::::
note

::::
that

::::
the

:::::::::::::::::::::::::
intra-ensemble-correlations

:::
do

:::
not

::::::
allow

::
a
:::::
priori

:::
to

:::::::
exclude

:
a
::::::::
uniform

::::::::
outcome,

:::::
while

::::
the

::::::::::::::::::::::::::::::
ensemble-verification-correlations

:::::::
suggest

::::
that

:::
we

::::
may

::::::
expect305

:
a
:::::::::
u-shaped

::::::::::
rank-count

:::
for

:::::
some

::::::
cases.

:::::::
These

:::::::::::
expectations

::::
are

:::::
made

::::::
under

::::::::
idealised

::::::::::::
assumptions

:::::
which

:::
do

:::
not

:::::::::::
necessarily

::::
hold

:::
for

:::
the

::::::::::
considered

::::::::::
ensembles.

::::
We

:::
do

:::
not

::::::::
perform

:::::::::
sensitivity

::::::::
analyses

::
on

:::::
how

:::
the

:::::::::::
correlations

::::
may

::::::
affect

:::
the

::::::
results

:::
for

::::
the

::::::::::
considered

::::::::::
ensembles.

::::
We

:::::::
assume

::::
that

:::::
these

::::::
caveats

::::::::
increase

:::
the

:::::::
general

:::::::::::
uncertainty

::
in

:::
the

:::::::::::
comparison

::::::::
between

::::::::::
simulations

::::
and

::::::::::::::
reconstructions
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::
of

::::
past

:::::::
climate

:::::
states

::::
and

::::::::::
variability.

:::
At

::::
this

:::::
point

:::
we

::::::
stress

::::
that

:::
we

:::
see

:::::::::::
consistency

::
as

::
a
:::::::::
necessary310

::::::::
condition

:::
for

:::
the

:::::::::::::
comparability

::::::::
between

::::::::::
simulations

::::
and

::::::::::::::
reconstructions.

:::::::
Caveats

::::
and

::::::::::::::
inconsistencies

::::
have

::
to

:::
be

::::::::::
considered

::
in

::::::::::
subsequent

::::::::
analyses

:::
of

:::
the

:::::::::
simulated

:::::
and

::::::::::::
reconstructed

:::::
data.

Although the
:::
The

:
data sets are

:
a

:::::
priori assumed to represent annually resolved values, this

:::::::::::
inter-annual

:::::::::
variations

::
of

::::
the

:::::
data.

:::::
This

:
is not necessarily valid. If the target /truth

:
,
::
if

:::
the

::::::
target

:
is an en-

semble mean, the target displays reduced inter-annual
::::
since

::::
this

::
is
::::::

going
::
to
::::::::

display
:::::::
reduced

:
vari-315

ability compared to the ensemble members . This has to be taken into account in interpreting

the results
:::::::::
especially

:::
on

:::
the

::::::::::::
inter-annual

::::
time

:::::
scale. It is

::::::::
therefore

:
likely that using an ensemble

mean as truth
::::::::::
verification

::::
data

:
will change the ensemble consistency. Considering an error in the

truth can compensate such problems
:::::::::
uncertainty

::::::::
estimate

:::
in

:::
the

::::::
target

::::
can

:::::::::::
compensate

::::
this. If re-

construction and simulation ensemble estimates are thought to include the same externally forced320

:::::::::::::::
externally-forced variability, the true

:::::
target

:
ensemble mean should essentially recover the forced sig-

nal within the propagated uncertainties, and the probabilistic ensemble estimates (including the un-

certainty of the truth
:::::
target) should reliably represent the true distribution. Similarly, members

:::::
target

:::::::::::
distribution.

:::::::::
However,

::
an

::::::::::
alternative

::::::::
approach

:::
to

::::::::::
compensate

:::
for

::::
the

:::::::
reduced

::::::::::
variability

:
is
:::
to

:::
add

:::
an

:::::::
estimate

:::
of

:::
the

:::::::
internal

::::::::::
variability

::
to

::::
the

::::::::
ensemble

::::::
mean

::::::::
estimate.

:::
In

:::
the

::::::::::
following

:::
we

::::::
pursue

::::
this325

:::::::::
approach.

:::::
Thus,

:::
for

:::
the

::::::::::
evaluation

::
of

:::
the

::::::::::
simulation

:::::::::
ensemble,

:::
we

::
fit

::::::::::::::::::::::::::::
autoregressive-moving-average

::::::
models

:::
to

:::
the

::::::::
residual

::::::::::
deviations

:::
of

:::
the

::::
full

::::::::::::::
reconstruction

:::::::::
ensemble

:::::
from

::::
the

:::::::::
ensemble

::::::
mean.

:::::::
Thereby

::::
we

::::::
obtain

::::
521

::::::::
possible

::::
fits.

:::::
We

:::::::
produce

::::
for

:::::
each

::
fit

:::
10

::::::::
random

::::::::::::::
representations

::
of
::::

the

:::::::
process

::
to

::::
add

::
to

::::
the

::::::::
ensemble

::::::
mean.

:::::
For

:::
the

:::::::
reverse

::::::::
analyses,

::::
we

::::
add

:::
one

:::::::
section

:::
of

:::
the

:::::::
control

:::
run

:
(Jungclaus et al., 2010)

::
to

:::
the

:::::::::
ensemble

::::::
mean

::::::::::
simulation.

::::
We

::::::
regard

::::::
using

::::
only

::::
one

::::::::
segment330

:::::
robust

:::::::
enough

::::
for

:::::::::
evaluating

:::
the

::::::::
internal

:::::::::
variability

:::
of

:::
the

:::::::::::
simulations

:::::
since

:::
we

::::::
further

::::::::
account

:::
for

:::
the

::::::::
sampling

::::::::::
variability.

:

::::::::
Members

:
of the reconstruction ensemble are to some extent time-filtered and by construction

exhibit reduced variability on inter-annual time-scales. As the properties differ for the reconstruction

ensemble members, this filtering is not considered. On the other hand, the decadal smoothing of the335

global field data (Mann et al., 2009) is taken into account by using decadal moving means for the

simulation ensemble data.

3 Results

We evaluate the ensemble consistency of the COSMOS-Mill simulation ensemble for area-averaged

and grid point time series with respect to temperature reconstructions. In principle, all levels of340

spatial resolution are of interest, as the spatial and temporal availability of proxy records may hinder

reconstructions on one of these levels and
:::
our

:::::::::::
assessment,

:::
we

::::
test

:::
for

::::
the

::::::::::
consistency

:::
of

:::
the

:::::
rank

::::::::::
histograms

:::
for

:::
our

::::::::::
ensembles

::::
with

::::
the

:::::::::
hypothesis

:::
of

:
a
::::::::
uniform

:::::::::
outcome.

:::
We

:::::
start

::
by

::::::::
looking

::
at

:::
the

:::::::::::::
intra-ensemble

:::::::::::
consistency

::::::
before

::::::::
assessing

::::
the

::::::::::::
area-averaged

::::
and

:::::
field

:::::::::
estimates.
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3.1
::::::::::::::
Intra-ensemble

:::::::::::
consistency345

::::::
Before

:::
we

::::::::
evaluate

::::
the

::::::::::
consistency

:::
of

:::
the

:::::::
chosen

::::::::::
simulation

::::
and

:::::::::::::
reconstruction

:::::
data

::::
sets,

::
it
:::

is
::
in

:::::
place

::
to

::::::::
describe

:::
the

:::::::::::::::
within-ensemble

:::::::::::::
consistencies.

:::
We

:::::::::
construct

::
a
::::::::
surrogate

::::::::::
simulation

:::::::::
ensemble

::::
from

:::
the

:::::::::::
control-run.

:::::
This

:::::::::
ensemble

::
is

:::::
found

:::
to

::
be

:::::::::::::::
probabilistically

:::::::::
consistent

:::::
with

::::
2201

::::::::::
equivalent

::::::::
surrogate

:::::::
targets,

:::::
three

::
of

:::
the

:::::
weak

:::::
solar

::::::::::
full-forcing

:::::::::::
simulations,

:::
the

:::::
weak

::::::::::::
solar-forcing

::::
only

::::::::::
simulation

:::
and

:::
the

:::::::::::::::
volcanic-forcing

:::::
only

::::::::::
simulation.

::::
The

::::
full

:::
test

:::::::
rejects

::::::::::
uniformity

::
in

::::
less

::::
than

::::
one

:::::::
percent

::
of350

:::
the

:::::
tested

:::::::::
surrogate

::::::
targets

::::
(see

::::::
Figure

::::
1a).

:::::::
Spread

::::
and

::::
bias

::::
tests

:::
are

::::::::::
significant

:::
for

::::
less

::::
than

:::
50

::::
tests

::::
(see

::::::
Figure

::::
1a).

:::::
Here,

:::
we

:::
do

:::
not

:::::::
include

:::::::::::
uncertainty

:::::::::
estimates.

:

::::
Sect.

::::
3.2

::::
will

::::::::
consider

:::
the

:::::::::
ensemble

:::::
mean

:::
of

:::
the

:::::::::
Northern

:::::::::::
Hemisphere

:::::::::::::
reconstruction

:::::::::
ensemble

(Frank et al., 2010),
::::
but

:::
we

:::::
may

::::::::
question

:::
the

:::::::::::
consistency

:::
of

:::
the

::::::
single

::::::::::::::
reconstructions

:::::
with

::::
one

:::::::
another.

::::
The

:::::::::::::
reconstruction

::::::::::::
sub-ensemble

:::::::::::
recalibrated

::
to

::::::::::
1920–1960

::
is
:::::
only

::::::::::::::
probabilistically

:::::::::
consistent355

::::
with

:::::::
respect

:::
to

:::
the

:::::::::::
recalibrated

:
Frank et al. (2007)

::::::::::::
reconstruction

:::::
(Fig.

::::
2).

::::::
Here,

::::
we

::::::::
consider

:::
the

:::::
target

:::::::::::
uncertainty

::::
and

:::::::
account

::::
for

:::
the

::::::::
reduced

:::::::
internal

::::::::::
variability

::
in

::::
the

::::
data

:::
by

:
Hegerl et al.

(2007), yet, be sufficient for climate reconstructions on another. Implications and origins of found

consistency or lack thereof are discussedMann and Jones (2003)
:::
and

:
Mann et al. (2008)

:
.
::::
The

::::::
results

:::::::
notably

:::::
differ,

::
if
:::
we

::::::::
exclude

:::
the

::::::::::
uncertainty

::::::::
estimate

::::
(not

::::::::
shown).360

:::::
Thus,

::::
we

:::
see

::::::
from

::::::
Figure

:::
1a

::::
that

::::::
pairs

::
of

::::::::::
ensemble

::::
and

:::::::::::
verification

::::::
appear

:::
to

:::
be

:::::::::
generally

:::::::::
consistent

::
if

:::::::::
variability

::
is
:::::::::
restricted

::
to
::::
the

:::::::
internal

:::::::::
variability

:::
of

:::
the

:::::::::
simulated

:::::::
system

::
or

::::::::::
variability

:::
that

::
is
:::::

only
::::::::::
marginally

::::::::
different

:::::
from

:::
the

::::::::
internal

:::::::::
variability

:
(compare Zanchettin et al., 2010).

:::
In

:::
line

:::::
with

:::::::
similar

:::::::::::::
considerations

:::
in

::::::::
seasonal

::::
and

:::::::::::::
medium-range

::::::::
weather

::::::::::
forecasting

:
(Johnson and

Bowler, 2009),
::::::::::
ensembles

:::
are

:::::::::
consistent

::
as

:::::
long

::
as

:::
the

::::::
target

:::::::::
variability

::::
and

:::
the

:::::::::
projected

:::::::::
variability365

:::
are

:::::::
similar.

:::::::
Figure

::
2

:::::::::::
additionally

:::::::::
highlights

::::
that

::::
the

:::::::::::::
reconstruction

:::::::::
ensemble

::::::::::
apparently

::::
does

::::
not

::::::::
generally

:::::::
comply

:::::
with

:::::
these

:::::::::::
assumptions.

3.2 Area-averaged time series

3.2.1 Ensemble consistency of area-averaged estimates

Figure 3 displays the
::::::
Figures

::
3
:::
to

::
5

:::::::
display

:::
the

:::::::::::
verification

:
data time series and their variability370

together with the range of the ensembles. Their probabilistic consistency is illustrated by Fig. 6 and

the climatological component of consistency by Fig. 7. The bottom (top) rows of Figs. 6 and 7 do

(do not)account for the error in the verification target.

No probabilistic differences arise between the ensemble simulated and reconstructed estimates

for the Central European temperature
:::
We

::::
see

::::
that

:::
the

:::::::::
European

:::::
data

:::
for

::::
the

:::::::::::
simulations

::::
and

:::
the375

::::::::::::
reconstruction

::::::
cover

::
a
:::::::
similar

:::::
range

::::
and

::::::
show

::::::
similar

::::::::::
variability

:::::
(Fig.

:::
3),

::::::
while

::::
the

:::::::::::
hemispheric

::::::::::::
reconstruction

::::::::::
ensemble

:::::
mean

::::::
varies

::::
less

:::::
than

::::
the

::::::::::
simulation

:::::::::
ensemble

::::
and

::::::::
displays

::
a
::::::::
different

::::::::
temporal

::::::::
evolution

:
(Fig. 6a), if the verification series is assumed to be perfect without error. Similarly

, under such an assumption, the reconstruction sub-ensemble for the northern hemispheric mean
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temperature and the ensemble mean simulated Northern Hemisphere temperature are compatible380

::
5).

:::::::::
Similarly

::::
the

:::::::::::
hemispheric

::::::::::
simulation

:::::::::
ensemble

:::::
mean

::::::
differs

::
in
::::

the
::::::::
temporal

:::::::::
evolution

:::::
from

:::
the

:::::::::::::
reconstructions

::::
but,

:::
on

:::
the

:::::
other

:::::
hand,

::
is

::
in

:::
the

::::::
range

::
of

::::
their

::::::::::
variability (Fig. 6e). On the other hand,

::
5).

:

::::
The

:::::
range

:::
of

::::::::
possible

:::::::::::::
reconstructed

:::::::::
evolutions

:::::::
covers

::
a
:::::::
notably

::::::
wider

:::::
range

:::::
than

:
the simula-

tion ensemble estimates for the Northern Hemisphere temperature are from a notably too wide385

probabilistic distribution relative to the ensemble mean reconstruction
:
if
::::

we
:::::::
include

:::
the

:::::::::
estimates

::
of

:::::::
internal

:::::::::
variability

:::
in

:::
the

::::::::::::::
reconstructions (Fig. 6c

:
5). The bootstrapped ranks (shading in

::::::::
inclusion

::
of

:::
an

::::::::
estimate

::
of

::::::::
internal

::::::::::
variability

::::
does

::::
not

:::::::::::
excessively

:::::::
change

:::
the

::::::::::
simulation

:::::::::
ensemble

::::::
mean

::::::
climate

::::::::::
trajectory

:
(Fig. 6)confirm this assessment. Although notable deviations may occur in the

end ranks for the simulated European and reconstructed hemispheric temperature ensembles, they390

are not unlikely with respect to a uniform outcome
:::
5).

::::::::::::
Nevertheless

:
it
::::::::
provides

::
a
::::::::::
pronounced

::::::::
increase

::
in

:::
the

:::::::::
variability

:::
of

:::
the

::::::::::
simulation

:::::::::
ensemble

:::::
mean

::::::
target.

::::::::
Sections

:::::
3.2.2

::::
and

:
4
:::::::
discuss

:::
the

:::::::::
influence

::
of

:::
the

::::::::
resolved

:::::::::
variability

:::
on

:::
the

:::::::
results.

Uncertainty estimates for the target data time series
::::
The

:::::::::::
probabilistic

:::::::::::
consistency

::
is
::::::::::

illustrated

::
by

::::
Fig.

::
6
::::

and
::::

the
:::::::::::::
climatological

:::::::::::
component

:::
of

:::::::::::
consistency

:::
by

::::
Fig.

::
7.
::::::

Both
:::::::
figures

::::::::
account

:::
for395

:::
the

::::::::::
uncertainty

::
in
::::

the
::::::::::
verification

::::::
target.

::::::::::::
Uncertainty

::::::::
estimates

:
are the reported standard errors for

the Central European temperature data
:::::
target

:
(Dobrovolný et al., 2010) and the spread of the mutual

ensembles for the Northern Hemisphere data . Accounting for these “errors” in
::::::
targets.

::
If
:::
we

:::::::
neglect

::::
these

:::::::::::::::
“observational”

:::::::::::
uncertainties

::
in
::::
the

::::::::::
verification

::::
data

:
the “verification ” data alters the result for

the reconstruction ensemble . The ranks in
:::::
results

:::::::
change

:::
for

:::
the

::::::::::::
hemispheric

::::
data

::::
(not

::::::::::
discussed).

:
400

3.2.1
:::::::::
Ensemble

:::::::::::
consistency

::
of

::::::::::::::
area-averaged

:::::::::
estimates

::::::::
Visually,

::
no

::::::::::::
probabilistic

::::::::::
differences

::::
arise

::::::::
between

:::
the

:::::::::
ensemble

:::::::::
simulated

:::
and

::::::::::::
reconstructed

:::::::::
estimates

:::
for

:::
the

:::::::
Central

:::::::::
European

:::::::::::
temperature

::::
(Fig.

::::
6a).

::::::::::::
Nevertheless,

::::
the

:::
χ2

::::::::
statistics

:::
for

:::
the

::::::::::
spread-test

:::
are

:::::::::
significant

::::::
which

::::::
would

:::::
imply

::
a
::::
lack

::
of

::::::::::::
consistency.

::::
The

:::::::::::
bootstrapped

:::::
rank

:::::
count

::::::::
intervals

::::::::
however

:::
are

:::
not

::::::::::::
incompatible

::::
with

::
a
::::::::
uniform

::::::
result.

::::
The

:::::::
contrast

::::::::
between

:::::::::
bootstrap

::::
and

:::::::::::::
goodness-of-fit

::::
test405

:::::::
possibly

::::::::::
highlights

:::
the

::::::::
problem

::
of

:::::::::
sampling

:::::::::
variability.

:

:::::::::
Inferences

:::
on

:::::::::::
probabilistic

:::::::::::
consistency

:::
for

:::
the

:::::::::::
hemispheric

::::
data

:::::::
depend

::
on

::::::::
whether

:::::::
internal

:::::::::
variability

:
is
::::::::::
accounted

:::
for

::
in

:::
the

:::::
target

::::
data

:::::
with

::::::::
differing

::::::
results

:::
for

:::
the

:::::::::::::
reconstruction

:::
and

::::::::::
simulation

:::::::::
ensembles

:
(Fig. 6f clearly display strong over-dispersion,that is, the ensemble mean simulation populates

::::
b,c).

:::
We

::::
first

::::::::
consider

:::
the

::::
case

::::::
where

:::
the

::::::::::
assessment

:::::
does

:::
not

:::::::
include

:::
the

:::::::::
estimates

::
of

:::::::
internal

::::::::::
variability.410

:::::
Then,

:::
the

:::::::::::::
reconstruction

:::::::::
ensemble

:::::
mean

:::::::::
occupies too often the central ranks of the histogram. This

behavior is also found for the ensemble mean reconstruction in
:::
and

::::::::::::
consequently

::::
we

::::
may

:::::
term

:::
the

:::
full

::::::::::
simulation

:::::::::
ensemble

::::::::::::
significantly

::::::::::::::
over-dispersive.

:::::
The

::::::::::::
bootstrapped

::::::::
intervals

:::::::
confirm

::::
this

:::::
(cyan

:::::::
overlay

::
in
:::::

Fig.
::::
6b).

:::::::
Under

:::
the

:::::
same

::::::::::
conditions

::::
also

::::
the

:::::::::::::
reconstruction

:::::::::::::
sub-ensemble (cali-

bration period 1920–1960, see Frank et al., 2010)
::
for

::::
the

:::::::
northern

::::::::::::
hemispheric

:::::
mean

:::::::::::
temperature

::
is415
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:::
too

:::::
wide

:::::::
relative

::
to

:::
the

:::::::::
ensemble

::::::
mean

:::::::::
simulated

::::::::
Northern

:::::::::::
Hemisphere

:::::::::::
temperature

::
(Fig. 6d. The

bootstrapped ranks and the goodness-of-fit test unambiguously indicate a lack of consistency due to

over-dispersive distributions for
:::
c).

::
If

:::
we

:::::::
include

::
an

::::::::
estimate

::
of
::::
the

:::::::
internal

:::::::::
variability

:::
in

:::
the

::::::::
analyses

::
of

:
the hemispheric data.

No large changes are found in the ranks for the European temperature data (,
::::::
mixed

:::::::
results

:::
are420

::::::::
obtained.

::::
The

::::::::::
simulation

::::::::
ensemble

:::::
may

::
be

:::::::::
consistent

::::
with

::::::
some

::
of

:::
the

::::::::::
constructed

::::::::::::::::::::
reconstruction-targets,

:::
but

:::
the

:::::::
median

::
of

:::::::::::
assessments

::::::
against

:::
all

::::::
targets

::::
still

::::::::::
emphasises

:::
an

:::::::::::::
over-dispersive

::::::::
relation.

::::::::::::
Furthermore,

:::
the

::
90%

:::::::
envelope

:::::
(dark

:::::
grey

::
in Fig. 6b) and the 99range of the bootstrapped ranks is still compatible

with a flat histogram. Contrarily,
::
is

::::::::::::
incompatible

::::
with

::::::::::::
probabilistic

:::::::::::
consistency.

::::
We

:::::
note

::::
that

:::
we

::::::
cannot

:::::
reject

:::::::::::
consistency

:::::::::
according

::
to

::::
the

::::
99%

::::::::
envelope

::::::
(light

::::
grey

::
in

::::
Fig.

::::
6b).

:
425

:::
On

:::
the

:::::
other

:::::
hand,

::
if
:::
we

::::::::
consider

:::
the

:::::::
internal

::::::::::
variability

:::
for the presented χ2 test gives significant

p-values for spread-deviations, which highlights the problem of sampling variability and the strictness

of
:::::::::
simulation

:::::::::
ensemble

::::::
mean

:::::
target

:::
in

:::
the

::::::::::
evaluation

:::
of

:
the χ2 test

:::::::::::::
reconstruction

:::::::::
ensemble,

::::
the

:::::::
analysis

::::::::
suggests

::::
that

::::
the

::::::::::::
sub-ensemble

:::::::::::
recalibrated

:::
to

:::
the

::::::
period

:::::::::::
1920–1960

::
is

:::::::
indeed

:::::::::
consistent

::::
with

:::
the

:::::::::::
simulation

:::::::::
ensemble

:::::
mean

:::::::::::
(continuous

::::::
black

::::
line

:::
in

::::
Fig.

::::
6c).

:::::
The

::::::::::::
bootstrapped

::::::
ranks430

:::::::::
emphasise

:::
the

:::::
good

::::::::::::
probabilistic

::::::::::
agreement

:::::
under

:::
the

::::::::::::
assumptions

:::::
made

:::::
(grey

::::::::
shading

::
in

::::
Fig.

::::
6c).

::::::
Results

::::
are

:::::::::
insensitive

:::
to

:::
the

:::::::::
inclusion

::
of

:::
an

:::::::::
arbitrarily

:::::::
chosen

:::::::
estimate

:::
of

:::::::
internal

:::::::::
variability

:::
in

:::
the

::::
data

::
by

:
Hegerl et al. (2007)

:
, Mann and Jones (2003)

:::
and

:
Mann et al. (2008).

Similarly, the
::::
The residual quantiles of the climatological distributions in Fig. 7a agree generally

well for
:::::::
indicate

:::::
good

::::::::::
agreement

:::::::::
between

:
simulated and reconstructed European temperatures,435

although the simulations
:
.
::::::
Some

::::::::::
simulations

:::::::
appear

::
to

:
underestimate very warm annual anomalies

and overestimate very cold ones. The time series in Fig. 3a relates the underestimation of the warm

anomalies particularly to reconstructed extreme warmth in the mid 16th century. The overestimation

of cold anomaliesis more frequent but originates from only few ensemble members (Fig. 7a). If we

include the error estimates
:::::::::
anomalies.

::::::::
Overall, a slight

:::::::
positive

:
slope occurs in the residual quan-440

tilesindicating that the simulations may sample from a slightly too wide distribution; the warmth in

the 16th century remains exceptional. ,
::::::
which

::
is

:::::::::
indicative

::
of

:::::::::::::::
over-dispersion.

:::::::::
However,

:::::::::::
bootstrapped

:::::::
intervals

::::
still

:::::::
include

:::
the

:::::
zero

::::
line,

::::::
which

:::::::
clarifies

::::
that

::::
the

:::::
slope

::
is

:::
not

::::::::::
significant.

:

Larger climatological deviations
:::::
occur

:
between the simulation ensemble and the reconstructions

occur for the Northern Hemisphere temperature data(.
::
If
:::
we

:::
do

::::
not

:::::::
account

:::
for

:::
the

::::::::
reduced

:::::::
internal445

:::::::::
variability

::
in

::::
the

:::::::::
ensemble

:::::::::::::
reconstruction

:::::
mean

::::::
target,

::::
the

::::::::::
simulation

:::::::::
ensemble

:::::
gives

::::::
overly

:::::
wide

:::::::::::
distributions

:::::
(grey

::::::::
overlay

::
in

:
Fig. 7b,

:
).
:::::::::::

Similarly,
:::::::::::::
reconstruction

:::::::::
ensemble

:::::::::
members

:::::::::
generally

:::::::::::
overestimate

::
at
:::::
least

:::
the

:::::::
positive

:::::::::
anomaly

::::::::
quantiles

:::::::
relative

::
to

::::
the

:::::::::
simulation

:::::::::
ensemble

:::::
mean

::::::
target

:::::::::
excluding

:::
the

:::::::
internal

:::::::::
variability

::::::::
estimate

:::::::::::
(transparent

:::::
grey

::
in

::::
Fig.

::
7c). Independent of

:::::::
Results

:::::::
change

:::
for

::::
the

::::::::
northern

::::::::::::
hemispheric

::::
data

::::::
under

:
considerations on the reconstruction450

uncertainty,
:::::::
internal

::::::::::
variability.

::::::::
Figure

:::
7b

:::::
plots

::::::::
residual

:::::::::
quantiles

:::
for

:
the simulation ensemble

gives overly wide distributions. Similarly,
:::::::
relative

::
to

:
the reconstruction ensemble overestimates
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the range of variability when compared to the simulation ensemble mean. While this again is in

principle independent of the uncertainty in the truth, the deviations are largest in the positive anomaly

quantiles if uncertaintiesare included
:::::
mean

::::::
target

::::
with

::::::
added

:::::::::
estimates

::
of

:::::::
internal

::::::::::
variability

:::
for

:::
all455

:::::::::
calculated

:::::::::
estimates.

:::
In

:::
the

:::::::::
multitude

::
of

::::::::
possible

:::::::
patterns

:::
we

::::
can

::::
find

:::::::::
consistent

::::::::
residuals

::
as

:::::
well

::
as

::::::::::::::
under-dispersive

:::::::::
(negative

::::::
slope)

:::
or

::::::::::::::
over-dispersive

::::
ones

:::::::::
(positive

::::::
slope).

:::::::::::::
Furthermore,

:::::::::
simulated

::::::::
quantiles

::::::
appear

::
to

::::::::::
commonly

:::::
agree

:::
in

:::
the

::::
tails

:::
but

::
to

::::::::::::
overestimate

:::
the

:::::::::
variability

::::::
closer

::
to

:::
the

::::::
mean.

:::::
These

::::
also

:::::::
include

:::::::::
simulated

:::::::::
quantiles

::::::
which

:::::::
besides

:::::
being

:::::
more

::::::::
variable

:::::
close

::
to

:::
the

:::::
mean

:::::::
feature

::::::
lighter

:::::
tails.

::::
The

:::::::::::::
overestimation

::::::::
appears

::
to

:::
be

::::::
largest

:::
for

::::
the

::::::
strong

:::::::
forcing

:::::::::::
simulations.

:::::
From

::::
our460

::::
point

:::
of

:::::
view,

:::
the

:::::::::
multitude

:::
of

:::::::
possible

::::::::::
deviations

:::::
leads

::
to

::
a
::::::::::
conditional

::::::::
rejection

:::
of

:::::::::::::
climatological

::::::::::
consistency

::::::::::
especially

::::
due

::
to

::::
the

:::::::
notable

::::::::::::::
overestimation

:::
of

::::::::::
variability.

::::::::::
Rejecting

:::::::::::
consistency

::
is

::
in

::::
line

::::
with

::::
the

:::::::::::
probabilistic

:::::::::::
assessment

::
in

::::
Fig.

:::
6b

:::::::
already

:::::::::
stressing

:::
the

:::::::::
generally

::::::::::::::
over-dispersive

::::::::
character

::
of

::::
the

:::::::::
ensemble.

:

::::
The

:::::::
analysis

:::
of

:::
the

::::::::::::::
climatological

:::::::::::
consistency

:::
for

:::
the

::::::::::::::
reconstruction

::::::::::::
sub-ensemble

:::::::
details

::::
that465

::::
most

::::::::::::::
reconstructions

::::::
agree

:::::
well

::::
with

::::
the

::::::::::
simulation

:::::::::
ensemble

::::::
mean

::::::
target

:::::
when

::::
we

:::::::
include

:::
an

:::::::
estimate

:::
of

:::::::
internal

::::::::::
variability

::
in
::::

the
::::::::::
assessment

:::::
(Fig.

::::
7c).

:::::
The

::::::::::::
bootstrapped

::::::::
intervals

::::::::::
emphasise

:::
this

:::::::
general

:::::::::::
consistency.

:::::::::
However,

::::::::::
deviations

:::
are

:::::::
notable

::
in

:::
the

:::::
tails,

::::::
which

:::::::
become

:::::::::::
pronounced

:::
for

::::
large

::::::::
negative

::::::::::
anomalies

::::
and

:::
the

:::::::::::::
reconstruction

:::
by

:
D’Arrigo et al. (2006).

::::::::::
Residuals

:::
for

::::
the

::::
data

::
by

:
Jones et al. (1998)

:::::::
diverge

:::::
from

:::
the

::::::::
common

::::::::::
description

:::
by

::::::
being

:::::::
strongly

:::::::::::::::
over-dispersive.

::::
The470

:::::::
strength

::
of

::::
the

::::::::::::::
over-dispersion

:::::::::
originates

::
in

:::
the

::::
size

:::
of

:::
the

::::::::::
considered

:::::::::::
uncertainties.

Considering the two
:::::
Next,

::::
we

:::::::
shortly

:::::::
discuss

:::
the

:::::
two

:::::::::
individual

:
full-forcing simulation sub-

ensembles separately (five simulations with weak, three with strong solar forcing)confirms
:
.
::::::::::
Respective

:::::::
analyses

::::::::
confirm the results with respect to the European temperature data although both ensembles

display specific behaviors
:::::::::
behaviours

:
(not shown). If uncertainties in the truth are accounted for, the475

:::
The

:
weak solar full-forcing ensemble is unambiguously

::::::::::::::
probabilistically

:
consistent with the Euro-

pean reconstructions, whereas the strong solar forcing ensemble is slightly too wide
:::
(not

:::::::
shown).

The spread is significant according to the goodness-of-fit test, but the bootstrapped ranks suggest

that this may be due to sampling variability. The residual quantiles do not differ too much between

both ensembles as seen in Fig. 7(red, weak ensemble, blue, strong ensemble). Relative
::
b.480

::::
The

:::::
weak

:::::
solar

::::::::::
full-forcing

:::::::::
ensemble

::
is
::::::
likely

:::
too

:::::
wide

:::::::::::::::
probabilistically

:::::::
relative

:
to the Northern

Hemisphere temperature
::::::::::::
reconstruction

:::::::::
ensemble

:::::
mean

:
(not shown), both full-forcing sub-ensembles

are significantly too wide according to the goodness-of-fit test, but the bootstrapped ranks generally

include the possibility of a uniform histogram
:
,
::::::::
including

::::::::
internal

:::::::::
variability

:::
and

:::::::::::
considering

::::::::::::
uncertainty).

:::
For

:::
the

:::::::
strong

:::::
solar

:::
full

:::::::
forcing

:::::::::
ensemble

::::
the

::::::::::::
bootstrapped

::::::::
quantiles

::::
and

:::
the

::::::
small

:::::::::
ensemble

::::
size485

:::::
allow

::::
only

:::::::::::
ambiguous

:::::::::
statements

:::::::::
although

:::
the

::::::
single

:::::::::
deviation

:::
test

::::
for

::::::
spread

::::
and

:::
the

:::::
rank

::::::
counts

:::::::
suggest

:::::::::
significant

::::::::::::::
over-dispersion

::::
(not

:::::::
shown). The residual quantiles display strong

:
a
:::::
wide

:::::
range

::
of

::::::::
possible deviations for the strong forcing ensemble (compare Fig. 7). Reversing the verification

task and considering errors in the truth
::
b).

:
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:::
For

::::
the

::::::::
reversed

:::::::::::
verification

:::
on

:::::::::::
hemispheric

:::::
data, the reconstruction ensemble distribution is490

too wide
::::::
slightly

::::::::::
(strongly)

::::
too

:::::::
narrow

:
relative to the weak forcing ensemble but is consistent

relative to the strong forcing ensemble
:::::::
(strong)

:::::
solar

:::::::::::
full-forcing

:::::::::
ensemble

:::::
mean

:::::::::
according

:::
to

:::
the

::
χ2

::::::::
statistics

::::
and

:::
the

:::::
rank

::::::::::
histograms

::
if

:::
we

::::::::
consider

:::
the

:::::::::::
uncertainties

::::
and

:::
the

:::::::
internal

::::::::::
variability

::::
(not

:::::::
shown).

:::::::::
However,

:::
the

::::::::::::
bootstrapped

::::::::
quantiles

:::::
again

:::::::
prevent

::::::::::::
unambiguous

:::::::::::
conclusions

:::
on

:::
the

:::::::
relation

:::::::
between

:::::::::
ensemble

::::
and

:::::::::::
verification

::::
data.

::::::::::::::::
Climatologically

:::::
most

:::::::::::::
reconstruction

:::::::::
ensemble

:::::::::
members495

:::
are

:::::::::
consistent

:::::
with

:::
the

:::::
weak

::::
and

:::
the

:::::::
strong

::::
solar

:::::::::::
full-forcing

:::::::::
ensemble

::::::
means

::
if
::::::::::::
uncertainties

::::
and

:::::::
internal

:::::::::
variability

:::
are

::::::::::
considered

:
(not shown).

The climatological assessment puts the probabilistic evaluation into perspective as it points to

very strong deviations for the Northern Hemisphere mean temperatures. Bootstrapped residuals

generally enclose the zero line for flatness, if the error in the truth is not considered
:::
The

:::::::
results

:::
for500

:::
the

:::::::::::::
reconstruction

:::
by Jones et al. (1998)

:::
are

:::::
again

:::::::
distinct

:::::
from

:::::
those

:::
for

:::
the

:::::
other

:::::::::::::::
reconstructions.

::::
That

:::
is,

:::
the

:::::::::::::
climatological

::::::::::
deviations

:::::::
relative

::
to

:::
the

::::::::::
simulation

:::::::::::::
sub-ensembles

:::::::::
generally

:::::
agree

:::::
with

:::::
those

:::
for

:::
the

:::
full

:::::::::
ensemble

:::::::::
displayed

::
in

::::
Fig.

::
7c, but deviations are outside the 99range for the positive

tails otherwise.
:::::
larger

:::::::
relative

::
to

:::
the

::::
full

:::::::::
ensemble

:::::
mean

::::::
target.

:

:::::
Next,

:::
we

:::::::
shortly

::::
give

::::::
results

:::
on

:::
the

::::::::::
assessment

::
of

:::::
pairs

::
of

::::::::::
simulation

:::::::::
ensembles

::::
(all,

::::::
weak,

::::::
strong505

::::
solar

::::::::::::
full-forcing)

::::
and

::::::
single

::::::::::::::
reconstructions

:
(Frank et al., 2010, recalibrated to the 1920–1960

period)
:
.
::::

We
:::::::
include

:::::::::::
uncertainty

::::::::::
estimates.

::::::::::::
Furthermore,

::::
we

:::::::
choose

:::
an

::::::::
arbitrary

::::::::
member

::
of
::::

the

::::::::
ensemble

:::
of

:::::::
internal

:::::::::
variability

:::::::::
estimates

::
to

::::
add

::
to

:::
the

:::::
three

::::::::::::::
reconstructions

:::
by Hegerl et al. (2007)

:
,

Mann and Jones (2003)
:::
and

:
Mann et al. (2008)

:
.
::::::
Figure

::
8

:::::::
presents

::::
the

:::::::::
χ2-values

:::
for

:::
the

:::::
tests.

:

::::::::::
Obviously,

:::
the

::::
full

:::::::::
ensemble

:::::
lacks

::::::::::::
probabilistic

:::::::::::
consistency

:::::
with

:::
all

::::::::::::::
reconstructions

::::::
under

:::
the510

:::::
made

:::::::::::
assumptions

:::
on

:::::::
internal

:::::::::
variability

::::
and

:::::::::::
uncertainty,

:::::::::
according

::
to

:::
the

:::
χ2

::::
test.

::::
The

::::::::::::
bootstrapped

:::::::
intervals

::::::::
confirm

:::
this

::::
(not

::::::::
shown).

::::::::::
Deviations

:::
are

:::::
least

:::::::
obvious

:::
for

:::
the

::::
data

:::
by

:
Moberg et al. (2005)

:
.

:::::::::::::
Climatological

::::::::
quantiles

::::::::
confirm

:::::
these

:::::::::::
probabilistic

::::::::
findings

::::
(not

:::::::
shown).

:

::::
The

:::::
weak

:::::
solar

::::::::::
full-forcing

:::::::::
ensemble

::::::::
appears

::
to

:::
be

::::::::::::::
probabilistically

::::::::::
consistent

::::
with

:::
the

:
Moberg

et al. (2005)
:::::::::::::
reconstruction.

::::
The

::::::::::::
bootstrapped

:::::::
intervals

:::::::
suggest

::::
that

:::
the

:::::::::
ensemble

::
is

:::
not

::::::::::::::
probabilistically515

::::::::::
inconsistent

:::::
with

:::
the

::::
data

:::
by

:
Mann et al. (2008)

:::::
under

::::
the

:::::
made

:::::::::::
assumptions

::::
(not

::::::::
shown).

::::::::
Residual

::::::::
quantiles

:::
are

:::::::::
generally

:::::
large (except for Moberg et al., 2005)

:
.

The reconstruction quantile residuals relative to the full simulation ensemble mean quantiles

(Fig. 7e, f)present an amplified picture of the deviations relative to the two sub-ensembles
::::::::::::
three-member

:::::
strong

:::::
solar

:::::::::::
full-forcing

:::::::::
ensemble

::
is
::
a
:::::::
special

:::::
case.

::::::::::::
Bootstrapped

::::::::
intervals

:::
do

::::
not

::::::
permit

::
to
::::::

reject520

:::::::::::
probabilistic

:::::::::::
consistency

:::
for

::::
any

::
of

::::
the

::::
nine

::::::::::::::
reconstructions

::::::
under

:::
the

::::::::::::
assumptions

:::::
made.

::::::::
Results

:::::::::::
summarized

::
in

::::::
Figure

:::
8c

:::::::
indicate

:::::::::::
consistency

:::
of

:::
the

:::::::::
ensemble

::::
with

:::
the

:::::
data

::
by

:
Frank et al. (2007)

:
,

Moberg et al. (2005)
:::
and

:
Mann et al. (2008).

::::::::
Again,

:::::::
residual

:::::::::
quantiles

::::
are

:::::
large

::::::
except

:::
for

::::
the

::::::::::::
reconstruction

:::
by

:
Moberg et al. (2005)

:
.
::::
We

::::
note

::::
that

:::
the

:::::::
results

:::::
differ

:::
for

:::
all

:::::
three

::::::::::
ensembles

::::
(all,

:::::
weak,

::::::
strong

:::::
solar

:::::::::::
full-forcing)

::
if
:::
we

:::
do

:::
not

:::::::
include

:::::::::::
uncertainty

:::::::::
estimates.

:
525

::
If

:::
the

:::::::::
surrogate

:::::::::
ensemble

:::::::::
generated

:::::
from

::::::::::
control-run

::::
data

:::::
(see

:::::
Sect.

::::
3.1)

::
is

::::::::
assessed

:::::::
against

:::
the
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:::
521

:::::::::
members

::
of

:::
the

:
Frank et al. (2010, uncertainty estimate included)

:::::::::::
recalibration

::::::::::
ensemble,

:::::
about

::
14 %

::
of

:::
the

:::::
pairs

:::::
arise

::
as

:::::::::
consistent

:::::
with

:::::::
respect

::
to

:::
the

::::
full

:::
test

:::::::::
although

::::
they

:::
are

:::::::::
unrelated

:::::::
(Figure

:::
1b).

::::::::
Single

::::::
spread

::::
test

:::::::::
statistics

:::
are

::::
not

::::::::::
significant

::
in

::::::
about

:::
35

::::::
cases

:::::::
(Figure

::::
1b).

:::::
We

:::::::
include

::
an

::::::::
estimate

:::
of

:::::::
internal

::::::::::
variability

:::
for

:::
the

::::::::::::::
reconstructions

:::
by

:
Hegerl et al. (2007)

:
, Mann and Jones530

(2003)
:::
and Mann et al. (2008)

:
.
::::::::::

Similarly,
:::
the

:::::::::::::
climatological

::::::::
analyses

::::::::
displays

::::::
larger

:::::::::::
consistency

:::
for

:::
the

:::::::::
surrogate

:::::::::
ensemble

::::
than

::::
for

:::
the

::::
real

::::::::::
ensemble,

:::::
with

:::::
some

:::::::::
members

::
of

::::
the

:::::::::::::
reconstruction

::::::::
ensemble

:::::
(not

:::::::
shown)

:::::::::
indicating

:::::::
strong

::::::::::
deviations

::::::::
between

::::::::::::
reconstructed

::::
and

::::::::::
simulated

:::::::
climate

::::::::::
evolutions.

:::::
Thus,

::::
the

:::::::::::
unperturbed

:::::::
internal

:::::::
climate

:::::::::
variability

:::::
may

::
be

::::::::::::::::
indistinguishable

:::::
from

::::::
forced

::::::::
simulated

:::
or

::::::::::::
reconstructed

::::::::::
variability.535

Thus
:
In

:::::::::
summary, verification of the simulation ensemble suggests that it is generally too wide

compared to the employed area-average-reconstruction time series. Similarly, the reconstruction

ensemble describes an over-dispersive distribution compared to the simulation ensemble mean
:::::
likely

:::
too

:::::
wide

:::::::
relative

::
to

:::
the

::::::::
northern

::::::::::::
hemispheric

:::::
mean

:::::::::::
temperature

::::::::::::::
reconstructions. Strong discrepan-

cies arise not only with respect to the probabilistic analysis but also in the climatological assess-540

ment. These, however, do not challenge the consistency of
::::::
There,

:
the Central European temperature

estimates. On the other hand
:::::
results

:::
are

:::::
very

::::::
diverse

:::::::
relative

::
to

:::
the

::::::::
possible

::::::::::::::
representations

::
of

:::::::
internal

:::::::::
variability

:::
for

::::
the

:::::::::::::
reconstruction

:::::::::
ensemble

::::::
mean

::::::
target.

:::::::
When

:::
we

::::::::
account

:::
for

::::::::::::
uncertainties

::::
and

:::::::
internal

:::::::::
variability, the reconstruction ensemble displays strong deviations relative to the full and

the single simulation ensemble means whereas the probabilistic assessment indicates consistency of545

the reconstruction ensemble relative to the strong solar forcing simulation ensemble mean. If 50 yr

moving average series are considered for the hemispheric data, the general result remains that strong

differences are seen probabilistically and/or climatologically between pairs of simulation ensemble

and reconstruction
::::::
appears

:::
to

:::
be

::::::::::
consistent

::::
with

::::
the

::::::::::
simulation

:::::::::
ensemble

::::::
mean

::::::
target

::::
but

:::::
most

::::::::::::
reconstruction

:::::::::
ensemble

:::::::::
members

:::::::
deviate

::::::::::::::
climatologically

:::
in

:::
the

:::::
tails.

:::::
Thus,

:::
the

:::::
large

::::::::::::
uncertainties550

::
in

:::
the

::::::::::
ensembles

::::
and

::::
also

::
in

:::
the

:::::::::::
verification

::::::
targets

::::::::
prohibit

::
to
:::::::::
generally

::::::
reject

::::::::::
consistency

::::
for

:::
the

:::::::
northern

::::::::::::
hemispheric

:::::
data.

:::
On

::::
the

:::::
other

:::::
hand,

::::
the

:::::::
Central

:::::::::
European

:::::::::::
temperature

::::::::
estimates

:::::::
appear

::
to

::
be

::::::::::::::
unambiguously

::::::::::
consistent.

3.2.2 Addressing origins of the lack of consistency

Figure 3 displays (i) that
:::
As

:::::::::
described

::::::
above, the European data for the simulations and the reconstruction555

cover a similar range and show similar variability , (ii) that the hemispheric reconstructionensemble

mean varies less than the simulation ensemble and displays different temporal evolution, as does (iii)

the hemispheric simulation ensemble mean (
::
for

::::
the

::::::::::
simulations

::::
and

::::
the

:::::::::::::
reconstruction.

:::::::
Figure

:::
3b

::::::
further

::::::::
displays

::::
that

:::
the

:::::::::::::
low-frequency

::::::::::
variability

::::::
differs

::::::::
notably

::::::::
between

:::
the

:::::::::::
simulations

::::
and

:::
the

:::::::::::::
reconstruction.

:
560

::::::
Figure

::
5
::::
and

::
5
::::
also

:::::::::
highlight

::::::::::
prominent

::::::::::
differences

:::::::::
between

:::
the

::::::::::::
hemispheric

::::::
targets

::::
and

::::
the

:::::::::::
hemispheric

::::::::
ensemble

:::::
data.

::::::
When

:::
we

:::::::
account

:::
for

:::
the

::::::::
reduced

:::::::
internal

:::::::::
variability

:::
in

:::
the

:::::::::::
hemispheric
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::::::::
ensemble

::::::
mean

::::::
targets

:::
we

::::
find

::::
that

:::
the

:::::
range

:::
of

::::::::
possible

::::::::::::
reconstructed

:::::::::
evolutions

::
is
:::::::::
relatively

:::::
wide

compared to the reconstruction ensemble), which on
:::::::::
simulation

::::::::::
ensemble.

::::
The

::::::::
moving

::::::::
standard

:::::::::
deviations

::::::::::
emphasise

:::
the

:::::::::::::
disagreement

::
in
:::::::::::

variability.
::::

On
:
the other handis in the range of ,

::::
the565

::::::::
inclusion

:::
of

::
an

:::::::::
estimate

::
of

::::::::
internal

:::::::::
variability

:::::
does

::::
not

::::::::
unduely

::::::
change

::::
the

::::::::::
simulation

:::::::::
ensemble

:::::
mean

:::::::
climate

:::::::::
trajectory,

::::
but

::
it
::::::::
provides

::
a
:::::::
distinct

::::::::
increase

:::
in

:::
the

:
variability of the reconstruction

ensemble . However,
:::::::::
simulation

:::::::::
ensemble

:::::
mean

::::::
target

::::
(Fig.

::::
5b).

:

:::
We

::::
note

::::
that

:
under the uncertainties associated with climate reconstructions, climate simulations

and the forcing reconstructions, even such strongly differing estimates may be probabilistically and570

climatologically compatible with one another.

The scientific interest is to reconcile the simulated and reconstructed estimates of a climate close

to the current, whose variations are only due to internal variability and natural, external forcings .

The above analyses add estimates of the consistency of reconstructions and simulations, which can

be viewed as measures of their comparability.575

Thus, although the inset in Fig. 3c
:

shows that European temperature evolves notably different

before 1800 in the ensemble simulations and in the reconstruction, both datasets are in the above

sense comparable. That is, the strong differences in the 18th century (or similarly the late 1500s)

are likely compatible with our knowledge about internal and externally forced climate variability

:::::::::::::::
externally-forced

:::::::
climate

:::::::::
variability

::::
for

:::
the

::::::::
continent.580

On the other hand, the distributions differ between the northern hemispheric
:::::::::::
probabilistic

::::
and

::::::::::::
climatological

:::::::::::
evaluations

::::::::::
emphasise

:::
the

::::::::::::
disagreement

::::::::
between

:::
the

:::::::::
Northern

:::::::::::
Hemisphere tempera-

ture reconstruction ensemble mean and the full simulation ensemble, if we consider the uncertainty

in the verification ensemble mean reconstruction. The time series
::
in

:::::::
Figures

::
5
:::
and

::
5
:
clarify that part

of the over-dispersive character of the ensemble may relate (i) to biases in the periods 1000 to 1300585

and 1500 to 1650, where reconstructions and simulations evolve to some extent oppositely
:
, and to

(ii) less warming in the reconstruction verification in the 18th century. The same biases act oppo-

sitely in the mutually reverse assessment and also influence the assessment of low frequent smoothed

versions of the data. This is mostly, but not only, due to the evolution of the strong solar full-forcing

simulation ensemble.
::
but

::::
are

:::
not

:::::
large

:::::::
enough

:::
to

:::::
reject

:::::::::::
consistency.

::::::
They

::::::
rather

:::::::::::
compensate

::::
over590

:::
the

:::
full

:::::::
period.

:

Figure 3 further shows that the considered ensembles of estimated temperature anomaly series

generally enclose the verification data (Fig. 3a–c), but they often over-estimate inter-annual variability

(Fig. 3d–f). Verification data and the respective ensembles differ in the warming intensities in the

19th and 20th century for Europe and also in the last 100 yr for the Northern Hemisphere (Fig. 3595

a, b
:::
and

::
5). For Europe, especially the strong solar forcing simulations differ in recent temper-

ature evolutions. An over-estimation of variability is expected relative to the hemispheric mean

reconstruction (Fig. 3e, see note in Sect. 2.3) but it also occurs with respect to an inter-annually

representative South American temperature reconstruction (not shown). Nominally inter-annual
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standard deviations can be of comparable size in the reconstruction sub-ensemble and600

:::::::::::
Appropriate

:::::::::::::
representation

::
of

:::::::
internal

::::::::::
variability

::
is

:::::::::::
fundamental

::::
for

:::
our

:::::::::::
assessment,

::::
and

:::::::
internal

::::::
climate

::::::::::
variability

::::
can

:::
be

:::
as

:::::
large

:::
as

::::::
forced

:::::::
signals.

::::
In

:::::::
Figures

::
6
::::
and

:::
7,

:::
we

:::::::::
followed

::::::::
different

::::::::::
approaches.

:::
As

::::::::::
mentioned

:::::::
before,

::::::
panels

:::
b–c

:::
of

::::
both

::::::
figures

:::::::
display

:::
the

::::::::::
assessment

:::
of

:::
the

:::::::::
respective

::::::::
ensemble

:::::::
relative

:::
to

::
an

:::::::::::::::
ensemble-mean

::::::::
estimate

::::::
which

:::::::
presents

:::::
only

:
a
::::::::

reduced
:::::::
amount

:::
of

:::::::
internal

:::::::::
variability.

::::::
Even

:::::
after

:::::::::
including

::::
the

:::::::::
estimates

:::
of

:::
the

::::::::
internal

::::::::::
variability,

:::::::
results

:::
for

:::::::::::
simulations605

:::
and

::::::::::::::
reconstructions

::::::::
describe

:::
to

:::::
some

::::::
extent

::::::::
different

:::::::
aspects

:::
of

::::
our

:::::::::
uncertain

::::::::::
knowledge.

:::::::
While

:::
the

::::::
spread

:::
of the target simulation ensemble mean (Fig. 3f). One reconstruction generally varies

about twice as much as the simulated truth, while the true variability exceeds the variability of the

reconstructions in periods of large volcanic eruptions (compare Fig. 3e, f, e.g. 13th, 15th and early

19th centuries, compare also , and
:::::::::::::
reconstruction

:::::::::
ensemble

::::::
relates

::
to
:::::::::

different
:::::::::::::
methodologies

::::
and610

:::::::
different

:::::::
climate

::::::::
proxies,

:::
the

:::::::::::::
intra-ensemble

::::::::::
variability

:::
for

:::
the

::::::::::
simulations

::::::::::
represents

:::
the

::::::::::
differences

::
in

:::
the

:::::::::::
considered

:::::::
forcing

:::::::::
estimates

::::
and

:::
the

:::::::::
different

::::::
initial

::::::::::
conditions

::
of

::::
the

:::::::::
ensemble

::::
but

::::
also

:::::::
depends

:::
on

:::
the

:::::::::::
formulation

::
of

::::
the

:::::::::
numerical

:::::
code.

::::
The

::::::
added

:::::::
internal

::::::::::
variability

:::
for

:::
the

::::::::::
simulation

:::::
target

:::::::::
describes

:::
one

:::::::::::
unperturbed

:::::::
climate

:::::::::
trajectory

:::::
under

:::::::
similar

::::::::::
constraints.

::::
The

::::::::
internal

:::::::::
variability

::::::::::
adjustments

::::
for

:::
the

:::::::::::::::
reconstructions

::::
may

::::
still

:::::::::
represent

::::
the

::::::::
different

::::::::::::::
methodologies

::::
and

:::::
types

:::
of615

:::::
proxy

::::
data

::::::::
although

:::::
they

:::
are

:::::::::
generated

::
as

::::::::::
stochastic

:::::::::
processes.

:

::
In

::::
our

:::::::::
analyses,

:::
we

::::::::::
accounted

:::
for

::::
the

::::::::
reduced

:::::::
internal

::::::::::
variability

:::
in

:::::::::
ensemble

::::::
mean

:::::::
targets.

::::::::
However,

:::
we

::::
note

::::
that

::::::
strong

::::::::::::
discrepancies

::
in

::::::::::
variability

::::
may

::::
also

:::::
occur

::::
with

:::::::
respect

::
to

:::::::::::::
inter-annually

::::::::::::
representative

:::::::::::
temperature

::::::::::::::
reconstructions

::::
(not

::::::
shown).

3.3 Spatial fields620

3.3.1 Ensemble consistency of field estimates

In the following,
:::
we

::::::
extend

:
the analyses of consistency are extended to the decadally smoothed

global temperature field reconstruction by . We
:::::
fields.

:::::
We

::::
thus

:
note again that deviations from

uniformity of the histograms may be due to deviations in one particular period, while other periods

may display consistency between reconstructions and simulations. These discrepancies can easily be625

identified in the analysis of time series data. For the assessment of the spatial field data we consider

the question of consistency at the grid-point level and do so for different time periods to highlight

the possible deviations.

The reconstructed climatology for one part of the Little Ice Age period (1390s to 1690s)is displayed

in Fig. 9 a, and
:::::::::::
Sub-periods

::
of

:::::::::::::::
non-overlapping

::::
250

::::::
records

::::
are

::::::::::
considered

::
in

:::
the

:::::
range

:::::
from

::::
805

::
to630

::::
1845

:::
CE.

::::
The

::::
first

:::::
three

:::::::
periods

:::::
cover

:::
the

::::
first

::::
750

:::::::
records

::
of

::::
the

:::
full

::::
data

:::::::
(about

:::
800

:::
to

:::::
1050,

:::::
1050

::
to

:::::
1300,

:::::
1300

::
to

::::::
1550),

::::
but

:::
the

:::
last

:::::::
period

::::::
covers

:::
the

:::
last

::::
250

:::::::
records

:::
of

:::
the

::::
data

::::
sets

::::::
(about

:::::
1595

::
to

::::::
1845).

:::::
Thus,

:::::
there

::
is
::
a
:::
gap

::::::::
between

:::
the

:::::::
earlier

::::
three

:::::::
periods

::::
and

:::
the

::::
late

:::::::
period.
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::::::
Figure

::
9
::::::::
provides

::
a
::::
first

:::::::::::
impression

::
of

::::
the

:::::::
relation

:::::::::
between

:::::::::
simulated

::::
and

::::::::::::
reconstructed

:::::
data

:::
for

:::
the

::::::
global

::::::::::::
temperatures.

:
Fig. 9c shows the rank of the reconstruction data in the COSMOS-Mill635

ensemble of surface temperature data for this climatology. From
:
a

:::::::
displays

:::
the

::::::::::::
reconstructed

:::::::::::
climatology

::::
map

:::
for

:::
an

::::::::::
arbitrarily

:::::::
chosen

::::::::::
sub-period

:::::::
(1390s

::
to
:::::::

1690s)
:::::

from
::::

the
:::::::::
decadally

::::::::::
smoothed

::::::
global

::::::::::
temperature

:::::
field

::::
data

:
(reconstruction by Mann et al., 2009).

:::::
The

:::::
ranks

:::
in

::::
Fig.

:::
9c

:::::::
suggest

::::::
strong

:::::::::
deviations

::::::::
between

::::
the

:::::::::
ensemble

::::
and

:::
the

::::::::::::::
reconstruction

::::
over

:::::
wide

::::::::
regions

::
of

::::
the

::::::
globe

:::
for

::::
this

:::::::::
sub-period

:::::
with

:::
the

:::::::::
ensemble

::::::
being

::::::
biased

::::
low

::::
over

::::
the

:::::::
tropical

::::::
Pacific

::::::
ocean

::::
and

:::::
high

::::
over

:::::
most640

::::
other

::::::::
oceanic

:::::::
regions,

:::::
North

::::::::
America

::::
and

:::::::
eastern

:::
and

:::::::
western

::::::::
Eurasia.

::::::
These

:::::
biases

::::
are

:::
not

::::::::::::
representative

::
as

:::
we

:::::::
discuss

:::::
below

:::::::::
(compare

::::
Fig.

::::
12).

:::::::
Rather

:::
the

:::::
ranks

::
in

::::
Fig.

:::
9c

::::::::
highlight

::::
how

::::::::
strongly

:::::::::
simulated

:::::
mean

:::::::::
anomalies

:::::
may

::::::::
disagree

:::::
with

:::
the

:::::::::::::
reconstructed

:::::::
patterns

::::
for

:::::::
specific

::::::::
periods.

:::::::::::
Variability

::
is

::
as

:::::
often

:::::::::::
comparable

::
as

::::
not

:::
for

:::
the

:::::
data

:::
set

:::
not

:::::
only

::
in

::::
the

::::::::::
sub-period

:::
but

::::
also

:::::
over

:::
the

::::
full

::::::
period

:
(Fig. 9bit can be seen that the simulations frequently vary more than the field reconstruction at645

individual grid points.
:
).
::::::::::::
Sub-periods

::::::::
generally

::::
give

:::::::
similar

::::::::
patterns

::
of

:::::::
relative

::::::::
standard

::::::::::
deviations.

::::::::
However,

::::::
slight

:::::::
changes

:::::
may

::
of

::::::
course

:::
be

::::::
found

::
in

:::
the

:::::::
specific

::::
size

:::
of

:::::
over-

::
or

::::::::::::::::
under-estimation

::
of

:::::::::
variations

::
in

:::
the

:::::::::::
sub-periods.

:

3.3.1
:::::::::
Ensemble

:::::::::::
consistency

::
of

:::::
field

:::::::::
estimates

Figures 10 to 12 display a selection of results for the evaluation of consistency . Although no
::
at650

:::::::::
individual

::::::::::
grid-points.

::::
No uncertainty estimate is given for the global field data, we

::
so

:::
we

:::::::
choose

::
to

inflate the ensemble by a random error
::::::::
estimate drawn from a distribution with a standard deviation

equaling
::::::::
standard

::::::::
deviation

::::::
equal

::
to
:

the largest standard error of the unscreened Northern Hemi-

sphere mean temperature series provided by Mann et al. (2009). Without error
::::::::::
uncertainty infla-

tion, expected effective rank frequencies can be very small considering
:::
due

:::
to

:
the temporal auto-655

correlations in the data. The number of independent samples is always largest over the Tropical

Pacific (not shown) probably due to the too strong and too regular ENSO in MPI-ESM (Jungclaus

et al., 2006).

As for the time series data, the most common deviation is a too wide simulation ensemble for rank

counts (Fig. 10 for a random selection of grid points) and residual quantiles (Fig. 11 for a random660

selection of grid points). However, the ensemble may arise as too narrow at individual grid points

over the full period due to opposite probabilistic biases. Objectively flat rank counts are found as

well for sub-periods and the full period, although again opposite biases may lead to this result. The

notable shifts in probabilistic consistency are highlighted by considering different periods of 250

records in the range from 805 to 1845CE
::::::::::
sub-periods

:
(Fig. 10). Outstanding changes occur between665

opposing biases, as the ensemble is found to be moderately (or even extremely) biased in at least one

sub-period.

The prominent lack of consistency between simulations and the field reconstruction becomes even

more obvious in the climatological residuals (Fig. 11). Among the individual ensemble members,
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the climatological behavior
:::
The

:::::::::::::
climatological

:::::::::
behaviour

:
is mostly comparable

::::::
among

:::
the

:::::::::
individual670

::::::::
ensemble

:::::::::
members

:
relative to the reconstruction. The prominently sloped residual quantiles high-

light the stronger variability in the ensemble even for decadal moving averages. However, at certain

grid points under-dispersive or consistent climatologies can be seen. Changes in the r-q-q plots are

diverse between periods
:::::::
between

::::
the

:::::::::::
sub-periods

:::
are

:::::::
diverse

:
but can be rather small between the

first and the last 250 records (compare Fig. 11). Some improvement is seen towards more lim-675

ited deviations or nearly vanishing residuals in the late period
::::
last

::::::::::
sub-period. At other grid points,

biases increase, change sign or deviating spread characteristics become more pronounced. In com-

pliance with the shifts in the probabilistic deviations, there are grid points where either the recon-

structed quantile distributions or the anomaly quantile deviations or both are completely different

between early and late records for the decadally smoothed global temperature data
:::
the

::::
first

::::
and

:::
the680

:::
last

::::::::::
sub-period. Thus, results for sub-periods are often not comparable with each other in neither the

probabilistic nor the climatogic
:::::
either

::::
the

:::::::::::
probabilistic

:::
or

:::
the

:::::::::::::
climatological

:
evaluation. Occurring

shifts emphasize
::::::::::
subsequent

:::::
shifts

::::::::::
emphasise

:
the general lack of a common signal,

:::
i.e.

:::::::::::
differences

::
in

:::
the

:::::::::
long-term

:::::
trend

::::::::::
component.

Decadal smoothing reduces the width of the climatological quantile distributions, and a number685

of grid points display only very small
:
a
::::
very

::::::
small

:::::
range

:::
of quantiles as a sign of very weak inter-

decadal variability (not shown). At certain grid points, the
::::
The extremely narrow reconstructed quan-

tile distributions result in particularly strong climatological over-dispersion
:
at
:::::::

certain
::::
grid

::::::
points.

Quantile distributions are in parts broader in higher Northern Hemisphere latitudes for
::::
both recon-

structions and simulations.690

The probabilistic consistency at each grid point of the global data is best visualized by displaying

the results from the goodness-of-fit tests for the rank histograms. In
::::::::
selection

::
of

::::::::::
grid-points

::::::::
provides

::::
only

:
a
:::::::::
snapshot

::
of

:::
the

:::::::
results

:::
for

:::
the

::::::
global

:::::
field

::::
data.

:
Fig. 12 grid cells are colored with respect to

the p-values of the goodness-of-fit test. Rejections of the uniform null hypothesis are displayed in

red and p-values smaller than 0.1 in blue. The left column gives results for the general χ2 test, the695

right displays the maximum of the p-values for single deviation tests for bias and spread. If no errors

in
::::::::
provides

:
a
:::::::::

summary
:::
of

:::
the

::::
full

::::
and

:::::
single

:::::::::
deviation

::::::::::::::
goodness-of-fit

:::::
tests

:::
for

:::
the

::::
full

::::::
period

::::
and

the truth are considered (not shown)
::::::::::
sub-periods

:::::::
defined

:::::::
above.

:::
We

:::::::
include

::::
the

:::::
target

::::::::::::
uncertainties

::
in

::
all

:::::::
results

:::::::::
displayed,

::::
but

::::
first

:::::::
discuss

:::
the

::::::
results

::::::::
without

:::::
them.

:::::
Then, the full test generally does

not reject uniformity for the full period. However, the single deviations are frequently significant700

especially over the oceans for the early and late periods of the data
::::::::::
sub-periods

::
as

::::::::
defined

:::::
above.

Thus, while centering
:::::::
centring

:
the data over the full period leads to consistent estimates from the

late 11th to the early 16th century
:
,
:
the long-term trends are notably different

:::::
differ

:::::::
notably

:
at the

beginning and at the end.

If a moderate random error
::::::::::
uncertainty

:
inflation is used

:::::::::::
(σ=0.1729,

::::
see

:::::
Sect.

::::
2.2), spatially705

extended consistency
:::::::::::
probabilistic

:::::::::::
consistency

:::
for

:::
the

::::
full

::::::
period

:
is mainly restricted, according to
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the full test, to Central Eurasia and the Tropical Pacific for the full period (Fig. 12a). For four

:::::::::
Diverging

::::::
results

:::::::
become

:::::::
visible

::
in

:::
the

:
sub-periods of 250 recordsdiverging results become visible.

For example, the pair of reconstruction and ensemble simulations is consistent in the North Atlantic

sub-polar gyre region for the early period (
:::::::::
sub-period

::::::
(about

::::
800

::
to

::::::
1050, Fig. 12b), but uniformity710

is rejected for the following 250 records
:::
one (Fig. 12c). Overall, prominently opposite results arise in

the full test for these early two periods, with wide regions of Eurasia and North America consistent

in the latter but not in the early one. During the period
::::::::::
sub-period from about 1300 to 1550 (the

early Little Ice Age, Fig. 12d), the ensemble appears to be consistent in Northern North America,

the Tropical Pacific and South of Greenland. In the last period (Fig. 12e, about 1595 to 1845),715

Eurasia and the North Atlantic again arise as the most consistent regions according to the full test

including the uncertainty of the truth
::::
target. On the other hand, single deviations are nearly always

and everywhere significant (Fig. 12f–j). Deviations are least prominent close to the regions where

the original proxy density was largest in the analysis of Mann et al. (2009).

If probabilistic and climatological consistency are assessed for all data points in space and time720

together, over-dispersion is again pronounced with respect to both aspects (
:::::
ranks

::::::
plotted

::
in
:::::
Fig.

:::
9d)

:
if
::::

we
::::::::
consider

:::
the

::::::::::::
uncertainties

:::
in

:::
the

::::::::::::::
reconstruction.

::::::::::
Otherwise

::::
the

:::::
rank

:::::::::
histogram

::::::::
displays

:::
an

:::::::::::::
overpopulation

:::
of

::::::
central

::::
and

:::::
outer

::::::
ranks,

::::::
which

::
is
:::
an

::::::
effect

::
of

:::
the

:::::::::::::
accumulation

::
of

::::
the

:::::::::
individual

::::
grid

:::::
point

::::::::::
deviations

:
(not shown). The cumulative spatial assessment suggests

:::::::
different

:::::::
biased,

::::::
under-

:::
and

::::::::::::::
over-dispersive

:::::::::
relations

:::::::
suggest strongly differing relations between reconstructed and725

simulated decadal temperatures on global scales (not shown)
::
in

::::::::
different

:::::::
regions.

In summary, as for the
::::
even

:::::
more

::::::::::
prominent

::::
than

:::
for

::::
the

:::::::::::::
area-averaged time series, the utilized

simulation ensemble displays a lack of consistency with the global reconstruction. However, uni-

formity cannot be rejected for some regions and certain periods based on the full test, which may

be to some extent due to a very small number of independent samples. The most prominent lack730

::::
Lack

:
of consistency is seen

::::
most

::::::::::
prominent over the southern oceans. Tests for the single deviations

of bias and spread are nearly everywhere significant after inclusion of an error estimate
::::::::::
uncertainty

:::::::
estimate

:::::::::
following

::::
our

::::::::::
description

::
in
:::::
Sect.

::::
2.2. Thus, general consistency between simulations and

reconstructions remains very weak. Note, (lack of) consistency is not homogeneous in time, but may

differ between selected periods. The simple assumption of increasing consistency with decreasing735

temporal distance to the present is not necessarily valid.

3.3.2 Comparison of patterns and grid point variability of the spatial field

reconstruction

Simulated mean anomalies seldom agree with reconstructed patterns for specific periods as can

be inferred from the mapped ranks in Fig. 9c which refer to a
:
a
::::::::
presents

:::
the

:::::::::::::
reconstructed

:::::
mean740

::::::::
anomaly

::::
map

:::
for

:::
an

::::::::
arbitrary sub-period of the Little Ice Age (1390s to 1690s) . The reconstructed

climatology map for this period is shown
:::::::::::::
encompassing

::::
part

::
of

:::
the

::::::
Little

:::
Ice

:::::
Age.

:::::::
Mapped

::::::
ranks in
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Fig. 9a. While the
:
c

:::::::::
exemplify

::::::::
possible

::::::::::
differences

::
in

:::::::::
simulated

::::
and

::::::::::::
reconstructed

::::::
mean

:::::::::
anomalies

:::::::
patterns.

:::::
The

:
amplitudes of mean anomalies are comparable between reconstructions and strong

solar full-forcing simulations except in the Tropical Pacific,
:::
but the weak solar full-forcing simula-745

tions display less cooling in the selected period (not shown, compare example map in Fig. 9a and

rank map in Fig. 9c). Variability is as often comparableas not (Fig. 9b). The simulations especially

vary more
:::::
While

::::::::::
variability

::
is

:::::
often

:::::::::::
comparable,

::::
the

::::::::::
simulations

:::::::
display

::::::
more

:::::::::
variability

:
than the

reconstruction over oceanic regions (middle blue in
:::
see

:
Fig. 9b). This relation is reverted over the

Southern Hemisphere ocean, particularly the South Atlantic and in the Southern Indian ocean as750

seen in the relative standard deviations for the full period in Fig. 9b.

The ranks in Fig. 9c indicate a particularly strong and spatially extended mismatch between sim-

ulations and reconstructions in the tropical Pacific during the Little Ice Age. This strong signal is

less due to the strong ENSO variability in MPI-ESM (compare Jungclaus et al., 2006), but more due

to the contrast between the reconstructed mean warm anomaly and the diverse but generally much755

weaker simulated mean anomalies. The strong solar single and full-forcing simulations even display

notable negative anomalies (not shown). We note that this La Niña-like response not only contrasts

the results by Mann et al. (2009) but that such a La Niña signature during periods of solar forcing

minima is further in contrast to the findings of Meehl et al. (2009) and Emile-Geay et al. (2007)

studying, respectively, the effect of peak solar activity in the observed 11 yr cycle on the climate in760

the Pacific sector and the role of ENSO in the climate impact of changes in the solar forcing; see also

the discussions by Misios and Schmidt (2012) on the relationship between solar insolation maxima

and Tropical Pacific sea surface temperatures.

Generally, the spatially-resolved temperature reconstruction represents the largest absolute mean

anomalies in the selected periods as seen in the
::::::::::
sub-periods

::
as

:::::::::::
exemplified

::
by

:::
the

:::::::::
decadally

:::::::::
smoothed765

:::::
global

:::::
data

::::
over

:::
the

::::::
ocean

:::::::
regions

::::
(see

:
mapped ranks in Fig. 9c

:
). This holds also for other field re-

constructions (not shown). It is most pronounced over the oceans for the decadally smoothed global

data (Fig. 9c). Thus, either (i) the considered ensemble of simulations generally underestimates

the size of the mean anomalies over the periods of interest with reconstructed warm anomalies be-

ing warmest and cold anomalies coldest, or (ii) the simulations vary notably more in the averaging770

periods, or (iii) the comparison between anomaly patterns are
:
is
:
of reduced value due to a gen-

eral dissimilarity between reconstructions and simulations. In the first two cases, the impression of

over-dispersion results from a general misrepresentation of the mean climate.

In summing up, the simple comparison indicates limitations in the correspondence between sim-

ulated and reconstructed climate states, limitations that also encompass their variability. The assess-775

ment of the consistency on the other hand objectifies the
:::::::
reduces

:::
the

:::::::::::
subjectivity

::
of

::
a
:
comparison

between simulations and reconstructions, and the goodness-of-fit test allows to summarise, in one

Figure,
::::::::::
summarize the (dis-)agreement in terms of ensemble consistency.

::::::::
ensemble

:::::::::::
consistency

::
in

:::
one

::::::
figure.

:
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4 Discussions of the results780

Jungclaus et al. (2010) show good agreement between the full-forcing simulations in the COSMOS-

Mill ensemble and the HadCRUT3v Northern Hemisphere temperature data for the 20th century, but

they
:
.
:::::
They also highlight periods in which the simulations are rather warm compared to temperature

reconstructions when anomalies
:::::::::::
temperature

:::::::::
deviations

:
are considered with respect to the period

1961–1990 (e.g. in the 12th and 13th centuries). Thus, the optimal case of comparable non-linear
:::
we785

::::::
realign

:::
the

:::::::::::
simulations

:::
and

:::
the

::::::::::::::
reconstructions

::
to
::::
the

:::::
mean

::
of

:
a
:::::::::
common

::::::
period

::
to

::::::
correct

::::::::::
systematic

::::::::::
differences

::
in long-term trends is not given for the simulation ensemble and common reconstructions

, and we have to account for differences in mean states by centering both estimates to a common

period for the test of consistency .
:::::
trends

::::::
before

::::::::
applying

:::::
tests

::
of

::::::::::
consistency

:
(similarly to traditional

simulation-reconstruction comparisons, e.g. Jansen et al., 2007; Brázdil et al., 2010; Luterbacher790

et al., 2010; Jungclaus et al., 2010; Zorita et al., 2010; Zanchettin et al., 2012)
:
.
::::
We

::::::
accept

::::
that

:::
the

::::::
choice

::
of

:::
the

:::::::::
reference

::::::
period

:::::::::
influences

::::
the

::::::
results.

:

Further data sets: strong
::::::
Strong

:
probabilistic and climatological deviations

:::
can

:
arise between

the data presented above
::::::::::
simulations

::::
and

::::
the

::::::::::::::
reconstructions for the utilized uncertainty estimates,

the reference periods and the non-smoothed hemispheric data. Results for the seasonal European795

temperature reconstructions by Luterbacher et al. (2002, 2004) and Xoplaki et al. (2005) and the

South American austral summer temperature reconstructions by Neukom et al. (2011) confirm this

::::
also

:::::::
indicate

::
a generally over-dispersive character of the ensemble (not shown). We can generally

::::
Even

::
if
:::
we

:::::::
cannot reject uniformity at the grid point level and for area average series

::
the

::::::::::
associated

:::::::::::
uncertainties

::::::
lessen

::::
the

:::::
value

::
of

:::::
such

:::::::::::
consistency. Only the annual Central European temperature800

time series data arises as possibly fully consistent .

Consistency relative to individual Northern Hemisphere reconstructions: Sect. 3 only considers

the ensemble mean of the Northern Hemisphere reconstruction ensemble , but even consistency of

the single reconstructions with one another may be questioned. The reconstruction sub-ensemble

recalibrated to 1920–1960 is consistent with respect to the recalibrated , and reconstructions (not805

shown, no uncertainty inflation), but otherwise various deviations occur (not shown).

Consistency of simulation ensembles and individual Northern Hemisphere reconstructions: assessing

pairs of simulation ensembles (all, weak, strong solar full-forcing) and single reconstructions , the

simulation ensembles display least deviations relative to the data by and . The three-member strong

solar full-forcing ensemble appears also to be consistent with the , ,
::::
fully

::::::::::
consistent

::::::::
between

:::
the810

:::::::::
simulation

:::::::::
ensemble

:
and reconstructions.

Test of consistency for surrogate ensembles: surrogate simulation ensembles constructed from a long

control-run are found to be consistent with an equivalent surrogate truth, one of the weak solar

full-forcing simulations and the weak solar-only forcing simulation . The full test rejects uniformity

in less than one percent of the 2201 surrogate ensembles. Spread and bias tests are significant815

for less than 50 tests. Thus, pairs of ensemble and truth appear to be generally consistent, if
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variability is restricted to the internal variability of the simulated system or variability that is only

marginally different from the internal variability . In line with similar considerations in seasonal and

medium-range weather forecasting , ensembles are consistent as long as the true variability and the

simulated variability are similar.820

If the surrogates are assessed against the 521 members of the recalibration ensemble, about 20of

the pairs arise as consistent with respect to the full test although they are objectively unrelated. Single

spread test statistics are not significant in about 50 cases. Climatologically, the surrogate ensemble

agrees better than the real ensemble with some members of the reconstructionsub-ensemble calibrated

to 1920–1960, indicating strong deviations between forced reconstructed and simulated climate825

evolutions
:::
the

:::::::::::::
reconstruction.

Further discussions:
:::::
Thus,

:
the only data that yields reasonable consistency with the simulation

ensemble (the Central European temperature reconstructions by Dobrovolný et al., 2010) is an esti-

mate for the last 500 yr and, therefore, may benefit from a more stable number of reliable available

proxy indicators than longer period reconstructions. The forcing data for this period
::::
used

::
to

:::::
drive

:::
the830

::::::::::
simulations

:
can also be assumed to be less uncertain

::
in

::::
this

::::::
period compared to the full millennium.

We remark that part of the large simulated climate variability is possibly due to the well known too

strong and too regular El Niño variability
:::
and

::::
the

::::::
related

::::::::::::::
teleconnections

:
in the considered climate

simulator (Jungclaus et al., 2006)and the related teleconnections.

As noted in Sect. 2.3, it is convenient, but not necessarily appropriate,
:
to employ the raw ensemble835

reconstructions (Frank et al., 2010) as annually resolved data
:::::::::::
representing

:::::::::::
inter-annual

:::::::::
variations.

Similarly, it is arguable whether an ensemble mean represents unfiltered annually resolved data.

A posteriori, our approach seems to be valid for the comparison of the
:::::
annual

::::::::::
variability.

::::::::
Results

::::::
change

:::::::
notably

::::::::
whether

:::::::::::
uncertainties

::::::
and/or

:::::::
internal

::::::::::
variability

::::::::
estimates

:::
are

::::::::
included

::
in

:::
the

::::::::::
assessment

::
of

:::
the

:::::::::::::
reconstruction

::::::::::::
sub-ensemble

:::::::
against

:::
the specific simulation ensemble meanwith this particular840

reconstruction ensemble , but the larger variability in the simulations compromises the inverse

consideration.
:::::::::
Although

:::
the

::::::::
temporal

::::::::::
evolutions

:::::::
notably

:::::::
deviate,

::
it

:::::::
appears

:::::
likely

::::
that

:::
the

:::::::::::::
reconstruction

::::::::
ensemble

::::
and

:::::
most

::
of

:::
its

::::::::
members

:::
are

:::::::
indeed

:::::::::
consistent,

::::
i.e.

:::::::::::
comparable,

::::
with

::::
the

::::::
chosen

:::::::::
ensemble

:::::::::
simulation

::::::
mean

:::::::::::
verification

::::::
target

::::::
under

:::
the

::::::::::::
assumptions

::::::
made

:::
on

:::::::
internal

::::::::::
variability

::::
and

::::
the

::::::::::::
uncertainties.

:::::::::
However,

:::
the

::::::::::
simulation

:::::::::
ensemble

::::::::
displays

:::::::::::
pronounced

:::::::::
deviations

:::::
from

:::::::::::
consistency845

::::::
relative

:::
to

:::
the

::::::::
ensemble

:::::
mean

:::::::::::::
reconstruction

::::::
target

::::::::
including

:::::::
various

:::::::::
estimates

::
of

:::::::
internal

:::::::::
variability.

Interestingly, the moving standard deviations of the ensemble means (simulations and reconstruc-

tions) evolve
::
to

:::::
some

::::::
extent

:
similarly in the period 1400 to 1900.

:::::
1900

::::::::
(compare

:::::
Figs.

::::::
3–5).

:
The

20th century disagreement is possibly due to the evolution of the simulations with strong solar forc-

ing.
::::::::
Including

:::::::::
estimates

:::
for

:::::::
internal

::::::::::
variability

:::::::::
introduces

:::
an

:::::::::
additional

::::::
source

::
of

:::::::::::
uncertainty.

::::::
While850

:
it
:::::::
reduces

::::
the

::::::::
problems

:::
in

:::::::::
employing

:::::::::
ensemble

::::::
mean

::::::
targets,

::
it
::::
also

::::::::::
highlights

:::
the

:::::::::
ambiguity

:::
of

:::
our

::::::::
estimates

::
of
:::::
past

:::::::
climate

::::::::::
trajectories.

:

With a focus similar to the approach utilized here, Sundberg et al. (2012)
::::
and Hind et al. (2012)
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provide a statistical framework for assessing climate simulations against paleoclimate proxy recon-

structions allowing for an irregular spatio-temporal distribution of proxy series. Their framework855

concentrates
::::
goal

::
is
:::::::
similar

::
to

:::
the

:::::::::
approach

:::::::
utilized

:::::
here.

::::::
Their

::::::::::
framework

::::::::
focusses on the similar-

ity between simulated and reconstructed series by analysing two newly developed correlation-based

and distance-based test statistics. Hind et al. apply their approach in a pseudo-proxy experiment

within the virtual reality of the COSMOS-Mill sub-ensembles to test for
::::::
assess the distinguishabil-

ity of the two sub-ensembles. They conclude that prior to drawing resilient conclusions from our860

model simulations we need more proxy series with high signal-to-noise ratios.
:::
We

:::::::
propose

:::::
that,

::
in

:::::::
parallel,

:::
we

:::::
need

::
to

:::::::
address

:::
the

:::::::::::::
compatibility

::
of

::::::::::::::
reconstructions

::::
and

::::::::::
simulations

:::
by

:::::::::
evaluating

:::::
their

:::::::::::
probabilistic

::::
and

:::::::::::::
climatological

:::::::::::
consistency.

Finally, with more and more simulations becoming available, the CMIP5/PMIP3 ensemble of

past1000-simulations (Taylor et al., 2012; Braconnot et al., 2012) offers the opportunity to evaluate865

our simulated and reconstructed knowledge in a multi-model context. Similarly, the PAGES 2K

Network (http://www.pages-igbp.org/) aims to provide new regional reconstructions for all conti-

nental areas and the global ocean allowing
:::
for

:
a detailed assessment of the consistency of our two

tools. Preliminary analyses for the available CMIP5/PMIP3-past1000-simulations indicate that the

multi-model-ensemble behaves similar to the COSMOS-Mill ensemble with respect to probabilis-870

tic and climatological consistency relative to the European and northern hemispheric temperature

reconstructions considered in the present manuscript
:::::
study.

5 Concluding remarks

Rank histograms, χ2 goodness-of-fit test decomposition and residual quantile-quantile plots help to

assess the probabilistic and climatological consistency of ensemble projections against an observed875

truth
:
a
::::::::::
verification

::::
data

::::
set (e.g. Annan and Hargreaves, 2010; Marzban et al., 2010). If no state of

truth
::::::
reliable

::::::::::
observable

::::::
target can be identified, as is the case in periods and regions without instru-

mental observations, such statistical analyses add an objective component to
::::::
reduce

:::
the

:::::::::::
subjectivity

::
of

:
the evaluation of simulation ensembles and statistical approximations from paleo-sensor data

(Braconnot et al., 2012) under uncertainty and
::
go beyond “wiggle matching”. The approach permits880

a succinct visualization of the consistency between an ensemble of estimates and an uncertain ver-

ification truth
:::::
target. Ideally, it also reduces the dependence on the reference climatology which is

present in many visual and mathematical methods that aim to qualify the correspondence between

simulations and (approximated) observations.

Considering
::
We

:::::::::
consider the COSMOS-Mill-ensemble (Jungclaus et al., 2010) and various re-885

constructions within the described approach, we .
::::
We find the simulation ensemble to be consistent,

within sampling variability, with the Central European temperature reconstruction by Dobrovolný

et al. (2010). However, the ensemble
:::
The

:::::::::
ensemble

::::::::
possibly

:
lacks consistency with respect to the
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mean of the ensemble of Northern Hemisphere mean temperature reconstructions by Frank et al.

(2010) due to probabilistic and climatological over-dispersion, as the ensemble
:::::::::::::
over-dispersion

::::
and890

::::::
various

::::::::::::::
climatological

::::::::::
deviations.

::::
The

:::::::::
ensemble

:::::::::
generally samples from a significantly wider dis-

tribution than the reconstruction ensemble mean. The distribution of the reconstruction ensemble in

turn is too wide
:::::::
possibly

::::::::::
consistent relative to the simulation ensemble mean.

Similarly
:::::::::::
Furthermore, the simulation ensemble is found to be statistically distinguishable from the

global field temperature reconstruction by Mann et al. (2009). Although probabilistic consistency895

is found
::
the

:::::
data

::
is

:::::::::::::::
probabilistically

:::::::::
consistent for multi-centennial sub-periods and certain regions

according to the applied full test, accounting for
:::::::
analyses

:::
of single probabilistic deviations and cli-

matological differences emphasizes
:::::::::
emphasise

:
a general lack of consistency. The

:::
We

::::
find

:::
the

:
largest,

but still limitedconsistency is seen ,
:::::::::::

consistency
:
over areas of Eurasia and North America for both

full and sub-periods. For some periods, we also cannot reject consistency for most tropical and900

northern hemispheric ocean regions. The profound lack of climatological and probabilistic consis-

tency between the simulation ensembles and reconstructions stresses the importance of improving

our two tools to investigate past climates in order to achieve a more resilient estimate of the truth
:::
true

::::
past

::::::
climate

:::::
state

::::
and

::::::::
evolution.

If our estimates are not consistent with each other for certain periods and areas, it is unclear how905

we should compare their accuracy. Thus, if these reconstructions and these simulation ensembles

are employed in dynamical comparisons and in studies on climate processes, we have to account

for the climatological and probabilistic discrepancies between both data sets, that
::::::
which have been

described in the present work.
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::
,I.:

::::
The

::::::::
Effective

:::::::
Number

::
of

::::::
Spatial

::::::
Degrees

:::
of

:::::::
Freedom

::
of

::
a

:::::::::::
Time-Varying

:::::
Field,

::
J.

:::::::
Climate,

:::
12,

::::::::::
1990–2009,

:::::
1999.

Briffa, K. R.: Annual climate variability in the holocene: interpreting the message of ancient trees, Quat. Sci.

Rev., 19, 87–105, http://dx.doi.org/10.1016/S0277-3791(99)00056-6doi:10.1016/S0277-3791(99)00056-6,

2000.955

Briffa, K. R., Jones, P. D., Schweingruber, F. H., and Osborn, T. J.: Influence of volcanic erup-

tions on Northern Hemisphere summer temperature over the past 600 years, Nature, 393, 450–455,

http://dx.doi.org/10.1038/30943doi:10.1038/30943, 1998.

Crowley, T. J. and Unterman, M. B.: Technical details concerning development of a 1200-yr proxy in-

dex for global volcanism, Earth Syst. Sci. Data Discuss., 5, 1–28, http://dx.doi.org/10.5194/essdd-5-1-960

2012doi:10.5194/essdd-5-1-2012, 2012.

D’Arrigo, R., Wilson, R., and Jacoby, G.: On the long-term context for late twentieth century warming, J.

Geophys. Res., 111, D03103, http://dx.doi.org/10.1029/2005JD006352doi:10.1029/2005JD006352, 2006.
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Fig. 2.
:::
The

:::::::
Northern

::::::::::
Hemisphere

::::::::::::
reconstruction

:::::::::::
sub-ensemble

::::::::::
re-calibrated

::
to

::::::::::
1920–1960:

::::
Test

::
for

::::::::::
consistency

::
of

:::
the

::::::::
remaining

::::::::
members

::
of
:::

the
:::::::::

ensemble
::::::
against

:
a
:::::
target

:::::::
defined

::
by

::::
one

::
of

:::
the

::::::::
members:

::::::::
p-values

:::
for

:::
the

:::
full

::::::::::::
goodness-of-fit

:::
χ2

:::
test

::::::
plotted

:::::::
against

:::
the

::::::::
maximum

:::
of

:::
the

:::::::
p-values

:::::::
obtained

:::::
from

:::
the

::::
tests

:::
for

::::
bias

:::
and

:::::
spread

:::::::::
deviations.

::::
Note

::::
that

:::
the

:::::
results

::::::
cluster

::
in

:::
the

:::::::
top-right

:::::
corner

:::
of

::
the

:::::
panel

:::
for

:::
five

::
of

:::
the

:::::::
possible

::::::
targets.

:::::::::
Uncertainty

:::::::
inflation

::::
was

::::::
chosen

::
to

::
be

::::::::::
proportional

:::
to

::
the

::::
full

::::::::
ensemble

::::::
spread.

::::::
Results

::::::
change

::
if
:::
we

:::::::
consider

:::
only

::::::::::::
sub-ensemble

:::::
spread

:::
but

::::::::::
conclusions

::::::
remain

:::::
valid.
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c) Reconstruction
Weak solar full forcing ensemble mean
Strong solar full forcing ensemble mean
Full simulation ensemble range

Fig. 3.
::
(a)

:::::
Time

:::::
series,

::::
(b)

::::::
moving

:::::
31-yr

::::::::
standard

::::::::
deviations

::::
and

:::
(c)

:::::::
moving

:::::
31-yr

:::::
means

:::
for

:::
the

:::::::
Central

::::::::
European

:::::
annual

::::::::::
temperature

::::
data.

::::::
Black

:
is
:::
the

::::::::::
verification

:::
data

::::
and

:::::::::
transparent

::::
light

::::
grey

::::::
shading

::
is
:::
the

:::::
range

::
of

:::
the

::::::::
ensemble.

::::
Red

:::::
(blue)

::::
lines

:::
are

:::
for

:::
the

::::
weak

:::::::
(strong)

::::
solar

::::::::::
full-forcing

:::::::::
simulation

::::::::
ensemble

::::::
means.
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c)
Reconstruction ensemble mean

Weak solar full forcing ensemble mean

Strong solar full forcing ensemble mean

Full simulation ensemble range
Full range reconstruction ensemble mean
plus estimates of internal variability

Rank histogram counts for temperature data including (a, b) Central European annual temperatures,

(c, d) Northern Hemisphere simulation ensemble temperature
::
5, (e, f) Northern Hemisphere reconstruction

sub-ensemble calibrated to the period 1920 to 1960. Top (bottom) row does (does not) neglect the errors

in
:::
data

::::::::
including

:
the truth. Numbers are χ2 statistics. χ2 statistics in brackets account

:::::::
estimate

:
for

auto-correlation in the data. Grey shading (line) are 0.5and 99.5(50) quantiles
::::::
internal

:::::::::
variability

:
is
::::

only
::::::
shown

for block-bootstrapped rank histograms (2000 replicates, block length
::
the

::::::
period

:
of 50 yr). Blue horizontal

lines give
::::::
analysis

:::::
from the expected average count for a perfectly uniform histogram

:::
start

:::
of

::
the

::::::::::
millennium

::
to

::
the

::::::::
mid-19th

::::::
century.

Fig. 4.
::
(a)

:
Time series. (d–f) Moving

:
,
:::
(b)

:::::::
moving

:
31-yr standard deviations . (a, d) European annual

temperature, (b, e)
:::
and

:::
(c)

:::::::
moving

:::::
31-yr

::::::
means

:::
for

:::
the

:
Northern Hemisphere

:::::::::
temperature

:
simulation en-

semble against
:::
the reconstructed truth, (c, f) Northern Hemisphere reconstruction ensemble versus simulated

truth
::::
target. In all panels, black

::::
Black

:
is the respective verification data and

:::::::::
transparent

::::
light

:
grey shading is

the range of the ensembles
::::::::
ensemble. In (a, b, d, e, f) red

:::
Red (blue) lines are

::
for

:
the weak (strong) solar full-

forcing simulation ensemble means. In (c, f)
::::
Dark

::::
grey

:::::::
shading

:
is
:
the range of the reconstruction sub-ensemble

recalibrated to the period 1920 to 1960 is displayed in grey lines. Inset in (a) presents the 31-yr moving averages

of the European
:::::::::::::
ensemble-mean

:::::
target

::::
with

:::::
added

::::::
internal

:::::::::
variability

:
estimates, and we choose to present the

truth
:
.
::::
Here

:
and the strong solar full-forcing simulation ensemble means in (a, b) by dashed lines to increase

the visibility of all time series
:::
Fig.

Rank histogram counts for temperature data including (a, b) Central European annual temperatures,

(c, d) Northern Hemisphere simulation ensemble temperature
::
5, (e, f) Northern Hemisphere reconstruction

sub-ensemble calibrated to the period 1920 to 1960. Top (bottom) row does (does not) neglect the errors

in
:::
data

::::::::
including

:
the truth. Numbers are χ2 statistics. χ2 statistics in brackets account

:::::::
estimate

:
for

auto-correlation in the data. Grey shading (line) are 0.5and 99.5(50) quantiles
::::::
internal

:::::::::
variability

:
is
::::

only
::::::
shown

for block-bootstrapped rank histograms (2000 replicates, block length
::
the

::::::
period

:
of 50 yr). Blue horizontal

lines give
::::::
analysis

:::::
from the expected average count for a perfectly uniform histogram

:::
start

:::
of

::
the

::::::::::
millennium

::
to

::
the

::::::::
mid-19th

::::::
century.

34



1000 1200 1400 1600 1800 2000

−
1.

5
−

0.
5

0.
5

1.
5

Year AD

dT
 w

.r.
t. 

10
00

−
18

49

a)

1000 1200 1400 1600 1800 2000

0.
0

0.
2

0.
4

0.
6

Year AD

S
ta

nd
ar

d 
D

ev
ia

tio
n

b)

1000 1200 1400 1600 1800 2000

−
1.

5
−

0.
5

0.
5

1.
5

Year AD

dT
 w

.r.
t. 

10
00

−
18

49

c) Simulation ensemble mean
Simulation ensemble mean
plus estimates of internal variability
Full ensemble reconstruction range

Reconstruction sub−ensemble range

Weak solar full forcing simulation mean

Strong solar full forcing simulation mean

Fig. 5.
:::
(a)

::::
Time

::::::
series,

:::
(b)

:::::::
moving

:::::
31-yr

:::::::
standard

:::::::::
deviations

:::
and

:::
(c)

:::::::
moving

:::::
31-yr

:::::
means

:::
for

:::
the

::::::::
Northern

:::::::::
Hemisphere

::::::::::
temperature

::::::::::::
reconstruction

::::::::
ensemble

::::::
against

:::
the

::::::::
simulated

:::::
target.

:::::
Black

::
is

:::
the

:::::::::
verification

::::
data

:::
and

:::::::::
transparent

::::
light

::::
grey

::::::
shading

::
is

:::
the

:::::
range

::
of

::
the

:::::::::
ensemble.

::::
Dark

::::
grey

::::
lines

:::::
mark

:::
the

::::
range

::
of
:::
the

::::::::::::
reconstruction

:::::::::::
sub-ensemble

::::::::::
recalibrated

::
to

:::
the

::::::
period

::::::::::
1920–1960.

::::
The

::::::
orange

::::
line

::
is
:::
the

:::::::
estimate

:::
of

:::
the

:::::::::::::
ensemble-mean

::::
target

::::
with

::::::
added

::::::
internal

:::::::::
variability

:::::::
estimate.

::
In

:::
(b)

:::
red

:::::
(blue)

::::
lines

:::
are

:::
for

:::
the

::::
weak

:::::::
(strong)

::::
solar

::::::::::
full-forcing

::::::::
simulation

::::::::
ensemble

::::::
means.
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Fig. 6.
::::
Rank

:::::::::
histogram

::::::
counts

::::::
(black

:::::
line

::::
with

:::::::
points)

:::
for

::::::::::
temperature

:::::
data:

::::
(a)

:::::::
Central

:::::::::
European

:::::
annual

::::::::::::
temperatures,

:::
(b)

::::::::
Northern

::::::::::
Hemisphere

:::::::::
simulation

::::::::
ensemble

:::::::::::
temperature,

:::
(c)

::::::::
Northern

::::::::::
Hemisphere

:::::::::::
reconstruction

::::::::::::
sub-ensemble

::::::::
calibrated

::
to

:::
the

::::::
period

::::
1920

::
to

:::::
1960.

::::::::
Analysis

::::
does

::::::
include

:::
the

:::::::::::
uncertainties

::
in

::
the

::::::
target.

::::::::
Numbers

:::
are

:::
χ2

::::::::
statistics

:::::::::
accounting

:::
for

::::::::::::::
auto-correlation.

:::
In

:::
(b)

::::
they

:::
are

:::
the

::::::
median

:::::::
relative

::
to

::
all

::::::::::::
representations

:::
of

:::::::::::::
ensemble-mean

::::::::::::
reconstruction

:::
plus

:::::::
internal

:::::::::
variability

:::::::
estimate;

:::
in

:::
(c)

::::
they

:::
are

::::::
relative

::
to

:::
the

::::::::::::
ensemble-mean

:::::::::
simulation

::::
plus

:::::::
internal

::::::::
variability

::::::::
estimate.

::::
We

:::
use

:::
the

::::
same

::::::::::::
representation

:::
for

:::::
equal

:::::::::
approaches.

::::::::
Different

:::::::::::::
representations

:::
are

:::
for

:::::::
different

::::::::::
approaches.

:::::
Cyan

:::::::
shading

:::::
(grey

::::
lines

::::
with

::::::
points)

:::
are

::
0.5 %

:::
and

::::
99.5 %

::
(50 %

:
)
::::::::
quantiles

:::
for

::::::::::::::::
block-bootstrapped

::::
rank

:::::::::
histograms

:::::
(2000

:::::::::
replicates,

:::::
block

::::::
length

::
of

::
50

:::
yr).

:::::
Light

::::
grey

:::::::
shading

:::
and

::::::
dashed

::::
line

::
in

:::
(b)

:::
are

:::::::::
equivalent

:::::::
quantiles

:::
for

:::
the

::::::
various

::::::::
estimates

::
of
:::::::

internal

::::::::
variability,

:::::
dark

::::
grey

:::::::
shading

::::
adds

::
5 %

::
and

:::
95 %

:::::::
quantiles.

:::
In
:::

(c)
:::::

black
::::::::::

continuous
::::
line

::
is

::::
rank

:::::
count

:::
for

::
the

:::::::::::::
ensemble-mean

:::::::::
simulation

::::
with

:::::
added

:::::::
internal

:::::::::
variability

:::::::
estimate.

:::::
Grey

:::::::
shading

:::
and

:::::::::
continuous

::::
line

:::
add

::::::::::
bootstrapped

:::
0.5 %

:::
and

::::
99.5 %

:::
and

::
50 %

::::::::
quantiles.

:::::
Blue

:::::::::
horizontal

::::
lines

::::
give

:::
the

::::::::
expected

:::::::
average

:::::
count

::
for

::
a
:::::::
perfectly

:::::::
uniform

:::::::::
histogram.

::::::
Single

:::
test

::::::
critical

:::::
values

:::
are

:::::
2.706

:::
for

::
a
::
χ2

::::::::::
distribution

::::
with

:::
one

::::::
degree

::
of

:::::::
freedom (see Sect. 2.1 and Jolliffe and Primo, 2008; Annan and Hargreaves, 2010)

::
and

::
a
::::::::::
conservative

::::::::
one-sided

::::
90%

::::
level.
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Fig. 7. Residual quantile-quantile plots for temperature dataincluding (a, b)
:
:
:::

(a)
:

Central European annual

temperatures, (c, d)
::
(b)

:
Northern Hemisphere simulation ensemble temperature, (e, f)

::
(c)

:
Northern Hemisphere

reconstruction sub-ensemble calibrated to the period 1920 to 1960. Top (bottom) row does (does not) neglect

:::::::::
1920–1960.

::::::
Panels

:::::::
account

:::
for

:
the errors

::::::::::
uncertainties in the truth

:::::
target. See legend for individual ensemble

members. Grey shading
:
in

:::
(a)

:::
and

::::::::::
transparent

::::
grey

::::::
overlay

::
in

:::::
(b–c) are 0.5 % and 99.5 % quantiles for block-

bootstrapped residual quantiles (2000 replicates, block length of 50 yr).
:
In

:::
(b)

:::
we

::::
plot

:::
all

:::::
results

:::::::
relative

::
to

::
all

::::
used

::::::
targets

::::::::
including

::
an

:::::::
estimate

:::
of

::::::
internal

:::::::::
variability.

:::
In

:::
(c)

::
the

:::::
dark

::::
grey

::::::
shading

:::
are

:::
the

:::::::::::
bootstrapped

:::::::
quantiles

::::::
relative

::
to
:::

the
:::::

target
::::::::
including

:::
an

:::::::
estimate

::
of

::::::::
simulated

:::::::
internal

:::::::::
variability.

::::::
Middle

::::
grey

:::
(c)

::
is

:::
due

::
to

::
the

:::::::::::
transparency.

:
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Fig. 8. Global decadal smooth
::::::::
Assessing

::::
the

::::::::::
full-forcing

::::::::::
simulation

:::::::::
ensemble

:::::::
against

:::::::::
individual

::::::::::::
reconstructions

::
of

::::::::
Northern

::::::::::
Hemisphere

:
temperature: (a) reconstructed mean anomaly map for a cold period

(for .
:::::::::::

Uncertainties
:::

are
::::::::::

considered,
::::
and

::::::
internal

:::::::::
variability

::::::::
estimates

:::
are

:::::::
included

::
in
:
the 1390s to 1690s)

:::
data

::
by Hegerl et al. (2007), (b) Mann and Jones (2003)

::
and

:
Mann et al. (2008)

::
to

::::::
account

:::
for

:::
the

:::::::
temporal

:::::::
filtering

::
of

:::
the

::::::::
individual

:::::::::::::
reconstructions.

:::
(a)

::::
Full

::::::::::::
eleven-member

:
ensemblemean

:
:
::
χ2

::::::::
statistics

::
for

:::
the

::::
full

:::
test

::::::
against

::
the

:::::::::
maximum

:
of relative standard

::
the

::::::::::
decomposed

:::
χ2

::::::::
statistics

:::::::
obtained

:::
for

:::
the

::::
tests

:::
for

::::
bias

:::
and

::::::
spread de-

viations(reconstruction standard deviation divided by simulation standard deviation at each grid point
:
.
:::
(b)

::
as

::
(a)

:::
but

:
for the full period),

::::::::::
five-member

::::
weak

:::::
solar

::::::::::
full-forcing

::::::::
ensemble.

:
(c) mapped ranks

::
as

:::
(a)

:::
but

:::
for

:::::::::::
three-member

:::::
strong

:::::
solar

:::::::::
full-forcing

:::::::::
ensemble.

::::::
Vertical

::::
and

::::::::
horizontal

::::
grey

::::
lines

:::::
mark

::::
those

:::
χ2

:::::::
statistics

:::
for

:::::
which

:::
left

:::::::
p-values

:::
are

:::::
larger

::::
than

:::
0.9 for the cold period (1390s to 1690s)

::::::::::
distributional

::::::
degrees

:::
of

:::::::
freedom.
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Fig. 9.
:::::
Global

:::::
fields

:::
of

::::::::
decadally

::::::::
smoothed

:::::::::::
temperature:

:::
(a)

::::::::::::
reconstructed

:::::
mean

:::::::
anomaly

::::
map

:::
for

::
a
::::
cold

:::::
period

::::
(for

:::
the

:::::
1390s

::
to
:::::::

1690s),
:::
(b)

::::::::
ensemble

:::::
mean

::
of
:::::::

relative
:::::::
standard

:::::::::
deviations

:::::::::::::
(reconstruction

:::::::
standard

:::::::
deviation

:::::::
divided

::
by

:::::::::
simulation

:::::::
standard

::::::::
deviation

::
at

::::
each

::::
grid

::::
point

:::
for

:::
the

:::
full

:::::::
period),

:::
(c)

::::::
mapped

:::::
ranks

:::
for

::
the

::::
cold

::::::
period

::::::
(1390s

::
to

:::::::
1690s).

:::::
Panel

:::
(d)

:::::::
presents

::::
rank

::::::
counts

:::
for

::
all

::::::
points

::
in

:::::
space

:::
and

::::
time

::::::::::
considering

::::::::::
uncertainties

::
in
:::

the
::::

data
:::

for
:::

the
::::

full
::::::
period.

:::::::::
Numbers

::
in

:::
(d)

:::
are

:::
χ2

:::::::
statistics

:::
for

:::
the

::::
full

::::::
period

:::::::::
accounting

::
for

::::::
spatial

::::
and

:::::::
temporal

::::::::::::::
auto-correlation

::
in

:::
the

::::
data.

::::
We

:::::::
assume

:::
15

:::::
spatial

:::::::
degrees

::
of
::::::::

freedom (calculated

following Bretherton et al., 1999)
:
.
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Fig. 10. Rank histogram counts for a random selection of 25 grid points from the decadal smooth global

temperature data and the first, second, third and last 250
:::::::::::::
non-overlapping records of the decadally smoothed

annual data (grey to black lines
:
,
:::::
about

:::
800

:::
to

:::::
1050,

::::
1050

::
to
::::::

1300,
::::
1300

::
to
:::::

1550,
::::

and
::::
1595

:::
to

::::
1845). Large

(small) red squares mark grid points where spread or bias deviations are significant over the full (the individual

sub-)period. Blue squares are not significant
::::::
indicate

::::::::::::
non-significant

:::::::::
deviations. Squares

::
in

::::
each

:::::
panel from left

to right for the first, second, third and last sub-period. Locations given in titles of individual panels.
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Fig. 11. Residual quantile-quantile plots for a random selection of 25 grid points from the decadal smooth

global temperature data and the first (grey) and the last (colors
::::::
colours) 250 records. Locations given in titles of

individual panels. Representation as in Fig. 3a
:::
For

::::::::::::
representation

:::
see

:::::
legend.

41



−150 −100 −50 0 50 100 150

−
50

0
50

a)                                                                     

La
tit

ud
e[

3:
34

]

−150 −100 −50 0 50 100 150

−
50

0
50

f)                                                                     

La
tit

ud
e[

3:
34

]

−150 −100 −50 0 50 100 150

−
50

0
50

b )                                                                     

La
tit

ud
e[

3:
34

]

−150 −100 −50 0 50 100 150

−
50

0
50

g )                                                                     

La
tit

ud
e[

3:
34

]

−150 −100 −50 0 50 100 150

−
50

0
50

c )                                                                     

La
tit

ud
e[

3:
34

]

−150 −100 −50 0 50 100 150

−
50

0
50

h )                                                                     

La
tit

ud
e[

3:
34

]

−150 −100 −50 0 50 100 150

−
50

0
50

d )                                                                     

La
tit

ud
e[

3:
34

]

−150 −100 −50 0 50 100 150

−
50

0
50

i )                                                                     

La
tit

ud
e[

3:
34

]

−150 −100 −50 0 50 100 150

−
50

0
50

e )                                                                     

La
tit

ud
e[

3:
34

]

−150 −100 −50 0 50 100 150

−
50

0
50

j )                                                                     

La
tit

ud
e[

3:
34

]

Fig. 12. Global assessment of the goodness-of-fit test for the decadal smooth data considering errors

::::::::::
uncertainties

:
in the truth

::::
target. Plotted are lower p-values. In the left column: full χ2 test, in the right col-

umn: maximum of p-values for single deviation tests for bias and spread. Blue smaller
:::
than

:
0.1, dark to light

grey in steps of 0.2 the range between 0.1 and 0.9, red larger than 0.9. (a, f) full period and (b–e) and (g–j) for

the first, second, third and last period of 250 records.
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