

Interactive
Comment

Interactive comment on “Modeling the consequences on late Triassic environment of intense pulse-like degassing during the Central Atlantic Magmatic Province using the GEOCLIM model” by G. Paris et al.

Anonymous Referee #1

Received and published: 20 August 2012

General comments

It is increasingly argued that CO₂ degassing related to the emplacement of the extensive Central Atlantic Magmatic Province may have played a prominent role in triggering the end-Triassic biosphere crisis and associated extinctions. A precise cause-effect relationship between CAMP magmatism and environmental events at the Triassic-Jurassic transition interval is however still poorly constrained. This modeling excercise attempts to clarify whether volcanically derived CO₂ could have driven carbon cycle perturbations, expressed as reduced carbonate production and $\delta^{13}\text{C}$ excursions in

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

Discussion Paper

end-Triassic sedimentary records.

Principal results emphasize that a succession of CO₂ degassing pulses could have been a plausible mechanism responsible for the Rhaetian carbonate production crisis. Only by assuming release of isotopically light CO₂, CAMP volcanism could also be directly responsible for the pronounced end-Triassic negative $\delta^{13}\text{C}$ excursion, recognized in sedimentary organic matter as well as carbonates.

The strong point of the modeling exercises is the realization that eruption rates modulated by pulses of intense volcanism have the potential to introduce considerable quantities of CO₂ into the atmosphere over rapid time periods. The speculated release of isotopically light volcanogenic CO₂ is particularly interesting, because of a similar concept proposed to explain the prominent end-Permian negative $\delta^{13}\text{C}$ excursion (Sobolev et al., 2011).

On the other hand, the question may arise as to what extent model results match up-to-date observational constraints. Particularly $\delta^{13}\text{C}$ modeling could benefit from being re-thought in the context of high-resolution $\delta^{13}\text{C}_{\text{org}}$ data now available from the marine 'key' section at St. Audrie's Bay, England (Ruhl et al., 2010; see also Whiteside et al., 2010).

- Sobolev, S.V., Sobolev, A.V., Kuzmin, D.V., Krivolutskaya, N.A., Petrunin, A.G., Arndt, N.T., Radko, V.A., Vasiliev, Y.R., 2011. Linking mantle plumes, large igneous provinces and environmental catastrophes. *Nature*, 477: 312–316.

- Ruhl, M., Deenen, M.H.L., Abels, H.A., Bonis, N.R., Krijgsman, W., Kürschner, W.M., 2010. Astronomical constraints on the duration of the early Jurassic Hettangian stage and recovery rates following the end-Triassic mass extinction (St. Audrie's Bay/ East Quantoxhead, UK). *EPSL*, 295: 262–276.

- Whiteside, J.H., Olsen, P.E., Eglinton, T., Brookfield, M.E., Sambrotto, R.N., 2010. Compound-specific carbon isotopes from Earth's largest flood basalt eruptions directly

CPD

8, C1302–C1305, 2012

Interactive
Comment

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

Discussion Paper

Specific comments

Following previous studies at St. Audrie's Bay, latest Triassic-Early Jurassic $\delta^{13}\text{C}_{\text{org}}$ trends in Europe and North America are commonly considered to show (1) a relatively sharp 'initial' negative excursion followed by (2) a positive trend, and (3) an extended 'main' negative excursion. Although difficult to match with the original data from New York Canyon, this isotopic pattern is idealized in Fig.1. According to various authorities, estimates of the duration of the 'initial' excursion vary between "less than 200 ky and 500 ky".

The high-resolution $\delta^{13}\text{C}_{\text{org}}$ record has confirmed the reality of a pronounced 'initial' excursion of about 5‰ coinciding with the end-Triassic extinction interval. On the other hand, the concept of a second 'main' excursion seems to be unjustified: a declining $\delta^{13}\text{C}$ trend followed by the appearance of Jurassic ammonites reflects the onset of continuously low $\delta^{13}\text{C}_{\text{org}}$ values throughout the Hettangian and early Sinemurian. Hence, rather than an 'excursion', this trend may reflect a shift to new long-term steady state values succeeding early Hettangian CAMP volcanic activity. Modeling attempts should therefore more explicitly focus on the 'initial' excursion.

Recognition of orbitally forced $\delta^{13}\text{C}_{\text{org}}$ oscillations at St Audrie's Bay now enables calibration of the isotopic trends at high (20 ky) precision. Ruhl et al. consider the end-Triassic mass extinction interval and coinciding 'initial' $\delta^{13}\text{C}$ excursion to be represented by 1–2 precession cycles (20–40 ky). This duration is typically an order of magnitude shorter than that of the modeled carbon-cycle perturbations. It seems relevant, therefore, to calibrate input parameters in harmony with these new age interpretations.

Technical corrections

- Although correctly defined as CO₂ partial pressure, throughout the study the term pCO₂ is used to denote CO₂ concentrations or mixing ratios (expressed in ppm or

Interactive Comment

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

Discussion Paper

ppmv), rather than pressure. This is confusing and should be avoided.

- In general, the English is understandable but still may need some improvement. The authors may want to seek advice from a native English-speaking colleague who is familiar with their research area, and who is willing to check the manuscript.

Interactive comment on Clim. Past Discuss., 8, 2075, 2012.

CPD

8, C1302–C1305, 2012

Interactive
Comment

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

Discussion Paper

