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General comments:

Referee:

Annual layer detection and counting is a key tool for ice core research and similarly
varve counts, tree ring counts etc. There is a need for automated method for annual
layer counting and evaluation of the uncertainty of the counting procedure, and as such,
the study is appropriate for publication in CP.

The manuscript presents a clever way to automate annual layer counting by splitting the
signal in question into “easy” and “hard” sections. In the “easy” sections, annual layer
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boundaries can be assigned in an unambiguous way without much difficulty, while the
“hard” sections are highlighted for manual evaluation or handled by assigning probabil-
ities based on annual layer thickness statistics. The automated assignment of annual
layer boundaries in the “easy” section is convenient, but will probably in the case of
long data series only represent a modest improvement and/or work saver, as it not a
difficult or laborious task to assign annual layer makings to a single data series with a
well-characterized and strong annual signal. The real value of the methods thus lies in
its ability to perform well when applied to the “hard” sections, or “issues” in the nomen-
clature of the manuscript, and especially its performance in difficult case, e.g. when
either the annual signal is unclear or when the data has problems with marginal reso-
lution, frequent missing data sections etc. Unfortunately, the results presented do not
allow a full assessment of whether the method performs well under these more difficult
conditions.

Response:

Firstly we would like to thank the referee for a comprehensive assessment of our work
which raises a number of interesting points. We aim to address them below, in part
through the provision of 3 additional analyses—we will include a summary of these in
the revised paper.

In our manuscript we present a method of splitting a signal with a strong annually cyclic
component into non-overlapping sections: ‘certain’ runs (or parts of a cycle) where the
seasonality is clear cut and deterministic count can be made; and ‘issues’, sections
where more attention is required. This classification process is very simple in terms of
computation and is therefore very quick, taking less than a second on a modern lap-top
for the Gomez core. It is consistent, repeatable, and does not require any prior manual
assessment of chronology. Arguably the real strength of our approach as described in
the manuscript is this robust, efficient separation of what the referee calls ‘easy’ and
‘hard’ sections.
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The presented method relies on a sufficiently large sampling rate and annual cycle-to-
noise ratio. In the case of an unclear (or weak) annual signal, or when resolution is
low compared to the length of an annual cycle, it is the classification process that may
require modification. Once issues have been identified they can either be presented
for manual assessment (with the aid of simple reconstructions and probabilities based
on their length) or a more sophisticated automatic process could be employed.

Specific comments:

Referee:

The method performs well when applied to the test data presented, but that is not
very surprising given the unusually fine data quality – the sampling rate is very high
and the noise/non-annual part is weak — and the exceptional simple, regular and well
expressed annual signal.

As I state in the general comments, I think the method is clever and has potential,
and I think that it should be published, but I think the current manuscript is almost too
pretty and too much based on low-hanging fruit to allow the reader to evaluate the
potential strength of the method: Given the quality of the data and the limited length
of the test data section (153 years), any reasonably successful method should be able
to produce a count close to the target. Thus, the true potential of the method remains
to be demonstrated. In short, it would be interesting to test the method’s performance
on data with less favourable sampling rate and on data with a less clear-cut annual
signal.

Response:

The example in our manuscript is a dating of the whole Gomez core—not a short
well-behaved portion. We use the H2O2 signal as it clearly has the strongest annual
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component and is therefore most reliable, and is therefore the most realistic choice
within this data-set. We will clarify this is the revised paper. A further benefit of H2O2,
whose cycles are directly correlated to sunlight, is that with an appropriate choice of
ν the ‘certain’ runs are analogous to seasons. Our chronology therefore allows the
analysis of other signals in seasonal terms. The shortness of our example section
is not an advantage to the method (although of course it reduces the computational
time)—a longer stretch of data would provide more information with which to model the
‘certain’ run lengths.

One challenge posed by the Gomez H2O2 signal, beyond the exponential reduction
in layer thicknesses, is that the resolution at the top of the core is very high, we see
regular ‘fluctuations’ in the annual cycles, whereas the bottom of the core has very few
complete cycles due to the regular stretches of missing values.

The referee states that “any reasonably successful method should be able to produce
a count close to the target”. We are not aware of published successful methods in this
sense, and we emphasize that the count from our method, as summarised in figure 8 of
the manuscript, is far from being its only output. The method also provides a choice of
layer boundaries, with uncertainty measures, from which change-points, peak apexes,
and trough nadirs can be calculated. In the Gomez example troughs are placed in
one-to-one accordance with, and in very close proximity to, those assessed manually.

Referee:

With regard to the sampling rate, a data series with ∼ 8 samples per average year
would be a good test. If the authors have no other suitable data for a test along these
lines, a down-sampled version of the data used in the study could be used.

Response:

The presented classification process requires at least one point per ‘certain’ run; there
are four runs per cycle which are not assumed to be of equal length. It is therefore the
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shortest runs of the shortest cycles in the signal that need to be considered here. A
data series with ≈ 8 samples per average year is likely to have a lot of runs missing,
causing a great number of issues that consist of the shortest cycles. This would be
fine if issues were presented for manual assessment, however the modelling process
would adversely affected as only the medium and long runs’ lengths will be classified
and modelled.

In the additional analyses, we do now explore the effect of sampling rate on data from
the NGRIP core, where there is more variability in cycle length than seen in the Gomez
H2O2. Here an average of ≈ 16 points per cycle appears to be the limit for classification
and probability assignment as presented in the manuscript.

Referee:

With regard to the complexity of the annual signal, there are several possible tests
that could substantiate the results: – Using data with a more complex annual signal,
for example ECM data, water isotopes, or the (challenging) Visual Stratigraphy data
of Winstrup 2011). Addressing the method’s sensitivity to annual layer thickness vari-
ability, which seems unusually small in the data set used, potentially because the data
are from a high accumulation site which has many annual precipitation events. Annual
layer statistics could be used to evaluate if the test data used in the manuscript have
unusually low layer thickness variability, i.e. when compared to data from records with
thinner annual layers (both Rasmussen et al. 2006 and Andersen et al. 2008 already
referenced presents relevant Greenland statistics), and a comparison to e.g. WAIS
layer statistics would also be relevant if available.

Response:

Our method requires a signal with a strong annual component; the classification pro-
cess would require some modification for far noisier signals such as ECM or Visual
Stratigraphy. For data with a high sampling rate, pre-smoothing the signal with a short
interval moving average my be sufficient. We include 3 additional analyses; the first 2
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apply the method exactly as presented in our manuscript to signals from the NGRIP
ice-core (Greenland) which are a little noisier and have more varied layer thicknesses.
The third example is a more challenging signal from the Gomez core.

In the manuscript, the probabilities assigned to the uncertain sections come from a
regression analysis of the ‘certain’ runs and therefore not directly from whole layer
thicknesses. Here we provide an analysis of ‘trough to trough’ cycle lengths (see figure
9 in the paper) to address the question around layer thickness variability in the Gomez
core. This core covers the firnification process, and an exponential decay in layer
thickness is observed. There are several cycles in the first 20m of the core that contain
over 100 data points (2m), in contrast the last 5m of the core has several cycles with
fewer than 20 data points (40cm) - a five fold decrease. This is well modelled by a
linear trend on the log transformed thicknesses fit via simple linear regression, and the
resulting model shows good homoscedasticity (constant variability):

ln(`i) ∼ N( ˆln(`i), 0.035)

where `i is the observed layer thickness at depth i. The mean layer thickness (and
99% C.I.s) under this model for the start (@ 3m), middle (@ 65m), and end of the core
(@ 132m) are respectively: 171cm (109cm, 268cm), 94cm (59cm, 147cm), and 49cm
(31cm, 77cm). Note the asymmetry in the confidence intervals. To allow comparison
with the statistics in Rasmussen et al. (2006): under this model the probability of a
random annual layer being either double or half the mean thickness at any given depth
is ≈ 0.025%.

In the case of very high local variability in layer thickness this method may need some
modification at the standardisation stage. One possibility would be to use a longer
interval to estimate µ and σ, say 2 or 3 cycle lengths. Once the signal has been stan-
dardised satisfactorily, the method of classifying into ‘certain’ runs and issues is very
robust - it is ‘blind’ to cycle lengths and looks only at the seasonal pattern in the signal.
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The exact same method (code) identified the > 2m cycles and the < 40cm cycles. The
high local variability in layer thickness would be modelled via the regression, causing
higher uncertainty in the resulting chronology.

Referee:

Another comment relates to the issue reconstruction probability assignment on and
around p. 2487/14: The method as described and Fig. 5 indicate that some of the
data that actually are available are disregarded as the probabilities are based solely on
layer thickness statistics. Maybe the authors could think of a clever way to utilize the
(dis)similarity of the different reconstructions and the available data across the “issue”
(i.e. the black curve bits on Fig. 5) to refine the reconstruction probability assignment.

Response:

The probabilities are calculated by modelling the ‘certain’ runs and applying the model
to the issue lengths. However information about the classifications of the ‘certain’ runs
that bound the issues and ‘potential’ runs within the issues is also used. This method
is intended to be simple and quick and as a result does not make use of the data points
within an issue.

Under the additional assumption that (a) time is equally spaced within the runs and
(b) the standardised signal can be described by a sine curve, the sum of squared
differences between the data and the reconstructions could be used. This is of little
use in the case of missing values but may be useful to flag issues where the most
probable reconstructions differ greatly from the standardised signal.

Referee:

Also, the way issues is handled statistically in section 4 implies that the true curve
shape (disregarding sampling problems and missing data) is a sine. I fear that this
way to interpret sections of difficult data is too simplistic, especially in the case where
the difficulties could also be cause by a less well-behaved signal. This calls for tests
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like the one indicated above, and/or a discussion of how the method or pre-processing
steps could/should be adapted to different data characteristics.’

Response:

When assigning probabilities, the way that issues are handled depends only very
weakly on the idea of an underlying sinusoidal curve. The key assumption is sim-
ply that the run classifications must follow the P D T A pattern. In addition, in the
log-linear model for run lengths, runs are fitted at depths implied by the sine recon-
struction (equally spaced in the case ν = 1/

√
2). This could readily be relaxed, e.g. by

fitting all run lengths at the central depth of the issue, with little effect on the resulting
probabilities, using the sine reconstructions only as visual aids for manual assessment.
We will make this clearer in the revised paper. (See also the response to related minor
issues.)

Referee:

Finally, I miss a discussion of the potential (if any) to extend the method to multiparam-
eter data.

Response:

If the classification method can be extended to a multivariate framework—using mul-
tiple signals to group depths into ‘certain’ runs described by length and label—then
the same method of assigning probabilities to issues can be utilised. In the univariate
example we split the signal into three groups along the real line; it is possible split two
out-of-phase standardised signals into four groups along the bivariate plane. Plotting
x′ against y′ the points can be collected into quadrants: Q1 where x′ > 0 and y′ > 0,
Q2 where x′ < 0 and y′ > 0, Q3 where x′ < 0 and y′ < 0, and Q4 where x′ > 0 and
y′ < 0. These could be treated as potential runs in the manuscript—the method would
be the same from that point.
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Referee:

The authors mention in the very last lines of the conclusion that work is under way to
address some (if not all) of the above-mentioned issues, but I really miss some of these
results and discussions in the current manuscript.

Response:

The work mentioned uses a model-based statistical approach to make inferences about
detailed chronology. It is much more computationally demanding than the method
described in the manuscript, and is best seen as being complementary to the method
in the manuscript, rather than an extension or alternative to it. One possible strategy
would be to use the method of the manuscript to define and investigate issues; those
issues that cannot be readily resolved (i.e. where no single reconstruction is obviously
correct, based on run-lengths) could then be analysed in more detail, using the model-
based approach to refine the chronology and the probabilities. We will provide an
improved discussion of this point in the revised manuscript, however details of the
model-based approach are beyond the scope of the present paper.

Referee:

The manuscript text is not very long, but still describes the details of the rather simple
method in at least sufficient detail. The abstract is fine and the language as well as the
artwork and technical quality is good. Relevant annual layer detection / counting work
is referenced, and the briefness of the reference list mainly reflects that automated
annual layering methodology is an emerging field. Maybe the authors would like to
elaborate a bit on how their method assumptions compare to those applied by some of
the referenced works and to varve data as part of the BMPix tools of Weber et al.. The
number of figures is on the high side, but many can be reproduced in small size if the
legends etc. are sized appropriately. Fig. 4 carries little information in itself, as almost
everything is reproduced in Fig. 5. Also, Fig. 6 is not essential. Figs. 10 and 11 could
be integrated as the captions are almost identical.
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Response:

Thanks, we spent some time on developing a succinct description of our method.

The assumptions behind those alternative methods which we cite in the manuscript are
rather difficult to formalise, generally being implicit in an algorithm and/or the human
input to a semi-automated method. In the course of the responses to the referee’s
other comments, we have tried to clarify the assumptions that are or aren’t made in our
method; one of the additional analyses also relaxes some of these assumptions.

We are grateful to the referee for bringing the PEAK tool of Weber et al. (2010) to
our attention. Their three methods are applied to high resolution signals induced from
scanned images of tree rings, marine varves, and marine laminae, and have some
points of similarity with ours. The ‘zero-crossing method’ algorithm iteratively finds the
points at which the (raw) signal crosses a wide interval Gaussian moving average—
with great effect even on noisy data. The ‘frequency truncation method’ algorithm
similarly finds the zero-crossing points in the signal after high-frequency noise and low-
frequency shifts have been removed via Fourier transformation. In the nomenclature of
our manuscript, these methods essentially segment the signal into ‘certain’ runs repre-
senting peaks and troughs. They also present the ‘maximum count method’ algorithm
which iteratively picks peaks as local maxima along a smoothed signal (short interval).
Each of these methods have user defined parameters that represent minimum layer
thickness and a ‘minimum amplitude’ tolerance which are adjusted to tune the count
visually, along with the smoothing and frequency parameters. These methods provide
a point estimate layer count, along with valuable information about the positioning of
layer markings and the cycle lengths. Their most recent paper does not address miss-
ing values or provide a measure of uncertainty. We will include a discussion of the work
of Weber et al. (2010) in the introduction of the revised paper.
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Referee:

In conclusion, I think that the current version presents a nice and clear description of
1. a few elegant and well-chosen data pre-processing steps, 2. a simple and efficient
way to characterize the annual signal in the easy parts of the record, 3. a simple way to
assign probabilities to different number of annual layers across difficult / reconstructed
parts of the record based on layer thickness statistics 4. the results themselves and
comparison to the results of the manual count. 5. sufficient test of parameter sen-
sitivity etc. However, the manuscript fails to sufficiently demonstrate that the method
represents a significant advance because the test data chosen are not sufficiently chal-
lenging. With very few news among the elements of the presented method (possibly
with the exception of the assumption 2486/3) and no demonstrated performance on
difficult data, I think the calorie count is on the low side.

To add some weight, I therefore suggest that - the method in its current form is applied
to a more challenging data set in order to test whether the method represents a sig-
nificant improvement compared to much simpler methods (e.g. by addressing some of
the comments and suggestions above), or - the manuscript is seen as the first part of a
manuscript that in its second part will elaborate on at least some of the material which
is mentioned as ongoing work in the outlook In the first case, the manuscript’s score
on Scientific Significance will likely increase to 1 or 2 and would be recommendable for
publication with minor technical/revisions.

Response:

We include some additional analyses aimed at addressing some of the comments and
suggestions above. We are not clear what the “much simpler methods” mentioned are,
but if this refers to other methods that we have cited, we believe that, with these addi-
tional analyses, we have demonstrated the benefits of the approach in our manuscript.
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Technical Corrections / Minor issues:

Referee:

2478/22: While it is clear that noone has yet presented a statistically rigorous treatment
of uncertainty of annual layer counting, it’s not quite fair to say that “Little consideration"
has been given to the issue.

Response:

Yes, this sentence in the manuscript is misleading: the literature provides a good dis-
cussion of uncertainty. What was meant is that previous automated methods, Winstrup
(2011) excluded, provide no measure of uncertainty on their chronologies. That is, we
meant that the models show ‘little consideration’, not the authors. We will re-write this
sentence, thanks.

Referee:

2479/26: Why a sine wave? Even though the initial UV forcing may be close to sinu-
soidal, the log transform should change this, and unless the mean is thought to vary
within each annual cycle (in which case any signal with a quasi-periodic behavior can
be thought of as a sine wave on a non-linear time-scale with varying amplitude and
mean), there is no basis for assuming that the signal resembles a sine. The state-
ment needs clarification (e.g. what is meant by varying amplitude and mean) or can be
removed.

2480/25: As above. No convincing arguments or evidence for the signal being sinu-
soidal is presented.

2486/18: This symmetry may not hold for other data sets, esp. after normalisation and
log transformation. The authors could address what would happen in this case.
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Response:

The rationale for the sine wave is primarily empirical: after suitable (and simple) trans-
formation, discussed below, the Gomez H2O2 signal does look approximately sinu-
soidal. This can be seen in figure 4 of the manuscript (and also in figure 2(c), though
the compressed horizontal scale makes that more difficult). From the regression mod-
elling, for all ν presented, P and T (‘extreme’) run lengths were found to be equivalent,
A andD (‘central’) run lengths were found to be equivalent, and all run lengths have the
same slope—this is not a requirement of the modelling but is evidence of a sinusoidal
standardised signal. A further indication is that the lengths of runs of all classifica-
tions are found to be equivalent at ν = 1/

√
2—the theoretical value at which this is

expected of a sine wave. As mentioned in the response earlier, the precise shape of
the underlying sine wave has little impact on the details of our analysis.

The standardisation and classification processes presented in the manuscript do very
consciously assume a degree of symmetry in the seasonality. The raw Gomez H2O2

signal is asymmetric—its peaks are taller and spikier than its troughs. A logarithmic
transformation is very natural here (not least because the raw data are non-negative)
and induces symmetry with great effect; in other signals symmetry may be induced by
different transformations, or in some cases transformation may not be needed. With
very asymmetric data, one possibility would be to have two tuning parameters and
classify potential peaks as runs of points above ν1 and potential troughs as runs of
points below ν2. An alternative possibility is presented in the additional analyses, for
Gomez non-sea-salt sulphur.

To clarify, we do allow the mean and amplitude of the cycle to vary within a cycle, but
only slowly. In practice, this is implemented by estimating the mean (µi) at each depth
using a moving average over an interval length of approximately one cycle, and then
similarly estimating the variability (σi) of the de-trended signal at each depth, again
over approximately one cycle.
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The referee is right that any signal can be thought of as a sine wave with varying am-
plitude and mean, if they were allowed to vary rapidly. Our use of slowly varying mean
and amplitude allows us to preserve and extract the quasi-periodic behaviour in the
data; the flexibility in this process is part of the reason that the method is not very sen-
sitive to any underlying assumptions about the shape of the curve. The slowly varying
amplitude is also the reason that, in the case of asymmetry, the relative heights of the
peaks and troughs need to be taken into account, by one of the methods mentioned
above.

We will clarify these points in the revised paper.

Referee:

2484/3: . . . or sections where the annual signal simply isn’t sufficiently clear cut.

Response:

I think this refers to 2485/3. Agreed, thanks.

Referee:

2485/20: Does this sentence end like it should?

Response:

This could be replaced by: ‘The length of a run, ` say, is . . .

Referee:

2479/5: Winstrup now has a CPD reference that could be added.

2488/5: model’s

Response:

Agreed, thanks.
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Additional analyses

Here we present 3 additional analyses with the aim of addressing some of the points
made above. The first 2 example signals are from the NGRIP ice-core (Greenland) and
apply the method, exactly as presented in our manuscript, to longer (and a little noisier)
signals with more varied layer thicknesses. The effect of sampling rate per cycle on the
count is also explored. The third example is a more challenging signal from the Gomez
core, illustrating a possible way in which the run classification process can be adapted
for asymmetric cycles. Additional figures A1–A12 are included in the supplementary
material for illustration.

NGRIP: ammonium and calcium

Our method is applied to NGRIP Ammonium (NH4) and Calcium (Ca) chemistry signals
(1440.49− 1464.81m) which are sampled at 1mm intervals. We use the same algorithm
as used on the Gomez H2O2 signal in the manuscript. These signals have a slightly
greater noise to annual cycle ratio than the Gomez H2O2, with regular fluctuations and
stretches of missing values.

Figures A1 and A2 show the effect of taking the natural logarithm of the NH4 and Ca
signals (respectively); in both cases (a) is the raw signal and (b) is the log signal. Note
how the symmetry of the annual cycles is improved in both signals.

To test the effect of sampling rate, we run the analysis on three thinned down versions
of both signals: taking every second point (2mm); every third point (3mm); and every
fourth point (4mm). We refer to these as the second, third and fourth thinnings. An
alternative way to generate signals of lower sampling rate would be to take averages
of non-overlapping intervals (not a moving average)—we would expect our method to
work better in this case.
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There is very little trend in cycle length through this depth range in the NGRIP core.
In each case we estimate the overall average cycle length from the ACF of the entire
signal to use as the interval length when calculating µ and σ, effectively setting β = 1.
Figure A3 shows ACFs for each signal: (a) no thinning (estimated average cycle length
62 points); (b) second thinning (32 points); (c) third (21 points); and (d) fourth (16
points). In each case NH4 is shown as circles and Ca as stars.

Figures A4 and A5 show the standardisation process of the log NH4 and log Ca signals
respectively. These correspond to figure 2 in the manuscript: (a) is the log signal, (b)
is the de-trended signal, and (c) is the standardised signal.

Figure A6 shows a stretch of the classified log NH4 signal (fourth thinning) for ν = 0.49
with 9 cycles: (a) is the log signal with µ and µ±σ shown as dotted lines; and (b) is the
standardised signal. Points within an issue are black, points within peaks are coloured
red, descending points are orange, troughs are blue, and ascending points are green.
Here there are two issues; the first is caused by a single missing value and the second
by a fluctuation in the data (a ‘double peak’). Note that there are 3 ascending runs of
length 1 (the reason why we could not do a fifth thinning).

Figure A7 shows a stretch of the classified Ca signal (second thinning) for ν = 0.53 with
7 cycles: analogous to figure 6 in the manuscript. There is one issue—a probability of
10% is assigned to there being two troughs in this section.

The probability distributions for the resulting chronologies are summarised in figures
A8 (NH4) and A9 (Ca) over a range of eight ν values, these are analogous to figure
10 in the manuscript: (a) is with no thinning; (b) is the second thinning; (c) third thin-
ning; and (d) fourth thinning. The range of ν was chosen in each case as the interval
over which the count is ‘most stable’—in that the probability distributions are most sim-
ilar. In each case a cursory check on the model’s choice of ‘certain’ runs, and the
probabilities assigned to resulting issues, was made to confirm that they are sensible.
These ranges were chosen by eye and vary for each thinning; for the most part this is
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due to the effect of the sampling rate on the visibility of the fluctuations and identifica-
tion of annual cycles. Choices of ν below these intervals generally overestimate the
count—classifying fluctuations as ‘certain’ cycles. Choices of ν above these intervals
generally underestimate the count—missing out whole cycles in the classification of
‘certain’ runs. One way to stabilise the ‘certain’ cycle count would be to do one run of
the classification process, model the ‘certain’ run lengths, check for outliers in the dis-
tribution (abnormally short or long runs), and assign these as issues. Note that the Ca
count is generally higher than the NH4 count and has a greater uncertainty, this is due
to a number of extra potential annual cycles present in the Ca signal when compared
to the NH4 signal, suggesting that a bivariate implementation, as outlined above, would
be beneficial.

For comparison, after correcting for the slight decreasing trend in the ‘trough to trough’
log cycle lengths from the most probable NH4 chronology and modelling them as Gaus-
sian, the probability of a random annual layer being either double or half the mean
thickness at any given depth is ≈ 2.3%.

Gomez: non-sea-salt sulphur

Alongside the other challenges of the Gomez core, its non-sea-salt sulphur (nss-S)
signal has an additional complication. The shapes of the annual cycles change with
depth—from wide noisy troughs at the top of the core to cycles similar to those of the
the H2O2 / NH4 / Ca signals at the bottom of the core. A logarithmic transformation
improves symmetry at the bottom of the core but not at the top. Figure A10 shows the
nss-S signal for the entire Gomez core, which is not transformed for this analysis.

The standardisation method presented in the manuscript effectively estimates a lo-
cal mean and standard deviation for each depth—points which exceed a given num-
ber (ν

√
2) of standard deviations from the mean are classified as potential peaks and
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troughs. As symmetry can not be induced throughout the nss-S signal we require a
more robust method of classification—we use local quantiles or percentiles. Along in-
terval lengths estimated from the ACF of the nss-S, as before, we calculate the local
v1th and v2th quantiles at each depth, data points above the v1th quantile are classified
as potential peaks and data points below the v2th quantile are classified as potential
troughs. From this point on the method continues as in the manuscript, using β = 10
throughout.

In the regression model for the nss-S log ‘certain’ run lengths the A and D (‘central’)
classifications are found to be equivalent, whereas P and T classifications show a sta-
tistically significant difference (p < 1%). There is also a statistically significant interac-
tion between the depth index and the classification factor (p < 1%). This fits a steeper
gradient to the trough log lengths relative to the other classifications—modelling the
changing cycle shape down the core.

Figure A11 shows sections of classified nss-S with 7 cycles: (a) at the start of the core,
and (b) towards the end of the core.

Figure A12 shows the resulting probability distribution for the chronology at v1 = 0.85
and v2 = 0.5, the most likely chronology (p = 0.4) has a one-to-one trough correspon-
dence with the most likely reconstruction found from the H2O2 signal. This is true over
the range 0.8 ≤ v1 ≤ 0.9 and 0.4 ≤ v2 ≤ (v1 − 0.3).

Concluding remarks

The manuscript attempts to show that this method is robust to the tuning parameters.
Plots are provided to show the effect of changing ν on the resulting probability distribu-
tions for the cycle count. In practice, since this method does not aim to give definitive
probabilities, it could be argued that the robustness of the classification method, and
of the issues found, is of more importance. In all four analyses, different issues arise
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when varying ν in the ranges presented; see manuscript figure 3 for an example. How-
ever, in all cases where one value of ν has an issue over a depth range where another
value of ν gives a ‘certain’ count, the reconstruction which corresponds to the ‘cer-
tain’ runs always has very high probability (> 0.95) and in most cases is assigned a
probability of 1 after normalisation. Thus the key message about which parts can be
confidently classified, and which are genuinely uncertain, is highly robust. A discussion
of this point will be included in the revised paper.
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