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General comments:

Summary.

Referee:

The CPD paper by Wheatley et al. (2012a) is a nice contribution towards automated
ice-core layer-counting. The introduced statistical method yields convincing recults on
the H2/O2 series from the Gomez ice core. This good performance is likely owing
to (1) the strong annual cycle preserved in that series and (2) the sinusoidal form
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of the variations (of the log-transformed H2/O2 values). Insofar the adaptation of the
method and the convincing results regard to that specific Gomez ice core series, it
should be helpful to the reader if that fact could be pointed out more clearly in the
revised paper version. In my review I raise three major points; the first deals with a
better understanding the performance of the method, the second and third with a wider
application of it. The Editors of CPD should check the cited paper Wheatley et al.
(2012b) in Environmental and Ecological Statistics for the degree of overlap in content
with the present paper. I close with minor points. These are few because, unlike many
other papers I had to review (here on CPD and elsewhere), the present paper contains
so few errors and is so clearly and well written.

Response:

Firstly we would like to thank the referee for reviewing our discussion paper, and for
providing a valuable and thorough proof reading.

The presented method is applicable to other signals with strong annual cycles where
symmetry has been induced by transformation. In our response to Anonymous Referee
# 1 we include examples on two such signals from the NGRIP ice-core: ammonium and
calcium. A third additional analysis on a more challenging signal, Gomez non-sea-salt
sulphur, is also presented. These analyses will be included in the revised version. The
editor has a copy of our other submitted paper.

Major Point 1: Monte Carlo simulations.

Referee:

The paper by Wheatley et al. (2012a) lacks Monte Carlo simulations. It is good statisti-
cal practice to accompany a newly introduced method with Monte Carlo simulations on
artificial time series. If the results are satisfactory, and the design of the Monte Carlo
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runs is comparable to the problem at hand (here: measured Gomez series), then we
can more confidently apply the tested method to the measured series. Roughly: pre-
scribe known timescale, generate one artificial series by means of a signal (sinusoid,
other) and noise (of red type, additive), estimate timescale using method and compare
estimated timescale with prescribed timescale. Repeat the procedure generation esti-
mation many times and calculate error measures (e.g., root of mean integrated squared
error). Study the error measure for various data sizes and for various signal/noise ra-
tios. (Data size and signal/noise ratio should be in the same order as the measured
series to be analysed.) By imposing non-sinusoidal signals, you can learn about the
performance of the method in such mis-specified situations, that is, one can evaluate
the robustness of the method. You can compare your method with other methods, for
example, that presented by Winstrup et al. (2012). A general reference for Monte
Carlo simulations in climate time series analysis is, please let me mention it, my book
(Mudelsee, 2010).

Response:

As mentioned above, in response to Anonymous Referee #1 we have carried out anal-
yses of 3 additional ice-core chemistry signals, including various ‘thinned’ versions
to simulate the effect of coarser data. They consist of another signal from the Gomez
core, and two different signals from the same stretch of the NGRIP core, allowing cross-
checking between different univariate analyses. These analyses of well-understood
data-sets thus offer some of the advantages of simulation from a known model or al-
gorithm. In addition, since the focus of our work is on finding regions in a signal where
there are apparent departures from an underlying simple model, using these real data-
sets has the advantage of ensuring realistic ‘complications’. Simulations with that level
of realism would be a major undertaking, and we feel that they are not within the in-
tended scope of the current manuscript, given that the extra analyses now give much
more information on the performance of our method.
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Major Point 2: Error measures of timescale estimate.

Referee:

The method (Wheatley et al. 2012a) does not give timescale error measures. The
estimation target of the presented method is the (layer-counted) timescale. Because
(1) datasize is less than infinity, (2) noise level is larger than zero and possibly (3)
some values may be missing, the estimated timescale cannot be expected to equal the
true timescale. Error measures (e.g., standard error) describe the size of the deviation
between truth and estimation. It should in my view be straightforward to augment the
methodology presented in Section 4 of the paper with the purpose of determining such
error measures.

Response:

Our method calculates a discrete probability distribution as a measure of uncertainty
on the cycle count. The shape of this distribution is not necessarily close to Gaussian,
so standard error may be a misleading measure of uncertainty in this case. Figure 8
in the manuscript shows examples of such plots that relate to the whole of the Gomez
core, and hence to the date at the bottom of the core, since this is the single point
most likely to be of interest. But such distributions could equally be calculated at any
required depth; we will amend the manuscript to make this clear. In addition, our
method generates several types of ‘layer markings’: change points, apexes, nadirs. If
these correspond to a ‘certain’ run they have probability 1, if they are from an issue
they have a probability attached. So distributions based on these features could be
obtained similarly, again at any required depth.
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Major Point 3: Simulated timescales.

Referee:

The method (Wheatley et al. 2012a) does not produce simulated timescales. By using
the error measures from Major Point 2, it should be straightforward to generate simu-
lated timescales (one has to take into account the serial dependence between depth
points, however). Why generate simulated timescales? Please let me cite own work:
“Construction of age-depth curves for climate archives on the basis of dating points,
constraints (e.g. strictly monotonically increasing curves) and the physics relevant for
describing the archive’s growth is a challenging task. It is currently being tackled by
means of Bayesian and other simulation-based approaches. Construction of these
curves is, however, not a means in itself. Age-depth modelling must also provide sim-
ulated curves, which can then be fed into modern resampling methods of climate time
series analysis, resulting in realistic measures of uncertainty in our knowledge about
the climate” (Mudelsee et al., 2012, p. 1991, my italics here in this review). That paper
from which I quote, for example, takes simulated timescales as input for a bootstrap
algorithm in nonparametric regression and studies the effects of dating errors on the
widths of bootstrap confidence bands.

Response:

Whilst our method does not in itself provide a way of simulating signals, there is a way to
simulate timescales via the regression model fitted to the log ‘certain’ run lengths. This
model describes their mean trend as a linear function of depth, and their local variation
(the residual error) with run classification as a factor covariate. A minor adjustment
to the model would be needed, taking the run starting depth as a covariate instead of
the run central depth. Then the model could be applied iteratively. Firstly a starting run
classification is chosen (from P , D, T , or A), this could be done at random. To generate
the first run length: get the fitted value for a log run length of this classification starting
at depth 1; add on some noise from the N(0, σ2) distribution (where σ is the residual
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error); then take its exponent. We now know the starting depth and classification of the
second run (as they must follow the P D T A pattern), and so can generate its length.
One could continue to generate cycles in this way until a required number or depth is
reached. To incorporate the serial dependence between depth points into this scheme
it should be possible to measure the correlation between log run lengths of all possible
pairs of types, and take this into account when adding noise. We will add a discussion
of this process in to the revised version of the paper.

Minor Point 1. p. 2477, title.

Referee:

Specify that this is a kind of pilot study on the Gomez series (e.g., via a subtitle).

Response:

Although we present a dating of the Gomez core from its H2O2 signal, this paper is
intended to also introduce a general framework for providing an ice-core chronology
with a measure of uncertainty. We have added several other analyses—see response
to the anonymous referee. We have clarified which comments are specific to a given
data-set.

Minor Point 2. p. 2478, l. 14.

Referee:

Write “In some cases the chemical or isotopic signals ...”

Response:
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Agreed, thanks.

Minor Point 3. p. 2478, l. 17.

Referee:

Since the meaning of “robustness,” which is a term coined by statistician George Box,
is often misunderstood by climatologists, I would highly appreciate one extra sentence
on the definition of that term.

Response:

It is perhaps not appropriate to include such technical detail here, right at the start
of the paper. Perhaps we should simply change “no robust method” to “no formal,
systematic method”. Consideration of robustness in the statistical sense comes later
in the paper.

Minor Point 4. p. 2479, l. 22.

Referee:

“... requires no prior knowledge” is a bit too strong wording. Later (e.g., p. 2484,
l. 13–17) you explain nicely how expert knowledge may set in at a later stage of the
analysis.

Response:

We will replace with: “. . . requires no prior manual assessment of the chronology, . . . ”.
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Minor Point 5. p. 2479, l. 24.

Referee:

“Depth i”: I have problems here since depth in general is not an integer. It is an integer
when you count it in units of bags of the ice core, but other ice-core measurements
(continuous-flow analysis) exist and also other archives exist. Please re-write.

Response:

As we state in the paper (p.2485, l. 25.), we assume—primarily for ease of
presentation—that the data points are equally spaced in depth, and depth can there-
fore be represented as an integer. This is the case for Gomez (2cm bags) and NGRIP
(1mm CFA). Relaxing this assumption requires a slight extension of the notation: the
ith depth rather than depth i; difference in depth rather than number of points. We
should mention this earlier in the discussion paper.

Minor Point 6. p. 2480, l. 1.

Referee:

Detrending: give further details (regression model type, estimation method).

Response:

We refer to subtracting µ, as discussed in section 2.1, we will make sure the wording
in the revised version is more clear.

C1239



Minor Point 7. p. 2480, l. 16–17.

Referee:

Perhaps “... moving standard deviation of x” is easier to comprehend.

Response:

We do not use a moving standard deviation of x, although that might achieve something
similar. We use a moving standard deviation of (x− µ), where µ is the estimate of the
mean trend in the signal and x is ‘de-trended’ by subtracting µ.

Minor Point 8. p. 2481, l. 6–7.

Referee:

Give more details on that algorithm used to segment the series into β subsections.

Response:

We will include more detail on this algorithm in the revised version of our paper. It
works like this: firstly the signal is split into β sections using (β− 1) boundaries that are
equally spaced in depth. Then iterate:

1. calculate the expected average cycle length, lj , for each section from their ACF,
j ∈ (1, 2, . . . , β)

2. redistribute the boundaries so that section j contains [nlj/
∑

j lj ] points

3. recalculate lj for each section

4. if expected number of cycles in all sections are equal then stop, otherwise go to
2.
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Minor Point 9. p. 2481, l. 11.

Referee:

Write “Fourier analysis (McGwire et al., 2011) and ice flow modelling (Shimohara et al.,
2003).”

Response:

Agreed, thanks.

Minor Point 10. p. 2481, l. 12.

Referee:

Mention your core: “... and fifth (stars) section of the Gomez ice core ...”

Response:

Agreed, thanks.

Minor Point 11. p. 2481, l. 15–16.

Referee:

6× 24.2 = 145.2 6= 142

Response:

Well spotted, thanks—this is now less of an underestimate!
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Minor Point 12. p. 2482, l. 2–6.

Referee:

You should say that your method and the derived probabilities are not necessarily re-
lated to the “3/4 consensus ratio”.

Response:

We deem a number of cycles as being ‘certain’ if they are well defined in the standard-
ised signal with respect to our repeatable algorithm. However there is some probability
that we have got this wrong, though hopefully less than 1/4. We don’t attempt to quan-
tify the probability at this stage; as the referee suggests, it is not an attempt to match
the ‘3/4 consensus ratio’ and we should emphasize that.

Minor Point 13. p. 2482, l. 12-15.

Referee:

Omit the spaces before and after the slashes.

Response:

Agreed, thanks.

Minor Points 14-16

Referee:

. . . replace “(top)” by “Fig. 3a” and so on. . .
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Response:

Agreed, thanks.

Minor Points 17-19

Referee:

. . . relates specifically to the Gomez core data. Do mention this core here. . .

Response:

Agreed, thanks.

Minor Point 20. p. 2487, l. 3.

Referee:

Expand in one short paragraph on the “standard linear modelling assumptions” as: fit
method, goodness-of-fit measures, determination of predictive intervals, etc.

Response:

The model is linear regression, with independent Gaussian errors with constant vari-
ance, fitted using ordinary least-squares estimation within the lm function in R (citation
to be added). The standard regression diagnostics and residual plots in plot.lm in R
were all satisfactory.
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Minor Point 21. p. 2487, l. 24.

Referee:

As in Minor Point 14.

Response:

Agreed, thanks.

Minor Point 22. p. 2488, l. 19–25.

Referee:

Strictly speaking, you have not done anything on ν > 0.8: re-write mathematically
correctly.

Response:

We have applied the method for ν > 0.8 and ν < 0.3: it failed for the reasons listed. We
will re-word to make this clear.

Minor Point 23. p. 2489, l. 3.

Referee:

As in Minor Point 14.

Response:

Agreed, thanks.

C1244

Minor Point 24. p. 2489, l. 4.

Referee:

Write “For β < 5 and ν = 1/
√

2”

Response:

Actually this is true for β < 5 generally. But the paragraph does need to be clarified.
Thanks.

Minor Points 25-26

Referee:

Do not capitalize title of [references].

Response:

Agreed, thanks.

Minor Points 27-28

Referee:

Give ν and β values [in captions, Fig. 7 and Fig. 9]

Response:

In both cases, ν = 0.5, β = 6.
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