

This discussion paper is/has been under review for the journal Climate of the Past (CP). Please refer to the corresponding final paper in CP if available.

Radiative effects of ozone on the climate of a Snowball Earth

J. Yang¹, Y. Hu¹, and W. R. Peltier²

¹Laboratory for Climate and Ocean-Atmosphere Studies, Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing, China ²Department of Physics, University of Toronto, Toronto, Ontario, Canada

Received: 27 July 2012 - Accepted: 6 August 2012 - Published: 14 August 2012

Correspondence to: Y. Hu (yyhu@pku.edu.cn)

Published by Copernicus Publications on behalf of the European Geosciences Union.

Discussion Paper

Discussion Paper

Discussion Paper

Discussion Paper

8, 3583-3611, 2012

Ozone and Snowball

J. Yang et al.

Title Page Introduction **Abstract** Conclusions References Tables **Figures** \triangleright Back Close Full Screen / Esc

Printer-friendly Version

Some geochemical and geological evidence suggests that the concentration of atmospheric oxygen was only 1–10% of the present level in the time interval from 750 to 580 million years ago when several nearly global glaciations or Snowball Earth events occurred. This low concentration of oxygen would have been accompanied by lower ozone concentration than present. Since ozone is a greenhouse gas, this change in ozone concentration would alter surface temperature, and thereby could have an important influence on the climate of the Snowball Earth. Previous works for either initiation or deglaciation of the proposed Snowball Earth have not taken the radiative effects of ozone changes into account. We address this issue herein by performing a series of simulations using an atmospheric general circulation model with various ozone concentrations.

Our simulation results demonstrate that as ozone concentration is uniformly reduced from 100% to 50%, surface temperature decreases by approximately 0.8 K at the equator, with the largest decreases located in the middle latitudes reaching as high as 2.5 K, primarily due to a strengthened snow-albedo feedback. When ozone concentration is reduced and its vertical and horizontal distribution is simultaneously modulated, surface temperature decreases by 0.4–1.0 K at the equator and by 4–7 K in polar regions. These results suggest that ozone has significant effects on the climate during the Neoproterozoic glaciations.

1 Introduction

Two important Earth evolutionary processes coincided in the Neoproterozoic era. One of these may have involved a further rise of atmospheric oxygen (O_2) from $\sim 1\%$ to $\sim 10\%$ of the present atmospheric level (PAL) during the period from 750 to 580 million years ago (Ma) (Canfield, 2005; Catling and Claire, 2005; Holland, 2006). The second important process that occurred in this interval of time involved the occurrence of

Discussion Paper

Discussion Paper

Discussion Paper

Discussion Paper

8, 3583-3611, 2012

Ozone and Snowball

J. Yang et al.

Title Page

Abstract Introduction

References

Tables Figures

I4

Conclusions

•

 \triangleright

Back

Close

Full Screen / Esc

Printer-friendly Version

global-scale glaciations, the so-called "Snowball Earth" events (at least two of which, i.e. the Sturtian glaciation at ~716 Ma and the Marinoan glaciation at ~635 Ma, are widely believed to have occurred. See Pierrehumbert et al., 2011, for a recent review). These two evolutionary processes must be connected through biogeochemical and geological mechanisms, as integral parts of the evolution of the Earth system, although the coupling mechanisms remain obscure. Here, we present results of numerical simulations suggesting that the primary product of the photolysis of oxygen, namely ozone (O₃), could have exerted an important influence on both initiation and deglaciation of the Snowball Earth through the influence of radiative transfer processes.

According to the standard Snowball Earth hypothesis (Kirschvink, 1992; Hoffman et al., 1998; Hoffman and Schrag, 2002), initiation and deglaciation of the Snowball Earth are associated with changes in carbon-dioxide (CO₂) concentration that varies between extremely low and extremely high levels through the action of the carbonatesilicate cycle. Simulations with energy balance models (EBMs) and general circulation models (GCMs) yield different CO₂ thresholds for initiating the Snowball Earth (Chandler and Sohl, 2000; Hyde et al., 2000; Poulsen et al., 2001; Donnadieu et al., 2004; Poulsen and Jacob, 2004; Lewis et al., 2007; Peltier et al., 2007; Liu and Peltier, 2010, 2011; Pierrehumbert et al., 2011). Several recent studies with fully coupled atmosphere-ocean models have suggested that the CO₂ threshold is model dependent, ranging from 17.5-20 ppmv in CCSM3 (Yang et al., 2012a,b), 86 ppmv in MIROClite (Oka et al., 2010), 70-100 ppmv in CCSM4 (Yang et al., 2012c), to 278 ppmv in ECHAM5/MPI-OM (Voigt and Marotzke, 2010; Voigt et al., 2011), in addition to a 6 % reduction in solar luminosity. For deglaciation, simulations with different models have also suggested different thresholds (Hyde et al., 2000; Tajika, 2003; Pierrehumbert, 2004, 2005; Le Hir et al., 2007). The most recent study of Hu et al. (2011a) showed that the CO₂ threshold is approximately 0.21 bar in a radiative-convective model and approximately 0.38 bar in a GCM when pressure-broadening and collision-induced absorption of CO₂ at high pressure and high levels of CO₂ are taken into account. With the assumption of a dust zone at the tropical surface, which would lower tropical surface

8, 3583-3611, 2012

Ozone and Snowball

J. Yang et al.

Title Page Introduction **Abstract** Conclusions References **Figures** Tables I \triangleright Back Close

3585

albedo, the CO₂ threshold required to trigger the deglaciation would drop to approximately 0.1 bar (Abbot and Pierrehumbert, 2010; Le Hir et al., 2010; Li and Pierrehumbert, 2011).

It is important to note that all of the simulations discussed above have simply ₅ employed the present-day O₃ level as default (e.g. Poulsen et al., 2001; Voigt and Marotzke, 2010; Pierrehumbert et al., 2011; Hu et al., 2011a; Yang et al., 2012a,b,c) and have furthermore neglected the fact that O₃ concentration for both the stratosphere and the troposphere in the Neoproterozoic era could have been significantly lower than the present-day level, which could significantly alter the CO₂ thresholds for both initiation and deglaciation of the Snowball Earth as we will show below.

According to results from photochemical models (Segura et al., 2003), a 100-fold decrease in atmospheric O₂ from 100 % to 1 % PAL would cause a reduction in total column ozone depth by about two-thirds, and ozone concentration decreases for both the troposphere and the stratosphere. In addition to ozone concentration, the spatial distribution of ozone in the Neoproterozoic era may also have been considerably different from present. First, the ozone layer would be lower in altitude (see Fig. 2b in Segura et al., 2003). This would lead to a relatively strong (weak) greenhouse effect in the troposphere (stratosphere), second, the horizontal distribution of stratospheric ozone would also be expected to be considerably different from present. Ozone is generated in the tropical stratosphere and transported to mid- and high-latitudes by the Brewer-Dobson circulation, which is forced by atmospheric wave-mean flow interaction processes (e.g. Holton et al., 1995). As a result, the maximum total column ozone is located in the subpolar regions in both hemispheres under present-day conditions. In contrast, total column ozone is relatively low in the tropics because of more efficient rates of ozone photolysis that occurs in this region. GCM simulations have shown that wave activity under Snowball Earth conditions is much weaker than that under present-day conditions (Pierrehumbert, 2005), suggesting that there would be less ozone transported to high latitudes in the Neoproterozoic era. Thus, reductions of ozone at high latitudes would be expected to be greater than at low latitudes.

8, 3583-3611, 2012

Ozone and Snowball

J. Yang et al.

Title Page Introduction **Abstract** Conclusions References Tables **Figures** I \triangleright Back Close

> Full Screen / Esc Printer-friendly Version

Ozone is a greenhouse gas since it has a strong absorption band in the infrared region (9.6 µm), in addition to absorbing ultraviolet radiation. For stratospheric ozone, it absorbs more radiative energy than it emits; a decline of ozone concentration would decrease stratospheric temperature and reduce the downward emission of infrared radiation, causing a cooling of the troposphere and surface (Ramanathan and Dickinson, 1979; Forster and Shine, 1997). Indeed, studies with one-dimensional (1-D) radiativeconvective models and 3-D GCMs have shown that ozone depletion from the late 1970s to the late 1990s did in fact cause a cooling of the troposphere and surface by offsetting greenhouse warming, and ozone recovery in the 21st century may enhance greenhouse warming (e.g. Ramaswamy et al., 1992; Hu and Tung, 2003; Hu et al., 2005, 2011b; Cordero and Forster, 2006; Gauss et al., 2006). For tropospheric ozone, it leads to more solar and longwave radiation being absorbed in the troposphere and gives a positive forcing on the surface. Hence, changes in tropospheric ozone concentration also will change the radiative energy absorption of the Earth-atmosphere system and thereby the surface air temperature (e.g. Fishman et al., 1979; Forster et al., 1996; Gauss et al., 2006).

The goal of present work is to investigate the radiative effect of ozone on the climate of Neoproterozoic Snowball Earth conditions and its implications for the initiation and deglaciation of a hard Snowball Earth. The paper is organized as follows: Sect. 2 describes the climate model used here and the design of numerical experiments we have performed to test the sensitivity of climate to the expected variations in ozone amount and distribution. Simulation results are presented in Sect. 3. We will show surface and air temperature responses to various ozone concentrations and spatial distributions and analyze the changes in radiative fluxes and the feedbacks associated with snow-albedo, water-vapor and clouds. Conclusions are summarized in Sect. 4.

CPI

8, 3583–3611, 2012

Ozone and Snowball

J. Yang et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

I

▶ I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

The model used here is the Community Atmosphere Model version 3 (CAM3) developed at the National Center for Atmospheric Research (NCAR). It is based on a Eulerian spectral dynamical core with triangular spectral truncation at 42 wave-numbers and 26 vertical levels from the surface to approximately 2.0 hPa, and it has a horizontal resolution of approximately 2.8° by 2.8° (Collins et al., 2004). The sea-ice component includes an energy conserving thermodynamic model (Briegleb et al., 2004). To simulate a hard Snowball Earth climate, we prescribe an ocean with a fixed sea-ice thickness of 15 m, but snow depth and surface temperature are predicted. Snow depth varies with time, depending on the hydrological cycle, and surface temperature is determined by the surface energy budget. The sea-ice/snow prescription employed herein is similar to that in Le Hir et al. (2007) and Hu et al. (2011a).

In the simulations, the entire surface is covered by sea-ice/snow and no continents are included. As surface temperature ($T_{\rm S}$) is equal to or less than $-1\,^{\circ}$ C, sea-ice albedo and snow albedo are 0.50 and 0.78, respectively. When $T_{\rm S}$ increases from $-1\,^{\circ}$ C to $0\,^{\circ}$ C, sea-ice albedo and snow albedo decrease by 0.075 and 0.124, respectively. $\rm CO_2$ concentration is set to either 100 ppmv or 0.1 bar. Methane concentration is 1.714 ppmv; nitrous oxide concentration is 0.311 ppmv; and the concentrations of both aerosols and CFCs are set to zero. Surface pressure is fixed at 1.0 bar; the influence of pressure broadening associated with a high level of $\rm CO_2$, as discussed in Hu et al. (2011a), can be safely ignored in these simulations. Solar luminosity is fixed at 94 % of the present-day level, i.e. 1283 Wm $^{-2}$. Earth's orbital parameters are fixed to the present values (year 1950).

The simulations we have performed are designed to test five different ozone scenarios. (1) The "Control" experiment: the present-day ozone layer is specified on the basis of the assumption of current monthly but zonally symmetric variations, the same as that employed in the Atmospheric Model Intercomparison Project II (Wang et al., 1995) (Fig. 1a, in units of partial pressure, i.e. mPa). (2) Ozone concentrations of both

CF

Discussion Paper

Discussion Paper

Discussion Paper

Discussion Paper

8, 3583–3611, 2012

Ozone and Snowball

J. Yang et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

I ✓ ►I

Back Close

Full Screen / Esc

Full Screen / Esc

Printer-friendly Version

the stratosphere and the troposphere are uniformly reduced to 50% of the present-day level, which we will refer to in what follows as the "50%" scenario (Fig. 1b). (3) The ozone layer is shifted downward at all latitudes by approximately 4 km, to be referred to as the "Lower" scenario (Fig. 1c). (4) The ozone concentration is scaled in the region poleward of 30° S(N) by a function of $\cos(\varphi)$ (φ is latitude), representing the influence of the relatively weak Brewer–Dobson circulation expected to exist in the extremely cold climate state of a Snowball Earth, to be referred to as the "WBD" scenario (Fig. 1d). (5) The ozone concentration is decreased as in (2) and its vertical and meridional distribution is simultaneously modulated as in (3) and (4), to be referred to as the "50%_Lower_WBD" scenario (Fig. 1e). Sequences of 60-yr simulations were performed for each ozone scenario, initialized with the present-day climate; the last 5 yr of which were employed as the basis for analyses.

3 Results

3.1 Changes of surface and air temperatures

In the Snowball Earth state with unperturbed ozone, annual- and zonal-mean surface air temperature ($T_{\rm S}$) is as low as 220 K in global mean and 240 K at the equator, due to high sea-ice/snow albedo and weak water-vapor and cloud greenhouse effects (Pierrehumbert, 2004, 2005; Le Hir et al., 2007; Hu et al., 2011a). Figure 2 illustrates the changes of $T_{\rm S}$ for the different ozone scenarios. Under the assumption of a ${\rm CO_2}$ level of 100 ppmv, as ozone concentration is uniformly decreased from 100 % to 50 % from the surface to the top of the model, $T_{\rm S}$ is predicted to cool at all latitudes. In global mean, $T_{\rm S}$ decreases by 0.8 K. In the tropics between 30° S and 30° N, surface cooling ranges from 0.4 to 1.0 K. The maximum cooling occurs at 45° S, with changes extending to 2.5 K. The maximum cooling is caused by a strong snow-albedo feedback that we will address in detail in Sect. 3.2 below.

CPI

8, 3583–3611, 2012

Ozone and Snowball

J. Yang et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

 \triangleright

■ ■ Back Close

I

Full Screen / Esc

Printer-friendly Version

Back

As the height of the ozone layer is lowered (the "lower" scenario), ozone concentration in the troposphere increases especially for the upper troposphere, which gives a positive forcing on the surface. As a consequence, the surface temperature increases at all latitudes, except for polar regions. The maximum warming occurs in the subpolar regions of both hemispheres, with a value of approximately 1.5 K (Fig. 2b).

In the case of the "WBD" scenario, ozone concentration is largely reduced at high latitudes, but has nearly no-change in the tropical region. Thus, $T_{\rm S}$ decreases at high latitudes and exhibits relatively small changes at low latitudes (Fig. 2c). When ozone concentration is reduced and its vertical and horizontal distribution is simultaneously modified (the "50 %_Lower_WBD" scenario), $T_{\rm S}$ decreases over almost all of the surface and the maximum cooling occurs in the polar regions, with maximum cooling as high as 4 K (Fig. 2d). In global-mean, changes of surface air temperature are -0.8, 0.3, -0.4, and -0.8 K for the four different scenarios: 50 %, Lower, WBD and 50_Lower_WBD, respectively.

To illustrate temperature responses to ozone changes at all levels, we plot height-latitude cross sections of annual- and zonal-mean air temperature for the control experiment and temperature differences between all other scenarios and the control experiment in Fig. 3. In the Snowball Earth climate state, the tropopause is much lower than that under present conditions, shifting to $\sim 200 \, \text{hPa}$ level from $\sim 100 \, \text{hPa}$ level over the equator. As O_3 is uniformly reduced from $100 \, \%$ to $50 \, \%$, air temperatures of both the troposphere and the stratosphere are decreased. The decrease in air temperature increases with altitudes below $20 \, \text{hPa}$, where a maximum cooling of approximately $13 \, \text{K}$ occurs. The cooling in the stratosphere is due to the fact that less ultraviolet radiation is absorbed, while cooling in the troposphere is caused by decreased downward infrared radiation from the stratosphere to the troposphere, tropospheric O_3 reduction, and water-vapor feedback (see Sect. 3.2 below). Lowing the elevation of the ozone layer is equivalent to increasing ozone in the upper troposphere and reducing ozone in the middle and upper stratosphere. As a result, the upper stratosphere is cooled and the troposphere and lower stratosphere are warmed (Fig. 3c). For the "WBD" scenario.

CPI

8, 3583-3611, 2012

Ozone and Snowball

J. Yang et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

I◀ ▶I

Full Screen / Esc

Close

decreases in ozone concentration lead to cooling in mid- and high- latitudes of both the troposphere and the stratosphere (Fig. 3d). The maximum cooling is approximately 7 K at 50 hPa over polar regions. For the "50 %_Lower_WBD" scenario, air temperatures decrease in both the stratosphere and the troposphere, except for the slight increase in the tropical upper troposphere (Fig. 3e), which is a result of the balance between the downward shift of the ozone layer and the decrease in ozone concentration.

3.2 Radiative fluxes and feedbacks

Changes in surface and tropospheric temperatures are not only due to the direct radiative effect of ozone changes but also due to feedback processes. In the following, we first analyze radiative fluxes at the tropopause and at the surface and then show how feedbacks associated with water-vapor, surface albedo, and clouds influence surface and air temperatures. Figure 4a shows the radiative effect of the stratosphere on the troposphere-surface system in the experiment with unperturbed ozone and 100 ppmv CO₂. Here, the stratosphere is defined as the layer between the top of the model (2 hPa) and the level of 170 hPa, which includes most of the ozone layer. The reason why we choose the 170 hPa pressure level as the "tropopause" is because the model has been modified to have output of radiation fluxes at this pressure level, which simplifies diagnostics of radiation fluxes. Using the standard definition of the tropopause would not change our main conclusions. The shortwave radiation flux at the tropopause is negative, about -4.6 W m⁻², which is due to absorption of ultraviolet radiation by stratospheric O₃. The longwave radiation flux is about 8.7 Wm⁻², which is the downward infrared emission by stratospheric greenhouse gases (e.g. O₃, CO₂, H₂O, CH₄, and N₂O). Thus, the net radiative forcing of the stratosphere on the troposphere is 4.1 Wm⁻² warming in global and annual mean. This value is much smaller than that in the model with present-day conditions (9.7 W m⁻², see Table 1). It is because: (a) solar luminosity in the Neoproterozoic era was approximately 6 % less than present, (b) surface albedo of the Snowball Earth is much higher than that on the present-day Earth (approximately 0.6 vs. 0.3), which weakens the radiative effect of the stratosphere on

CPI

8, 3583–3611, 2012

Ozone and Snowball

J. Yang et al.

Title Page

Abstract

Introduction

Conclusions

References

Tables

Figures

I₫

Close

Back

Printer-friendly Version

the troposphere in the shortwave band, and (c) the stratospheric temperature in the Snowball Earth climate state is much lower than present, and the downward infrared radiation from the stratosphere to the troposphere is thus much weaker. Results of other experiments with different ozone scenarios and CO2 levels are also listed in Ta-5 ble 1 for the global and annual mean.

As stratospheric O₃ concentration is reduced, solar absorption by stratospheric O₃ decreases, resulting in more shortwave radiation (ultraviolet radiation) into the troposphere. On the other hand, stratospheric temperature decreases, causing less downward infrared radiation to the troposphere. The net radiative forcing of the stratosphere on the troposphere, therefore, depends on the balance of the two opposite effects. In previous 1-D radiative-convective model calculations (Ramanathan and Dickinson, 1979; Fels et al., 1980; Forster and Shine, 1997), it was showed that the longwave forcing plays the dominant role, and that the net energy input from the stratosphere to the troposphere decreases for stratospheric ozone reduction for the present-day climate, especially for ozone reduction in the lower stratosphere. This conclusion applies to the Snowball Earth climate, as shown in Fig. 4b, c and Table 1. As ozone concentration is uniformly decreased from 100% to 50% with 100 ppmv of CO₂, the globaland annual- mean downward radiation flux from the stratosphere to the troposphere is increased by about 1.4 W m⁻² in shortwave radiation and is decreased by about 1.9 W m⁻² in longwave radiation. The net change of downward radiation flux is about -0.5 W m⁻². In the case of the "50 %_Lower_WBD" ozone scenario, changes in shortwave and longwave radiation fluxes from the stratosphere to the troposphere are about 1.4 and -1.8 W m⁻², respectively, and the net change in downward radiation flux is about $-0.4\,\mathrm{W\,m^{-2}}$. The greatest decrease in net radiation flux occurs in polar regions, with values of about -1.5 W m⁻² (Fig. 4c). This is consistent with the largest decreases in surface and tropospheric temperatures in polar regions shown in Figs. 2d and 3e.

In the above, we analyzed radiation fluxes at the "tropopause". We now study the changes of radiation fluxes at the "surface" and the feedbacks associated with watervapor, cloud and surface albedo. As ozone concentration in the stratosphere and

8, 3583-3611, 2012

Ozone and Snowball

J. Yang et al.

Title Page Introduction **Abstract**

Conclusions References

> **Figures** Tables

I \triangleright

Back Close

Full Screen / Esc

Ozone and Snowball

J. Yang et al.

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

troposphere decreases, more solar radiation reaches the surface. However, less longwave radiation emits from the atmosphere to the surface. Changes of surface air temperature mainly depend on the net effect between changes in shortwave and longwave radiation.

Figure 5 shows changes of shortwave radiation fluxes absorbed by the surface, downward longwave radiation fluxes, and the net radiation fluxes (shortwave pluses longwave) under clear-sky conditions, as O_3 concentration is reduced from 100% to 50%. In global and annual mean, surface absorption of shortwave radiation is increased by $1.1\,\mathrm{W\,m^{-2}}$, while downward longwave radiation is decreased by $-2.5\,\mathrm{W\,m^{-2}}$. The net change in downward radiation flux is $-1.4\,\mathrm{W\,m^{-2}}$, which is much larger than that at the tropopause $(-0.5\,\mathrm{W\,m^{-2}})$, mainly due to reductions of tropospheric ozone and water-vapor feedback. As the ozone concentration is reduced, the surface and air temperatures decrease and thus less water vapor can be maintained in the air, weakening greenhouse gas effect and further cooling the surface.

In the Snowball Earth simulations here, because sea-ice thickness and coverage are fixed as described in Sect. 2, there is no ice-albedo feedback. However, there exists snow-albedo feedback. As surface temperature decreases due to O_3 reduction, snow depth and/or snow coverage increase. It results in an increase in surface albedo, which consequently causes less solar absorption and further surface cooling, constituting a positive feedback. One can find from Fig. 6a, b that as O_3 concentration is reduced from 100 % to 50 %, snow depth and surface albedo all show increasing in general. The increase of global-mean snow depth is approximately 0.001 m, and the increase of global-mean surface albedo is approximately 0.2 %. The increase in surface albedo causes an approximately 0.5 W m $^{-2}$ solar radiation reflected back to the space (Fig. 6c). In Fig. 6b, the increase in surface albedo peaks at 45° S and 45° N around the snow line, with albedo increases of approximately 5 % and 1 %, respectively. These locations of the maximum increases in surface albedo are consistent with that of the largest increases in snow depth (Fig. 6a) and the largest surface temperature decreases (Fig. 2a), indicating that the positive snow-albedo feedback is strongest in

these regions. The reason why the feedback is strongest in the two regions is because they are associated with upward atmospheric motions that lead to prevailing snowing, thus the snow-albedo feedback cycle is most active.

To further test the effect of snow-albedo feedback, we performed experiments with 5 snow-free sea-ice on the surface. In the absence of snow-albedo feedback, it is found that the decrease in surface air temperature is by a factor of two smaller than that in the corresponding experiments with snow-albedo feedback, 0.4 vs. 0.8 K in global mean for the experiment of 100 ppmv CO2. It suggests that snow-albedo feedback greatly enhances the radiative effect of O₃ changes on surface climate, as found in polar regions in the issue of CO₂ caused global warming (e.g. Hall, 2004).

Decrease in O₃ concentration also causes changes of cloud properties, such as cloud coverage and cloud water path. Cloud changes consequently alter radiative forcing. As O₃ concentration is decreased from 100% to 50%, both liquid-cloud and icecloud water path decrease due to decreases of air temperature and weakness of convection, especially in the regions where the atmosphere has upward motions (Fig. 7). Decrease of liquid-cloud water path weakens the radiative effect of low-level clouds, which generally has a cooling effect on the surface by reflecting solar radiation back to the space. Decrease of ice-cloud water path weaken the radiative effect of high-level clouds, which generally has a warming effect on the surface through absorbing infrared radiation from the surface and re-emitting it back to the surface. As a result, shortwave cloud forcing (SWCF, negative) increases and acts a warming effect, whereas longwave cloud forcing (LWCF, positive) decreases and acts a cooling effect. In global and annual mean, changes of SWCF, LWCF, and the net cloud forcing (SWCF pluses LWCF) are 0.3, -0.6 and -0.3 W m⁻², respectively. The cloud-radiation feedback therefore acts to further cool the surface.

As summarized in Table 1 and Fig. 8, surface downward radiation flux changes due to a 50 % O₃ reduction under clear-sky conditions, due to snow-albedo feedback, and due to cloud-radiation feedback are -1.4, -0.5, and $-0.3\,\mathrm{W\,m}^{-2}$, respectively. The total change of surface energy input is -2.2 W m⁻², and the change of global-mean surface

8, 3583-3611, 2012

Ozone and Snowball

J. Yang et al.

Title Page Introduction **Abstract** Conclusions References

> **Figures** Tables

I \triangleright

Back Close Full Screen / Esc

Back

air temperature is -0.8 K. The value of -1.4 W m⁻² includes two parts: reduction of stratospheric ozone (-0.5 W m⁻²), reduction of tropospheric ozone and decrease of water-vapor amount $(-0.9 \,\mathrm{W\,m^{-2}})$.

3.3 Ozone effect on Snowball-Earth deglaciation

In above simulations, the CO₂ level is all set to 100 ppmv, which approximately represents the Snowball climate state or the formation of the Snowball Earth. In the following, we show simulation results with 0.1 bar of CO₂, which roughly represents the climate state close to the onset of deglaciation of the Snowball Earth. The major difference between 100 ppmv and 0.1 bar of CO₂ experiments is that the latter represents a much warmer climate. In this case, the global- and annual-mean $T_{\rm S}$ is approximately 250 K, in contrast to 220 K for 100 ppmv of CO₂ (Hu et al., 2011a).

Figure 9 shows temperature differences between the "50 %_Lower_WBD" scenario and the control experiment with 0.1 bar of CO₂. T_S is decreased by about 0.4 K in the tropics and by greater values at middle and high latitudes (Fig. 9a). The largest decrease is about -7 K in polar regions, where the snow-albedo feedback is more active, as discussed above. The global- and annual-mean surface temperature decrease is -1.0 K (Table 1), somewhat stronger than that in the case of 100 ppmv of CO₂. Comparison of Fig. 8e with Fig. 8d indicates that the decrease in total downward radiation fluxes on the surface is larger for 0.1 bar of CO2 than that for 100 ppmv of CO_2 , i.e. -3.1 vs. $-2.2\,\mathrm{Wm}^{-2}$, although the reduction of downward radiation flux at the tropopause is nearly the same $(-0.5 \,\mathrm{Wm}^{-2})$, see Table 1). This is because in the much warmer climate the air contains more water vapor, and the same amount of O₃ reduction would lead to more decreases in water vapor and thereby stronger watervapor feedback. Thus, the decrease in downward longwave radiation at the surface under clear-sky conditions is greater in the warmer climate (e.g. -3.8 vs. -3.0 W m⁻²), while the increase in shortwave radiation absorbed by the surface is also greater (1.4 vs. 1.2 W m⁻²). The snow-albedo feedback is also stronger (-1.3 vs. -0.3 W m⁻²)

8, 3583-3611, 2012

Ozone and Snowball

J. Yang et al.

Title Page Introduction **Abstract** Conclusions References **Figures** Tables

Full Screen / Esc

Close

because water cycle is more active in the warmer climate, and air temperature decrease by the same amount of O₃ reduction would lead to more snow accumulated on the surface, especially in polar regions.

O₃ reduction leads to opposite signs of cloud forcing changes for both longwave 5 and shortwave radiation in the two climate states. For 100 ppmv of CO₂, O₃ reduction caused a positive shortwave cloud forcing (0.3 W m⁻²) and a negative longwave cloud forcing (-0.6 W m⁻²). In contrast, the change of cloud forcing in the warmer climate is -0.4 W m⁻² for shortwave radiation and 1.0 W m⁻² for longwave radiation. In the warmer climate state, O₃ reduction tends to increase both ice and water clouds, and it is opposite to that in the colder climate state with 100 ppmv CO₂, in which there is much less water vapor. In the warmer climate conditions, the increase in ice clouds tends to enhance longwave cloud forcing, while the increase in water clouds tends to decrease shortwave cloud forcing. As a result, longwave cloud forcing is increased by about 1.0 W m⁻², while shortwave cloud forcing is decreased by about 0.4 W m⁻², and the positive net cloud forcing of 0.6 Wm⁻² acts to warm the surface. The results of the relatively warm climate simulations are qualitatively consistent with the results for the present climate in Jenkins (1999), but the magnitude of cloud radiative forcing is much smaller. The difference is primarily due to the fact that cloud water path under the extremely cold Snowball Earth climate state is much less than that under present-day conditions, approximately 1.0 vs. 6.0 gm⁻².

Conclusions

We have studied the radiative effect of the ozone layer on the climate of a hard Snowball Earth, with hypothesized ozone concentrations and spatial distributions. It is found that reduction in O₃ concentration can significantly lower surface temperature of a hard Snowball Earth. As O₃ is reduced by 50%, the surface temperature is decreased by about 1.0 K for both 100 ppmv and 0.1 bar of CO₂. The maximum decreases of surface temperature occur at middle and high latitudes, with values as high as 4-7 K.

8, 3583-3611, 2012

Ozone and Snowball

J. Yang et al.

Title Page

Introduction **Abstract**

Conclusions References

> **Figures** Tables

Back Close

Full Screen / Esc

Printer-friendly Version

These indicate that the value of CO₂ threshold would be lower for Snowball Earth formation, but higher for Snowball Earth deglaciation, as the radiative effect of O₃ is considered. That is, the CO₂ threshold has to be lowered by half of pervious results for Snowball Earth formation, and the CO₂ threshold in previous works for melting a hard Snowball Earth has to be higher by about one-third because doubling CO₂ from 0.1 to 0.2 bars causes a 2–3 K increase in surface temperatures (Pierrehumbert, 2004, 2005; Le Hir et al., 2007; Hu et al., 2011a). The results here also have important implications for modern climate change issues related to ozone depletion in the last 20 yr of the 20th century and likely ozone recovery in the 21st century, especially for climate change in the Arctic and Antarctic where snow and ice albedo feedbacks are important and climate conditions are close to our simulations.

Our diagnoses show that the decrease in downward radiation fluxes from the stratosphere to the troposphere caused by O_3 reduction is relatively small, about $-0.5\,\mathrm{W\,m}^{-2}$. However, the net change in downward radiation fluxes absorbed by the surface is about 4–6 times greater than that at the tropopause, about $-2.2\,\mathrm{W\,m}^{-2}$ for 100 ppmv of CO_2 and $-3.1\,\mathrm{W\,m}^{-2}$ for the case of 0.1 bar of CO_2 . The amplification of downward radiation fluxes at the surface is mainly because of feedbacks, such as water vapor, snow-albedo and cloud feedbacks. A final remark is that we only use idealized ozone scenarios in the simulations here. For future study, it requires a fully interactive chemistry–climate model, with which the coupling of atmospheric oxygen, ozone and climate can be more realistically considered.

Acknowledgements. We thank Yan Xia for his helpful discussions. Y. Hu and J. Yang are supported by the National Basic Research Program of China (973 Program, 2010CB428606) and the National Natural Science Foundation of China under Grant 41025018. J. Yang was partially supported by the Over-sea Study Program for Graduate Students of the China Scholarship Council. W. R. Peltier is supported by the Canadian Foundation for Climate and Atmospheric Science and a consortium of Canadian universities and by NSERC Discovery Grant A9627. The required computations were performed on the SciNet facility at the University of Toronto, which is a component of the Compute Canada HPC platform.

CF

8, 3583–3611, 2012

Ozone and Snowball

J. Yang et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

I4 PI

■ Back Close

Full Screen / Esc

Printer-friendly Version

Abbot, D. S. and Pierreuhumbert, R. T.: Mudball: surface dust and Snowball Earth deglaciation,

References

J. Geophys. Res., 115, D03104, doi:10.1029/2009JD012007, 2010. 3586

Briegleb, B. P., Bitz, C. M., Hunke, E. C., Lipscomb, W. H., Holland, M. M., Schramm, J. L., and Moritz, R. E.: Scientific description of the sea ice component in the Community Climate System Model version three, NCAR Tech. Note, NCAR/TN-463+STR, 78 pp., 2004. 3588

Chandler, M. and Sohl, L.: Climate forcings and the initiation of low-latitude ice sheets during the Neoproterozoic Varanger glacial interval, J. Geophys. Res.-Atmos., 105, 20737–20756, 2000. 3585

Canfield, D. E.: The early history of atmospheric oxygen, Annu. Rev. Earth Pl. Sc., 33, 1–36, 2005. 3584

Catling, D. C. and Claire, M. W.: How Earth's atmosphere evolved to an oxic state: a status report, Earth Planet. Sci. Lett., 237, 1-20, 2005. 3584

Collins, W. D., Bitz, C. M., Blackmon, M. L., Bonan, G. B., Bretherton, C. S., Carton, J. A., Chang, P., Doney, S. C., Hack, J. J., Henderson, T. B., Kiehl, J. T., Large, W. G., Mckenna, D. S., Santer, B. D., and Smith, R. D.: Description of the NCAR Community Atmosphere Model (CAM 3.0), NCAR Tech. Note, NCAR/TN-464+STR, 214 pp., 2004. 3588

Cordero, E. C. and Forster, P. M. de F.: Stratospheric variability and trends in models used for the IPCC AR4, Atmos. Chem. Phys., 6, 5369--5380, doi:10.5194/acp-6-5369-2006, 2006. 3587

Donnadieu, Y., Godderis, Y., Ramstein, G., Nedelec, A., and Meert, J. G.: A "Snowball Earth" climate triggered by continental break-up through changes in runoff, Nature, 418, 303-306, 2004. 3585

Fels, S. B., Mahlman, J. D., Schwarzkopf, M. D., and Sinclair, R. W.: Stratospheric sensitivity to perturbationism ozone and carbon dioxide: radiative and dynamical response, J. Atmos. Sci., 37, 2265-2297, 1980, 3592

Fishman, J., Ramanathan, V., Crutzen, P. J., and Liu, S. C.: Tropospheric ozone and climate, Nature, 282, 818-820, 1979. 3587

Forster, P. M. de F., Johnson, C. E., Law, K. S., Pyle, J. A., and Shine, K. P.: Future estimates of radiative forcing due to tropospheric ozone change, Geophys. Res. Lett., 23, 3321-3324, 1996, 3587

8, 3583-3611, 2012

Ozone and Snowball

J. Yang et al.

Title Page

Abstract

Introduction

Conclusions

References

Tables

Figures

Close

I

 \triangleright

Back

Full Screen / Esc

Printer-friendly Version

CPL

8, 3583-3611, 2012

Ozone and Snowball

J. Yang et al.

- Title Page

 Abstract Introduction

 Conclusions References

 Tables Figures

 I

 ▶I
 - Back Close
 - Full Screen / Esc
 - Printer-friendly Version
 - Interactive Discussion
 - © BY

- Forster, P. M. de F. and Shine, K. P.: Radiative forcing and temperature trends from stratospheric ozone change, J. Geophys. Res., 102, 10841–10855, 1997. 3587, 3592
- Gauss, M., Myhre, G., Isaksen, I. S. A., Grewe, V., Pitari, G., Wild, O., Collins, W. J., Dentener, F. J., Ellingsen, K., Gohar, L. K., Hauglustaine, D. A., Iachetti, D., Lamarque, F., Mancini, E., Mickley, L. J., Prather, M. J., Pyle, J. A., Sanderson, M. G., Shine, K. P., Stevenson, D. S., Sudo, K., Szopa, S., and Zeng, G.: Radiative forcing since preindustrial times due to ozone change in the troposphere and the lower stratosphere, Atmos. Chem. Phys., 6, 575–599, doi:10.5194/acp-6-575-2006, 2006.
- Hoffman, P. F. and Schrag, D. P.: The Snowball Earth hypothesis: testing the limits of global change, Terra Nova, 14, 129–155, 2002. 3585
- Hoffman, P. F., Kaufman, A. J., Halverson, G. P., and Schrag, D. P.: A neoproterozoic Snowball Earth, Science, 281, 1342–1346, 1998. 3585
- Hall, A.: The role of surface albedo feedback in climate, J. Climate, 17, 1550-1568, 2004. 3594
- Holland, H. D.: The oxygenation of the atmosphere and oceans, Philos. T. Roy. Soc. B, 361, 903–915, 2006. 3584
- Holton, J. R., Haynes, P. H., McIntyre, M. E., Douglass, A. R., Rood, R. B., and Pfister, L.: Stratosphere-troposphere exchange, Rev. Geophys., 33, 403–439, doi:10.1029/95RG02097, 1995. 3586
- Hyde, W. T., Crowley, T. J., Baum, S. K., and Peltier, W. R.: Neoproterozoic Snowball Earth simulations with a coupled climate/ice-sheet model, Nature, 405, 425–429, 2000. 3585
- Hu, Y. and Tung, K.-K.: Possible ozone induced long-term change in planetary wave activity in late winter, J. Climate, 16, 3027–3038, 2003. 3587
- Hu, Y., Tung, K.-K., and Liu, J.: A closer comparison of early and late winter atmospheric trends in the Northern-Hemisphere, J. Climate, 18, 2924–2936, 2005. 3587
- Hu, Y., Yang, J., Ding, F., and Peltier, W. R.: Model-dependence of the CO₂ threshold for melting the hard Snowball Earth, Clim. Past, 7, 17–25, doi:10.5194/cp-7-17-2011, 2011a. 3585, 3586, 3588, 3589, 3595, 3597
 - Hu, Y., Xia, Y., and Fu, Q.: Tropospheric temperature response to stratospheric ozone recovery in the 21st century, Atmos. Chem. Phys., 11, 7687–7699, doi:10.5194/acp-11-7687-2011, 2011b. 3587
 - Jenkins, G. S.: Examining the sensitivity of Earth's climate to the removal of ozone, landmasses and enhanced ocean heat transport in the GENESIS global climate model, Global Planet Change, 20, 257–279, 1999. 3596

- Kirschvink, J. L.: Late proterozoic low-latitude global glaciation: the Snowball Earth, in: The Proterozoic Biosphere, edited by: Schopf, J. W. and Klein, C., Cambridge University Press, Cambridge, 51-52, 1992. 3585
- Lewis, J. P., Weaver, A. J., and Eby, M.: Snowball versus Slushball Earth: dynamic versus nondynamic sea ice?, J. Geophys. Res., 112, C11014, doi:10.1029/2006JC004037, 2007. 3585
- Liu, Y. and Peltier, W. R.: A carbon cycle coupled climate model of Neoproterozoic glaciation: influence of continental configuration on the formation of a "soft Snowball", J. Geophys. Res., 115. D17111. doi:10.1029/2009JD013082. 2010. 3585
- Liu, Y. and Peltier, W. R.: A carbon cycle coupled climate model of Neoproterozoic glaciation: explicit carbon cycle with stochastic perturbations, J. Geophys, Res., 116, D02125. doi:10.1029/2010JD015128, 2011, 3585
 - Le Hir, G., Ramstein, G., Donnadieu, Y., and Pierrehumbert, R. T.: Investigating plausible mechanisms to escape a Snowball-Earth, C.R. Geosci., 339, 274-287, 2007, 3585, 3588, 3589, 3597
 - Le Hir, G., Donnadieu, Y., Krinner, G., and Ramstein, G.: Toward the Snowball Earth deglaciation..., Clim. Dynam., 35, 285-297, doi:10.1007/s00382-010-0748-8, 2010. 3586
 - Li, D. and Pierrehumbert, R. T.: Sea glacier flow and dust transport on Snowball Earth, Geophys. Res. Lett., 38, L17501, doi:10.1029/2011GL048991, 2011. 3586
- Oka, A., Tajika, E., Abe-ouchi, A, and Kubota, K.: Role of the ocean in controlling atmospheric CO₂ concentration in the course of global glaciations, Clim. Dynam., 37, 1755–1771, doi:10.1007/s00382-010-0959-z, 2010. 3585
 - Peltier, W. R., Liu, Y., and Crowley, J. W.: Snowball Earth prevention by dissolved organic carbon remineralization, Nature, 450, 813-818, 2007. 3585
- Pierrehumbert, R. T.: High levels of atmospheric carbon dioxide necessary for the termination of global glaciation, Nature, 429, 646–649, 2004. 3585, 3589, 3597
- Pierrehumbert, R. T.: Climate dynamics of a Snowball Earth, J. Geophys. Res., 110, D01111, doi:10.1029/2004JD005162, 2005. 3585, 3586, 3589, 3597
- Pierrehumbert, R. T., Abbot, D. S., Voigt, A., and Koll, D.: Climate of the Neoproterozoic. Annu. Rev. Earth Pl. Sc., 39, 417-460, 2011. 3585, 3586
- Poulsen, C. J. and Jacob, R. L.: Factors that inhibit Snowball Earth simulation, Paleoceanography, 19, PA4021, doi:10.1029/2004PA001056, 2004. 3585

8, 3583-3611, 2012

Ozone and Snowball

J. Yang et al.

Title Page Introduction **Abstract** Conclusions References **Figures Tables** I \triangleright

> Back Close Full Screen / Esc

Printer-friendly Version

Poulsen, C. J., Pierrehumbert, R. T., and Jacob, R. L.: Impact of ocean dynamics on the simulation of the Neoproterozoic "Snowball Earth", Geophys. Res. Lett., 28, 1575–1578, 2001. 3585, 3586

Ramanathan, V. and Dickinson, R. E.: The role of stratospheric ozone in the zonal and seasonal radiative energy balance of the earth-troposphere system, J. Atmos. Sci., 36, 1084–1104, 1979. 3587, 3592

Ramaswamy, V., Schwarzkopf, M. D., and Randel, W. J.: Fingerprint of ozone depletion in the spatial and temporal pattern of recent lower-stratospheric cooling, Nature, 382, 616–418, 1992. 3587

Segura, A., Krelove, K., Kasting, J. F., Sommerlatt, D., Meadows, V., Crisp, D., Cohen, M., and Mlawer, E.: Ozone concentrations and ultraviolet fluxes on Earth-like planets around other stars, Astrobiology, 3, 689–708, 2003. 3586

Tajika, E.: Faint young Sun and the carbon cycle: implication for the Proterozoic global glaciations, Earth Planet. Sci. Lett., 214, 443–453, 2003. 3585

Voigt, A. and Marotzke, J.: The transition from the present day climate to a modern Snowball Earth, Clim. Dynam., 35, 887–905, 2010. 3585, 3586

Voigt, A., Abbot, D. S., Pierrehumbert, R. T., and Marotzke, J.: Initiation of a Marinoan Snowball Earth in a state-of-the-art atmosphere-ocean general circulation model, Clim. Past, 7, 249–263, doi:10.5194/cp-7-249-2011, 2011. 3585

Wang, W.-C., Liang, X.-Z., Dudek, M. P., Pollard, D., and Thompson, S. L.: Atmospheric ozone as a climate gas, Atmos. Res., 37, 247–256, 1995. 3588

Yang, J., Peltier, W. R., and Hu, Y.: The initiation of modern "soft Snowball" and "hard Snowball" climates in CCSM3, Part I: The influence of solar luminosity, CO₂ concentration and the sea-ice/snow albedo parameterization, J. Climate, 25, 2711–2736, 2012a. 3585, 3586

Yang, J., Peltier, W. R., and Hu, Y.: The initiation of modern "soft Snowball" and "hard Snowball" climates in CCSM3, Part II: Climate dynamic feedbacks, J. Climate, 25, 2737–2754, 2012b. 3585, 3586

Yang, J., Peltier, W. R., and Hu, Y.: The initiation of modern soft and hard Snowball Earth climates in CCSM4, Clim. Past, 8, 907-918, doi:10.5194/cp-8-907-2012, 2012c. 3585, 3586

CPE

8, 3583–3611, 2012

Ozone and Snowball

J. Yang et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

14

 \triangleright

Close

Printer-friendly Version

Table 1. Comparison of radiative effects of the stratosphere on the troposphere between the present Earth and the Snowball Earth with different ozone scenarios (see text for details). The stratosphere here is defined as the layer between the top of the model (2.0 hPa) and the level of 170 hPa. All of the values are for global and annual mean.

Experiments	SW ^a	LW^b	Net ^c	$\Delta T_{\rm S}^{\rm d}$
	$(W m^{-2})$	$(W m^{-2})$	$(W m^{-2})$	(K)
Present Earth:				
RD79 ^e	-7.2	17.4	10.2	
CAM3 ^f	-7.9	17.6	9.7	
Snowball, 100 ppmv CO ₂ :				
100 %	-4.6	8.7	4.1	
50 %	-3.2	6.8	3.6	-0.8
Lower	-4.7	9.6	4.9	0.3
WBD	-4.3	8.2	3.9	-0.4
50 %_Lower_WBD	-3.2	6.9	3.7	-0.8
Snowball, 0.1 bar CO_2 :				
100 %	-5.4	14.8	9.4	
50 %_Lower_WBD	-3.9	12.8	8.9	-1.0

^a SW is shortwave absorption of the stratosphere multiplied by tropospheric coalbedo (1.0 minus the albedo at the tropopause).

CF

8, 3583-3611, 2012

Ozone and Snowball

J. Yang et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

<u>'</u>

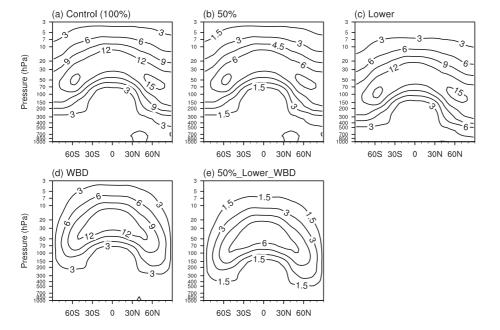
Close

 \triangleright

Back

Full Screen / Esc

(c) (1)


^b LW is downward longwave emission from the stratosphere to the troposphere.

^c Net is SW plus LW.

 $^{^{\}rm d}$ $\Delta T_{\rm S}$ is changes of surface air temperature, relative to the control experiment with 100 % ozone.

^e RD79 is the results from a radiative-convective model obtained by Ramanathan and Dickinson (1979).

^f CAM3 is the results obtained with the model default present-day atmospheric conditions.

Fig. 1. Vertical cross-sections of annual- and zonal-mean O_3 concentration for different scenarios (units: mPa). **(a)** Control (100%), **(b)** 50%, **(c)** Lower, **(d)** WBD, and **(e)** 50%_Lower_WBD. See text for detailed descriptions. Contour intervals are 3, 1.5, 3, 3 and 1.5 mPa, respectively.

8, 3583-3611, 2012

Ozone and Snowball

J. Yang et al.

Title Page

Abstract Introduction

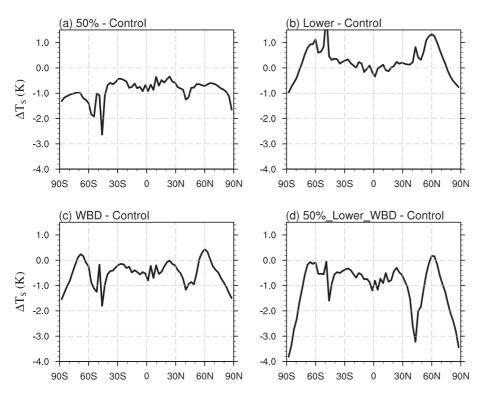
Conclusions References

Tables Figures

4

I

Back



 \triangleright

Full Screen / Esc

Printer-friendly Version

Fig. 2. Differences of annual- and zonal-mean surface air temperatures between various ozone scenarios and the control experiment for 100 ppmv of CO₂. **(a)** 50 %, **(b)** Lower, **(c)** WBD, and **(d)** 50 %_Lower_WBD.

8, 3583-3611, 2012

Ozone and Snowball

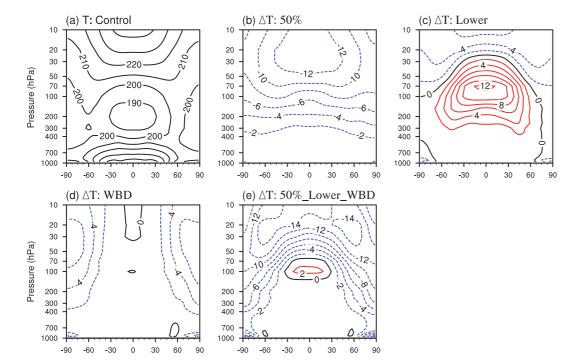
J. Yang et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures


I ✓ ▶I

Back Close

Full Screen / Esc

Printer-friendly Version

Fig. 3. Vertical cross-sections of annual- and zonal-mean air temperatures with the present-day ozone **(a)** and temperature differences between various ozone scenarios and the control experiment. **(b)** 50 %, **(c)** Lower, **(d)** WBD, and **(e)** 50 %_Lower_WBD. The CO₂ level is 100 ppmv. Contour intervals are 10 K in **(a)** and 2 K in **(b–e)**.

8, 3583-3611, 2012

Ozone and Snowball

J. Yang et al.

Title Page

Abstract

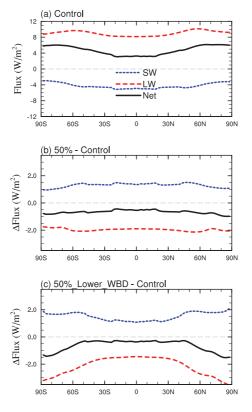
Introduction

Conclusions

References

Tables

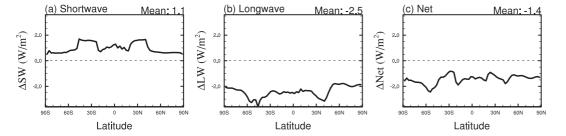
Figures



Printer-friendly Version

Fig. 4. Troposphere-surface radiative energy input under Snowball Earth conditions and 100 ppmv of CO_2 . **(a)** the control experiment, **(b)** differences for the 50 % scenario, and **(c)** differences for the 50 % Lower_WBD scenario. SW: changes of solar absorption by the troposphere and the surface due to existence of the stratosphere; LW: downward longwave emission at the tropopause; Net: SW pluses LW.

8, 3583-3611, 2012


Ozone and Snowball

J. Yang et al.

Printer-friendly Version

Fig. 5. Changes of surface absorbed shortwave radiation fluxes **(a)**, downward longwave radiation fluxes **(b)** and net fluxes **(c**, i.e. shortwave pluses longwave) for the case of 50 % ozone, relative to the control experiment with unperturbed ozone. All of the values are for annual- and zonal-mean under clear-sky conditions. The CO₂ level is 100 ppmv. Positive/negative values indicate warming/cooling effect. Global-mean value is shown at the right top of each panel. In the calculations, the influences of snow-albedo feedback (Fig. 6 below) are excluded.

8, 3583-3611, 2012

Ozone and Snowball

J. Yang et al.

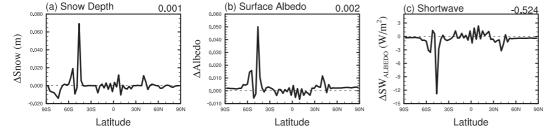
Title Page

Abstract Introduction

Conclusions References

Tables Figures

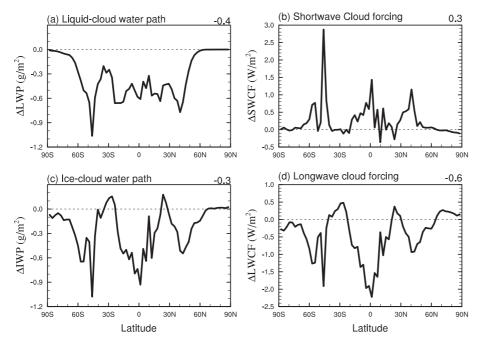
I


I

Back Close

Full Screen / Esc

Printer-friendly Version


Fig. 6. Changes of snow depth **(a)**, surface albedo **(b)**, and absorbed shortwave fluxes due to changes of surface albedo for the case of $50\,\%$ ozone, relative to the control experiment. All of the values are for annual- and zonal-mean under clear-sky conditions. The CO_2 level is $100\,\mathrm{ppmv}$. Global-mean value is shown at the right top of each panel.

8, 3583-3611, 2012

Ozone and Snowball

J. Yang et al.

Fig. 7. Changes of liquid-cloud water path **(a)**, surface shortwave cloud forcing **(b)**, ice-cloud water path **(c)** and surface longwave cloud forcing **(d)** between 50 % ozone reduction and the control experiment. The CO_2 level is 100 ppmv. Global-mean value is shown at the right top of each panel.

8, 3583-3611, 2012

Ozone and Snowball

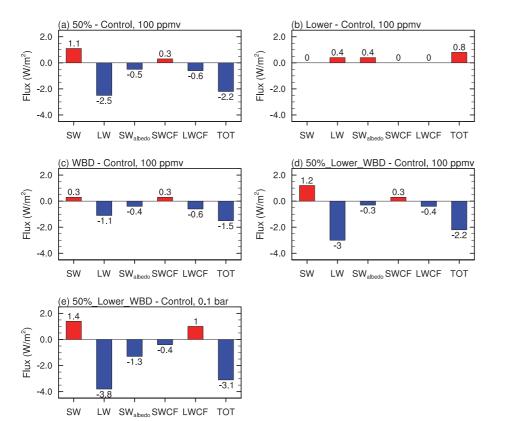
J. Yang et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures


I ◀ ▶I

■ Back Close

Full Screen / Esc

Printer-friendly Version

Fig. 8. Changes of surface radiative fluxes in global and annual mean between various ozone scenarios and control experiments. SW is surface absorbed shortwave flux under clear-sky conditions, excluding the influence of snow-albedo feedback (SW_{albedo}). LW is surface downward longwave flux under clear-sky conditions. SWCF and LWCF are surface cloud radiative forcing in the shortwave and longwave bands, respectively. TOT is the sum of SW, LW, SW_{albedo} , SWCF and LWCF. CO_2 concentration is 100 ppmv in (a–d) and 0.1 bar in (e).

CPI

8, 3583-3611, 2012

Ozone and Snowball

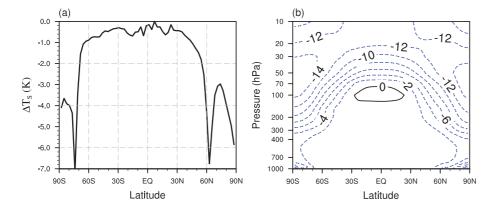
J. Yang et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures


I ► I

Back Close

Full Screen / Esc

Printer-friendly Version

Fig. 9. Changes of annual- and zonal-man **(a)** surface temperature and **(b)** air temperature between the 50 %_Lower_WBD scenario and the control experiment. The CO₂ level is 0.1 bar.

8, 3583-3611, 2012

Ozone and Snowball

J. Yang et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

I ◀ ▶I

■ Back Close

Full Screen / Esc

Interactive Discussion

Printer-friendly Version