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Abstract

Paleoclimate simulations provide us with an opportunity to critically confront and evalu-
ate the performance of climate models in simulating the response of the climate system
to changes in radiative forcing and other boundary conditions. Hargreaves et al. (2011)
analysed the reliability of the PMIP2 model ensemble with respect to the MARGO
sea surface temperature data synthesis (MARGO Project Members, 2009) for the Last
Glacial Maximum (LGM). Here we extend that work to include a new comprehensive
collection of land surface data (Bartlein et al., 2011), and introduce a novel analysis
of the predictive skill of the models. We include output from the PMIP3 experiments,
from the two models for which suitable data are currently available. We also perform
the same analyses for the PMIP2 mid-Holocene ensembles and available proxy data
sets.

Our results are predominantly positive for the LGM, suggesting that as well as the
global mean change, the models can reproduce the observed pattern of change on the
broadest scales, such as the overall land-sea contrast and polar amplification, although
the more detailed regional scale patterns of change remains elusive. In contrast, our
results for the mid-Holocene are substantially negative, with the models failing to repro-
duce the observed changes with any degree of skill. One likely cause of this problem
may be that the globally- and annually-averaged forcing anomaly is very weak at the
mid-Holocene, and so the results are dominated by the more localised regional pat-
terns. The root cause of the model-data mismatch at regional scales is unclear. If the
proxy calibration is itself reliable, then representation error in the data-model compari-
son, and missing climate feedbacks in the models are other possible sources of error.

1 Introduction

Much of the current concern over climate change is based on long-term forecasts
from climate models forced with increased GHG concentrations due to anthropogenic
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emissions. However, a direct assessment of the predictive performance of the models
is not generally possible because the time scale of interest for climate change pre-
dictions is typically for decades or centuries into the future, so we cannot build up
confidence and experience via repeated forecasts on a daily basis as is typical in the
field of weather prediction. Therefore, in order to have confidence in the ability of the
ensemble to provide a believable projection of future climates, we must try to develop
other methods for assessing the performance of models in simulating climates which
may be very different to today.

Paleoclimate simulations provide us with an opportunity to critically confront and
evaluate the performance of climate models in simulating the response of the climate
system to changes in radiative forcing and other boundary conditions. A particularly
attractive feature of using paleoclimate simulations is that (in contrast to the situation
regarding more recent climate changes) it is uncontentious that the performance of
models over these intervals has not been used in their development. Therefore, these
simulations provide a truly independent test of model performance and predictive skill
under substantial changes in external forcing. The extent to which such assessments
may then be used to imply skill for future forecasts is still, however, open to some
debate, since not all the past climate changes are necessarily relevant for the future.
Therefore, models which provide the most realistic simulations of past changes may
not necessarily provide the most accurate predictions of future change. Nevertheless,
the potential of such assessments to help in evaluating model performance provides
strong motivation for research in this area. The sparse and semi-qualitative nature of
paleoclimatic data (for example, interpretation as vegetation type) has motivated the
development of advanced but semi-quantitative methods, such as using fuzzy logic
to measure model-data mismatch (Guiot et al., 1999) and cluster analysis to classify
types of model behaviour (Brewer et al., 2007). With the advent of new more com-
prehensive syntheses of gridded paleodata (MARGO Project Members, 2009; Bartlein
et al., 2011), it becomes possible (if not compelling) to attempt more directly quantita-
tive analyses of model performance, which we undertake here.
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The second phase of the Paleoclimate Modelling Inter-comparison Project, PMIP2,
established a common protocol of boundary conditions for two different paleoclimate
intervals, the Last Glacial Maximum (LGM, 21 ka BP) and the mid Holocene (MH, 6 ka
BP). Of the two, the LGM represents by far the greatest change in climate with signifi-
cantly decreased concentration of atmospheric carbon dioxide (and other greenhouse
gases), and large ice sheets over the northern hemisphere high latitudes. The forcing
of the mid-Holocene is more subtle, with the only changes considered by the models
being that of orbital forcing, and a moderate decrease in atmospheric methane. While
this results in substantial changes in the seasonal and spatial pattern of the insola-
tion, the net change in the annual and global mean is rather small. Rather than large
global changes, perhaps the largest climatic changes during the MH related to shifts in
monsoon patterns, with associated vegetation changes (Braconnot et al., 2007b).

In this paper we extend our previous work presented in Hargreaves et al. (2011),
hereafter H11, which assessed sea surface temperature at the LGM. We use several
state of the art proxy data syntheses for surface temperatures for both the LGM and
MH, and compare them to outputs from the coupled atmosphere and ocean (AOGCM)
and coupled atmosphere, ocean and vegetation (AOVGCM) general circulation mod-
els in the PMIP2 database. For the LGM we additionally include two models from the
3rd phase of PMIP, PMIP3 (those for which sufficient output are available at the present
time). We perform analyses based on quantitative model evaluation methods which are
widely used in numerical weather prediction. We present a rank histogram analysis to
indicate reliability, Secondly we introduce a skill analysis using two different reference
baselines. We also we present Taylor diagrams (Taylor, 2001). These diagrams are a
way of summarising three conventional statistics, and have been widely used to anal-
yse climate model ensemble output in the context of the modern climate. In addition,
we introduce some simple modifications to these conventional statisics to account for
observational uncertainty.

In this paper, we introduce the models and data used in the analysis in Sect. 2. Then
we overview the methods for analysis of reliability and skill in Sect. 3. In Sect. 4 we
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present the results from the LGM and MH, and this section is followed by the conclu-
sions.

2 Models and data
2.1 Last Glacial Maximum

All the PMIP2 models analysed here are either physical coupled climate models com-
prising atmosphere, ocean and sea ice components (AOGCMs), or additionally includ-
ing vegetation modules (AOVGCMs). One of the models, ECBILT, is an intermediate
complexity model (see Table 1). For the LGM, the forcing protocol (Braconnot et al.,
2007a) comprises a set of boundary conditions including large northern hemisphere
ice sheets, altered greenhouse gases including a reduction to 185 ppm for atmospheric
carbon dioxide, a small change in orbital forcing, and altered topography. There are
some minor changes in the multi-model ensemble compared to our previous analysis
of this ensemble (H11). Firstly, the output of the run from IPSL has been updated. In
addition, previously the number of days in each month (which differs between models)
was not taken into account when calculating the annual mean from the monthly data.
This has been corrected, making a small difference to the values of the annual mean
obtained. We use both surface air temperature (SAT) and sea surface temperature
(SST) and therefore use the 9 models in the database for which both these variables
are available. From the new PMIP3 experiments, which were downloaded from the
Coupled Model Intercomparison Project (CMIP5) database, we include the two models
in the database for which both SAT and SST are available. Thus we have a total of 11
models. For PMIP3 the boundary conditions are slightly revised, primarily in relation to
the ice sheet reconstruction (see: http://pmip3.Isce.ipsl.fr/) but still remain sufficiently
similar to those for PMIP2 that a priori it seems reasonable to investigate the features
of the larger ensemble by combining both PMIP2 and PMIP3. We also consider down-
weighting models from centres which have contributed more than one model to our
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ensemble, to account for their likely similarity (Masson and Knutti, 2011). Table 1 indi-
cates which model versions are used in each ensembile.

For comparison with the models we use an updated synthesis of temperature data
representing sea surface temperature, plus land temperature from pollen data and a
small number of estimates from ice cores. This dataset has been previously used by
Schmittner et al. (2011). The ocean data comprise the MARGO synthesis (MARGO
Project Members, 2009) with a small number of points having been updated. These
updated points may not be fully homogenous with the original MARGO dataset as the
data error has not necessarily been estimated in an identical way. The land pollen data
points come from Bartlein et al. (2011) (hereafter B11), which is a somewhat more ad-
hoc data set than the MARGO synthesis, in that the error estimates have been directly
drawn from the original literature in which the underlying data were presented, rather
than being recalculated homogeneously across the data set as in MARGO Project
Members (2009). In addition, the temperature anomalies in B11 are taken relative to
the core tops in contrast to the modern World Ocean Atlas data that were used to
anchor the MARGO anomalies. Ice core error estimate were derived through a variety
of methods. The SST data are analysed on the MARGO 5 degree grid, while all the
land points are on a 2 degree grid. After removing grid points for which SST information
is unavailable in one or more models (due to their differing land sea masks), there are
309 SST points left for comparison with PMIP2, and 300 points for comparison with
PMIP2 + PMIP3. Our goal is to assess the model response to imposed forcing, rather
than the forcing itself, so for the land data we remove those points for which 50 % or
more of the grid point lies under the model’s ice sheet. This affects 11 points, leaving
95 land points for both PMIP2 and PMIP3. Thus we have a total of 404 points for
comparison with PMIP2 and 395 for comparison with the combined PMIP2 and PMIP3
ensemble.

Estimates of the data error uncertainty are included for all the data points, although
we note that the MARGO errors are only defined in terms of their relative reliability,
so as in H11, we assume Gaussian uncertainties scaled by 1°C. The resulting errors
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range from 0.24°C to 6.4 °C across the data set. The model SST output was interpo-
lated on to the 5 degree MARGO grid and the SAT onto the 2 degree B11 grid. We use
equal weighting for each grid box. The data, multi-model mean and data uncertainty
are shown in Fig. 1.

2.2 Mid Holocene

For PMIP2 the mid Holocene protocol includes only two changes compared to the
pre-industrial climate. The orbital forcing is changed, and the atmospheric methane
is moderately decreased (from 760 ppb to 650 ppb). The orbital forcing changes the
seasonal and large-scale spatial pattern of insolation. Globally and annually averaged,
the insolation is the same for pre-industrial and 6ka, and so we expect to see only
a small signal in the annual temperature. Therefore, in addition to annually averaged
temperature, we consider representations of changes in the seasonal temperature sig-
nal. There are 11 AOGCM and 6 AOVGCMs in the PMIP MH ensemble that have both
SAT and SST data available. There is only one AOVGCM, ECHAM, that does not have
a counterpart AOGCM in our ensemble (see Table 1).

For the land temperatures at the MH we use the pollen-based dataset of B11. This
synthesis includes estimates of annual average temperature as well as the tempera-
tures of the hottest and coldest months, which indicate changes in the seasonal cycle.
An uncertainty estimate is also included for all points, which ranges from 0.04 to 4.8°C
over all the variables. The number of data points varies slightly between the different
variables (between 615 and 638), and the data are very clustered with high density
in Europe and North America. The data, and the data error for the hottest month are
shown in Fig. 2.

The “GHOST” SST dataset (Leduc et al., 2010) contains annual average estimates
of annually averaged SST at both 6 ka and core-top for only 81 sites, and, while recog-
nising that the core top is not an ideal or wholly consistent reference point (as the dates,
and therefore climates, represented by the core tops may vary across the data set), we
nevertheless take the difference between these two values to represent the annually
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averaged MH temperature anomaly with respect to the pre-industrial climate. Seasonal
SST data are, as yet, unavailable. Many of these points are quite close to the coast,
and due to varying coastlines in the models, SST output from all models is available
for only 42 points. Data uncertainties are not readily available so for this analysis we
assumed a 1 standard deviation error of 2°C for all the points, which is representative
of the data uncertainty of the MARGO SSTs.

It is clear that for the MH the data coverage is substantially more sparse and less
uniform than for the LGM. As with the LGM analysis, we give equal weight to each
data point. It is possible that the hottest month in the tropics may not be the same for
the models and data due to the ways the calendars are configured (Joussaume and
Braconnot, 1997). We have few data in the tropics, and the actual error in the value
of the anomaly is expected to be small, so we do not expect this to have a significant
effect on our results.

3 Ensemble analysis methods
3.1 Reliability

To assess the reliability of the ensembles we adopt the same approach used in several
recent papers (Annan and Hargreaves, 2010; Hargreaves et al., 2011; Yokohata et al.,
2011), in which we interpret the ensemble as representing a probabilistic prediction of
the climate changes and assess its performance by means of the rank histogram (An-
nan and Hargreaves, 2010) formed by ranking each observation in the ensemble of
predictions for each data point. In the case of a perfectly reliable ensemble (mean-
ing that the truth can be considered as a draw from the distribution defined by the
ensemble), the rank histogram would be flat to within sampling uncertainty. For an en-
semble that is too wide such that the truth is close to the mean, the histogram is dome
shaped. Conversely an ensemble that is too narrow (often not including the truth) has
a U-shaped rank histogram, with large values in one or both end bins. The analysis for
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the PMIP2 LGM ensemble using only the MARGO dataset was already performed in
H11, and overall produced encouraging results. In this analysis we extend this test by
including land data. We also analyse the performance of the ensemble at the MH, for
which a moderately large ensemble of runs is available.

In order to make the models and data comparable, we follow the same procedure as
H11 to account for data uncertainty, by adding random deviates of appropriate mag-
nitude to each model output before calculating the rank histogram. We use the same
statistical tests as H11 to quantify the significance of any divergence from flatness of
the rank histogram (Jolliffe and Primo, 2008). The rank histogram test is only a nec-
essary but not sufficient test of reliability, in that an ensemble which does not have a
flat rank histogram may be considered unreliable, but a flat rank histogram does not
necessitate reliability (Hamill, 2001). Indeed, with a large enough ensemble and fine
data coverage we generally expect the ensemble to be unreliable at some level, and
thus this test is not whether the ensembile is perfect, but rather whether the limitations
are so substantial as to be immediately apparent with this standard test. In previous
applications such as H11 and Yokohata et al. (2011), it has been found that the ranks
of nearby observations are often highly correlated, and therefore the effective number
of degrees of freedom are substantially lower than the number of data points. In order
to estimate the number of degrees of freedom, we adopt the EOF analysis approach
of Bretherton et al. (1999), as used by Annan and Hargreaves (2011). Analysing the
LGM fields of SAT and SST for the model ensembles, we estimate a value of 8 de-
grees of freedom, which we use throughout our analyses. Our results are insensitive
to reasonable changes in this value.

3.2 Skill

The concept of model skill in climate science has been occasionally touched upon, but
it has rarely been clearly and quantitatively defined (Hargreaves, 2010). Here we use
the term skill in the sense in which it is in common use in humerical weather predic-
tion, which is as a relative measure of performance: skill compares the performance
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of the forecast under consideration, to that of a reference technique (Glickman, 2000).
Perhaps the most straightforward of these is the skill score (SS) defined by

E;

where E; is the error of the forecast under evaluation, and £, is the error of the ref-
erence technique. A perfect forecast will have a skill score of 1, one which has errors
equal to that of the reference will have a skill score of 0, and a negative skill score
implies that the errors of the forecast are greater than that of the reference. It is con-
ventional to describe a forecast with positive skill score as “having skill”, but note that
this is always defined relative to a specific reference. So for example, using a root mean
square difference to evaluate the forecast, one has,

_ [ 2i(m;=0;)?

where m; are the forecast results, o; the data and n; the reference. According to this
equation, however, in the presence of error on the data, even a perfect model (where
the model prediction precisely matches reality) would not achieve a skill of 1. Especially
in the case of paleoclimates, the uncertainty on the data is often substantial (Harg-
reaves et al., 2011), and must be taken into account for a fair evaluation. We therefore
modify Eq. (1) as follows:

_0.)2— 2
S-1._ 2(m;—0;)? -2 (e7) 3)

>(n; -0, -3 (e?)

where e; are the one standard deviation uncertainties on the observations. The numer-

ator and denominator in the fraction have here been adjusted to account for the obser-

vational errors, under the assumption that these are independent of the forecast errors.
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Note that the skill score here becomes undefined if either the model or the reference
agrees more closely with the data than the data errors indicate should be possible.
Such an event would be evidence either that the data errors are overestimated, or else
that the model had already been over-tuned to the observations. In principle, no model
should agree with the data with smaller residuals than the observational errors, since
even reality only just achieves this close a match, and then only if the observational
errors have not been under-estimated.

For the obvious reason that forecasts are have not been generally realised in climate
models, skill analyses for climate model predictions are rare. One simple analysis was
performed by Hargreaves (2010), which indicated that, at least on the global scale, the
30yr forecast made by Hansen to the USA congress in 1988 had some skill (regional
data were not available for testing). We are not aware of previous analyses of model
skill for paleoclimates and it has not been established what might be an appropriate ref-
erence forecast for such calculations. In numerical weather prediction, persistence (that
tomorrow’s weather is the same as today’s) is a common baseline for short-term fore-
cast evaluation, and seasonal prediction (where persistence is clearly inappropriate)
may use the climatology as a reference. An analogous reference for climate change
predictions might be that the climate persists, that is, a reference of no change. It
should be clear that this is a rather minimal baseline to beat, only requiring that the
model predicts any forced response at each location to within a factor of anywhere be-
tween 0 and 2 times the correct amplitude (on average). We might reasonably hope for
our models to perform rather better than this, and provide a useful prediction not only
of the overall magnitude, but also the spatial pattern of change. Thus we also employ
a second reference to tests the pattern of the change more directly. For this reference
forecast, the climate change is assumed to be a uniform change equal to the mean
change of the available data. This represents the case of a perfectly-tuned zero di-
mensional energy balance, in which the global mean temperature change is predicted
which optimally matches the data, but without any information on the spatial pattern.
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In order to have skill with respect to this reference, the model must also represent the
spatial pattern of change.

3.3 Conventional Taylor diagram analysis

We also present an analysis of the model outputs in terms of the conventional statis-
tics of (centred) RMS difference, correlation and field standard deviation which will
be familiar to many readers. Such values are conveniently presented in a Taylor dia-
gram (Taylor, 2001) which summarises these three values with a single point. The usual
calculation and presentation of these statistics does not account for observational un-
certainty, and Taylor (2001) only suggests investigating the effect that this might have
on the results through the use of multiple data sets, which we do not have here. How-
ever, since we do have estimates of observational uncertainty, we can instead adjust
the statistics to account for this. We present our results based on two approaches.
First, we present the conventional results, without accounting for observational uncer-
tainty, but also indicate where a hypothetical “perfect model” (which exactly matches
the real climate system) should be located. This is straightforward to calculate, as its
RMS difference from the actual observations should equal the RMS of the observa-
tional errors, and the observational standard deviation is the sum (in quadrature) of
that of the underlying (but unknown) true field, and the errors.

An alternative approach, is to correct the statistics for each model, to indicate where
they should be relative to perfect observations. This is also a simple calculation when
error estimates are known.
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4 Results
4.1 Last Glacial Maximum analyses
41.1 LGM reliability

Figure 3 shows the reliability analysis for the combined LGM ensemble of 11 models
for all the points at which we have data. Overall, the ensemble has a rank histogram
which cannot be statistically distinguished from uniform (Fig. 3b), and the differences
between the data and the ensemble mean (Fig. 3c) are mostly of similar magnitude
to the uncertainty in the data. Looking at the map in Fig. 3a, there are some patches
that are predominantly red or blue, indicating the spatial limit to the reliability. Analysing
the ocean and land data separately (Fig. 4) we find that, assuming 8 degrees of free-
dom, the ensembile is statistically reliable with respect to both. However we note that
the histogram for the land (Fig. 4c) has a fairly large peak at the left hand side, in-
dicating that the ensemble tends to have a greater anomaly than the data. It is also
apparent that the difference between the ensemble mean and the data is larger for the
land than for the ocean (Fig. 4d). This model-data difference exceeds the quoted data
uncertainty much more frequently for the land than for the ocean. Paleoclimate data
are derived from measurements made from cores drilled into the surface of the earth
at discrete locations. The open ocean may be considered quite well mixed, whereas
land has many more local features due primarily to high resolution topography. Thus
it may be more difficult to derive a representative grid box average temperature from
the data for direct comparison with the models over the land, than over the ocean. On
the grid scale of the models, one sees more variation over land than ocean, but even
so it is likely that the resolution at the finest scales there is under-represented (due to
smoothing in the forcing, boundary conditions, and dispersion in the model numerics).
Thus it is understandable that the model data mismatch is greater over the land. It is
important that more work is done to identify, quantify and, if possible, reduce these
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kinds of representation errors between the models and data so that future model-data
comparisons can be as informative as possible.

To create the ensemble, we simply aggregated all the AOGCM and AOVGCMs avail-
able in the PMIP2 and CMIP5 databases. While there has been discussion in the lit-
erature about the similarity of models based on their origins and design (Masson and
Knutti, 2011) there is little consensus about how to treat this, so we start from the
premise of assigning equal weight to each model. Including two model versions that
are identical to each other would be clearly pointless and indeed harmful as it would
be equivalent to double-counting one model and would actually reduce the effective
sample size of our ensemble, thereby degrading the results. We do not have identical
models in this ensemble, but it is possible that some of the models are very simi-
lar. For example, we already know that the only difference between MIROC3.2 and
MIROCS.2.2 (which are both in the PMIP2 database) is that one minor bug has been
fixed in the latter, so we included only the latter model in the ensemble. For substantially
updated versions of the same model (such as might exist in consecutive iterations of
the PMIP experiments) we would expect the differences to be rather greater. But, ide-
ally we should wish for each new model included in the ensemble, to be not particularly
more similar to one existing model than it is to all the others.

With this in mind, we performed some sensitivity analyses into our treatment of the
ensembles. Excluding the two PMIP3 models which provide both SAT and SST does
not make a difference to the level of reliability, a result consistent with the suggestion
that CMIP3 and CMIP5 models do not appear to have substantially different behaviour
in distribution (though with only two PMIP3 models, any difference would be hard to
detect in any case). Analysing SAT alone for the four PMIP3 models presently available
for which earlier model versions were also presented in PMIP2, and comparing them
to the combined PMIP2 and PMIP3 database (14 models in total) in terms of bias,
correlation and mean square difference, we find that the PMIP2 version of the same
model in the PMIP3 database is not usually the most similar model but is usually in
the top three, although it may be as low as sixth. We also analysed the PMIP2 AO and
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AOV models in the same way, and found that they were very similar in terms of RMS
difference and spatial correlation, although they typically have a significant mean bias.
From the similar pairs, it is not clear which model should be excluded. Thus, in order
to make a conservative ensemble on which to test the robustness of our results, we
reanalysed the ensemble giving half weight to each member of each pair of related
models in the ensemble. In the case of our 11 member ensemble, this means that
the PMIP2 and PMIP3 IPSL models had half-weight each as did the PMIP2 HadCM2
AO and AOV models. The results of the rank histogram analysis are not significantly
different for those using the whole ensemble equally weighted.

4.1.2 LGM skill

Figure 5 shows the results for the skill calculations for the LGM anomaly. For the PMIP2
and PMIP3 models we analysed ocean and land both separately and together, and we
also calculated the skill for the multi-model mean along with each model individually.
For the first reference forecast, of a zero LGM anomaly, there is skill for both the land
and the ocean individually, and both combined. As expected (Annan and Hargreaves,
2011) the multi-model mean performs relatively well. Thus we can see that in general
the models are producing a cooling that, overall, is of the same scale as the data. As
mentioned above, this is, however, a rather limited test. A skill score of 0.5 indicates
that the modelled anomalies are typically 50 % greater or smaller than observed.

The second reference forecast is of a uniform field equal to the data mean. This
provides a much greater challenge to the models, as they have to not merely reproduce
a broad-scale cooling of the correct magnitude (which the reference forecast already
achieves), but must also represent the spatial pattern and magnitude of changes. While
on the face of it, this still does not seem like a highly challenging requirement (given the
well-known phenomena due to land-ocean contrast and polar amplification), none of
the models have high skill against this reference, and in fact more than half the models
have negative skill when assessing the land and ocean separately (which eliminates
the strong influence of the land-sea contrast). The skill of the multi-model mean is
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generally greater, especially for the ocean where it outperforms all of the ensemble
members, and is also positive for the land. This indicates that the broad scale features
which are what remains after the models are averaged, do bear some relation to the
spatial pattern in the data.

The combination of land and ocean together shows much improved skill for all the
models compared to land and ocean separately, indicating that the models are at least
to some extent capturing the land-sea contrast in the changes at the LGM. This is
encouraging, especially in light of recent work (Schmittner et al., 2011) in which an in-
termediate complexity model underestimated this land-sea contrast significantly. In the
data, the LGM anomaly is larger over the land than the ocean, with the simple averages
of the data points over these regions being —6.53°C and —1.98 °C respectively, giving
a land-ocean ratio of 3.30. For the models, the averages over the datapoints are from
—-3.59°C to —9.00°C over the land and from —1.88°C to —2.95°C over the ocean, and
the land-ocean ratios range from 1.90 to 3.09. So the data ratio is outside the model
range, but not necessarily to an alarming degree. It seems plausible that missing forc-
ings (such as dust forcing) may have more effect over land than ocean (Schmittner
et al., 2011), which could imply the error is more in boundary conditions rather than
models themselves. Overall it must be noted that the levels of skill are not particularly
high based on either of the two reference forecasts, suggesting that much of the re-
gional to fine scale spatial pattern of the change is not being reproduced by the models
and that there is plenty of scope for improvement.

4.1.3 LGM Taylor diagram

Conventional statistics are presented in the form of a Taylor diagram in Fig. 6. The
modelled LGM anomalies shown in the top plot have correlations with the data which
range from around 0.4 to almost 0.7, with a centred RMS difference which is some-
what lower than the standard deviation of the data itself (which is 3.5°C in this case).
However, observational errors are quite large, as is indicated by the location of the the-
oretical “perfect model”. The lower plot shows that if instead we had “perfect data” with
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no observational uncertainty, we could expect the correlations to mostly lie in the range
0.6—0.8 and the RMS difference from the data would also be substantially smaller.

4.2 Mid Holocene analyses - reliability and skill

For the MH we have no seasonal information for the ocean so most of our analyses
were for the land only. These comprised the anomaly for the annual average, and the
hottest and coldest months. Given the nature of the forcing, the change in the magni-
tude of the seasonal cycle would seem the most obvious target for the MH, but there
is some concern that the calculating the anomaly of the hottest month minus cold-
est months may not provide a completely fair comparison with the data as the same
proxies are not used to compile the two datasets. For the land and ocean together we
analysed the annual average anomaly only. For the MH we have several models with
both AOGCM and AOVGCMs versions (see Table 1), so, as well as the full ensem-
ble we also analyse a conservative ensemble where versions of the same model are
downweighted so that each underlying model has a total weight of 1.

In comparison with the LGM, for the MH we have far more land data points and far
fewer ocean points. As discussed in Sect. 4.1.1, the models tend to match the data less
well over land than ocean, so a larger overall model-data mismatch for these analyses
does not necessarily mean that the models are intrinsically worse at simulating this
interval. For the LGM the model skill was poorer when tested on smaller spatial scales
(through the second reference forecast), but for the MH the climate forcing is not ex-
pected to cause climate change at the larger scales. For these reasons, we expect this
interval to provide a greater challenge for the ensemble.

The results obtained are indeed mostly negative for both the reliability and skill anal-
yses. Of all the analyses, only three ensembles are not shown to be unreliable (through
significantly non-uniform rank histograms), and even these are clearly tending towards
being U-shaped (see Fig. 7). These are the mean temperature anomaly for land and
ocean for the conservative ensemble, and the coldest month anomaly for both the full
and conservative ensembles. The anomaly for the hottest month is unreliable. This
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anomaly is also considerably larger in the models than that of the coldest month, and
thus although we do not directly test it, we anticipate that the anomaly in the seasonal
cycle is also unlikely to be reliably predicted by the models.

For the skill analysis, the picture is even worse, with most models having negative
skill and no models or model means having skill greater than 0.01 (not shown). There
is no indication in the skill results, or in an analysis of the RMS model-data differences,
that the AOVGCMs models perform any better than the AOGCMs. This is somewhat
disappointing as it is widely thought that vegetation feedbacks had a strong influence
on the climate of the MH interval. The nearest thing to a positive result in these analysis
is the relatively good result for the land and ocean together in the conservative ensem-
ble, which suggest that model-data comparison may be more successful if better data
coverage of the oceans could be obtained. The Taylor diagram (Fig. 6) also indicates
similarly poor results for the MH hottest month. Correlations are typically negative (al-
beit small), and the model fields exhibit substantially too small variability. In contrast to
the situation for the LGM in Sect. 4.1.3, accounting for observational uncertainty (which
is relatively small) does not improve these results significantly.

The model forcing for the MH is principally a smooth temporal and latitudinal variation
in the insolation, and the model responses are similarly smooth. The data, however, are
highly spatially variable (Fig. 2). As discussed above in reference to the LGM, there are
a number of possible causes of this high frequency mismatch, including both represen-
tation error in the data and a lack of high frequency information in the model at the
smallest scales. In order to more clearly show the regional patterns we have rebinned
the data and the multi-model mean for the hottest month to 10 degree boxes. The result
is shown in Fig. 8. In Europe and Africa, the anomaly appears predominantly positive
and is greater at lower latitudes. In North America, the anomalies are smaller and more
mixed. The data are, however, generally sparse so it is far from certain whether or not
there is a significant spatial pattern in the data. What is clear is that to the extent that
there is a pattern in the data across these regions, it is substantially different to that
of the multi-model mean response to the forcing. Thus it appears that the model-data
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mismatch is not just due to high frequency noise. The reasons behind this model-data
mismatch on the regional scale require further investigation from both the model and
data communities. Better global coverage of data is clearly required, but it also seems
plausible that the model forcings or feedbacks are inadequate.

5 Conclusions

In this paper we extended our previous analysis of the LGM to include more data,
more models, and the MH interval. We also performed the first conventional analysis
of predictive skill for paleoclimate GCMs, and present Taylor diagram summaries for
both intervals. In these model-data comparison exercises, we have obtained gener-
ally positive and encouraging results for the LGM, showing that the models produce
generally reasonable and informative predictions of the large-scale response to strong
forcing. However, limitations are apparent at finer scales. The model-data mismatch is
quite large but it is possible that representation error in the data is obscuring the signal,
particularly on land.

The MH, with its much smaller net climate forcing, clearly highlights the difficulties of
reproducing regional-scale patterns of climate change. For this experiment the global
climate change signal is very small, and the changes are regional and seasonal in
nature, possibly involving significant vegetation feedbacks. We find that for the MH,
the ensemble is largely unreliable, with zero skill. Furthermore, it appears possible
from examination of the data that there are coherent spatial patterns in reality that are
not quantitatively reproduced by the models. While more qualitative approaches have
found some positive results (Brewer et al., 2007), our direct comparison of gridded data
to model output highlights the substantial discrepancies. On the other hand, it should
be noted that the models are responding to the applied forcing much in the way that
would be expected from simple physical intuition, with changes in seasonality directly
relating to the changes in radiative forcing. A likely cause of the mismatch is missing or
erroneous feedbacks in the model, perhaps due to poor representations of vegetation.
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However, it should also be noted that the data are not well distributed around the globe,
with high density in Europe and North America, but very poor coverage elsewhere on
land and in the oceans. Data coverage must be improved for us to be confident that the
models are really missing some major feedbacks.

For the point of view of directly using existing models to constrain future climate, the
LGM with its large forcing seems the most promising of the two experiments. However,
climate science is now facing the challenge of predicting future changes on regional
scales, which includes the requirement to correctly model vegetation and many other
feedbacks. Our results provide some sobering evidence of the limits to the ability of
current models to accurately reproduce the local patterns of change that are seen in
paleoclimate data. Therefore, unlocking the reasons for the local to regional model-data
mismatch for paleoclimates should be a powerful contribution to furthering progress in
this area.
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Table 1. Overview of the model versions used in the different ensembles analysed. The names
correspond to the filenames in the PMIP2 and CMIP5 databases.

Model PMIP2 LGM AOGCM PMIP2 LGM AOVGCM PMIP3 LGM PMIP2 MH AOGCM  PMIP2 MH AOVGCM
CCsM CCSM3 CCSM3

CNRM CNRM-CM33

CSIRO CSIRO-Mk3L-1.1*

ECBILT" ECBILTCLIO ECBILTLOVECODE ECBILTLOVECODE
ECHAM ECHAM53-MPIOM127-LPJ ECHAM53-MPIOM127-LPJ
FGOALS FGOALS-1.0g FGOALS-1.0g

FOAM FOAM FOAM

GISS GISSmodelE

HadCM3 HadCM3M2 HadCM3M2 UBRIS-HadCM3M2a  UBRIS-HadCM3M2
IPSL IPSL-CM4-V1-MR IPSL-CM5A-LR  IPSL-CM4-V1-MR

MIROC MIROC3.2.2

MPI MPI-ESM-P

MRI-nfa MRI-CGCM2.3.4nfa  MRI-CGCM2.3.4nfa
MRI-fa MRI-CGCM2.3.4fa MRI-CGCM2.3.4fa

" ECBILT is the only EMIC in the ensemble. All the other models are full general circulation models.
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(b) LGM anomaly, Data Uncertainty
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Fig. 1. (a) LGM temperature anomaly for the data.The colorbar axes are chosen to best dis-
play the data. The actual minimum and maximum are —16°C and 6.32°C. (b) The value of
the uncertainty on the annual mean included in the data synthesis. Max. = 6.42, Min. =0.24
Mean =1.73.
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Fig. 2. Mid Holocene temperature anomaly for the hottest month: (a) Data, Max. =10.0°C, Printer-friendly Version
Min. = —20.1°C, (b) Data error, Max. = 3.3, Min. = 0.05, Mean = 0.96.
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(a) Rank of data in model ensemble.
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Fig. 3. (a) The rank of the data in the 11 member LGM ensemble. (b) Rank histogram of the
ranks in plot (a). (¢) The histogram of the difference between the ensemble mean and the data
for each data point in plot (a). A low rank indicates that the climate change is greater in the
models than the data.
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(a) Rank histogram for ocean points (b) Ensemble mean bias
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Fig. 4. Rank histograms and mean bias histograms for the LGM anomaly, considering the
ocean and land separately.
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Fig. 5. Skill for the LGM anomaly. The top plot shows the result using the first reference, that
the LGM anomaly is zero, and the lower plot the results using the second reference, that the

LGM anomaly is equal to the data mean.
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(a) Conventional Taylor Diagram
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(b) Adjusted Taylor Diagram
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Fig. 6. Taylor diagrams for the LGM mean temperature anomaly and MH hottest month
anomaly. The top plot shows conventional analysis, with the location of the “perfect model”
indicated for comparison. The lower plot shows the analysis where model statistics are cor-
rected to account for observational errors. All results are normalised by the standard deviation
of the data fields.
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Fig. 7. Rank histograms for the three out of the eight ensembles analysed for the mid-Holocene
which passed the statistical test for reliability. They nevertheless show a tendency towards
being too narrow.
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