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Abstract

A statistical framework for comparing the output of ensemble simulations from global
climate models with networks of climate proxy and instrumental records is developed,
focusing on near-surface temperatures for the last millennium. This framework includes
the formulation of a joint statistical model for proxy data, instrumental data and simula-5

tion data, which is used to optimize a quadratic distance measure for ranking climate
model simulations. An essential underlying assumption is that the simulations and the
proxy/instrumental series have a shared component of variability that is due to tempo-
ral changes in external forcing, such as volcanic aerosol load, solar irradiance changes
and greenhouse gas concentrations. Two statistical tests are formulated. Firstly, a10

preliminary test to establish whether a significant temporal correlation exists between
instrumental/proxy and simulation data. Secondly, the distance measure is expressed
in the form of a test statistic of whether a forced simulation is closer to the instru-
mental/proxy series than unforced simulations. The proposed framework allows any
number of proxy locations to be used jointly, with different seasons, record lengths15

and statistical precision. The new methods are applied in a pseudo-proxy experiment.
Here, a set of previously published millennial forced model simulations, including both
“low” and “high” solar radiative forcing histories together with other common forcings,
were used to define “true” target temperatures as well as pseudo-proxy and pseudo-
instrumental series. The pseudo-proxies were created to reflect current proxy locations20

and noise levels, where it was found that the low and high solar full-forcing simulations
could be distinguished when the latter were used as targets. When the former were
used as targets, a greater number of proxy locations were needed to make this dis-
tinction. It was also found that to improve detectability of the low solar simulations,
increasing the signal-to-noise ratio was more efficient than increasing the spatial cov-25

erage of the proxy network. In the next phase of the work, we will apply these methods
to real proxy and instrumental data, with the aim to distinguish which of the two solar
forcing histories is most compatible with the observed/reconstructed climate.
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1 Introduction

Studies that compare climate reconstructions for the last millennium with climate model
simulations have contributed significantly to our understanding of natural and anthro-
pogenic climate change. Based upon results from such investigations, the Intergov-
ernmental Panel on Climate Change concluded in its fourth assessment report, that5

volcanic and solar forcings have very likely affected NH mean temperature over the
past millennium, that external influences explain a substantial fraction of inter-decadal
temperature variability in the past; and that the climate response to greenhouse gas
increases can be detected in a range of multi-proxy reconstructions during recent
decades (Hegerl et al., 2007b). More recently, detection of temperature changes10

and their attribution to external influences, such as the concentration of stratospheric
aerosols and possibly changes in total solar irradiance, have been made at a regional
(European) scale for the last five centuries (Hegerl et al., 2011). Moreover, spatial
patterns of temperature and precipitation changes, as well as the movement of the
intertropical convergence zone, have began to be understood in terms of dynamical15

responses to natural radiative forcing changes (Mann et al., 2009; Sachs et al., 2009;
Graham et al., 2011). A growing size of climate model simulation ensembles for the
last millennium (e.g. Jungclaus et al., 2010) and a constantly increasing number of lo-
cal/regional climate reconstructions from proxy data (Jones et al., 2009) will make it
possible to undertake a more systematic evaluation of model simulations against proxy20

data. However, the growing amount of information also calls for new statistical tools
for evaluating the models against the reconstructions. Statistical measures of model
performance in terms of mean square errors have long since been used within weather
prediction to compare different forecast systems and to track forecast improvements
over time (Krishnamurti et al., 1999). These ideas have developed into methods for25

the detection and attribution of climate change signals using the instrumental record
(Allen and Tett, 1999) and palaeoclimate reconstruction data (Hegerl et al., 2007a),
as well as techniques for data assimilation of climate proxy data in model simulations
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(Goosse et al., 2006; Widmann et al., 2010). Statistical measures of climate model
performance can use spatial correlations found in natural climate variability and also
combine information from several climate field variables (Mu et al., 2004). However,
explicit treatment of the model and observational data error terms in the formulation of
performance metrics becomes a great challenge when dealing with climate proxy data5

because they are typically associated with substantial uncertainties, including mixed
seasonal signals and time-scale dependent, temporally unstable climate-proxy rela-
tionships. Moreover, the available proxy data are irregularly distributed in space, vary
in seasonal representativeness and can reflect different climate variables (Jones et al.,
2009). Our aim is to address some of these problems and formulate a statistical frame-10

work for evaluation of climate model simulations against a diverse set of climate proxy
series. We will assume that evaluation of the models against modern instrumental
gridded data sets has already been made and that the models to be tested have been
judged to simulate the current climate conditions reasonably well. Hence we focus
on problems connected with how to use climate proxy data for model evaluation back15

into the pre-instrumental period. We demand that the proxies have sufficiently high
temporal resolution and dating precision to allow direct calibration against instrumen-
tal climate time series. In practice, this requirement excludes many types of proxy
data and also time periods beyond the last millennium. Tree-ring data and historical
documentary proxies are annually resolved and have exact dating, which make them20

suitable. Some proxies with lower resolution, but still with a great deal of precision
in their dating, may also be considered provided that their sampling resolution is high
enough to allow meaningful calibration against overlapping instrumental series.

We start by formulating a statistical model, where we have near-surface tempera-
tures in mind, from which a climate model evaluation framework is developed. Note that25

other climate variables, such as precipitation or a drought index, are probably more dif-
ficult to model and may require substantial modification of the theory presented below.
To investigate the performance of our framework, we undertake a pseudo-proxy exper-
iment where we study the possibility to distinguish between climate model simulations
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that use different past climate forcings. The purpose with this exercise is to learn, under
controlled conditions, about the possibility to identify simulations that show a statisti-
cally significant fit to real climate proxy data and, when several simulations achieve this,
to rank them according to their goodness of fit. This knowledge will help understanding
of how to interpret results obtained when the simulations are compared with real proxy5

data.

2 Two statistical models

We assume the climate characteristic of interest, to be called τ, is a temperature time
series representing a particular region during some time period, divided into a number
of time units yielding a sequence of values τi , i =1, ..., n, where the subscript i rep-10

resents time. Typically this region consists of a single model grid-box, but averages
over several grid-boxes can also be considered. The time unit can be single years or
equally say, averages over a ten-year or thirty-year period. To begin with, we only con-
sider temperatures for a single region and a particular season, but later (in Sect. 7) we
will investigate how to combine data from different regions and seasons. Let15

– x=a simulated temperature value for the region and time period of interest, gen-
erated by a climate model.

– τ =a true temperature, corresponding to x; a spatial and temporal average over
the region and the time unit. The true temperature is an unobserved (or latent)
variable, except in those cases where we set τ = y , see below.20

– y =a measured temperature, intended to represent τ, being also some average
over space and time, and available for some period of time. This measured value
y can differ from τ because of measurement errors, but also because y and τ are
somewhat different spatial and temporal averages (typically, y is an average taken
over a finite set of irregularly spread observing stations and for a set of possibly25
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time-varying observation hours). Sometimes we will assume that this observed
temperature well enough approximates the true temperature τ, so we can neglect
measurement type errors in these observations. However, often in practice we
expect some non-negligible errors to exist.

– z=a proxy for the true temperature, τ. When observed temperatures y are not5

available, proxy measurements will be used. Here we ignore all practical problems
connected with how to construct temperature proxy series from raw proxy data
(e.g. tree-ring width or density measurements). Hence, we think of a proxy series
as a final product for use in climate reconstruction (e.g. a tree-ring chronology),
constructed in the best possible way.10

The following statistical model explicitly allows climatic forcing effects jointly in the cli-
mate model simulations and in the actual temperature. This is crucial, since inclusion of
temporally varying external forcings in the climate model simulation is the only reason
to expect any temporal correlation between simulations and actual temperature. The
forcing effects can, for example, be the temperature response to radiative forcing from15

stratospheric aerosols ejected from large volcanic eruptions or the response to varia-
tions in solar radiation. Note that any type of forcing imposed on the climate model is
not a true reflection of reality because the forcing history is incompletely known regard-
ing its temporal evolution, its amplitude and its spatial distribution pattern. Moreover, it
is typically only crudely represented in the simulations. Its effect on temperature need20

not be the same in reality as in the model because these worlds may have different
sensitivities to the forcing and possibly also different spatial response patterns. For
simplicity we will assume that the relationship between the true and simulated forcing
effect is (approximately) proportional, when measured as deviations from the mean
values of τ and x, but with an unknown proportionality constant.25
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Statistical Model 1 Climate model simulation sequence {xi}, true climate sequence
{τi}, instrumental measurement sequence {yi}, and proxy sequence {zi} are mutually
related through the following model, explained below:

– xi = µx + αξi + δi

– τi = µτ + ξi + ηi5

– yi = τi + θi

– zi = µz + β(τi − µτ) + εi

Here, Greek letters are used for latent variables, random variables, unobserved er-
rors and unknown coefficients, to indicate their unobservability. In contrast, x, y and
z are observed or measured. Terms µx, µτ and µz are the mean values over time,10

around which x, τ (and y), and z vary. Quantities ξ, δ, η, θ, and ε are regarded as
random variables, with mean values zero and variances σ2

ξ , σ2
δ , etc., whereas α and β

are unknown coefficients:

– ξ denotes the true effect of a specific type of forcing that has influenced the true
temperature τ. Since both the causes behind the forcings and the actual effects15

are uncontrolled, we regard this variation as random. The forcing can be either
of a single-type (e.g. only volcanic forcing) or a combination of several forcings
(e.g. volcanic and solar forcing). Note that ξ is not the forcing itself, but rather its
temperature response.

– αξ represents the unknown variability in x that is due to the forcing imposed on20

the simulation. For simplicity we have assumed an (approximately) proportional
relationship to the true effect on τ. A correct representation of the forcing effect in
the climate model corresponds to α=1.

– η denotes the (residual) variation in true temperature that is not due to the partic-
ular forcing under consideration. This is supposedly uncorrelated with ξ.25
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– θ denotes the measurement error in the temperature variable y , making y differ
from the true temperature τ.

– δ represents internal noise variability in x, i.e. variability not due to the forcing
included in the simulation. It will also incorporate nonlinear forcing effects that are
orthogonal (uncorrelated) to ξ.5

– β(τi−µτ) is the regression of the proxy z on the true temperature τ. The observed
proxy value z will be correlated with the measured temperature y , due to the τ they
have in common, and we will use that correlation to calibrate the proxy variable.

– ε represents the residual variation in z, uncorrelated with y .

It is judged reasonable that all random variables ξ, η, θ, δ and ε should be mutually10

uncorrelated, and this is also assumed below. Under this assumption, a positive corre-
lation between x and τ (or y or z) implies that they share the term ξ. In other words;
the effect of the forcing in x corresponds with that in the true temperature τ.

The ξ and η (i.e. the components of τ) sequences will certainly show autocorrelation
on various time scales and our theory allows this. Sometimes it may be necessary to15

consider the more complicated case considering the individual effects of separate mul-
tiple forcings, represented by a vector ξ instead of a scalar ξ. Although climate model
simulations driven by multiple forcings are used in the experimental Sect. 9, the theo-
retical aspects of the case with separate multiple forcings will be investigated further in
a future analysis. The sequences δ, θ and ε will be assumed to be temporally uncor-20

related, i.e. white noise, where a specification is needed. This could be a limitation in
the theory, because the real processes they represent may all show autocorrelation. In
a future refinement of the model, they could be taken to be AR(1) or as having some
other time series structure. In the pseudo-proxy experiment part of the present study,
however, we will specify both θ and ε to be white noise. Concerning the simulated25

unforced temperature variability δ (in x), we hypothesize that autocorrelation only oc-
curs at rather short timescales and is negligible at longer time scales. We investigate
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this problem in Sect. 9 in order to find a time unit length which will make our statistical
model valid.

As a reference, we can also consider an unforced model in which there is no external
forcing:
Statistical Model 2 The model for data under unforced climate model simulations can5

be written

– xi = µx + δi

– τi = µτ + ηi

– yi = τi + θi

– zi = µz + β(τi − µτ) + εi10

where δi , θi and εi (but not ηi ) are regarded as white noise.
We will need the unforced model particularly in Sect. 6, where it will have an im-

portant role in testing for significance. Note that the forced component of τ (i.e. ξ in
Statistical Model 1) is included here in η. A relevant question in this context is whether
σ2
δ in Model 1 depends on α or not, in particular if it has the same value in Models 115

and 2. We will not deal with this problem here but, when necessary, simply assume
that they are the same. Also, we will not consider here, but leave for future analysis,
the more complicated problem of multiple forcings, separately controlled in the climate
model but with joint effects (where ξ is a vector rather than a scalar). A somewhat
related approach to the problem of comparing climate models with the same types of20

forcings, but to different degrees, would be to try estimating α. Again, this will be a
topic for future study.

One can only expect a correlation between a forced simulation and the actual tem-
perature if the forced simulation is able to explain some of the variability in the real
temperatures. Thus, in practice, if we want to test several forced simulations of differ-25

ent types and if we want to rank them according to how well they are able to explain
the observed temperatures, it is natural to first test whether a forced simulation can
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explain any of the observed temperature variations. Only forcings that are found able
to explain some of the observed temperature variations, as indicated by a significance
test, are worthwhile studying for determination of the optimal forcing magnitude and for
use in calculations of a distance measure. Although a correlation test should therefore
be computed before any distance measure is calculated, we start the description of our5

statistical framework by developing a distance-based performance metric (in Sects. 3–
7) before we formulate a correlation-based test (in Sect. 8).

3 The distance measure, D2(x, z)

The problem is to identify, among several forced climate model simulations, a simu-
lation that is able to predict the actual temperature better than the others – and in10

particular better than unforced model simulations. For comparison of different forced
simulations, to find out whose x-sequence of temperatures is best at capturing the
real variation in temperatures (τ), we need a criterion. Performance metrics for climate
model simulations are typically expressed as some kind of squared difference measure
(Mu et al., 2004; Goosse et al., 2005, 2006), and we choose a criterion of this kind.15

We postpone the problem with proxy data and assume first that we have the true
temperatures τ available. We define the simple distance measure

D2(x, τ) =
1
n

n∑
1

(xi − τi )
2 .

A statistical motivation for this criterion is obtained by considering D2 as a mean
squared error of prediction (MSEP). The better the climate model represents the forc-20

ing effects that underlie the true temperature, the smaller the expected distance be-
tween simulations and true temperatures. However, any systematic bias in x will also
contribute to D2. If one has good reason to assume that systematic biases can be
neglected for a particular study, then this can be achieved by subtracting the mean
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values of x and τ over a common time period. Doing so, however, obviously makes
the criterion unsuitable for evaluating systematic model biases; rather it then solely fo-
cuses on comparing the temporal evolution of climate model simulations with the true
temperature evolution.

Since the true τi is not available, we have to replace it by the measured yi for the5

period when y is observed and else by a suitable proxy zi . For notational convenience,
we suppress y and write D2(x, z), where zi is assumed to be replaced by yi when yi
is available:

D2(x, z) =
1
n

n∑
1

(xi − zi )
2 .

Leaving aside how z should be chosen for the moment; it is enough that z satisfies10

the Statistical Model 1. There is motivation to modify D2 by giving different weights to
different terms of D2(x, z), depending on how good the available data are. However,
this discussion will be postponed to Sect. 5. We will first (in Sect. 4) compare D2(x, z)
with the ideal D2(x, τ). We do not want D2(x, z) to yield a systematically different
ranking of a set of different x than that given by D2(x, τ) and we will see under what15

circumstances it does not. The criterion for this can be expressed as a calibration
procedure for calibration of the proxy series, which tells us how z should be calibrated
for use in D2(x, z). Later, we will discuss the statistical significance and precision of
D2(x, z) (Sect. 6) and how to combine information from several regions or seasons into
a unified model performance metric for each model simulation (Sect. 7).20

4 How to use instrumental and proxy data in D
2(x, z) to avoid biased ranking

We assume here that we want to rank different climate model simulations according to
their ideal distance measure D2(x, τ). However, we only have the surrogate measure
D2(x, z), using the observed temperature variable y (when available) or a proxy mea-
surement z instead of the true temperature τ, and we do not want this to change the25
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ranking in any systematic way. We first conclude that replacement of τ by y does not
introduce any ranking bias. This is seen from the relation

(x − y)2 − (x − τ)2 = 2(x − τ)θ + θ2.

Averaging over the noise term θ, we obtain zero for the first term and a constant
Var(θ)=E (θ2) for the second term on the right-hand side. This means that the noise5

term θ of y does not introduce any ranking bias.
The proxy data z must be calibrated. We assume that we have available a period

of both proxy and temperature measurements. If possible, we want the calibration of z
to be such that, whatever ξ is, it does not introduce any systematic errors to the ideal
ranking. The criterion to achieve this is that the expected value (given {ξi} and {xi}) of10

the difference D2(x, z)−D2(x, τ) should be free from x.
The general term of the expected D2 difference is

E
{

(x − z)2 − (x − τ)2
}

= {E (x − z)}2 − {E (x − τ)}2 + Var(x − z) − Var(x − τ). (1)

The variance part of Eq. (1) can be written

Var(x − z) − Var(x − τ) = Var{(x − τ) − (z − τ)} − Var(x − τ) = Var(z − τ),15

because x− τ and z− τ are uncorrelated. Hence, the variance part of Eq. (1) is a
constant, free from ξ and x, and thus not contributing to any bias.

The first part of Eq. (1) can be written

{E (x − z)}2 − {E (x − τ)}2 = (x − µz − βξ)2 − (x − µτ − ξ)2 .

The demand on z for this to be free of x is clearly that µz =µτ(=µy ) and that β=1,20

making the two terms cancel. That is, z should first have the same mean value as y .
This is naturally achieved in calibration by adding a constant to z so its average value
z̄ over the calibration period satisfies z̄= ȳ . Additionally z should have a regression
on the latent variable τ with regression coefficient β=1. This implies that, given a
provisional proxy z0 (i.e. an uncalibrated proxy) with regression coefficient β0 on τ, z025
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should be rescaled by β0, to form a new z, z=µy + (z0−µz0
)/β0. In the case when the

error in y is negligible, so y = τ, this corresponds precisely to the so called classical
calibration procedure (Brown, 1993), when z0 is regressed on y and this relationship is
inverted to yield a predictor/estimator for y .

Next, allow the error in y to be nonnegligible. Then we have a statistical relationship5

between z0 and y of the structural relationship type (an errors-in-variables model).
Provided that we can estimate or otherwise judge the size of the error variance in y ,
i.e. σ2

θ , then we can obtain an approximately unbiased estimator of β0 by

β̂0 =
syz0

s2
y − σ̂2

θ

, (2)

where syz0
and s2

y are the empirical covariance and variance, respectively. This is10

the quantity by which to normalize z0 to obtain the desired z sequence; z=µy + (z0−
µz0

)/β̂0. Setting σ̂2
θ =0 brings us back to the previous situation.

Conclusion. To avoid systematic ranking error in the squared distance D2(x, z) relative to the
ideal D2(x, τ), the proxy z should be mean adjusted and normalized such that the estimated
regression coefficient of z on τ is 1. This corresponds to use of the so called classical calibration15

procedure for calibrating z against y , if errors in y are negligible, modified to allow errors in y
according to Eq. (2), where this is deemed necessary.

Note that in comparison with the observed temperature y , the amplitude of variation
in the proxy, Var(z), is exaggerated after classical calibration or when using Eq. (2).
The reason is that it should retain the full amplitude of the true temperature signal and20

that the proxy noise variance is superimposed on the temperature signal variance.
If more than one proxy series is available for the region and season of interest, they

should be combined to a single z0 sequence in order to increase statistical precision
and thus yield the smallest possible randomness in D2(x, z). In theory, this is achieved
by multiple regression of y on the set of available proxy series to obtain z0. In prac-25

tice, however, there are several reasons (e.g. collinearity among the proxies, or that the
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relationships obtained in the calibration period may not hold outside this period) why
another way to combine the proxies may be preferred. We will not deal with this practi-
cal problem here, but merely conclude that, whatever method chosen, the goal should
be to optimize the correlation between z0 and τ. The preferred z0 is then rescaled
using classical calibration or Eq. (2). In cases when the preliminary proxy series z0 is5

known to have different precision in different pre-instrumental time periods, a unique
calibration is needed for each such period. Note that this will lead to different variances
in the different parts of the final calibrated z series (Sect. 5).

In practice, it is necessary to decide a time unit to use for the calibration. For an-
nually resolved proxy data, the calibration will have its highest precision if calibration10

is made using the full annual resolution. However, if the model evaluation is made
for a lower resolution (e.g. ten or thirty year means) and if there is reason to assume
that the proxy/temperature regression relationship is time-scale dependent, then it may
be better to use a lower resolution for the calibration but this will of course decrease
the statistical precision. The instrumental noise variance to be used in Eq. (2) can be15

difficult to estimate in practice, but see Moberg and Brattström (2011, Sect. 6.1) for a
discussion on a possible procedure.

5 Weighting in D
2(x, z)

Direct temperature measurements y and proxies z have mutually different precision.
Moreover, the precision (particularly in z) can vary with time due to the quality and20

quantity of raw data. This motivates giving different weights to different terms (time
points) in D2(x, z). In order to understand how we should introduce weighting in D2,
we first reconsider Statistical Model 1, assuming both α=1 (correct forcing amplitude
ξ) and β=1 (calibrated z), so that the forcing effect ξ vanishes from x− z and x− y .
We also assume µx =µy =µz, so there is no bias in x− y or x− z.25
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If the climate model is perfect in this sense, and if we first assume a Gaussian
distribution with constant variance for the variability of x− z, the resulting Gaussian
probability density for the observed series x− z is proportional to

e
− n

2 D2(x, z)/
(
σ2
δ + σ2

η + σ2
ε

)
, (3)

where σ2
δ , σ2

η and σ2
ε are the variances of the components of the statistical model.5

When yi is available and replaces zi , σ
2
ε should be replaced by σ2

θ , but for simplicity of
notation we leave that alternative aside for the moment. If there is a bias in x and/or
a true forcing effect that does not have a linearly correct representation in the climate
model (i.e. α 6=1, including the case α=0), its D2-value will tend to be higher and the
probability (Eq. 3) to observe this vector x− z will tend to be exponentially smaller.10

The denominator σ2
δ +σ2

η +σ2
ε in the exponent of Eq. (3) is a constant. However,

when the variances in this denominator vary with i , in particular the proxy noise term
σ2
ε(i ), the interpretation as a probability tells us how different terms should be (ideally)

weighted in D2, forming a weighted version D2
w :

D2
w (x, z) =

1
n

n∑
1

wi (xi − zi )
2 =

1
n

n∑
1

(xi − zi )
2

σ2
δ + σ2

η + σ2
ε(i )

.15

An alternative formulation is to introduce the constant factor σ2
δ +σ2

η , corresponding to
use of the density for x− τ instead of x− z in the numerator of the exponent of Eq. (3).
We will use that version as our definition for wi :

wi =
σ2
δ + σ2

η

σ2
δ + σ2

η + σ2
ε(i )

. (4)

For times i when a precise y is available (i.e. with σ2
ε =σ2

θ =0), the normalized weight20

(Eq. 4) equals 1, but wi <1 when a noisy proxy z is used.
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The weight factor introduced in Eq. (4) is an ideal weight, for which we can at best
give an estimate. Thus, we must obtain estimates for each of the three components
σ2
δ , σ2

η and σ2
ε(i ). We assume that the first two components are constant over time, but

we allow σ2
ε(i ) to vary over time to make it possible to assign different weights at time

points (intervals) i when a z with different precision is used.5

To estimate σ2
δ we propose to use the sample variance s2

δ , pooled from simulations
of an unforced model (control simulation). The more simulations available, the better
the estimate will be. The main reason to avoid using forced models here is that their
simulations contain an additional source of variation, contributing to the sample vari-
ance of the x series. A second reason is that the weights should not differ between the10

climate models used. The variance σ2
η is arguably more difficult to estimate. It repre-

sents the unforced real temperature variance, which cannot be estimated directly from
instrumental observations (y) because they will always include some forced variance.
In particular, the anthropogenic greenhouse gas forcing is likely to be represented as a
trend-like component in y which acts to increase the estimated variance of y . Therefore15

we propose to detrend the observed y before using it to estimate σ2
η . Fortunately, σ2

η

(as well as σ2
δ) occurs in both the numerator and denominator of Eq. (4), so reasonably

small errors in its estimate have little influence on the ratio.
Next, we need an estimate of the (possibly) time-varying σ2

ε(i ). Although this quan-
tity is needed for time points i outside the calibration period, we estimate it by using20

information from the calibration period when both y and z are available. Assume first
that y = τ, i.e. σθ =0. We can use the calibration period to estimate the correlation
ρ(y, z). The model formula z= y +ε implies ρ2 =Var(y)/Var(z), from which we obtain
the relationship σ2

ε = Var(y)(1−ρ2)/ρ2 (knowing that the regression coefficient of z on
y is 1).25

Note that this estimate of σ2
ε is determined by the empirical correlation between the

proxy and the instrumental data and therefore by the estimated statistical precision
of the proxy. In cases when the proxy series zi is known to have different precision
in different time periods (and hence different calibrations have been made), a unique
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weight should be used for each such period, where each weight should be determined
by using the corresponding calibration ρ2. In this way we can allow σ2

ε(i ) in Eq. (4) to
vary with time.

Let s2
y be the empirical variance of (detrended) y and follow the procedure described

above. This yields the weights formula5

wi =
s2
δ + s2

y

s2
δ + s2

y/ρ2(y, z)
(5)

for i in the proxy period. Note that for ρ2 =1 the formula yields wi =1, as it should do
when we use y = τ. As ρ2 approaches zero, so does w. The higher the ratio s2

δ/s
2
y , the

slower the approach to zero.
Let us now allow noise in y , with noise variance σ2

θ . If the ratio q=σ2
θ/s

2
y >0 is10

known, the weighting formula for the period when only instrumental data y is used
becomes:

wi =
s2
δ + s2

y (1 − q)

s2
δ + s2

y

. (6)

In this case the weight is somewhat smaller than 1, depending on the size of q.
For the period when the proxy z is used, the weighting formula becomes:15

wi =
s2
δ + s2

y (1 − q)

s2
δ + s2

y (1 − q)2/ρ2(y, z)
. (7)

A minor drawback of Eq. (7) is that it might generate weights wi >1. This occurs
when the estimated ρ2 >1−q (which is not possible for the true values). For that rea-
son wi could be redefined by using Eq. (5) if this happens. Alternatively the estimation
procedures should be checked.20
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6 Statistical significance and statistical precision of D2(x, z)

Once a D2 value has been calculated for a forced climate model simulation, for a
region and season corresponding to a true temperature series τ, it is relevant to first
ask whether this D2 is better (smaller) than a corresponding D2 value for an unforced
model. To make it possible to answer that question we construct a statistical test of the5

null hypothesis that the forced model is not better than an unforced model:

H0: The climate model under consideration is equivalent with the unforced model.

Since the unforced model (control simulation) is important here, we recall Statis-10

tical Model 2 from Sect. 2. The unforced model is assumed to have been run a number
of times, and for each such ’replicate’ run (differing in initial conditions, and hence also
in the actual trajectories of simulated climate variables) we calculate a D2 value. Let K
denote this number of simulations, and let k denote the number of simulations with a
forced model (also differing in initial conditions) where all simulations share the same15

forcing history. Before we calculate the difference in D2 between forced and unforced
simulations, we average D2 over all replicates in each of the two terms, respectively.
This procedure yields the test statistic

T (xf, xu, z) = D2
w (xf, z) − D2

w (xu, z) (8)

where xf and xu represent data from the forced and unforced models, respectively. An20

alternative averaging procedure would be to take averages over the x series inside
each D2, i.e. to use the average time series xf and xu and compute the difference

T (xf, xu, z)=D2
wxf, z)−D2

w (xu, z). This alternative procedure would be even more
efficient, but is not used here because it would also introduce a bias in the comparison.
However, we provide details necessary to use this alternative in Appendix A.25

We show below that an approximate distribution under H0 for the test statistic in
Eq. (8) can be obtained with the help of an analytical formula for its standard error.
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In doing this, we will regard the z series as fixed and given. It means that we do not
need any distributional asumptions about the z series. This is possible because z is
common to both terms of Eq. (8).

Since we are more interested in variation than in mean values, we assume that all
xu and xf series are mean value adjusted to a common value, that will be denoted µx,5

the test statistic value can be rewritten as

T (xf, xu, z) = w (xf − µx)2 − w (xu − µx)2 − 2 w
(
xf − xu

)
(z − µx), (9)

where the overlines in the first two terms represent averaging over both replicates and
time index i . Here the factor (z−µx) has the role of a weight factor, multiplying with w.
It is natural to adjust the xu and xf series additively so that the z series also has the10

same mean value, z=µx. Then we write z− z in the last term.
The distribution for T is presumably well approximated by a normal distribution, since

all terms of the representation Eq. (9) are sums of a large number of terms (referring to
the central limit theorem of probability). Under H0, the expected value of T (xf, xu, z) is
zero, since the forced climate model is equivalent with the unforced model. Assuming15

normality not only of T but already of xf and xu, the variance of T can be expressed as

Var(T (xf, xu, z)) =
1

n2

(
1
k

+
1
K

){
2 σ4

δ

n∑
1

w2
i + 4 σ2

δ

n∑
1

w2
i (zi − µx)2

}
. (10)

An approximately N(0, 1)-distributed test statistic is obtained by normalizing the T -
value in question by its standard error, that is by the square-root of Eq. (10) after
insertion of the average z for µx and of the estimate s2

δ for σ2
δ . It is of some importance20

to make sure that the estimate s2
δ is not too imprecise. As in Sect. 5, we propose

to obtain this estimate by calculating the sample variance from all available control
simulations.

The test should reject H0 if the resulting value is too far to the left, e.g. to the left
of −1.65 at the 5 % significance level. It should be kept in mind that if many mutually25

independent climate models are tested against the unforced model, but none of them
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has an (appreciable) correlation with the real data y and z, we must nevertheless
expect 5 % false positives from tests at the 5 % level, and analogously for the 1 % level,
etc. Thus, it is not enough to find one or a few models showing statistical significance,
but the whole sequence of model tests must be considered. As a final comment,
we note that an alternative way to perform the significance test would be to use a5

simulated/randomized resampling procedure to empirically determine the distribution
of T instead of using the analytical variance formula in Eq. (10), however this is not
discussed further here (see Appendix B for details).

7 Combination of data from different seasons and regions

Evaluation of palaeo-simulations from climate models should preferably be made using10

proxy records from as many regions as possible. Data from different regions and/or
seasons could then be combined in a single test, but it is not obvious how this should
be done. Proxy records from different regions may represent different seasons and
may also be of different lengths. In this section, we define a unified performance metric
for each model, based on a normalized sum of test statistics T for all regions/seasons15

with available proxy data.
This sum of test statistics can be a simple or a weighted one. Weighting could be

implemented if we want a balanced spatial average but the regions are of different size
or have a different density of proxy values, or if we want a balanced annual average
for a region with quite different numbers of summer and winter values. Different quality20

of the proxies does not necessitate weighting because such effects are treated in the
precision of the individual T -values (through the weights wi used in D2).

For simplicity of notation we first consider only a simple sum of T -values,
∑
Tj , where

the index j identifies the different regions and/or seasons used. We need the standard
error of this sum, and we then use the standard formula for the variance of a sum of25

correlated terms:
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Var

∑
j

Tj

 =
∑
j

Var
(
Tj
)
+ 2

∑
j1<j2

Cov
(
Tj1 , Tj2

)
.

Thus, what we need together with the variances discussed in the previous section are
the covariances. Consequently, we need to supplement the variance formula Eq. (10),
by the corresponding formula for covariances, which can be written

Cov
(
Tj1 , Tj2

)
=

1

n2

(
1
k

+
1
K

) {
2 Cov(δ (j1),δ (j2))2

n∑
1

wi (j1) wi (j2)5

+ 4 Cov(δ (j1), δ (j2))
n∑
1

wi (j1) wi (j2)(zi (j1) − µx (j1))(zi (j2) − µx (j2))

}
. (11)

Here Cov(δi (j1), δi (j2))=,ρ(j1, j2)σδ(j1)σδ(j2), where ρ is the correlation coefficient. We

have assumed that not only is the variance σ2
δ the same over time, as in formula

Eq. (10), but that this also holds for the corresponding covariances. Note that the
first term in the sum contains a covariance squared, corresponding to s4

δ in the vari-10

ance formula Eq. (10). We assume that the covariances and the mean values µx(j )
are estimated as with the variance σ2

δ and the µx in Eq. (10).
Now let nonequal weights be allowed, in the form

∑
j
cjTj , where cj are fixed coef-

ficients which need not sum to 1. To express the corresponding calculations in this
case, we arrange the variances and covariances for Tj in the covariance matrix V(T )15

for the vector T with components Tj . Let c be the corresponding column vector with
components cj . Then the variance for

∑
j
cjTj is obtained as the scalar

Var

∑
j

cjTj

 = cT V(T ) c.
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We now have all requisites to calculate a unified performance metric, UT , for each
climate model under consideration:

UT =

∑
j cj Tj√

Var
(∑

j cjTj
) .

Thus our final model score is a normalized sum of (possibly weighted) individual
T -values for all available regions/seasons with proxy data, normalized by its standard5

error. This means that we can interpret UT as a unified normalized test statistic of
the null hypothesis, H0, in the same way as for the individual T -values in the previous
section. Hence, UT can have a double usage; (i) to test if a forced climate model
is better than unforced models, and (ii) as a rank value to compare different forced
models; the more negative UT -value the better (note that a forced model with UT >010

performs worse than the unforced models).
At this point, some practical issues are considered. In reality, the different proxy se-

ries may be of different lengths. This gives us reason to think of what n represents;
recall that n is used in the calculation of individual D2 values, and in the Var(T ) and
Cov(T ) values. How should we choose n in the different parts of the calculations when15

the proxy records are of different length? We suggest to let the longest record deter-
mine n in all calculations. A consequence of letting the longest proxy series determine
n is that more weight will be given to regional/seasonal data with long proxy series than
those with short series, which seems reasonable. Note, however, that the mean values
for the z, xf and xu series should be calculated only over the set of data available for20

the series in question (see Sect. 6).
Note that, in the period when all proxies are available, the weighting will be made

both according to the proxy quality (through their respective wi ) and according to the
variances and covariances of the T -values (which includes information from the be-
haviour of the simulated climate in the unforced models). If the additional weights cj25

in the sum of T are used, then this will give further weighting to the data. We will,
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however, not discuss here how to construct such additional weights because we think
this has to be determined uniquely for each particular set of available proxy data by ex-
ternal considerations, and no simple general rule seems plausible. In our pseudo-proxy
experiment in Sect. 9, we will simply use equal weights (cj ).

8 Correlation as test statistic5

As pointed out in Sect. 2, before any distance based performance metric is computed,
one should first test if a forced climate model simulation is able to explain with statistical
significance some part of the variation in instrumental and proxy data. If a forced
climate model is unable to explain any variation in the instrumental and proxy data,
then the D2 and UT measures provide little interpretable information. Here we suggest10

a test statistic, UR , based on the correlation between a climate model simulation and
the observations.

The x and z series are uncorrelated under H0 (defined below), and (positively) corre-
lated due to forcing effects appearing in both model simulations and real climate data.
The stronger the forcing effect is in the model, the higher the expected correlation co-15

efficient. We first consider a local test for a single grid-box (season) and next extend to
a combination of data from several regions (and/or seasons).

We will again use notation z for the instrumental/proxy series, and the number of
time units possible will be denoted n. For a particular grid-box (season), data may be
available only during a shorter period of time, but with a weight factor that is zero when20

data is missing, as before, we can let n be the same for all grid-boxes (seasons).
The null hypothesis to be tested is:

H0: The climate model under consideration does not explain any of the temporal
variation in the actual instrumental/proxy data.25
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Under H0, we should of course not expect any significant correlation or covariance.
However, unforced model simulations are important in providing a check that the test
works reasonably under H0.

We propose the following regression type statistic

R(x, z) =

∑
wi

(
xi − µx

)
(zi − µz)∑

w2
i (zi − µz)2

5

for a given z series. We allow replicates of the same type of forced model, and we
use their mean (xi ) above. If only one replicate is available (or if only one replicate is
tested), then xi represents a single simulation. When R(x, z) is normalized (divided)
by its standard error, that is the square-root of its variance

Var(R(x, z)) =
(1/k) σ2

δ∑
w2
i (zi − µz)2

,10

we get the correlation coefficient in a semi-empirical form, which is our test statistic
for a single grid-box (season). As before, k is the number of replicates used to form
xi , and the variance factor σ2

δ is again estimated from all available control runs, which
we know satisfy the hypothesis H0. The mean value µz is naturally estimated by the
weighted average, z=

∑
wizi/

∑
wi .15

The weight factor wi , however, is not the same weight factor as used with D2 and T ,
because now only properties of the z series influence the weight. The principle is that
the statistics (zi −µz) should be weighted such that they get the same variance for all
time units i . The weights should then be the following:

1. If y = τ (in periods where instrumental data with none, or negligible, noise is used):20

w =1.

2. If y = τ +θ (instrumental data with non-negligible noise variance, variance propor-
tion q): w =1−q.
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3. If y = τ, z= τ +ε (proxy data are used, no noise in y , calibration period yields
ρ2(y, z)): w =ρ2(y, z).

4. If y = τ +θ, z= τ +ε (proxy data are used, noise in y , calibration period yields
ρ2(y, z)): w =ρ2(y, z)/(1−q).

Short term autocorrelation being present in unforced x series is avoided by the use5

of a sufficiently long time unit, as before. Short or long term autocorrelation in the x
series due to modelled forcings will not be present under H0 and therefore does not
affect the validity of the test. On the contrary, we expect they are related to the actual
variation in the z series and therefore will yield a significant test result.

With a number of grid-boxes (seasons) we assume, as for the test statistic T , that10

we form
∑

jcjRj for some suitable coefficients cj . To this end we need the variance for∑
jcjRj . The variance for the local statistic Rj was given above, but we will also need

the covariance between two such statistics. Given z, the covariance between Rj1 and
Rj2 is given by the formula

Cov
(
Rj1 , Rj2

)
=

(1/k)ρ(δ1, δ2)σδ1
σδ2

(1/n)
∑

w1i w2i

(
z1i − µz1

)(
z2i − µz2

)
(1/n)

∑
w2

1i

(
z1i − µz1

)2 ∑
w2

2i

(
z2i − µz2

)2
.15

Here ρ is the coefficient of correlation between the two x-sequences (from unforced
simulations).

Finally, we arrange the variances and covariances for Rj in the covariance matrix
V(R) for the corresponding vector R. Let c be the corresponding column vector with
components cj . Then the variance for

∑
jcjRj is obtained as the scalar20

Var

∑
j

cj Rj

 = cT V(R) c.
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Thus, our unified correlation-based test statistic thus becomes:

UR =

∑
jcjRj√

Var
(∑

j cj Rj

) .
Significant positive values of UR mean that a model is able to explain some of the
observed temperature variations. As with UT , we can use the normal distribution to
test for significance. Thus, for example, if UR >1.65 then H0 can be rejected at the 5 %5

significance level. The larger the positive UR values are, the stronger the correlation
between the model and the observations. Any significant negative UR would imply a
negative correlation between a model and the observations. If such values are found,
this may be a warning signal of possible erroneous calculations or possible problems
with the climate model or proxy data. As with the T statistic, one may also consider a10

randomized significance test of R (see Appendix B).

9 A pseudo-proxy study addressing the detectability of solar forcing in
simulated temperatures

9.1 Solar forcing

Variations of solar irradiance on long time-scales have not been directly measured but15

are potentially of great influence on global climate. However the amplitude of solar
variability itself and the physical mechanisms involved in the global climate response
to solar forcing are not yet fully understood (Gray et al., 2010). With the help of sim-
ple physical models, there have been recent attempts to reconstruct past solar irradi-
ance over the last millennium using proxy information, such as sunspot observations20

(Krivova et al., 2003; Wenzler et al., 2006). However, there has been some discus-
sion over the degree of background variation in irradiance possible on multi-decadal
time-scales (Krivova et al., 2007). Many of the solar proxy time-series are not usable
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during the modern era of instrumental satellite observation due to recent contamina-
tion, such as by 14C due to anthropogenic greenhouse gas emissions and nuclear
testing (Schmidt et al., 2011). Shapiro et al. (2011) have questioned the instrumen-
tal reconstructions as well, with the satellite total solar irradiance (TSI) record being
susceptible to systematic effects and instrumental wear.5

The greatest current debate regarding uncertainty in solar variability over the past
millennium centres on its magnitude (Ammann et al., 2007). Recent estimates of
the change in solar radiative forcing (∆FP−m) from the Maunder Minimum period (late
17th century) to the present have mostly been in the range 0.1–0.2 W m−2 (Krivova
et al., 2007; Tapping et al., 2009; Steinhilber et al., 2009). Whilst potential magnifying10

processes have not been identified, the influence of solar forcing on climate remains
uncertain (Wang and Sheeley, 2003; Hegerl et al., 2007b). For example, a recent
analysis by Shapiro et al. (2011) suggests a ∆FP−m =1±0.5 W m−2, entirely contrary
to many recent estimates. When comparing a climate energy balance model (EBM)
subjected to changing radiative forcing with multi-proxy temperature reconstructions,15

Friend (2011) concluded that it is quite possible that the amplitude of solar forcing is
presently underestimated. Certainly the estimate of Shapiro et al. (2011) yields a far
larger ∆FP−m than any other recently published and adds to the debate regarding the
magnitude of solar variability. Until new understanding of the physical mechanisms that
govern solar variability progress, we have many different approaches to its reconstruc-20

tion over the last millennium yielding different forcing values (Schmidt et al., 2011).
Given the uncertainty of solar forcing on the climate system on multi-decadal time-

scales, it is instructive to investigate its impact on climate models (Zorita et al., 2004;
Ammann et al., 2007; Servonnat et al., 2010; Swingedouw et al., 2011). On sub-
millennial time-scales the forced temperature variability during the pre-industrial period25

is thought to be dominated by atmospheric aerosol changes related to volcanic activity,
as well as changes to solar energy output (Ammann et al., 2007). Zorita et al. (2004)
and Swingedouw et al. (2011) have both linked a weakening of the Atlantic Merid-
ional Overturning Circulation (AMOC) to higher solar forcing, an important internal
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dynamical system of the climate on multi-decadal time-scales. They also found an
association with the North Atlantic Oscillation (NAO). Servonnat et al. (2010) investi-
gated the importance of spatial scale on the degree of dominance regarding key climate
forcings. They calculated a ”signal to noise” ratio by dividing the globe into N regions,
namely the ratio of the variances of N temperature time-series in a forced simulation5

(solar, greenhouse gas, insolation) against the corresponding time-series variances of
a control simulation. They found the characteristic spatial scale suitable for detecting
a forced signal in their model to be approximately 5×106 km, an area roughly the size
of Europe. However, this was for a single climate simulation and not an ensemble.

The uncertainty in the magnitude of solar radiative forcing and its impact on the10

climate system is a greater source of uncertainty than that associated with the tim-
ing of solar activity variations over the last millennium (Muscheler et al., 2007). It
is the intention of the present analysis to use the developed statistical framework to
rank or distinguish between model simulations using a variety of forcings, either as
individual forcings added to a control model or several used in tandem. Given the15

uncertainty already described in solar forcing over the last millennium, it is important
to compare simulations using alternate forcing histories rather than selecting arbitrary
series (Schmidt et al., 2011). Hence, a suitable set of simulations were used from the
Community Earth System Modeling (COSMOS) Millennium Activity of the Max Planck
Institute (Jungclaus et al., 2010). Here two solar radiative forcing time-series were20

employed of differing magnitude, as well as principal drivers of pre-industrial climate
over the last millennium (orbital, solar, volcanic as well as land-cover changes – Hegerl
et al., 2007a; Crowley, 2000). The solar, volcanic and land-use change forcings were
used individually and jointly in the COSMOS Millennium Activity and these simulations
were analyzed here. It is hoped that the developed methods can be used to distinguish25

between these forced climate simulations in order to deduce the most important climate
forcings. This will allow better judgement regarding how possible it is, in future com-
parisons, to identify which simulation is best able to simulate observed temperatures in
real proxy and instrumental data.
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9.2 The COSMOS Millennium Activity – model description and experimental
design

The Millennium Activity experiments were conducted using the Max Planck Institute
Earth System Model (MPI-ESM), which is formed from an atmospheric model ECHAM5
(Roeckner et al., 2003), an ocean model MPIOM (Marsland et al., 2003) and models5

for both land vegetation (JSBACH) and ocean biogeochemistry (HAMOCC). The model
also features an interactive three-dimensional carbon cycle. The model resolution is
T31 (3.75◦) for ECHAM5, and MPIOM applies a conformal grid with a horizontal resolu-
tion ranging from 22 km to 350 km (Jungclaus et al., 2010). The ocean and atmosphere
are coupled daily without flux correction.10

The project framework involved the creation of a 3000-year unforced control (CTRL)
simulation, after a multi-century spin-up phase in which the carbon cycle was brought
into equilibrium. This CTRL model experienced 800 AD orbital conditions and pre-
industrial greenhouse gas concentrations (Jungclaus et al., 2010). The various forc-
ing reconstructions were added individually or in combination to the CTRL reference15

boundary conditions. To account for the uncertainty in solar forcing, the TSI forcing
used in this project involves both a “low” (or standard) forcing exhibiting a total increase
of 0.1% from the Maunder Minimum to the present day (in agreement with contempo-
rary evaluations during the model setup; Krivova et al., 2007; Steinhilber et al., 2009;
Tapping et al., 2009) against a forcing with a “high” amplitude reduction in the Maunder20

Minimum (0.25 %) compared with the present (Bard et al., 2000).
The globally averaged land-only annual temperature anomalies (30-year means)

of the COSMOS simulations are shown in Fig. 1. The simulations have been distin-
guished into the CTRL (itself separated into three millennial sections) in Fig. 1a, the
single forcing simulations (Fig. 1c) and two full-forcing ensembles E1 (Fig. 1b) and E225

(Fig. 1d). The evolution of the forcings applied to the models are shown in Fig. 2. A
representation of the forcings is shown in Fig. 2, consisting of atmospheric CO2 con-
centrations, land-use changes, volcanic as well as two separate solar forcing curves,
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the “high” and “low” solar series from Bard et al. (2000) and Krivova et al. (2007) re-
spectively. The two full-forcing ensembles were generated by initiating different ocean
boundary conditions and are separated by their respective “high” (E2) and “low” (E1)
solar forcing and any solar-induced CO2 concentration changes (made possible by the
interactive carbon cycle model).5

Figure 1c shows the four single forcing simulations: land-use changes (green), low
solar (light orange), high solar (yellow) and volcanoes (dark orange). The high solar
and volcanic simulations exhibit some multi-decadal variability, such as the low tem-
peratures in the volcanic series during the late 13th century or the high temperatures
in the high solar simulation in the late 18th century. In contrast, the land-use and low10

solar simulations exhibit less variability on the multi-decadal to centennial time-scales.
In Fig. 1b, the E1 ensemble members feature generally warmer conditions from 800 AD
until a large cooling occurs in the latter half of the 13th century. Conditions are there-
after generally cooler, including a cold period during the 19th century, until a warm-
ing occurs in the 20th century partly associated with CO2 radiative forcing (Fig. 2a).15

The single forcing simulations do not show this 20th century warming as they do not
contain the CO2 radiative forcing, this was only included in the E1 and E2 ensemble
simulations. In Fig. 1d, the E2 simulations exhibit larger variance than found for the
E1 simulations, as can be expected when comparing the low and high solar radiative
forcing histories (Fig. 2a). In particular, the E2 simulations display a more pronounced20

difference between the warm period from 800 AD to the late 13th century, compared
with the generally cooler conditions during the latter half of the last millennium. The
single time-series representations of the global forcings are shown in Fig. 2, in terms
of their annual mean radiative forcing at the top of the atmosphere. The CO2 radiative
forcing is shown only for one of the E1 simulations as they are all similar in evolution,25

although not identical due to the carbon cycle feedback.
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9.3 Model – (pseudo-proxy) data comparison setup

In order to investigate the developed statistical methods, a pseudo-proxy analysis was
conducted using the COSMOS simulations. A pseudo-proxy series can be defined as
any instrumental or climate model data that has been distorted through the addition
of noise (Jones et al., 2009). This is to ensure that the pseudo-proxies account for5

a fraction of the variance of a temperature series, as is the case for a real proxy re-
construction of temperature. A key advantage of this approach is that the distortion
and reconstruction target are both prescribed and hence fully known. In the present
pseudo-proxy analysis, τi is defined explicitly by a particular simulation and is chosen
as the “true climate” where the noise level and regions used in the comparison are10

specified. Then the proxy series zi and instrumental series yi can be defined as the
“true climate” simulation plus added noise.

An advantage of the pseudo-proxy approach using model output is that the number
of locations i can be varied from a single grid-box to any number of locations. We also
consider an average single time-series for the entire globe. We use the annual mean15

temperature and land points only, as most real high-resolution proxy series are found
on land. This analysis technique allows a unique insight into the proposed correlation
and distance comparison methods, since when the true climate is defined as one of
the full-forcing simulations, the solar (and other) radiative forcing amplitudes will be
known. Given a realistic amount of noise in the pseudo-proxies, it is hoped that the two20

comparison methods will distinguish between the E1 and E2 ensemble simulations
when a single member of one of those ensembles is used as the “truth”. In other
words, if a particular E1 member is used as the target and no significant distinction can
be made between the E1 and E2 ensemble members based on their proximity to the
chosen “true climate” simulation from E1 (with realistic noise added), then the method25

cannot be expected to help better constrain definition of a suitable past millennial solar
forcing amplitude, if this analysis were applied to real proxy and instrumental data.
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The climate model simulation time sequences xi are taken from the COSMOS simu-
lations as illustrated in Fig. 1, where the forced component αξi is the response to either
a single forcing in the case of land-use changes, solar and volcanic, or to the combined
forcings in the E1/E2 ensembles. α=0 in the CTRL models and xi is from statistical
model 2. As previously stated, the true temperature τi is known and given as the target5

series in question, by selecting one of the E1 or E2 ensemble member simulations. The
instrumental measurements yi are defined as the target simulation for a given location
over the period 1850–2000 with added white noise (θi ), defined as having 10 % of the
variance of yi . Regarding the added noise in yi , this approximately corresponds to
a doubling of recent single-thermometer measurement error estimates (Folland et al.,10

2001; Brohan et al., 2006). The proxy series zi are defined similarly, though over the
period 1000–2000 and featuring added white noise with 2/3rds the variance of zi . This
corresponds to an SNR=0.71 (signal-to-noise ratio) and correlation r =0.58 between
zi and τi , as is the case for many high-quality real proxy records. Note that both higher
and lower percentages were also investigated (see electronic supplement).15

The analysis was conducted on the 1000-year period, 1000–2000 AD (although the
forced simulations begin at 850 AD) in order to separate the 3000-year unforced sim-
ulation into three 1000-year control simulations as to be used in the comparison. The
computation of UT and UR , however, was restricted to the period 1000–1850 to avoid
the influence of anthropogenic greenhouse gas increases. Data after 1850 were used20

only in the calibration of zi against yi and for estimating the variance of yi . The simula-
tion time evolutions shown in Fig. 1 are presented as they are used in this comparison,
namely for land-only and for 30 year non-overlapping means. Land-only grid-boxes
were used in this analysis, to reflect the reality of the fact that annually resolved proxy
data from the oceans are rare. A motivation for using 30-year means is given below.25

Recall from Sect. 2 that the unforced simulated temperature δi is assumed to be
white noise. It is of course quite possible that white noise is not a good representation
of the internal variability in the true climate, but as a distance measure D2 does not
require white noise. However, the null hypothesis of the statistical tests is that forced
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simulations are equivalent with unforced (CTRL) simulations, so for the described tests
to have the prescribed type I error level, the unforced simulations should be well repre-
sented by white noise. Short term memory of model climate systems has been ques-
tioned (Cohn and Lins, 2005; Rybski et al., 2008). We investigated the seriousness
of this problem by calculating the lag-1 autocorrelation for the 3000-year CTRL simu-5

lation, both in terms of the proportion of global area with significant autocorrelations
for various time-resolutions, as well as the lag-1 autocorrelation for the global land-
only series (see electronic supplement for further details). It was found that beyond a
time-resolution of 20 years, δi can be considered as white noise, in keeping with the
statistical assumptions of Sect. 2. Hence a non-overlapping 30-year mean resolution,10

as used in the present analysis, should be able to keep the type I error of the tests
under reasonable control in the model – (pseudo-proxy) data comparisons undertaken
here.

9.4 Model – (pseudo-proxy) data comparison

We first conducted a study for global average (area-weighted) time-series using only15

land points (Fig. 1), the results of which are shown in Fig. 3. The global mean was
investigated first, simply because this series will likely exhibit a high SNR of the forced
component to natural internal variability (Servonnat et al., 2010). Hence we use a
single set of τ, y and z series in this globally averaged analysis. For the analysis in
Fig. 3, a SNR of 0.71 is prescribed (i.e. the noise variance in z is two-thirds of the total20

variance of z). Both the E1 and E2 simulations were used separately as targets in
this experiment, and to use as many target “true” climates or “truths” as possible, each
member was used as the target in turn.

For each type of “truth”, ≈100 noise realizations were generated to produce y and
z with a rotation in the five E1 target simulations (20 noise realizations for each sim-25

ulation, 5×20=100) (Fig. 3a and c) and in the three E2 target simulations (33 noise
realizations for each simulation, 3×33=99) (Fig. 3b and d). Recall that the difference
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between the E1 and E2 ensembles is the use of the “low” and “high” solar forcing series
respectively. Comparing the different ensemble members as targets should enable us
to draw conclusions about how useful the correlation and distance measures are for
ranking the simulations. Here, these measures can be judged in terms of their ability
to distinguish the temperature response to different solar forcings, given the presence5

of volcanic and land-use forcing in the target simulations as well as internal variability.
Note that there is in fact also a subtle change to the atmospheric greenhouse gas con-
centrations in the model for each full-forcing ensemble member but this difference is
thought to be of no importance, as the forcing time-series are almost identical and of
little importance before 1850. Iteratively treating the E1 or E2 ensemble members as10

targets could cause the distributions to be hierarchical, where the distribution of UT and
UR for different noise iterations could potentially be non-overlapping when comparing
different ensemble members. An identical analysis to this was conducted, with zero
noise added to the target, which revealed the E1 and E2 ensemble simulations to give
very similar results with little qualitative spread (not shown). This satisfied the authors15

sufficiently that the spread of the distributions in Fig. 3 predominantly represent the
uncertainty due to the pseudo-proxy noise realizations, whereas the locations of the
medians of the distributions largely represent the effect when comparing simulations
from different climate models.

To further explain the UT and UR box-plot distributions shown in Fig. 3, the first four20

represent the single forcing simulations, namely land-use changes (green), low solar
(light orange), high solar (yellow) and volcanoes (dark orange), where they are com-
pared with either the E1 (left panels) or the E2 (right panels) simulations as target.
Analogously, the next five box-plots (numbers 5-9) represent the E1 simulations, all
coloured light blue with their corresponding ensemble average UR /UT value in dark25

blue (number 13). The three E2 simulations are coloured light red (numbers 10–12)
with their corresponding ensemble average in red (number 14). Hence, both the in-
dividual E1/E2 simulations and the E1/E2 ensemble averages were compared with
target simulations. Note that when an E1 (or E2) simulation is used as the target, this
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target simulation is excluded from the E1 (or E2) ensemble being analysed (i.e. being
compared with the target).

Figure 3a and b show the UR correlation analysis results, whilst Fig. 3c and d show
the UT distance measure results. Figure 3a and b also feature the three CTRL simula-
tion segments (numbers 15–17) as these are not required in the calculation of UR . From5

Fig. 3a, the UR correlation analysis with E1 as target, it is clear that the individual E1
ensemble simulations (numbers 10–12 and 14) are significantly correlated with each
other. However, the E2 simulations are the most highly correlated simulations with the
E1 targets. This can be expected in so far as the E2 simulations feature the strongest
solar forcing and the largest variability (Fig. 1). The volcanic forcing seems to explain10

much of the correlations for E1, looking at the significance of UR for the volcanic simu-
lation (number 4) when E1 serves as target (Fig. 3a). When E2 serves as target, both
the volcanic and high solar (number 3) explain much of the E2 correlations (Fig. 3b).
The land-use forcing simulation (number 1), as well as the low solar simulation (num-
ber 2), are not significantly correlated with either the E1 or E2 target ensembles. When15

using the E2 ensemble as target (Fig. 3b), both the E1 and E2 simulation members
and ensemble averages are significantly correlated, which can be expected given, in
particular, the shared volcanic forcing series.

Whilst it is clear from Fig. 3a and b that both the E1 and E2 ensembles are signifi-
cantly correlated with each other (according to UR), this will not necessarily be reflected20

in the distance measure UT for these full-forcing simulations. The distance measure UT
(Fig. 3c and d) is expected to be more effective in distinguishing between the simu-
lations and, in some instances, being capable of ranking them. When E1 serves as
target (Fig. 3c) the E1 simulations (numbers 5–9) and their average (number 13) are
mostly significantly closer to the target than the CTRL simulations, whereas the E225

simulations (numbers 10–12) and E2 ensemble average (number 14) are not. This dif-
fers from the UR analysis using E1 as target (Fig. 3a) in that the E1 and E2 simulations
can be distinguished using UT . Note that both measures show similar results when E2
serves as target (comparing Fig. 3b and d). These results reflect that the UT distance
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measure can sometimes distinguish between simulations with similar UR values for a
given target. The principal difference between these two methods is that the correla-
tion analysis does not consider the variance of the two compared series (target and
simulation), whereas this is explicitly considered in the distance measure. For both
the UR and UT values the low solar simulation (number 2) is not significantly correlated5

with, or close to, the E1 targets (Fig. 3a and c). In contrast, the high solar simulation
(number 3) is significantly correlated with, and close to, the E2 targets (Fig. 3b and d).
This implies that the low solar forcing is too weak to produce any detectable effect at
the 30-year time-scale, whilst the high solar is strong enough. A related conclusion
was reached by Ammann et al. (2007): the greater the solar forcing amplitude applied10

to their model, the weaker the detectable response to other natural forcings.
On small spatial scales, the ability to distinguish between simulations that use low

and high solar forcing and consequently rank them, may not be possible. At global
or hemispheric scales, the temperature can be expected to respond to large-scale
external forcings (such as solar or greenhouse gases), whereas at local or regional15

scales the internal climate dynamics can account for a larger proportion of the temper-
ature variability (Goosse et al., 2005). Although looking at seasonal European climate
change, Hegerl et al. (2011) were able to attribute external forcing as a contributing
factor to changes in winter and summer temperature.

It is the case that despite ongoing attempts at reconstructing hemispheric or global20

temperature series (e.g. Moberg et al., 2005; Juckes et al., 2007; Mann et al., 2008), the
coverage of millennial high quality proxy data is comparatively sparse, particularly in the
southern hemisphere. Given the uncertainty in hemispheric or global reconstructions
due to differing calibrations, reconstruction algorithms and proxy networks (Esper et al.,
2005; Christiansen et al., 2009; Frank et al., 2010), it is useful to look at a realistic25

representation of the kinds of proxy data networks likely to be used with real proxy
data.

In order to investigate how successfully the correlation or distance measures can be
used to distinguish high and low solar simulations on a current example of a published
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global proxy network, the locations of 27 proxy series in Juckes et al. (2007) were used
for the correlation and distance analysis (Fig. 4). White noise was added to the target
series at each location such that the SNR=0.71. Though this set of locations is clearly
a sparse representation of the global surface, such a set is typical of where proxy data
have been acquired in the past and 20–40 or so locations is a realistic number as could5

be used currently in a true model-data comparison for the last millennium.
Results for the same type of experiments conducted in Fig. 3 are shown in Fig. 5,

but for the combined Juckes et al. (2007) locations. Specifically, we compute local cor-
relation (R) and distance (D2) measures for the 27 locations, before they are combined
to obtain a single UR and UT value for each simulation. The correlation analysis UR for10

the Juckes et al. (2007) proxy locations gives similar results to the global time-series
analysis, though surprisingly the correlations are not less significant. This is something
that could haven been expected due to the increased influence of internal (unforced)
variability at the regional scale in combination with the reduced area coverage. As in
the global average analysis, the E1 and E2 simulations are generally significantly corre-15

lated with both the E1 (Fig. 5a) and E2 (Fig. 5b) targets (with the exception of simulation
number 8 in Fig. 5b). However, when E1 serves as target, the distance measure UT is
unable to distinguish the E1 simulations from the CTRL simulations (Fig. 5c), whereas
the E2 simulations are significantly closer to the target than the CTRL simulations when
E2 serves as target (Fig. 5d). Concerning the single forcing simulations, only the high20

solar (number 3) is significantly correlated with the E2 targets and closer to the target
than the CTRL simulations (Fig. 5c and d).

Using a realistic set of proxy locations such as the Juckes et al. (2007) set, it seems
there is no clear distinction between simulations, in terms of UT ranking or scoring,
unless the forcing is large and multi-decadal in nature (as is the case for the high solar25

forcing used here). Note that UR is more sensitive than UT for testing if a model forcing
has any correspondence with the true climate, but it answers a different question than
UT . This higher sensitivity is seen when we compare subfigures a and b with c and
d respectively in both Figs. 3 or 5. Specifically, if UR is not significant, neither is UT .
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Comparisons between the Juckes et al. (2007) and global land-only average results
naturally lead to the question of how the possibility to rank simulations depends on the
spatial coverage of the pseudo-proxy data.

9.5 Varying coverage

There are in practice relatively few locations which have high quality proxy data avail-5

able or where there is the potential at present to acquire more data. A pseudo-proxy
experiment, however, has the advantage of allowing any number of locations to be used
to serve as a proxy series or instrumental series. Hence, an analysis is conducted on
how varying degrees of % coverage affects the ability of the correlation and distance
measures to distinguish between the high and low solar single forcing simulations and10

between the E1 and E2 ensembles, when either E1 or E2 serves as target.
The various global coverages are for 0.1, 0.25, 0.5, 1, 2, 3, 4, 5 %, using only land

grid points, which is equivalent to 3, 10, 22, 44, 90, 137, 183, 230 proxy locations. 20–
40 or so proxy locations is a typical number of high quality millennial proxy data found
in current analyses (Christiansen and Ljungqvist, 2011). Calculation of the covariance15

matrices Cov(Tj1 , Tj2) and Cov(Rj1 , Rj2) becomes computationally intensive for large %
coverages, hence they were only calculated up to 5 %. The set of proxy locations were
selected as a stratified random sample from the available land points in the COSMOS
simulations, with specified proportions for three strata (the latitudinal bands 0–30◦,
30–60◦, 60–90◦). The stratification was chosen to better control the coverage and to20

account for the changing area of the grid points with latitude in the simulations.
Figure 6 shows the correlation UR (top panel) and distance UT (bottom panel) mea-

sures for the low (light orange) and high solar (yellow) single forcing simulations for
different % coverages. As with the previous analyses, ≈100 noise realizations were
generated for each coverage level. The filled lines represent the median values, whilst25

the upper and lower quartiles are dashed. For comparison, results for the volcanic
(dark orange) forcing simulation are also shown. As with Figs. 3 and 5, the left panels
(Fig. 6a and c) are with E1 as the target and the right panels (Fig. 6b and d) are with E2
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as target. The high solar simulation is significantly correlated even for the lowest cover-
ages when E2 serves as target (Fig. 6b), whilst also achieving significant UR values for
coverages upwards of 1 % when E1 serves as target. The latter result was discussed in
Sect. 9.4. Contrastingly, the high solar simulation UT values are significantly better than
the CTRL simulations when E2 serves as target (Fig. 6d), but not when E1 serves as5

target (Fig. 6c). The volcanic simulation is mostly significantly correlated with both E1
and E2 targets (Fig. 6a and b) and its UT values are generally only significant for cov-
erages upwards of 1 % for both targets (Fig. 6c and d). The low solar simulation shows
no significant correlations for either target ensemble and can therefore be expected to
be indistinguishable from the CTRL simulations using the UT measure.10

Figure 7 is as Fig. 6 but shows the E1 (blue) and E2 (red) ensemble average results
for UR and UT . Both ensembles correlate with their own ensemble targets even at the
lowest data coverages. As with the globally-averaged analysis of UR (Fig. 3a and b),
the E1 and E2 ensembles cannot be easily distinguished when using E1 as a target
(Fig. 7a), but are distinguishable when E2 serves as target (Fig. 7b). The results for15

UT are much the same as for the global analysis, where the E1 and E2 ensembles
can be correctly ranked with their respective targets. Notably for coverages lower than
1 % it become difficult to distinguish E1 from the CTRL simulations or separate the E1
and E2 simulations when E1 serves as target (Fig. 7c). When E2 serves as target,
it is always easy to distinguish between and correctly rank (when using UT ) the E120

and E2 ensembles. Additionally, the experiments of Figs. 6 and 7 were conducted for
cases with a SNR=0.25 and also with negligible noise, the results of which are briefly
discussed in the conclusions and shown in the electronic supplement. An important
feature of Figs. 6 and 7 to note is how flat the UR and UT measures are with changing
% coverage. In fact, there is little gain in increasing the sample size from 20–40 or so25

proxy series to several hundred. Above all else, this suggests a substantial degree
of spatial correlation in temperature, given the 30-year time-resolution used in this
analysis (Jones et al., 1997; Franke et al., 2011).
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10 Conclusions

In view of an increasing need to be able to compare output from model simulations with
climate variables reconstructed from proxy records, a method has been developed for
comparing temperature on a variety of time and spatial scales. The methodology devel-
oped here was specifically designed in view of the irregular distribution of such climatic5

records, with differing representativeness concerning seasons and record length. We
provide a statistical framework for these comparisons explicitly using information on
proxy uncertainties based on their correlation with instrumental data, which allows the
assessment of which simulations are statistically similar to a target series.

Specifically, two goodness-of-fit measures have been developed; a unified10

correlation-based test statistic UR as well as a distance-based test statistic UT . Given
the ongoing uncertainty in solar variability over the last millennium it is hoped that
the latter of these measures could be used to detect different temperature responses
in simulations with two different solar forcings over this period, despite there being
noise in the target data, as well as internal and forced variability in the climate system.15

A pseudo-proxy experiment was designed for this task, based on the MPI-COSMOS
earth system model simulations (Jungclaus et al., 2010). The advantage of a pseudo-
proxy experiment is that the true climate or “truth” is always known and the statistics
of the added noise in the proxies are also known. Hence if no difference between two
forced simulations containing different solar forcing evolutions can be detected with20

these methods, then no significant conclusions could be assumed based on compar-
ing model output with real proxy data. The E1 and E2 ensembles provided a useful
800–2005 AD time interval, both containing forcing information from land-use changes,
volcanic aerosols as well as greenhouse gas concentrations; but with different solar
forcing series. Namely, E1 features a low solar forcing variability (0.1 % increase from25

the Maunder Minimum to the present climate) whilst E2 features a stronger solar vari-
ability (0.25 %).
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Firstly an analysis was conducted on globally averaged land-only data as this was
thought to contain the highest SNR in regards to forced- against internal variability.
Hence a single series was calculated for each simulation and compared with every
member of the E1 and E2 ensembles in turn plus added noise. When E1 serves as a
target, it was found that both E1 and E2 simulations were strongly correlated with the5

targets, both having similar and significant UR values. This suggests that the shared
forcing information gives significantly correlated temperature evolutions in both E1 and
E2 simulations. However, when the UT statistics are viewed with E1 as target, the two
ensembles can be distinguished. In other words, the different simulation ensembles
can be ranked based on their different solar forcing using UT . This is largely due to the10

fact that UT accounts for the variance of the two compared series, whereas UR does
not. When E2 serves as target, the stronger solar forcing used in this ensemble renders
it detectably different from the E1 ensemble in terms of both UR and UT statistics.
However only the UT measure should be used to rank the simulations.

Given that this global comparison is hypothetical due to the heterogeneous nature of15

real proxy data coverage in space and time, and that this statistical framework has been
developed in view of using real proxy information to assess the goodness-of-fit of model
simulations, a representative set of proxy locations was taken from Juckes et al. (2007)
to conduct the pseudo-proxy comparison on. The results of which were similar to the
global land-only analysis, however, the UT values of the E1 ensemble could not be said20

to be significantly different from the CTRL simulations when E1 serves as target. This
motivated an analysis of how differing % coverage levels change the detectability of
significance in the UT and UR statistics (Figs. 6 and 7). Additionally, the same type of
analysis was conducted for a higher noise level (SNR=0.25) as well as with negligible
noise (see electronic supplement). For an SNR=0.25 the UR and UT of the E1 and E225

ensemble simulations are indistinguishable when E1 serves as target, whilst with E2 as
target and for coverages above 0.5 %, they are still distinguishable. Reducing the noise
to negligible levels allows distinction between the E1 and E2 ensemble simulations with
E1 serving as target beyond 0.5 % coverage, however this is an extremely hypothetical
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case where the “true” climate is represented near perfectly by the available target data.
Nevertheless, these results suggest for a global coverage of say 40 or more proxy
locations, if a very high quality of individual proxy series is obtained with low noise
levels, it can be possible to distinguish the E1 and E2 ensembles when using E1 as
target. If E2 serves as target very few proxy series are needed, even less than 105

given a SNR of at least 0.71. These results have an important implication: it is more
important to improve the quality of individual proxy series in terms of SNR than it is to
increase the quantity of available proxies.

There are additional methodological considerations for the future development of
these test statistics, such as the allowance of more realistic noise types (e.g. red noise)10

or comparisons over different time resolutions and periods. Additionally, the aim is that
future analyses can be conducted using these test statistics to compare model sim-
ulation output with real proxy data. By varying the SNR and coverage levels in the
pseudo-proxy section of this analysis (Sect. 9), we conclude that in order to success-
fully rank model simulations and be able to draw conclusions about past climate forcing15

series, it will be necessary to gain more very high quality proxy series as to add to an
analysis. That is not to say there is no value in obtaining proxy data with low SNR val-
ues regarding a particular climate variable. Individual proxy records can provide useful
corroborative information when developing regional syntheses or interesting holistically
consistent documents of local environmental change. However from the results of the20

present analysis, it seems the benefits of adding many proxy series with low SNR val-
ues, are negligible in comparison to improving SNR values in 20–40 or so proxy series.

304

http://www.clim-past-discuss.net
http://www.clim-past-discuss.net/8/263/2012/cpd-8-263-2012-print.pdf
http://www.clim-past-discuss.net/8/263/2012/cpd-8-263-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/


CPD
8, 263–320, 2012

Statistical framework
for evaluation of

climate model sims

A. Hind et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Appendix A

Averaging inside D
2

Here we provide the necessary formulae for calculating the bias correction and for es-
timating the variance of T when using the difference T (xf, xu, z)=D2

w (xf, z−D2
w (xu, z)5

as the distance-based test statistic, i.e. with averaging inside D2.

A1 Bias of the test statistic T

Suppose xf includes a forced component αξ. When

T (xf, xu, z) = D2
w (xf, z) − D2

w (xu, z),

that is under outside averaging, the expected value of T is10

E (T ) = −
(

2 α − α2
) 1

n

n∑
i=1

wi (ξi − µ)2 .

Under H0, α=0 and the expected value E (T ) is zero.
With

T
(
xf, xu, z

)
= D2

w
(
xf, z

)
− D2

w
(
xu, z

)
,

that is under inside averaging, the expected value of T contains an additional bias term,15

and is

E (T ) = −
(

2 α − α2
) 1

n

n∑
i=1

wi (ξi − µ)2 + σ2
δ

(
1
k

− 1
K

)
1
n

n∑
i=1

wi .

The bias term is zero only when k =K . Thus, if inside averaging is used with k 6=K ,
the bias must either be judged negligible, or estimated and corrected for.
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A2 Precision of the test statistic T

Under inside averaging, the analytical formula for the variance of T , under assumed
normality of xf −xu and given the z sequence, is:

Var
(
T
(
xf, xu, z

))
=

2 σ4
δ

n2

(
1

k2
+

1

K 2

) n∑
1

w2
i +

4 σ2
δ

n2

(
1
k

+
1
K

) n∑
1

w2
i (zi − µx)2 .

A3 Results5

From Fig. A1, if inside averaging (thick lines) is used instead of outside averaging (thin
lines) in calculating the E1 and E2 ensemble averages, the UT results appear to change
little if E1 serves as target, whereas their is a substantial increase in the significance
of UT when E2 serves as target. This likely reflects the fact that if there is a stronger
common signal amongst the ensemble members (as with the high solar E2 ensemble),10

then the inside averaging approach will enhance the SNR of the series, whilst if the
common signal is weaker (as with the low solar E1 ensemble) there will not be a large
difference between the approaches. Hence, inside averaging can be more effective
than outside averaging.

Appendix B15

Alternative reference distributions for D2
w , T and R

It deserves mention that there are (at least) two possible nonparametric alternatives to
the normality-based tests for H0 used above, instead being based on exchangeability,
either between replicated simulations xu or different time intervals within simulations xu20

of the unforced model. First, if the number K of available unforced simulations is large,
and k�K , then we could repeatedly take random samples of size k out of the K , to let
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them represent xf under H0. Along these lines a reference distribution for the distance
measure D2

w or the D2-difference T could be estimated, valid under H0. However, to
have a large number of unforced simulations (say 50) using a single climate model
does not appear to be realistic at present. Presumably a better alternative is to utilize
the stronger property of exchangeability within an unforced sequence. This assumes5

negligible autocorrelation, to be accomplished by a large enough time unit, see Sect. 6.
From each sequence xu, new sequences can be generated by randomly permuting the
order within the sequence. For each such new sequence the corresponding D2

w and T
values can be computed, and this leads to a reference distribution for D2

w or T under H0.
In the present study such random permutation-based tests have not been applied, but10

the aim is to try them in later studies (in progress). However, it should not be forgotten
that the primary use of D2

w is for ranking different simulations, and for that purpose the
reference distribution of the test statistics is of somewhat limited interest, and the more
explicit formula UT proposed in Sect. 7 appears to be more convenient.

Analogous constructions can be used for the correlation measure R. A reference15

distribution could be constructed by computing R for each of a large number of repli-
cated simulations. If only one or a few simulations are available, we are confined to
running through random permutations of their time order before correlating them with
the instrumental/proxy sequence.

Supplementary material related to this article is available online at:20

http://www.clim-past-discuss.net/8/263/2012/cpd-8-263-2012-supplement.pdf.

Acknowledgements. A. M. coordinated the study. R. S. developed the statistical framework.
A. H. wrote the computer code and performed the numerical analyses. The paper was writ-
ten jointly. We thank the Swedish Research Council (grants 70454201 and 90751501) and
the European Union (FP6 grant 017008, “Millennium” project) for funding. We also thank Jo-25

hann Jungclaus of the Max Planck Institute for providing the COSMOS data as well as help and
advice regarding the simulations.

307

http://www.clim-past-discuss.net
http://www.clim-past-discuss.net/8/263/2012/cpd-8-263-2012-print.pdf
http://www.clim-past-discuss.net/8/263/2012/cpd-8-263-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/
http://www.clim-past-discuss.net/8/263/2012/cpd-8-263-2012-supplement.pdf


CPD
8, 263–320, 2012

Statistical framework
for evaluation of

climate model sims

A. Hind et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

References

Allen, M. R. and Tett, S. F. B.: Checking for model consistency in optimal fingerprinting, Clim.
Dynam., 15, 419–434, 1999. 265

Ammann, C. M., Joos, F., Schimel, D. S., Otto-Bliesner, B. L., and Tomas, R. A.: Solar influence
on climate during the past millennium: Results from transient simulations with the NCAR5

Climate System Model, P. Natl. Acad. Sci., 104, 3713–3718, 2007. 289, 298
Bard, E., Raisbeck, G., Yiou, F., and Jouzel, J.: Solar irradiance during the last 1200 years

based on cosmogenic nuclides, Tellus B, 52, 985–992, 2000. 291, 292
Brohan, P., Kennedy, J. J., Harris, I., Tett, S. F. B., and Jones, P. D.: Uncertainty estimates in

regional and global observed temperature changes: A new data set from 1850, Journal of10

Geophysical Research, 111, D12106, doi:10.1029/2005JD006548, 1–12, 2006. 294
Brown, P. J.: Measurement, Regression and Calibration, Oxford University Press, Oxford, UK,

1993. 275
Christiansen, B. and Ljungqvist, F. C.: Reconstruction of the extra-tropical NH mean temper-

ature over the last millennium with a method that preserves low-frequency variability, J. Cli-15

mate, 24, 6013–6034, 2011. 300
Christiansen, B., Schmith, T., and Thejll, P.: A Surrogate Ensemble Study of Climate Recon-

struction Methods: Stochasticity and Robustness, J. Climate, 22, 951–976, 2009. 298
Cohn, T. A. and Lins, H. F.: Nature’s style: Naturally trendy, Geophys. Res. Lett., 32, L23402,

doi:10.1029/2005GL024476, 2005. 29520

Crowley, T.: Causes of climate change over the past 1000 years, Science, 289, 270–277, 2000.
290

Esper, J., Wilson, R. J. S., Frank, D. C., Moberg, A., Wanner, H., and Luterbacher, J.: Climate:
past ranges and future changes, Quaternary Sci. Rev., 24, 2164–2166, 2005. 298

Folland, C. K., Rayner, N. A., Brown, S. J., Smith, T. M., Shen, S. S. P., Parker, D. E., Macadam,25

I., Jones, P. D., Jones, R. N., Nicholls, N., and Sexton, D. M. H.: Global temperature change
and its uncertainties since 1861, Geophys. Res. Lett., 28, 2621–2624, 2001. 294
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Fig. 1. The MPI Millennium Activity COSMOS simulations over the last millennium with 30-
year non-overlapping means of global land-only annual temperature anomalies (◦C) from the
period 850-2000. The simulations are shown as the CTRLs (top-left), E1 ensemble (top-right),
SINGLE forcing (bottom-left) and E2 ensemble (bottom-right). The SINGLE forcing simulation
series are land-use changes (green), low solar (light orange), high solar (yellow) and volcanoes
(dark orange).

of their annual mean radiative forcing at the top of the atmosphere. The CO2 radiative
forcing is shown only for one of the E1 simulations as they are all similar in evolution,
although not identical due to the carbon cycle feedback.

30

Fig. 1. The MPI Millennium Activity COSMOS simulations over the last millennium with 30-
year non-overlapping means of global land-only annual temperature anomalies (◦C) from the
period 850–2000. The simulations are shown as the CTRLs (top-left panel), E1 ensemble (top-
right panel), SINGLE forcing (bottom-left panel) and E2 ensemble (bottom-right panel). The
SINGLE forcing simulation series are land-use changes (green), low solar (light orange), high
solar (yellow) and volcanoes (dark orange).
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Fig. 2. Annual mean radiative forcing at the top of the atmosphere (Wm−2) for (a) low solar (light
orange), high solar (yellow), CO2 (red) and land-cover change (green); and for (b) volcanoes
(dark orange).

9.3 Model–(pseudo-proxy)data comparison setup

In order to investigate the developed statistical methods, a pseudo-proxy analysis was
conducted using the COSMOS simulations. A pseudo-proxy series can be defined as
any instrumental or climate model data that has been distorted through the addition

31

Fig. 2. Annual mean radiative forcing at the top of the atmosphere (Wm−2) for (a) low solar (light
orange), high solar (yellow), CO2 (red) and land-cover change (green); and for (b) volcanoes
(dark orange).
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Fig. 3. Box-plots for UR correlation (top) and UT distance (bottom) measures for the global
land-only average COSMOS simulation time-series, compared to ≈ 100 different pseudo-proxy
realizations (iteratively running through the ensemble members as targets - see text). The left
panels are for E1 as target, right are E2 as target. The 5% two-sided significance levels are
shown with dashed lines. Each box covers the 50% interval between the lower and upper quar-
tiles, with the median as a thick black line between. The simulations are: 1=land-use changes,
2=low solar, 3=high solar, 4=volcanoes, 5-9=E1, 10-12=E2, 13=average E1, 14=average E2.
The CTRL simulation (numbers 15-17) results are shown for the UR analysis but not for UT ,
since they are then used as internal references. Note that the axis for UT is flipped to simplify
any comparisons with the UR box-plots.
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Fig. 3. Box-plots for UR correlation (top panel) and UT distance (bottom panel) measures
for the global land-only average COSMOS simulation time-series, compared to ≈100 different
pseudo-proxy realizations (iteratively running through the ensemble members as targets – see
text). The left panels are for E1 as target, right are E2 as target. The 5 % two-sided significance
levels are shown with dashed lines. Each box covers the 50 % interval between the lower and
upper quartiles, with the median as a thick black line between. The simulations are: 1= land-
use changes, 2= low solar, 3=high solar, 4= volcanoes, 5–9=E1, 10–12=E2, 13=average
E1, 14=average E2. The CTRL simulation (numbers 15–17) results are shown for the UR
analysis but not for UT , since they are then used as internal references. Note that the y-axis for
UT is flipped to simplify any comparisons with the UR box-plots.
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Fig. 4. The 27 proxy locations taken from Juckes et al. (2007) for the present local-scale
comparison. Note that the Juckes et al. (2007) set consists of 33 proxy locations, but some
locations were so close together a single representation was chosen for that location. A higher
resolution model would likely have allowed a comparison using the full set of locations.

but for the combined Juckes et al. (2007) locations. Specifically, we compute local cor-
relation (R) and distance (D2) measures for the 27 locations, before they are combined
to obtain a single UR and UT value for each simulation. The correlation analysis UR for
the Juckes et al. (2007) proxy locations gives similar results to the global time-series
analysis, though surprisingly the correlations are not less significant. This is something5

that could haven been expected due to the increased influence of internal (unforced)
variability at the regional scale in combination with the reduced area coverage. As
in the global average analysis, the E1 and E2 simulations are generally significantly
correlated with both the E1 (Fig. 5a) and E2 (Fig. 5b) targets (with the exception of
simulation number 8 in Fig. 5b). However, when E1 serves as target, the distance10

measure UT is unable to distinguish the E1 simulations from the CTRL simulations
(Fig. 5c), whereas the E2 simulations are significantly closer to the target than the
CTRL simulations when E2 serves as target (Fig. 5d). Concerning the single forcing
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Fig. 4. The 27 proxy locations taken from Juckes et al. (2007) for the present local-scale
comparison. Note that the Juckes et al. (2007) set consists of 33 proxy locations, but some
locations were so close together a single representation was chosen for that location. A higher
resolution model would likely have allowed a comparison using the full set of locations.
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Fig. 5. As Fig. 3, but using the local proxy locations from Juckes et al. (2007).

simulations, only the high solar (number 3) is significantly correlated with the E2 targets
and closer to the target than the CTRL simulations (Fig. 5c and 5d).

Using a realistic set of proxy locations such as the Juckes et al. (2007) set, it seems
there is no clear distinction between simulations, in terms of UT ranking or scoring,
unless the forcing is large and multi-decadal in nature (as is the case for the high solar5

forcing used here). Note that UR is more sensitive than UT for testing if a model forcing
has any correspondence with the true climate, but it answers a different question than
UT . This higher sensitivity is seen when we compare subfigures a and b with c and

40

Fig. 5. As Fig. 3, but using the local proxy locations from Juckes et al. (2007).
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Fig. 6. UR correlation (top) and UT distance (bottom) measures for volcanic (dark orange),
low (light orange) and high (yellow) solar forcing simulations. The left panels are for E1 as
target, right are E2 as target. The 5% significance level is shown with dashed lines. The filled
coloured lines denote the median value, with the dashed coloured lines representing the upper
and lower quartiles.

et al., 1997; Franke et al., 2011).
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Fig. 6. UR correlation (top panels) and UT distance (bottom panels) measures for volcanic (dark
orange), low (light orange) and high (yellow) solar forcing simulations. The left panels are for E1
as target, right panels are E2 as target. The 5 % significance level is shown with dashed lines.
The filled coloured lines denote the median value, with the dashed coloured lines representing
the upper and lower quartiles.
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Fig. 7. As Fig. 6, but for the E1 (blue) and E2 (red) ensemble averages.

10 Conclusions

In view of an increasing need to be able to compare output from model simulations with
climate variables reconstructed from proxy records, a method has been developed for
comparing temperature on a variety of time and spatial scales. The methodology devel-
oped here was specifically designed in view of the irregular distribution of such climatic5

records, with differing representativeness concerning seasons and record length. We
provide a statistical framework for these comparisons explicitly using information on

44

Fig. 7. As Fig. 6, but for the E1 (blue) and E2 (red) ensemble averages.
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Fig. A1. As Fig. 7, with E1 (blue) and E2 (red) ensemble averages. The thick lines denote the
use of inside averaging, whilst the thin lines denote outside averaging (as presented in Fig. 7).

is a stronger common signal amongst the ensemble members (as with the high solar
E2 ensemble), then the inside averaging approach will enhance the SNR of the series,
whilst if the common signal is weaker (as with the low solar E1 ensemble) there will not
be a large difference between the approaches. Hence, inside averaging can be more
effective than outside averaging.5

Appendix B

Alternative reference distributions for D2
w, T and R

It deserves mention that there are (at least) two possible nonparametric alternatives to
the normality-based tests for H0 used above, instead being based on exchangeability,10

either between replicated simulations xu or different time intervals within simulations
xu of the unforced model. First, if the number K of available unforced simulations is
large, and k <<K, then we could repeatedly take random samples of size k out of the

49

Fig. A1. As Fig. 7, with E1 (blue) and E2 (red) ensemble averages. The thick lines denote the
use of inside averaging, whilst the thin lines denote outside averaging (as presented in Fig. 7).
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