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Abstract

We present an automated method for determining the annual layer chronology of an
ice-core with a strong annual signal, utilising the hydrogen peroxide record from an
Antarctic Peninsula ice-core as a test signal on which to count annual cycles. The sig-
nal is de-trended and normalised before being split into sections with a deterministic5

cycle count and those that need more attention. Possible reconstructions for the uncer-
tain sections are determined and a method for assigning probability measures to each
reconstruction is discussed. These methods could be adapted for use on much longer
datasets, thereby reducing manual effort and providing a robust methodology.

1 Introduction10

Ice-cores hold information about the Earth’s past climate. This information is recorded
by chemical and physical signals in the ice that reflect the environmental conditions
when the ice was deposited. These signals are measured as a depth series, but need to
be modelled against time. In some cases the chemical signals measured from the melt-
water of ice-cores have annual cycles which can be counted to provide a chronology.15

Traditionally this has been undertaken by visual assignment of annual markers, with
no robust method for ensuring consistency or assessing uncertainty. In some cases,
ice-core annual layer chronologies have been counted manually for data spanning tens
of thousands of years, see Andersen et al. (2006), requiring months to years of effort.
This highlights a clear need to develop an automated, statistically-based methodology20

for application in this type of physical sciences research.
Previous attempts at developing automated cycle counting methods in the literature

have generally given little consideration to uncertainty. Rasmussen et al. (2002) use
Independent Component Analysis to combine chemistry data in conjunction with a low-
pass filter; the resulting signal is dated by counting peaks that rise above a threshold25

value. Other methods range from iteratively picking the most likely annual peaks along
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a core with respect to their spacing and magnitude (Taylor et al., 2004; McGwire et al.,
2011) to measuring periodicities in the signals (Rupf and Radons, 2004; Svensson
et al., 2005).

Uncertainty has been addressed under the Bayesian framework, applying hidden
Markov models (Winstrup, 2011) and Markov chain Monte Carlo methods (Wheatley5

et al., 2012) to univariate models based around sine waves. The method presented
here has the advantage over these approaches that it is sufficiently straightforward
computationally to use on full size cores, whilst still providing a measure of uncertainty.

Hydrogen peroxide (H2O2) is particularly suitable as a chronological marker in ice-
cores. It is created in the atmosphere by a chemical reaction that requires ultraviolet10

light. Because of the very strong seasonality in Antarctica (from complete darkness in
midwinter to 24 h daylight in midsummer), there is a strong and regular seasonality in
ultraviolet light, and a theoretical basis for expecting a single quasi-sinusoidal variability
in H2O2 concentration. Measurements of H2O2 dissolved in the ice therefore provide
a good annual cycle.15

In this study we utilise the H2O2 record from an Antarctic Peninsula ice-core as a test
signal on which to count annual cycles. The Gomez core extends to 134 m (Thomas
et al., 2008). We use 2 cm average H2O2 concentrations determined from continuous
measurements along the core. This core has been manually dated to 153 yr by de-
termining the depths of the lowest points (“nadirs”) of the annual troughs. We present20

a simple method based on these data for counting cycles which is fully automated,
requires no prior knowledge, and assigns probability measurements to the cycle count.

2 Data pre-processing

The Gomez H2O2 signal, indexed by its depth i , is transformed by taking logarithms to
improve the symmetry in its annual periodicity, giving the log signal x = {xi} which can25

be thought of as a sine wave on a non-linear time-scale with varying amplitude and
mean.
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In order to simplify the process of cycle counting, x is de-trended and the annual
cycle amplitudes are set to approximately 1. This is achieved by smoothing the signal
with respect to an initial rough estimate of the average cycle length at each depth,
see Sect. 2.1 for details. The precise shape of the normalised signal does not have
much effect on the methods presented below. While hydrogen peroxide seems to (and5

is expected to) yield a sine wave, it may be necessary to consider other wave shapes
for other chemical signals; Winstrup (2011) provides a discussion of some possibilities
for visual stratigraphy data.

2.1 Smoothing

Bandpass or lowpass filters are frequently used to remove cycles with periods deemed10

to be larger or smaller than expected (see Rasmussen et al., 2002; Taylor et al., 2004;
Rupf and Radons, 2004; McGwire et al., 2011). In Shimohara et al. (2003) the data are
smoothed by taking a moving average over a range of half an estimated annual layer
thickness. Here we use a point-wise standardisation: at each depth i

si =
xi −µi√

2σi

15

where µ = {µi} is a moving average of x and σ = {σi} is a moving standard deviation
of x−µ, both over the range of one annual layer thickness based on a preliminary
estimate – see Sect. 2.2 below.
µ measures trend in the data, the annual seasonality is averaged out due to the

interval length being a whole year. Subtracting µ de-trends x and centres s on 0.
√

2σ20

is an estimate for the annual cycle amplitude at each depth. Dividing by
√

2σ sets the
apices and nadirs of the annual cycles in s to a magnitude of approximately 1. In the
case of missing values, the corresponding µ and σ values are linearly interpolated
from the closest surrounding points where there are sufficient data.

The resulting s is essentially a sine wave on a non-linear time scale, with noise.25
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2.2 Estimate of cycle length

An initial estimate for the average cycle length in any sufficiently large subsection
of the signal can be found using the autocorrelation function (ACF); this is used
for the smoothing, not directly for the actual layer-counting. x is split into β non-
overlapping subsections, each containing approximately the same number of cycles.5

This is achieved via an algorithm that perturbs the section boundaries with respect to
the expected number of cycles in each section, estimated from the ACF. Each point
is then assigned the average cycle length for its subsection to be used as the interval
length for calculating µi and σi .

Other methods used to obtain this estimate as a precursor to layer counting include10

Fourier analysis McGwire et al. (2011) and ice flow modelling Shimohara et al. (2003).
Figure 1 shows the ACF for the second (circles) and fifth (stars) sections when β = 6.

The second section has an estimated 51 points in an average annual cycle and is of
length 1233 points. The fifth section has an estimated 32 points in an average annual
cycle, and is of length 774 points. Both sections therefore contain an estimated 24.215

annual cycles, as do all 6 sections. This gives an initial estimate of approximately 142
for the number of cycles contained in s, which is an underestimate due to the stretches
of missing values.

Figure 2 illustrates the smoothing process for β = 6. The top plot shows the log signal
x, with its annual moving average µ as a dotted line. The second plot shows the de-20

trended signal, with its estimated amplitude (
√

2σ ) as a dotted line. The bottom plot is
of s, the standardised signal. There is still some variation in mean and amplitude visible
due to the crude estimate of cycle length at each depth, however this is sufficient to
serve as a starting point for our automated dating scheme.

The choice of β affects the number of cycles available to estimate the average cycle25

length in each section; there is a trade-off between having sufficient data in each sec-
tion and averaging over many cycles. In Sect. 5.2 we further examine the sensitivity of
the method to the choice of β.
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3 “Certain” annual cycles

In large-scale manual layer counting exercises, annual cycles have been termed “cer-
tain” if they are judged through consensus of multiple counters to have probability at
least 3/4, see Andersen et al. (2006). Here we present a method of automatically clas-
sifying quarter cycles, analogous to seasons, as being “certain” if they are well-defined5

in the smoothed signal.

3.1 Classification into runs

We aim to segment the points of s into non-overlapping subsections called runs, each
representing either a “certain” quarter cycle or season, or an “issue” where manual
intervention is required. Each run is a collection of consecutive points and has one of10

five labels:

P: peak / summer;

D: descending / autumn;

T: trough / winter;

A: ascending / spring;15

χ : issue.

This classification is a two-stage process. Firstly we find potential quarter cycles; these
cannot contain missing values as we are unsure of their classification. For some sen-
sible choice of cut-off parameter ν: all runs of data points si ≥ ν are labelled as P∗, the
star meaning potential; all runs of data points si ≤ −ν are labelled as T∗. Runs of data20

points for which −ν < si < ν are labelled as potentially ascending and descending: A∗ if
they fall between a T∗ and P∗; D∗ if they fall between a P∗ and a T∗; and χ otherwise.
So the stretch of data in Fig. 3 with ν = 1/

√
2 (top), has potential run label pattern:

. . . ,T∗,A∗,P∗,D∗,T∗,A∗,P∗,D∗,T∗,χ ,T∗,A∗,P∗,χ ,P∗,D∗,T∗,A∗,P∗,D∗,T∗,A∗,P∗, . . .
25
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In the second stage, potential runs are labelled as runs only if they are central to 5
consecutive runs whose potential labels obey the pattern expected from a sinusoidal
signal. In the example, this gives the following:

. . . ,T,A,P,D,T,A,P,D∗,T∗,χ ∗,T∗,A∗,P∗,χ ∗,P∗,D∗,T,A,P,D,T,A,P, . . .
5

Finally, consecutive data points which make up the unlabelled runs are collected to-
gether into runs labelled as χ , and termed issues. This gives:

. . . ,T,A,P,D,T,A,P,χ ,T,A,P,D,T,A,P, . . .

Each point of s is now in exactly one run, and each run that is not labelled as χ makes
up a certain quarter annual cycle – these are termed certain runs. In Fig. 3 runs labelled10

P are coloured red, D runs are orange, T runs are blue, A runs are green, and issues
are black.

The value of the threshold used here, ν = 1/
√

2 ≈ 0.707, is natural in that it would
lead to the same proportions of points in each of the four types of quarter cycles, in
an ideal signal. Other choices have their merits; the value used is further discussed in15

Sects. 3.2 and 4.2, and robustness to the choice is considered in Sect. 5.1.

3.2 Issues

Runs labelled χ , or issues, consist of consecutive data points that are missing values,
that surround missing values, or that are in some way dubious in their periodicity. Sec-
tions of signal where there are no issues have a deterministic number of cycles: 1/4 of20

a cycle per certain run.
Figure 3 shows a stretch of s between 9.82 m and 18.58 m, ν = 1/

√
2 (top) and

ν = 1/2. The issues here are caused by the run pattern alone and contain no missing
values. At ν = 1/

√
2 there is an issue between 13.12 m and 15.4 m: a peak dips below

1/
√

2, and a trough rises above −1/
√

2. At ν = 1/2 the points corresponding to this25

issue now make up 5 certain runs; however there is a new issue between 16.76 m and
18.16 m.
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Issues such as those seen in Fig. 3 occur only in the first 20 m of signal where, due
to the very high resolution of the sampling with respect to the annual cycle length, small
fluctuations are found in the annual cycles. Choosing different values of ν affects where
data points are classified into certain runs and therefore the distribution of issues in
this first part of the signal.5

Figure 4 shows a stretch of s between 106.68 m and 110.2 m, ν = 1/
√

2 (top) and ν =
1/2. This issue is caused by a stretch of missing values, the non-missing data points
that also form part of the issue are coloured black. The choice of ν affects only the
issues length which decreases with ν. Note how as ν decreases the length of extreme
runs (P and T) increase and the length of central runs (A and D) decrease.10

For β = 6: with ν = 1/
√

2, s has 528 deterministic runs and 12 issues; with ν = 1/2,
s has 533 deterministic runs and 15 issues.

We can now split the signal into sections with a deterministic count and those that
need more attention. At this stage, the “issues” could be presented to experts as in
Figs. 3 and 4 so they can place certain and uncertain layer markers. However, the run15

pattern provides more information that could be exploited either to assist the expert
analysis or to allow further automation.

4 Reconstructions and probabilities

4.1 Reconstructions

The labels of the certain runs that bound an issue provide insight into the label pattern20

of the certain runs that could replace it. It is convenient to refer to peak and trough
runs collectively as extreme runs; similarly ascending and descending runs are termed
central. Issues are always bounded by extreme runs, leading to four possible cases:

. . . ,P,χ ,P, . . . (1) . . . ,P,χ ,T, . . . (2)

. . . ,T,χ ,P, . . . (3) . . . ,T,χ ,T, . . . (4)
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The points of s that correspond to an issue can be replaced with a compatible section
of sine wave, spread evenly over the points, referred to as a reconstruction. This could
be used to fill in missing values or replace sections of data affected by a sampling
problems.

The minimal reconstructions for cases (1) and (4) consist of 3 runs, as the minimal5

compatible sections of sine wave have run label patterns D, T, A and A, P, D, respec-
tively. The minimal reconstructions for cases (2) and (3) consist of 1 run labelled as D
and A, respectively. Further reconstructions can be found by adding in whole cycles.

Each possible reconstruction is made up of an odd number of runs. If m is the number
of runs in its minimal reconstruction and k cycles are added in, the issue would contain10

d =m+4k runs. Issues are always bounded by extreme runs and will therefore always
contain d−1

2 extreme runs and d+1
2 central runs.

Figure 5 shows possible reconstructions to the issue from Fig. 4. The top plot shows
the minimal reconstruction with one run, and the bottom shows the reconstruction with
3 additional cycles added in which consists of 13 runs. Plots like this could be used15

as visual aids to the manual assessment of issues. However, the available information
can be used to assign probabilities to each reconstruction, which would provide an
automated method of layer counting.

4.2 Assigning probabilities

The length of a run is used here to denote the number of points it contains, ` say.20

Provided that the time-depth relationship does not change too quickly, we would ex-
pect a run of a given type to have a similar length to other such runs near to it within
the core. This concept is key to existing manual and semi-automated layer-counting
approaches. Here we present a method of assigning probabilities to the possible re-
constructions of each issue by comparing ` to its implied distribution. For simplicity25

we are assuming throughout that points are equally spaced in depth, as is the case in
our example. Relaxing that assumption is straightforward in principle; it simply requires
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a slight extension of the notation, to work with lengths expressed in terms of differences
of depth rather than just numbers of points.

We take p(d |`) ∝ p(` |d ); that is, we take the probability of a reconstruction with d
runs, given that the issue contains ` data points, to be proportional to the probability of
those d runs having total length ` . This is essentially a Bayesian statistical approach,5

with a flat prior distribution on d . Again, using an alternative prior distribution would be
straightforward, but in practice, prior information is always likely to be dominated by the
other information in the core, as represented by p(` |d ).

Groups of d consecutive certain runs, of which d−1
2 are extreme, are analogous to

issue reconstructions. Ideally, we would model the lengths of these directly to find the10

distribution of ` given d . However, issues are concentrated in the first 20 m due to the
fluctuations discussed above, and the last 20 m where there are regular stretches of
missing values. In either case, this results in the analogous sections being concentrated
at the centre of s, resulting in a poor fit to the sections with issues.

Instead, we need to make use of information on individual certain run lengths. Fig-15

ure 6 is a plot of certain run lengths against depth for a range of ν. Peak run lengths
are equivalent in distribution to trough run lengths because of the symmetry in the sea-
sonality of s and in the classification process. For this reason, both peak and trough
runs – i.e. extreme runs – are denoted by stars. Similarly ascending and descending
runs, or central runs, are both denoted by circles. When ν is equal to the 75th per-20

centile of a sine wave (1/
√

2 ≈ 0.7) extreme and central run lengths are equivalent in
distribution; for ν < 1/

√
2 extreme run lengths are generally larger than central; and for

ν > 1/
√

2 central run lengths are generally larger than extreme. All these plots show the
non-linearity in average length, and also the change in spread as a function of depth.
This non-linearity in ice-core layer thickness is caused by vertical compaction of snow25

into ice and thinning of the ice layers caused by horizontal flow. Other proxy records
where annual layer counting is used for establishing chronologies, such as tree rings,
varves and corals, will not display this systematic reduction in layer thickness through
the depth profile. However, after taking natural logs the individual certain run lengths
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show a linear trend. This is well described by a regression model which has the ex-
treme or central run label as a factor, Fig. 7, meeting all the standard linear modelling
assumptions. If we know the central depth of a run and its label, we can find its ex-
pected length from the model. This model is analogous to the results of Rasmussen
et al. (2006) where annual layer thicknesses from the NGRIP core are shown to be5

log-normally distributed after a linear strain correction.
All of the d runs that make up the reconstruction of an issue have implied central

depths and labels. The expected value for the lengths of these runs, and therefore the
total length of the issue implied by the reconstruction, ˆ̀

d , can be interpolated from the
regression model. We assume that ln(`) ∼ N(ln( ˆ̀

d ),σ2
d ), where σd depends on d and10

is estimated using groups of certain runs, analogous to that particular reconstruction,
as discussed above. (Note that σd can not be obtained directly from the model for
individual runs, because of the dependence in lengths between consecutive runs.)

The issue from Fig. 5 contains ` = 64 data points. The minimal reconstruction for this
issue (top) is made up of one quarter cycle (m = 1); at this depth ˆ̀

1 = 8 and p(` |d =15

1) = 0 to three decimal places after normalisation. The second reconstruction contains
5/4 cycles, ˆ̀

5 = 38, and p(` |d = 5) = 0.005. At d = 9: ˆ̀
9 = 68 and p(` |d = 9) = 0.984;

and at d = 13: ˆ̀
13 = 95 and p(` |d = 13) = 0.011. Continuing to add cycles in this way

results in reconstructions with negligible probability.

5 Results20

The probabilities obtained in Sect. 4.2 can be combined across the whole core, assum-
ing separate issues to be independent given the certain parts of the classification.

Figure 8 shows the probability distribution for the number of annual cycle troughs in
the example signal for β = 6, ν = 1/2 (left) and ν = 1/

√
2. This is found by combining

the probabilities for each possible reconstruction of each issue. The manual count gave25

153 yr exactly.
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The differences in these distributions are due to the fluctuations found in the first
20 m of signal as discussed in Sect. 3.2.

The most probable reconstruction (p > 0.8 in both cases) has 153 troughs and
agrees closely to the manually counted solution. Figure 9 shows annual cycle lengths
(nadir to nadir) as found by manual counting and from the models most probable re-5

construction. Each nadir placed by the model corresponds uniquely to a manually de-
termined one, and their placements agree closely except for two cases: at the top of
the core where troughs are wide and determining their nadir is subjective; at the bottom
of the core where a number of troughs have been marked in stretches of missing data.

The signal is standardised in sections with respect to a typical cycle length, which10

may not be sensitive to an abrupt change in frequency. Depending on the cut-off ν it is
possible that a relatively short (and therefore uncertain) cycle could be either counted
as certain or missed out altogether, without flagging an issue. Labelling a short cycle
as certain would result in several consecutive low valued run lengths, whereas missing
a short cycle out would result in one very high valued central run length. Outliers from15

the regression model have been assessed to test for this possibility and no examples
were found.

5.1 Sensitivity to ν

To test the sensitivity of this process to the choice of ν it was run for 0.2 ≤ ν ≤ 0.8.
Figure 10 shows the resulting distributions of cycle counts, the area of the circles are20

proportional to the probability.
For ν < 0.3 the resolution of the data is such that some of the A and D runs at the

bottom of the core are of length 1 or missing. Similarly for ν > 0.8 some of the P and
T runs at the bottom of the core are of length 1 or missing. This adversely affects the
regression model and causes the model assumptions to fail.25

2488

http://www.clim-past-discuss.net
http://www.clim-past-discuss.net/8/2477/2012/cpd-8-2477-2012-print.pdf
http://www.clim-past-discuss.net/8/2477/2012/cpd-8-2477-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/


CPD
8, 2477–2502, 2012

Automated ice-core
layer-counting with
strong univariate

signals

J. J. Wheatley et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

5.2 Sensitivity to β

To test the sensitivity of this process to the choice of β it was run for 2 ≤ β ≤ 20, Fig. 11
shows the resulting distributions of cycle counts for ν = 1/2 (left) and ν = 1/

√
2.

For β < 5 the sections from which the annual cycle length is estimated are too long.
The thinning of annual cycle length with depth causes the estimates to be unrepresen-5

tative of cycles at either end of the sections. This results in some of the mean trend
and variation in amplitude still being present in s. For ν = 1/

√
2 a number of peaks and

troughs are missed, causing an underestimate in the cycle count. However, ν = 1/2
has many additional issues but still works well in this range.

For β > 20 there is not enough data in the first section with which to estimate the10

average cycle length.

6 Conclusions

With regards to developing an automated method for determining the annual layer
chronology in an ice-core with a strong annual signal, we have presented a method to:

– split the signal into sections with a deterministic cycle count and those that need15

more attention

– display possible reconstructions for the uncertain sections

– assign probability measures to each reconstruction

which together provide a stable count with an uncertainty measure. Some of the work
carried out for the example from Gomez would need to be repeated for each ice-core:20

for example, to determine the best value of β for a particular case, or to assess the
data for trends in layer thickness, which can arise for climatic as well as glaciological
reasons.
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A further benefit of this method it that it provides an objective way to split the depth
scale into seasons, allowing other variables to be discussed in seasonal terms. As-
suming intra-cycle symmetry, the choice of ν = 1/

√
2 splits each cycle into four equal

parts. In the case of H2O2, where cycles are directly correlated to sunlight, these parts
are analogous to seasons. We are currently developing a method that takes this idea5

further, providing a stochastic estimate for the time of year at each depth; however
this granularity has a computational cost. We use a different model formulation than
that described in Wheatley et al. (2012); as well as having added flexibility, our newer
method generalises more readily to the case of phase shifted multivariate signals.

These methods could be adapted for use on much longer datasets, thereby reducing10

manual effort and providing a robust methodology. Future work to develop this method
for broad application in physical science research, including but not limited to ice-core
palaeoclimate research, may involve extending the methodology to take in information
from multivariate datasets with more uncertain annual cyclicity and being able to pro-
vide solutions for optimally fitting annual chronologies between fixed points of known15

age.
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Bigler, M., Röthlisberger, R., Fischer, H., Goto-Azuma, K., Hansson, M., and Ruth, U.:
A new Greenland ice core chronology for the last glacial termination, J. Geophys. Res.,
111, D06102, doi:10.1029/2005JD006079, 2006. 24875

Rupf, I. and Radons, G.: New approaches for automated data processing of annually laminated
sediments, Nonlinear Proc. Geoph., 11, 599–607, 2004. 2479, 2480

Shimohara, K., Miyamoto, A., Hyakutake, K., Shoji, H., Takata, M., and Kipfstuhl, S.: Cloudy
Band Observations for Annual Layer Counting on the GRIP and NGRIP, Greenland, Deep
Ice Core Samples (Scientific Note), Mem. Natl. Inst. Polar Res., Spec. Issue, 57, 161–167,10

2003. 2480, 2481
Svensson, A., Nielsen, S., Kipfstuhl, S., Johnsen, S., Steffensen, J., Bigler, M., Ruth, U.,
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2 Wheatley et al.: Automated ice-core layer-counting with strong univariate signals

2 Data pre-processing70

The Gomez H2O2 signal, indexed by its depthi, is trans-
formed by taking logarithms to improve the symmetry in its
annual periodicity, giving the log signalx= {xi} which can
be thought of as a sine wave on a non-linear time-scale with
varying amplitude and mean.75

In order to simplify the process of cycle counting,x is de-
trended and the annual cycle amplitudes are set to approxi-
mately1. This is achieved by smoothing the signal with re-
spect to an initial rough estimate of the average cycle length
at each depth, see section 2.1 for details. The precise shapeof80

the normalised signal does not have much effect on the meth-
ods presented below. While hydrogen peroxide seems to (and
is expected to) yield a sine wave, it may be necessary to con-
sider other wave shapes for other chemical signals; Winstrup
(2011) provides a discussion of some possibilities for visual85

stratigraphy.

2.1 Smoothing

Bandpass or lowpass filters are frequently used to remove
cycles with periods deemed to be larger or smaller than ex-
pected, see Rasmussen et al. (2002); Taylor et al. (2004);
Rupf et al. (2004); and McGwire et al. (2011). In Shimohara
et al. (2003) the data are smoothed by taking a moving aver-
age over a range of half an estimated annual layer thickness.
Here we use a point-wise standardisation: at each depthi

si=
xi−µi√

2σi

whereµ= {µi} is a moving average ofx andσ= {σi} is a
moving standard deviation ofx−µ, both over the range of
one annual layer thickness based on a preliminary estimate90

— see section 2.2 below.
µ measures trend in the data, the annual seasonality is av-

eraged out due to the interval length being a whole year. Sub-
tractingµ de-trendsx and centress on 0.

√
2σ is an esti-

mate for the annual cycle amplitude at each depth. Dividing95

by
√
2σ sets the apices and nadirs of the annual cycles ins

to a magnitude of approximately1. In the case of missing
values, the correspondingµ andσ values are linearly inter-
polated from the closest surrounding points where there are
sufficient data.100

The resultings is essentially a sine wave on a non-linear
time scale, with noise.

2.2 Estimate of cycle length

An initial estimate for the average cycle length in any suffi-
ciently large subsection of the signal can be found using the105

autocorrelation function (ACF); this is used for the smooth-
ing, not directly for the actual layer-counting.x is split intoβ
non-overlapping subsections, each containing approximately
the same number of cycles. This is achieved via an algorithm

that perturbs the section boundaries with respect to the ex-110

pected number of cycles in each section, estimated from the
ACF. Each point is then assigned the average cycle length for
its subsection to be used as the interval length for calculating
µi andσi.

Other methods used to obtain this estimate as a precur-115

sor to layer counting include Fourier analysis McGwire et al.
(2011) and ice flow modelling Shimohara et al. (2003).

Figure 1shows the ACF for the second (circles) and fifth
(stars) sections whenβ=6. The second section has an esti-
mated51 points in an average annual cycle and is of length120

1,233 points. The fifth section has an estimated32 points in
an average annual cycle, and is of length774 points. Both
sections therefore contain an estimated24.2 annual cycles,
as do all6 sections. This gives an initial estimate of approxi-
mately142 for the number of cycles contained ins, which is125

an underestimate due to the stretches of missing values.

0 10 20 30 40 50 60

−
0.

5
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0
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5
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0

depth lag
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F

Fig. 1. The autocorrelation functions (ACFs) of the locally stan-
dardised signal (log concentration of H2O2) from the second (cir-
cles) and fifth (stars) of theβ =6 sub-sections of the Gomez ice-
core, plotted against lag measured as a number of observations. The
vertical dashed lines indicate the local maxima of the ACFs,used to
obtain an initial estimate of cycle length.

Figure 2 illustrates the smoothing process forβ=6. The
top plot shows the log signalx, with its annual moving aver-
ageµ as a dotted line. The second plot shows the de-trended
signal, with its estimated amplitude (

√
2σ) as a dotted line.130

The bottom plot is ofs, the standardised signal. There is
still some variation in mean and amplitude visible due to the
crude estimate of cycle length at each depth, however this is
sufficient to serve as a starting point for our automated dating
scheme.135

The choice ofβ affects the number of cycles available to
estimate the average cycle length in each section; there is a
trade-off between having sufficient data in each section and
averaging over many cycles. In section 5.2 we further exam-
ine the sensitivity of the method to the choice ofβ.140

Fig. 1. The autocorrelation functions (ACFs) of the locally standardised signal (log concentra-
tion of H2O2) from the second (circles) and fifth (stars) of the β = 6 sub-sections of the Gomez
ice-core, plotted against lag measured as a number of observations. The vertical dashed lines
indicate the local maxima of the ACFs, used to obtain an initial estimate of cycle length.
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Fig. 2. The process of smoothing the H2O2 signal from the Gomez
core, using an initial estimate of annual cycle length basedonβ=6

sub-sections. (a) The log signalx, with its annual moving average
µ as a dotted line. (b) The de-trended signal, with its estimated
amplitude (

√
2σ) as a dotted line. (c) The standardised signals.

3 ‘Certain’ annual cycles

In large-scale manual layer counting exercises, annual cycles
have been termed ‘certain’ if they are judged through con-
sensus of multiple counters to have probability at least3/4,
see Andersen et al. (2006). Here we present a method of au-145

tomatically classifying quarter cycles, analogous to seasons,
as being ‘certain’ if they are well-defined in the smoothed
signal.

3.1 Classification into runs

We aim to segment the points ofs into non-overlapping sub-
sections calledruns, each representing either a ‘certain’ quar-
ter cycle or season, or an ‘issue’ where manual intervention
is required. Each run is a collection of consecutive points and
has one of five labels:

P : peak / summer;
D : descending / autumn;
T : trough / winter;
A : ascending / spring;
χ : issue.

This classification is a two-stage process. Firstly we find150

potential quarter cycles; these can not contain missing values
as we are unsure of their classification. For some sensible
choice of cut-off parameterν: all runs of data pointssi ≥ ν
are labelled asP ∗, the star meaning potential; all runs of
data pointssi ≤−ν are labelled asT ∗. Runs of data points155

for which−ν < si <ν are labelled as potentially ascending
and descending:A∗ if they fall between aT ∗ andP ∗; D∗

if they fall between aP ∗ and aT ∗; andχ otherwise. So the

stretch of data inFigure 3with ν =1/
√
2 (top), has potential

run label pattern:160

...,T ∗,A∗,P ∗,D∗,T ∗,A∗,P ∗,D∗,T ∗,χ,T ∗,A∗,

P ∗,χ,P ∗,D∗,T ∗,A∗,P ∗,D∗,T ∗,A∗,P ∗,...

In the second stage, potential runs are labelled as runs only
if they are central to5 consecutive runs whose potential la-
bels obey the pattern expected from a sinusoidal signal. In
the example, this gives the following:

...,T,A,P,D,T,A,P,D∗,T ∗,χ∗,T ∗,A∗,

P ∗,χ∗,P ∗,D∗,T,A,P,D,T,A,P,...

Finally, consecutive data points which make up the unla-165

belled runs are collected together into runs labelled asχ, and
termedissues. This gives:

...,T,A,P,D,T,A,P,χ,T,A,P,D,T,A,P,...

Each point ofs is now in exactly one run, and each run that
is not labelled asχ makes up a certain quarter annual cycle -
these are termed certain runs. InFigure 3runs labelledP are170

coloured red,D runs are orange,T runs are blue,A runs are
green, and issues are black.

The value of the threshold used here,ν=1/
√
2≈ 0.707, is

natural in that it would lead to the same proportions of points
in each of the four types of quarter cycles, in an ideal signal.175

Other choices have their merits; the value used is further dis-
cussed in section 3.2 and section 4.2, and robustness to the
choice is considered in section 5.1.
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Fig. 3. Part of the standardised H2O2 signal, for depths between
9.82m and18.58m, showing the ‘issues’ (regions of dating uncer-
tainty) caused by fluctuations in the signal and identified using two
different values of the thresholdν for classifying individual points.
Points within ‘issues’ are black; points within peaks (labelled P
in main text) are coloured red, descending points (D) are orange,
troughs (T) are blue, and ascending points (A) are green. (a)Thresh-
old ν=1/

√
2≈ 0.707. (b) Thresholdν=0.5.

Fig. 2. The process of smoothing the H2O2 signal from the Gomez core, using an initial estimate
of annual cycle length based on β = 6 sub-sections. (a) The log signal x, with its annual moving
average µ as a dotted line. (b) The de-trended signal, with its estimated amplitude (

√
2σ ) as

a dotted line. (c) The standardised signal s.
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Fig. 2. The process of smoothing the H2O2 signal from the Gomez
core, using an initial estimate of annual cycle length basedonβ=6

sub-sections. (a) The log signalx, with its annual moving average
µ as a dotted line. (b) The de-trended signal, with its estimated
amplitude (

√
2σ) as a dotted line. (c) The standardised signals.

3 ‘Certain’ annual cycles

In large-scale manual layer counting exercises, annual cycles
have been termed ‘certain’ if they are judged through con-
sensus of multiple counters to have probability at least3/4,
see Andersen et al. (2006). Here we present a method of au-145

tomatically classifying quarter cycles, analogous to seasons,
as being ‘certain’ if they are well-defined in the smoothed
signal.

3.1 Classification into runs

We aim to segment the points ofs into non-overlapping sub-
sections calledruns, each representing either a ‘certain’ quar-
ter cycle or season, or an ‘issue’ where manual intervention
is required. Each run is a collection of consecutive points and
has one of five labels:

P : peak / summer;
D : descending / autumn;
T : trough / winter;
A : ascending / spring;
χ : issue.

This classification is a two-stage process. Firstly we find150

potential quarter cycles; these can not contain missing values
as we are unsure of their classification. For some sensible
choice of cut-off parameterν: all runs of data pointssi ≥ ν
are labelled asP ∗, the star meaning potential; all runs of
data pointssi ≤−ν are labelled asT ∗. Runs of data points155

for which−ν < si <ν are labelled as potentially ascending
and descending:A∗ if they fall between aT ∗ andP ∗; D∗

if they fall between aP ∗ and aT ∗; andχ otherwise. So the

stretch of data inFigure 3with ν =1/
√
2 (top), has potential

run label pattern:160

...,T ∗,A∗,P ∗,D∗,T ∗,A∗,P ∗,D∗,T ∗,χ,T ∗,A∗,

P ∗,χ,P ∗,D∗,T ∗,A∗,P ∗,D∗,T ∗,A∗,P ∗,...

In the second stage, potential runs are labelled as runs only
if they are central to5 consecutive runs whose potential la-
bels obey the pattern expected from a sinusoidal signal. In
the example, this gives the following:

...,T,A,P,D,T,A,P,D∗,T ∗,χ∗,T ∗,A∗,

P ∗,χ∗,P ∗,D∗,T,A,P,D,T,A,P,...

Finally, consecutive data points which make up the unla-165

belled runs are collected together into runs labelled asχ, and
termedissues. This gives:

...,T,A,P,D,T,A,P,χ,T,A,P,D,T,A,P,...

Each point ofs is now in exactly one run, and each run that
is not labelled asχ makes up a certain quarter annual cycle -
these are termed certain runs. InFigure 3runs labelledP are170

coloured red,D runs are orange,T runs are blue,A runs are
green, and issues are black.

The value of the threshold used here,ν=1/
√
2≈ 0.707, is

natural in that it would lead to the same proportions of points
in each of the four types of quarter cycles, in an ideal signal.175

Other choices have their merits; the value used is further dis-
cussed in section 3.2 and section 4.2, and robustness to the
choice is considered in section 5.1.
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Fig. 3. Part of the standardised H2O2 signal, for depths between
9.82m and18.58m, showing the ‘issues’ (regions of dating uncer-
tainty) caused by fluctuations in the signal and identified using two
different values of the thresholdν for classifying individual points.
Points within ‘issues’ are black; points within peaks (labelled P
in main text) are coloured red, descending points (D) are orange,
troughs (T) are blue, and ascending points (A) are green. (a)Thresh-
old ν=1/

√
2≈ 0.707. (b) Thresholdν=0.5.

Fig. 3. Part of the standardised H2O2 signal, for depths between 9.82 m and 18.58 m, showing
the “issues” (regions of dating uncertainty) caused by fluctuations in the signal and identified
using two different values of the threshold ν for classifying individual points. Points within “is-
sues” are black; points within peaks (labelled P in main text) are coloured red, descending
points (D) are orange, troughs (T) are blue, and ascending points (A) are green. (a) Threshold
ν = 1/

√
2 ≈ 0.707. (b) Threshold ν = 0.5.
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4 Wheatley et al.: Automated ice-core layer-counting with strong univariate signals

3.2 Issues

Runs labelledχ, or issues, consist of consecutive data points180

that are missing values, that surround missing values, or that
are in some way dubious in their periodicity. Sections of
signal where there are no issues have a deterministic number
of cycles: 1/4 of a cycle per certain run.

Figure 3shows a stretch ofs between9.82m and18.58m,185

ν = 1/
√
2 (top) andν = 1/2. The issues here are caused

by the run pattern alone and contain no missing values. At
ν = 1/

√
2 there is an issue between13.12m and15.4m: a

peak dips below1/
√
2, and a trough rises above−1/

√
2. At

ν =1/2 the points corresponding to this issue now make up190

5 certain runs; however there is a new issue between16.76m
and18.16m.

Issues such as those seen inFigure 3occur only in the first
20m of signal where, due to the very high resolution of the
sampling with respect to the annual cycle length, small fluc-195

tuations are found in the annual cycles. Choosing different
values ofν affects where data points are classified into cer-
tain runs and therefore the distribution of issues in this first
part of the signal.

Figure 4 shows a stretch ofs between106.68m and200

110.2m,ν=1/
√
2 (top) andν=1/2. This issue is caused by

a stretch of missing values, the non-missing data points that
also form part of the issue are coloured black. The choice
of ν effects only the issues length which decreases withν.
Note how asν decreases the length of extreme runs (P and205

T) increase and the length of central runs (A and D) decrease.
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Fig. 4. A short stretch of the standardised H2O2 signal, for depths
between106.68m and110.2m, showing an ‘issue’ (region of dating
uncertainty) caused by missing values in the signal and defined us-
ing two different values of the thresholdν for classifying individual
points. Points within the ‘issue’ whose classification is uncertain
because of their proximity to the missing values, are black;points
within peaks (labelled P in main text) are coloured red, descending
points (D) are orange, troughs (T) are blue, and ascending points
(A) are green. (a) Thresholdν = 1/

√
2≈ 0.707. (b) Threshold

ν =0.5.

For β = 6: with ν = 1/
√
2, s has528 deterministic runs

and12 issues; withν = 1/2, s has533 deterministic runs
and15 issues.

We can now split the signal into sections with a determin-210

istic count and those that need more attention. At this stage,
the ‘issues’ could be presented to experts as infigures 3 and 4
so they can place certain and uncertain layer markers. How-
ever, the run pattern provides more information that could
be exploited either to assist the expert analysis or to allow215

further automation.

4 Reconstructions and probabilities

4.1 Reconstructions

The labels of the certain runs that bound an issue provide
insight into the label pattern of the certain runs that couldre-220

place it. It is convenient to refer to peak and trough runs col-
lectively asextremeruns; similarly ascending and descend-
ing runs are termedcentral. Issues are always bounded by
extreme runs, leading to four possible cases:

...,P,χ,P,... (1) ...,P,χ,T,... (2)

...,T,χ,P,... (3) ...,T,χ,T,... (4)

The points ofs that correspond to an issue can be replaced225

with a compatible section of sine wave, spread evenly over
the points, referred to as areconstruction. This could be used
to fill in missing values or replace sections of data affected
by a sampling problems.

The minimal reconstructions for cases(1) and(4) consist230

of 3 runs, as the minimal compatible sections of sine wave
have run label patternsD,T,A andA,P,D respectively. The
minimal reconstructions for cases(2) and(3) consist of1 run
labelled asD andA respectively. Further reconstructions can
be found by adding in whole cycles.235

Each possible reconstruction is made up of an odd number
of runs. If m is the number of runs in its minimal recon-
struction andk cycles are added in, the issue would contain
d=m+4k runs. Issues are always bounded by extreme runs
and will therefore always containd−1

2
extreme runs andd+1

2
240

central runs.
Figure 5shows possible reconstructions to the issue from

Figure 4. The top plot shows the minimal reconstruction with
one run, and the bottom shows the reconstruction with3 ad-
ditional cycles added in which consists of13 runs. Plots like245

this could be used as visual aids to the manual assessment
of issues. However, the available information can be used
to assign probabilities to each reconstruction, which would
provide an automated method of layer counting.

4.2 Assigning probabilities250

The length of a run is used here to denote the number of
points it contains,ℓ say. Provided that the time-depth re-

Fig. 4. A short stretch of the standardised H2O2 signal, for depths between 106.68 m and
110.2 m, showing an “issue” (region of dating uncertainty) caused by missing values in the
signal and defined using two different values of the threshold ν for classifying individual points.
Points within the “issue” whose classification is uncertain because of their proximity to the miss-
ing values, are black; points within peaks (labelled P in main text) are coloured red, descending
points (D) are orange, troughs (T) are blue, and ascending points (A) are green. (a) Threshold
ν = 1/

√
2 ≈ 0.707. (b) Threshold ν = 0.5.
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Fig. 5. Four possible reconstructions of an ‘issue’ (region of dating
uncertainty, bounded by the dotted lines) caused by missingvalues
in the standardised H2O2 signal (black curve) at a depth of around
108.5m. Coloured points within the issue represent imputed val-
ues for missing observations, or conjectured ‘corrected’ values for
nearby observations; coloured points outside the issue indicate the
classification of actual observations. In each case, pointsclassified
as being within peaks (labelled P in main text) are coloured red, de-
scending points (D) are orange, troughs (T) are blue, and ascending
points (A) are green. The four different reconstructions are indexed
by d, the number of runs (sets of consecutive points classified in
the same way) used to reconstruct the issue, including the adjacent
runs; adding an extra year to the reconstructed chronology increases
d by 4. (a) The minimal reconstruction, with no additional annual
cycles, involvingd= 1 runs. (b) The reconstruction with one ad-
ditional annual cycle andd= 5. (c) The reconstruction with two
additional annual cycles andd= 9. (d) The reconstruction with
three additional annual cycles andd=13.

lationship does not change too quickly, we would expect a
run of a given type to have a similar length to other such runs
near to it within the core. This concept is key to existing man-255

ual and semi-automated layer-counting approaches. Here we
present a method of assigning probabilities to the possible
reconstructions of each issue by comparingℓ to its implied
distribution. For simplicity we are assuming throughout that
points are equally spaced in depth, as is the case in our exam-260

ple. Relaxing that assumption is straightforward in principle;
it simply requires a slight extension of the notation, to work
with lengths expressed in terms of differences of depth rather
than just numbers of points.

We takep(d | ℓ)∝ p(ℓ | d); that is, we take the probability265

of a reconstruction withd runs, given that the issue contains
ℓ data points, to be proportional to the probability of thosed
runs having total lengthℓ. This is essentially a Bayesian sta-
tistical approach, with a flat prior distribution ond. Again,
using an alternative prior distribution would be straightfor-270

ward, but in practice, prior information is always likely to
be dominated by the other information in the core, as repre-
sented byp(ℓ | d).

Groups ofd consecutive certain runs, of whichd−1

2
are

extreme, are analogous to issue reconstructions. Ideally,we275

would model the lengths of these directly to find the distribu-
tion of ℓ givend. However, issues are concentrated in the first
20m due to the fluctuations discussed above, and the last20m
where there are regular stretches of missing values. In either
case, this results in the analogous sections being concentrated280

at the centre ofs, resulting in a poor fit to the sections with
issues.

Instead, we need to make use of information on individual
certain run lengths.Figure 6 is a plot of certain run lengths
against depth for a range ofν.285
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Fig. 6. Plots of the length of a certain run—a set of consecutive ob-
servations that can be definitely classified as belonging to the same
part of an annual cycle—against depth within the core, for four dif-
ferent values of the thresholdν for classifying individual points.
Runs representing peaks (labelled P in main text) are represented
by red stars, descending runs (D) by orange circles, troughs(T) by
blue stars, and ascending runs (A) by green circles. (a) Runsde-
fined by thresholdν =0.5. (b) Runs defined by thresholdν =0.6.
(c) Runs defined by thresholdν =0.7. (d) Runs defined by thresh-
old ν=0.8.

Peak run lengths are equivalent in distribution to trough
run lengths because of the symmetry in the seasonality of
s and in the classification process. For this reason, both
peak and trough runs — i.e. extreme runs — are denoted
by stars. Similarly ascending and descending runs, or cen-290

tral runs, are both denoted by circles. Whenν is equal to the
75th percentile of a sine wave (1/

√
2≈ 0.7) extreme and cen-

tral run lengths are equivalent in distribution; forν < 1/
√
2

extreme run lengths are generally larger than central; and
for ν > 1/

√
2 central run lengths are generally larger than295

extreme. All these plots show the non-linearity in average
length, and also the change in spread as a function of depth.
This non-linearity in ice core layer thickness is caused by

Fig. 5. Four possible reconstructions of an “issue” (region of dating uncertainty, bounded by the
dotted lines) caused by missing values in the standardised H2O2 signal (black curve) at a depth
of around 108.5 m. Coloured points within the issue represent imputed values for missing ob-
servations, or conjectured “corrected” values for nearby observations; coloured points outside
the issue indicate the classification of actual observations. In each case, points classified as
being within peaks (labelled P in main text) are coloured red, descending points (D) are orange,
troughs (T) are blue, and ascending points (A) are green. The four different reconstructions are
indexed by d , the number of runs (sets of consecutive points classified in the same way) used
to reconstruct the issue, including the adjacent runs; adding an extra year to the reconstructed
chronology increases d by 4. (a) The minimal reconstruction, with no additional annual cycles,
involving d = 1 runs. (b) The reconstruction with one additional annual cycle and d = 5. (c) The
reconstruction with two additional annual cycles and d = 9. (d) The reconstruction with three
additional annual cycles and d = 13.
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Fig. 5. Four possible reconstructions of an ‘issue’ (region of dating
uncertainty, bounded by the dotted lines) caused by missingvalues
in the standardised H2O2 signal (black curve) at a depth of around
108.5m. Coloured points within the issue represent imputed val-
ues for missing observations, or conjectured ‘corrected’ values for
nearby observations; coloured points outside the issue indicate the
classification of actual observations. In each case, pointsclassified
as being within peaks (labelled P in main text) are coloured red, de-
scending points (D) are orange, troughs (T) are blue, and ascending
points (A) are green. The four different reconstructions are indexed
by d, the number of runs (sets of consecutive points classified in
the same way) used to reconstruct the issue, including the adjacent
runs; adding an extra year to the reconstructed chronology increases
d by 4. (a) The minimal reconstruction, with no additional annual
cycles, involvingd= 1 runs. (b) The reconstruction with one ad-
ditional annual cycle andd= 5. (c) The reconstruction with two
additional annual cycles andd= 9. (d) The reconstruction with
three additional annual cycles andd=13.

lationship does not change too quickly, we would expect a
run of a given type to have a similar length to other such runs
near to it within the core. This concept is key to existing man-255

ual and semi-automated layer-counting approaches. Here we
present a method of assigning probabilities to the possible
reconstructions of each issue by comparingℓ to its implied
distribution. For simplicity we are assuming throughout that
points are equally spaced in depth, as is the case in our exam-260

ple. Relaxing that assumption is straightforward in principle;
it simply requires a slight extension of the notation, to work
with lengths expressed in terms of differences of depth rather
than just numbers of points.

We takep(d | ℓ)∝ p(ℓ | d); that is, we take the probability265

of a reconstruction withd runs, given that the issue contains
ℓ data points, to be proportional to the probability of thosed
runs having total lengthℓ. This is essentially a Bayesian sta-
tistical approach, with a flat prior distribution ond. Again,
using an alternative prior distribution would be straightfor-270

ward, but in practice, prior information is always likely to
be dominated by the other information in the core, as repre-
sented byp(ℓ | d).

Groups ofd consecutive certain runs, of whichd−1

2
are

extreme, are analogous to issue reconstructions. Ideally,we275

would model the lengths of these directly to find the distribu-
tion of ℓ givend. However, issues are concentrated in the first
20m due to the fluctuations discussed above, and the last20m
where there are regular stretches of missing values. In either
case, this results in the analogous sections being concentrated280

at the centre ofs, resulting in a poor fit to the sections with
issues.

Instead, we need to make use of information on individual
certain run lengths.Figure 6 is a plot of certain run lengths
against depth for a range ofν.285
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Fig. 6. Plots of the length of a certain run—a set of consecutive ob-
servations that can be definitely classified as belonging to the same
part of an annual cycle—against depth within the core, for four dif-
ferent values of the thresholdν for classifying individual points.
Runs representing peaks (labelled P in main text) are represented
by red stars, descending runs (D) by orange circles, troughs(T) by
blue stars, and ascending runs (A) by green circles. (a) Runsde-
fined by thresholdν =0.5. (b) Runs defined by thresholdν =0.6.
(c) Runs defined by thresholdν =0.7. (d) Runs defined by thresh-
old ν=0.8.

Peak run lengths are equivalent in distribution to trough
run lengths because of the symmetry in the seasonality of
s and in the classification process. For this reason, both
peak and trough runs — i.e. extreme runs — are denoted
by stars. Similarly ascending and descending runs, or cen-290

tral runs, are both denoted by circles. Whenν is equal to the
75th percentile of a sine wave (1/

√
2≈ 0.7) extreme and cen-

tral run lengths are equivalent in distribution; forν < 1/
√
2

extreme run lengths are generally larger than central; and
for ν > 1/

√
2 central run lengths are generally larger than295

extreme. All these plots show the non-linearity in average
length, and also the change in spread as a function of depth.
This non-linearity in ice core layer thickness is caused by

Fig. 6. Plots of the length of a certain run – a set of consecutive observations that can be
definitely classified as belonging to the same part of an annual cycle – against depth within the
core, for four different values of the threshold ν for classifying individual points. Runs represent-
ing peaks (labelled P in main text) are represented by red stars, descending runs (D) by orange
circles, troughs (T) by blue stars, and ascending runs (A) by green circles. (a) Runs defined by
threshold ν = 0.5. (b) Runs defined by threshold ν = 0.6. (c) Runs defined by threshold ν = 0.7.
(d) Runs defined by threshold ν = 0.8.
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6 Wheatley et al.: Automated ice-core layer-counting with strong univariate signals

vertical compaction of snow into ice and thinning of the ice
layers caused by horizontal flow. Other proxy records where300

annual layer counting is used for establishing chronologies,
such as tree rings, varves and corals, will not display this sys-
tematic reduction in layer thickness through the depth profile.
However, after taking natural logs the individual certain run
lengths show a linear trend. This is well described by a re-305

gression model which has the extreme or central run label
as a factor,Figure 7, meeting all the standard linear mod-
elling assumptions. If we know the central depth of a run
and its label, we can find its expected length from the model.
This model is analogous to the results of Rasmussen et al.310

(2006) where annual layer thicknesses from the NGRIP core
are shown to be log-normally distributed after a linear strain
correction.
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Fig. 7. A linear model for the logarithm of the length of a certain
run—a set of consecutive observations that can be definitelyclas-
sified as belonging to the same part of an annual cycle—against
depth within the core. Runs representing peaks (labelled P in main
text) are represented by red stars, descending runs (D) by orange
circles, troughs (T) by blue stars, and ascending runs (A) bygreen
circles. The solid lines indicated the fitted values for peak/trough
runs (red) and ascending/descending runs (green), and the red and
green dotted lines represent the respective95% predictive intervals
for individual runs.

All of the d runs that make up the reconstruction of an
issue have implied central depths and labels. The expected315

value for the lengths of these runs, and therefore the total
length of the issue implied by the reconstruction,ℓ̂d, can
be interpolatedfrom the regression model. We assume that
ln(ℓ)∼N(ln(ℓ̂d),σ

2
d
), whereσd depends ond and is esti-

mated using groups of certain runs, analogous to that partic-320

ular reconstruction, as discussed above. (Note thatσd can
not be obtained directly from the model for individual runs,
because of the dependence in lengths between consecutive
runs.)

The issue fromFigure 5containsℓ=64 data points. The325

minimal reconstruction for this issue (top) is made up of one
quarter cycle (m=1); at this deptĥℓ1=8 andp(ℓ | d=1)=

0 to three decimal places after normalisation. The second re-
construction contains5/4 cycles,ℓ̂5 =38, andp(ℓ | d=5)=

0.005. At d= 9: ℓ̂9 = 68 andp(ℓ | d= 9)= 0.984; and at330

d= 13: ℓ̂13 = 95 andp(ℓ | d= 13) = 0.011. Continuing to
add cycles in this way results in reconstructions with negli-
gible probability.

5 Results

The probabilities obtained in section 4.2 can be combined335

across the whole core, assuming separate issues to be inde-
pendent given the certain parts of the classification.

Figure 8shows the probability distribution for the number
of annual cycle troughs in the example signal forβ=6, ν =
1/2 (left) andν = 1/

√
2. This is found by combining the340

probabilities for each possible reconstruction of each issue.
The manual count gave153 years exactly.

The differences in these distributions are due to the fluctu-
ations found in the first20m of signal as discussed in section
3.2.345
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Fig. 8. Bar plots showing the probability distributions of the number
of annual troughs—a summary of the chronology—in the datingof
the example section of the Gomez core, based on two possible val-
ues of the thresholdν for classifying individual points, and dividing
the core intoβ =6 sub-sections for the initial smoothing process.
(a) Thresholdν=0.5. (b) Thresholdν =1/

√
2≈ 0.707.

The most probable reconstruction (p> 0.8 in both cases)
has153 troughs and agrees closely to the manually counted
solution.Figure 9shows annual cycle lengths (nadir to nadir)
as found by manual counting and from the models most prob-
able reconstruction. Each nadir placed by the model cor-350

responds uniquely to a manually determined one, and their
placements agree closely except for two cases: at the top of
the core where troughs are wide and determining their nadir
is subjective; at the bottom of the core where a number of
troughs have been marked in stretches of missing data.355

The signal is standardised in sections with respect to a typ-
ical cycle length, which may not be sensitive to an abrupt
change in frequency. Depending on the cut-offν it is pos-
sible that a relatively short (and therefore uncertain) cycle
could be either counted as certain or missed out altogether,360

without flagging an issue. Labelling a short cycle as certain

Fig. 7. A linear model for the logarithm of the length of a certain run – a set of consecutive
observations that can be definitely classified as belonging to the same part of an annual cycle –
against depth within the core. Runs representing peaks (labelled P in main text) are represented
by red stars, descending runs (D) by orange circles, troughs (T) by blue stars, and ascending
runs (A) by green circles. The solid lines indicate the fitted values for peak/trough runs (red)
and ascending/descending runs (green), and the red and green dotted lines represent the
respective 95% predictive intervals for individual runs.

2498

http://www.clim-past-discuss.net
http://www.clim-past-discuss.net/8/2477/2012/cpd-8-2477-2012-print.pdf
http://www.clim-past-discuss.net/8/2477/2012/cpd-8-2477-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/


CPD
8, 2477–2502, 2012

Automated ice-core
layer-counting with
strong univariate

signals

J. J. Wheatley et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

6 Wheatley et al.: Automated ice-core layer-counting with strong univariate signals

vertical compaction of snow into ice and thinning of the ice
layers caused by horizontal flow. Other proxy records where300

annual layer counting is used for establishing chronologies,
such as tree rings, varves and corals, will not display this sys-
tematic reduction in layer thickness through the depth profile.
However, after taking natural logs the individual certain run
lengths show a linear trend. This is well described by a re-305

gression model which has the extreme or central run label
as a factor,Figure 7, meeting all the standard linear mod-
elling assumptions. If we know the central depth of a run
and its label, we can find its expected length from the model.
This model is analogous to the results of Rasmussen et al.310

(2006) where annual layer thicknesses from the NGRIP core
are shown to be log-normally distributed after a linear strain
correction.
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Fig. 7. A linear model for the logarithm of the length of a certain
run—a set of consecutive observations that can be definitelyclas-
sified as belonging to the same part of an annual cycle—against
depth within the core. Runs representing peaks (labelled P in main
text) are represented by red stars, descending runs (D) by orange
circles, troughs (T) by blue stars, and ascending runs (A) bygreen
circles. The solid lines indicated the fitted values for peak/trough
runs (red) and ascending/descending runs (green), and the red and
green dotted lines represent the respective95% predictive intervals
for individual runs.

All of the d runs that make up the reconstruction of an
issue have implied central depths and labels. The expected315

value for the lengths of these runs, and therefore the total
length of the issue implied by the reconstruction,ℓ̂d, can
be interpolatedfrom the regression model. We assume that
ln(ℓ)∼N(ln(ℓ̂d),σ

2
d
), whereσd depends ond and is esti-

mated using groups of certain runs, analogous to that partic-320

ular reconstruction, as discussed above. (Note thatσd can
not be obtained directly from the model for individual runs,
because of the dependence in lengths between consecutive
runs.)

The issue fromFigure 5containsℓ=64 data points. The325

minimal reconstruction for this issue (top) is made up of one
quarter cycle (m=1); at this deptĥℓ1=8 andp(ℓ | d=1)=

0 to three decimal places after normalisation. The second re-
construction contains5/4 cycles,ℓ̂5 =38, andp(ℓ | d=5)=

0.005. At d= 9: ℓ̂9 = 68 andp(ℓ | d= 9)= 0.984; and at330

d= 13: ℓ̂13 = 95 andp(ℓ | d= 13) = 0.011. Continuing to
add cycles in this way results in reconstructions with negli-
gible probability.

5 Results

The probabilities obtained in section 4.2 can be combined335

across the whole core, assuming separate issues to be inde-
pendent given the certain parts of the classification.

Figure 8shows the probability distribution for the number
of annual cycle troughs in the example signal forβ=6, ν =
1/2 (left) andν = 1/

√
2. This is found by combining the340

probabilities for each possible reconstruction of each issue.
The manual count gave153 years exactly.

The differences in these distributions are due to the fluctu-
ations found in the first20m of signal as discussed in section
3.2.345
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Fig. 8. Bar plots showing the probability distributions of the number
of annual troughs—a summary of the chronology—in the datingof
the example section of the Gomez core, based on two possible val-
ues of the thresholdν for classifying individual points, and dividing
the core intoβ =6 sub-sections for the initial smoothing process.
(a) Thresholdν=0.5. (b) Thresholdν =1/

√
2≈ 0.707.

The most probable reconstruction (p> 0.8 in both cases)
has153 troughs and agrees closely to the manually counted
solution.Figure 9shows annual cycle lengths (nadir to nadir)
as found by manual counting and from the models most prob-
able reconstruction. Each nadir placed by the model cor-350

responds uniquely to a manually determined one, and their
placements agree closely except for two cases: at the top of
the core where troughs are wide and determining their nadir
is subjective; at the bottom of the core where a number of
troughs have been marked in stretches of missing data.355

The signal is standardised in sections with respect to a typ-
ical cycle length, which may not be sensitive to an abrupt
change in frequency. Depending on the cut-offν it is pos-
sible that a relatively short (and therefore uncertain) cycle
could be either counted as certain or missed out altogether,360

without flagging an issue. Labelling a short cycle as certain

Fig. 8. Bar plots showing the probability distributions of the number of annual troughs – a sum-
mary of the chronology – in the dating of the Gomez core, based on two possible values of the
threshold ν for classifying individual points, and dividing the core into β = 6 sub-sections for the
initial smoothing process. (a) Threshold ν = 0.5. (b) Threshold ν = 1/

√
2 ≈ 0.707.
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Fig. 9. Thickness of estimated annual layers in the Gomez core,
based on manual counting and on the automated approach defined
here, as a function of calendar year. Circles indicate the thicknesses
resulting from manual counting; stars indicate the corresponding
thicknesses based on the most likely reconstruction (probability
greater than0.8) using automated layer-counting of the H2O2 sig-
nal.

would result in several consecutive low valued run lengths,
whereas missing a short cycle out would result in one very
high valued central run length. Outliers from the regression
model have been assessed to test for this possibility and no365

examples were found.
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Fig. 10. The effect of the thresholdν, for classifying individual
points, on the probability distribution obtained for the number of
annual troughs—a summary of the chronology—in the dating ofthe
example section of the Gomez core, in each case dividing the core
into β = 10 sub-sections for the initial smoothing process. Each
circle has area proportional to the probability of a particular number
of troughs, when the reconstruction uses a particular valueof the
thresholdν.

5.1 Sensitivity toν

To test the sensitivity of this process to the choice ofν it was
run for .2≤ ν ≤ .8. Figure 10shows the resulting distribu-

tions of cycle counts, the area of the circles are proportional370

to the probability.
For ν < .3 the resolution of the data is such that some of

theA andD runs at the bottom of the core are of length1
or missing. Similarly forν > .8 some of theP andT runs
at the bottom of the core are of length1 or missing. This375

adversely affects the regression model and causes the model
assumptions to fail.

5.2 Sensitivity toβ

To test the sensitivity of this process to the choice ofβ it was
run for 2≤ β ≤ 20, Figure 11shows the resulting distribu-380

tions of cycle counts forν=1/2 andν=1/
√
2.

Forβ < 5 the sections from which the annual cycle length
is estimated are too long. The thinning of annual cycle length
with depth causes the estimates to be unrepresentative of cy-
cles at either end of the sections. This results in some of385

the mean trend and variation in amplitude still being present
in s. For ν = 1/

√
2 a number of peaks and troughs are

missed, causing an underestimate in the cycle count. How-
ever,ν=1/2 has many additional issues but still works well
in this range.390

Forβ > 20 there is not enough data in the first section with
which to estimate the average cycle length.

6 Conclusions

With regards to developing an automated method for deter-
mining the annual layer chronology in an ice-core with a395

strong annual signal, we have presented a method to:

– split the signal into sections with a deterministic cycle
count and those that need more attention

– display possible reconstructions for the uncertain sec-
tions400

– assign probability measures to each reconstruction

which together provide a stable count with an uncertainty
measure. Some of the work carried out for the example from
Gomez would need to be repeated for each ice-core: for ex-
ample, to determine the best value ofβ for a particular case,405

or to assess the data for trends in layer thickness, which can
arise for climatic as well as glaciological reasons.

A further benefit of this method it that it provides an ob-
jective way to split the depth scale into seasons, allowing
other variables to be discussed in seasonal terms. Assuming410

intra-cycle symmetry, the choice ofν=1/
√
2 splits each cy-

cle into four equal parts. In the case of H2O2, where cycles
are directly correlated to sunlight, these parts are analogous
to seasons. We are currently developing a method that takes
this idea further, providing a stochastic estimate for the time415

of year at each depth; however this granularity has a com-
putational cost. We use a different model formulation than

Fig. 9. Thickness of estimated annual layers in the Gomez core, based on manual counting
and on the automated approach defined here, as a function of calendar year. Circles indicate
the thicknesses resulting from manual counting; stars indicate the corresponding thicknesses
based on the most likely reconstruction (probability greater than 0.8) using automated layer-
counting of the H2O2 signal.
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Fig. 9. Thickness of estimated annual layers in the Gomez core,
based on manual counting and on the automated approach defined
here, as a function of calendar year. Circles indicate the thicknesses
resulting from manual counting; stars indicate the corresponding
thicknesses based on the most likely reconstruction (probability
greater than0.8) using automated layer-counting of the H2O2 sig-
nal.

would result in several consecutive low valued run lengths,
whereas missing a short cycle out would result in one very
high valued central run length. Outliers from the regression
model have been assessed to test for this possibility and no365

examples were found.
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Fig. 10. The effect of the thresholdν, for classifying individual
points, on the probability distribution obtained for the number of
annual troughs—a summary of the chronology—in the dating ofthe
example section of the Gomez core, in each case dividing the core
into β = 10 sub-sections for the initial smoothing process. Each
circle has area proportional to the probability of a particular number
of troughs, when the reconstruction uses a particular valueof the
thresholdν.

5.1 Sensitivity toν

To test the sensitivity of this process to the choice ofν it was
run for .2≤ ν ≤ .8. Figure 10shows the resulting distribu-

tions of cycle counts, the area of the circles are proportional370

to the probability.
For ν < .3 the resolution of the data is such that some of

theA andD runs at the bottom of the core are of length1
or missing. Similarly forν > .8 some of theP andT runs
at the bottom of the core are of length1 or missing. This375

adversely affects the regression model and causes the model
assumptions to fail.

5.2 Sensitivity toβ

To test the sensitivity of this process to the choice ofβ it was
run for 2≤ β ≤ 20, Figure 11shows the resulting distribu-380

tions of cycle counts forν=1/2 andν=1/
√
2.

Forβ < 5 the sections from which the annual cycle length
is estimated are too long. The thinning of annual cycle length
with depth causes the estimates to be unrepresentative of cy-
cles at either end of the sections. This results in some of385

the mean trend and variation in amplitude still being present
in s. For ν = 1/

√
2 a number of peaks and troughs are

missed, causing an underestimate in the cycle count. How-
ever,ν=1/2 has many additional issues but still works well
in this range.390

Forβ > 20 there is not enough data in the first section with
which to estimate the average cycle length.

6 Conclusions

With regards to developing an automated method for deter-
mining the annual layer chronology in an ice-core with a395

strong annual signal, we have presented a method to:

– split the signal into sections with a deterministic cycle
count and those that need more attention

– display possible reconstructions for the uncertain sec-
tions400

– assign probability measures to each reconstruction

which together provide a stable count with an uncertainty
measure. Some of the work carried out for the example from
Gomez would need to be repeated for each ice-core: for ex-
ample, to determine the best value ofβ for a particular case,405

or to assess the data for trends in layer thickness, which can
arise for climatic as well as glaciological reasons.

A further benefit of this method it that it provides an ob-
jective way to split the depth scale into seasons, allowing
other variables to be discussed in seasonal terms. Assuming410

intra-cycle symmetry, the choice ofν=1/
√
2 splits each cy-

cle into four equal parts. In the case of H2O2, where cycles
are directly correlated to sunlight, these parts are analogous
to seasons. We are currently developing a method that takes
this idea further, providing a stochastic estimate for the time415

of year at each depth; however this granularity has a com-
putational cost. We use a different model formulation than

Fig. 10. The effect of the threshold ν, for classifying individual points, on the probability dis-
tribution obtained for the number of annual troughs – a summary of the chronology – in the
dating of the Gomez core, in each case dividing the core into β = 10 sub-sections for the initial
smoothing process. Each circle has area proportional to the probability of a particular number
of troughs, when the reconstruction uses a particular value of the threshold ν.
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Fig. 11. The effect of the number of sub-sectionsβ used in the initial smoothing of the H2O2 signal on the probability distribution obtained
for the number of annual troughs—a summary of the chronology—in the dating of the example section of the Gomez core, with two possible
values of the thresholdν for classifying individual points. Each circle has area proportional to the probability of a particular number of
troughs, when the reconstruction uses particular values ofβ andν. (a)β=2,... ,20, with ν =0.5. (b)β=2,... ,20, with ν =1/

√
2≈ 0.707.

that described in Wheatley et al. (Submitted for publication);
as well as having added flexibility, our newer method gener-
alises more readily to the case of phase shifted multivariate420

signals.
These methods could be adapted for use on much longer

datasets, thereby reducing manual effort and providing a ro-
bust methodology. Future work to develop this method for
broad application in physical science research, includingbut425

not limited to ice-core palaeoclimate research, may involve
extending the methodology to take in information from mul-
tivariate datasets with more uncertain annual cyclicity and
being able to provide solutions for optimally fitting annual
chronologies between fixed points of known age.430
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signal on the probability distribution obtained for the number of annual troughs – a summary of
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