Supplementary Materials

There are two parts to the supplementary materials, 1 figures and 1 list of geological data and references. The figure shows the reconstructed bathymetry used in the Early Eocene (EECO) experiment as well as changes applied in the four sensitivity experiments: WSSC (closing of the West Siberian Seaway); AASD (deepening of the Arctic/Arctic-Atlantic Seaway); DPGD (deepening of the Drake Passage Gateway) and TSCN (constriction of the tropical Atlantic seaways). Finally we list geological evidence and references used in Figure 1.

Supplementary Materials I: Paleobathymetry used in FOAM experiments

Paleobathymetry used in the FOAM experiments for (a) the Early Eocene experiment and (b to e) the four sensitivity experiments. The white circles highlight the seaways that are changed. The colour bars follow the depth levels of Slarti, a boundary condition generator for FOAM.

Supplementary Materials II: Geological evidence and references used in Figure1

Site ¹	$PLat^2$	Mean ³	Range ³	Method	Reference
SST					
21	-31	24		d18O	Zachos et al., 1994
20C	-30	20		d18O	Zachos et al., 1994
94	-88	22		d18O	Zachos et al., 1994
144	7	26		d18O	Zachos et al., 1994
171	10	25		d18O	Zachos et al., 1994
213	-32	18		d18O	Zachos et al., 1994
215	-34	19		d18O	Zachos et al., 1994
237	-16	24		d18O	Zachos et al., 1994
356	-31	23		d18O	Zachos et al., 1994
357	-32	23		d18O	Zachos et al., 1994
525	-35	17		d18O	Zachos et al., 1994
527	-34	17		d18O	Zachos et al., 1994
528	-35		15-17	d18O	Zachos et al., 1994
548	45		13-23	d18O	Zachos et al., 1994
577	24	20		d18O	Zachos et al., 1994
690	-65		11-14	d18O	Zachos et al., 1994
702	-53		12-16	d18O	Zachos et al., 1994
738	-63		11-15	d18O	Zachos et al., 1994
747	-56	14		d18O	Zachos et al., 1994
748	-60	16		d18O	Zachos et al., 1994
757	-43		13-17	d18O	Zachos et al., 1994
865B	9		20-25	d180	Bralower et al., 1995
Ameke	-5		29-31	d180	Andreasson and Schmitz,
Tonzonio	15		20.22	4180	1998 Bearson at al. 2007
Saymour Island	-13		29-32 5 15	d180	Iveny et al. 2007
New Zeland	-70		24.32	d180	Croach at al. 2010
	-55		24-32	0180	Creech et al., 2010
865B	9		31-34	Mg/Ca	Tripati et al., 2003
865B	9		26-28	Mg/Ca	Tripati et al., 2003
527	-34		29-32	Mg/Ca	Tripati et al., 2004
527	-34		24-27	Mg/Ca	Tripati et al., 2004
New Zeland	-55	29		Mg/Ca	Hollis et al., 2009
New Zeland	-55		24-30	Mg/Ca	Creech et al., 2010
IODP302	83		12-23	TEX86	Sluijs et al., 2006
IODP302	83		9-12	TEX86	Brinkhuis et al., 2006
New Jersey	40		30-35	TEX86	Sluijs et al., 2007
Tanzania	-15		35-40	TEX86	Pearson et al., 2007
New Zeland	-55		30-31	TEX86	Hollis et al., 2009, Creech et al., 2010
ODP1172	-65		28-35	TEX86	Bijl et al., 2009
Estimations from	n land				
Wyoming	45		17-23	LMA	Wing et al., 2000

Supplementary Table 1. Early Eocene surface temperature estimations used in Figure 1d.

Wyoming	45	18		LMA	Wing et al., 2005
McAbee	51		7-16	LMA	Fricke and Wing, 2004
Bear's Paw	49		8-18	LMA	Fricke and Wing, 2004
Camel's Butte	47		5-15	LMA	Fricke and Wing, 2004
Yellowstone	45		7-17	LMA	Fricke and Wing, 2004
Kisinger Lake	44		16-26	LMA	Fricke and Wing, 2004
Upper	4.4		20.21	LMA	Fricke and Wing, 2004
Willwood	44		20-31		-
Lower	4.4		16.26	LMA	Fricke and Wing, 2004
Willwood	44		10-20		-
Wind River	44		16-27	LMA	Fricke and Wing, 2004
Sourdough	42		19-30	LMA	Fricke and Wing, 2004
Niland	42		19-32	LMA	Fricke and Wing, 2004
Little Mtn.	41		17-28	LMA	Fricke and Wing, 2004
Sourdough	42		12-24	LMA	Fricke and Wing, 2004
Chalk Bluffs	40		15-24	LMA	Fricke and Wing, 2004
Okanagan	50		10-15	LMA	Greenwood et al. 2005
-					
Brandy Ck	-59		18-25	LMA	Greenwood et al., 2003, 2004
Hotham	50		17.05	T N / A	Concernent of at al. 2002, 2004
Heights	-39		17-25	LMA	Greenwood et al., 2003, 2004
Hatchetlgbee	33	31		d18O	Ivany et al. 2004
Bluff	55	51			Ivally et al., 2004
Wyoming	45	26		d18O	Fricke and Wing, 2004
Big Bene	29	32		d18O	Fricke and Wing, 2004
San Juan	36	28		d18O	Fricke and Wing, 2004
Green River	44	16		d18O	Fricke and Wing, 2004
Bignorn Basin	45		18-25	d18O	Fricke and Wing, 2004
Powder River	45	19		d18O	Fricke and Wing, 2004
Ellesmere	73	1		d18O	Fricke and Wing, 2004
Island	15	+			
High Arctic	79		9-12	d18O	Eberle et al., 2006
High Arctic	79	8		d18O	Eberle et al., 2010
Norwegian				Bioclimat	Eldrett et al., 2009
Greenland	70		13-15	ic	
Greemand				analysis	
Ellesmere	71	14		Crocodil	Markwich, 1998
Island				e remains	
Antarctica	-70	15		Clay	Robert and Kennett, 1994
		10		mineral	

_

LMA: Leaf-Margin analysis

References for supplymentary table 1

- 1. Andreasson F P, Schmitz B, 1998. Tropical Atlantic seasonal dynamics in the early middle Eocene from stable oxygen and carbon isotope profiles of mollusk shells. *Paleoceanography*, 13, 183-192.
- 2. Bijl P, Schouten S, Sluijs A, Reichart G, Zachos J, Brinkhuis H, 2009. Early palaeogene temperature evolution of the southwest pacific ocean. *Nature*, 461(7265), 776-779.
- Bralower T J, Zachos J C, Thomas E, Parrow M, Paull C K, Kelly D C, Silva I P, Sliter W V, Lohmann K C, 1995. Late Paleocene to Eocene paleoceanography of the equatorial Pacific Ocean: Stable isotopes recorded at Ocean Drilling Program Site 865, Allison Guyot. *Paleoceanography*, 10(4), 841-865.
- 4. Brinkhuis H, Schouten S, Collinson M E, Sluijs A, Damsté J S S, Dickens G R, Huber M, Cronin T M, Onodera J, Takahashi K, Bujak J P, Stein R, van der Burgh J, Eldrett J S, Harding I C, Lotter A F, Sangiorgi F, van Konijnenberg-van Cittert H, de Leeuw J W, Matthiessen J, Backman J, Moran K, the Expedition 302 Scientists, 2006. Episodic fresh surface waters in the Eocene Arctic Ocean. *Nature*, 441, 606-609, doi:10.1038/nature04692.
- 5. Creech J B, Baker J A, Hollis C J, Morgans H E G, Smith E G C, 2010. Eocene sea temperatures for the mid-latitude southwest Pacific form Mg/Ca ratios in planktonic and benthic foraminifera. Earth and Planetary Science Letters, 299, 483-496.
- Eberle J J, Fricke H C, Humphrey J D, Hackett L, Newbrey M G, Hutchinson J H, 2010. Seasonal variability in Arctic temperatures during early Eocene time, *Earth and Planetary Science Letters*, 296, 481-486.
- Eberle J J, Humphrey J, Hackett L, 2006. Oxygen isotope estimates of mean annual temperature for an early Eocene, terrestrial environment in the Canadian high Arctic. http://gsa.confex.com/gsa/2006AM/finalprogram/abstract_114524.htm.
- 8. Eldrett J S, Greenwood D R, Harding I C, Huber M, 2009. Increased seasonality through the Eocene to Oligocene transition in Northern high latitudes. *Nature* 459, 969-974, doi:10.1038.
- Fricke H C, Wing S L, 2004. Oxygen isotope and paleobotanical extimates of temperature and δ180latitude gradients over North America during the Early Eocene. *American Journal of Science*, 304, 612-635.
- 10. Greenwood D R, Archibald S B, Mathewes R W, Moss P T, 2005. Fossil biotas from the Okanagan Highlands, southern British Columbia and northeastern Washington State: climates and ecosystems across an Eocene landscape. *Can. J. Earth Sci.*, 42, 167-185. doi: 10.1139/E04-100.
- Greenwood D, Moss P, Rowett A, Vadala A, 2003. Plant communities and climate change in southeastern Australia during the early Paleogene. In Wing, S. L., Gingerich, P. D., Schmitz, B., Thomas, E.(Ed.), Causes and Consequences of Globally Warm Climates in the Early Paleogene, pp. 365. Geological Society of America Special Paper 369.
- 12. Greenwood D, Wilf P, Wing S L, Christophel D, 2004. Paleotemperature estimation using leaf-margin analysis: Is Australia different? *Palaios*, 19, 129-142.
- 13. Hollis C J, et al., 2009: Tropical sea temperatures in the high-latitude South Pacific during the Eocene. *Geology*, 37(2), 99-102.
- 14. Ivany L C, Wilkinson B H, Lohmann K C, Johnson E R, Mcelroy B J, Cohen G J, 2004. Intra-annual isotopic variation in Venericardia bivalves: implications for Early Eocene temperature, seasonality, and salinity on the U.S Gulf coast. *Journal of Sedimentary Research*, 74(1), 7-19.
- 15. Ivany L C, Lohmann K C, Hasiuk F, Blake D B, Glass A, Aronson R B, Moody R M, 2008. Eocene climate record of a high southern latitude continental shelf: Seymour Island, Antarctica. *Geol. Soc. Am. Bull.*, 120, 659–678.

- Markwick P J, 1998. Fossil crocodilians as indicators of Late Cretaceous and Cenozoic climates: implications for using palaeontological data in reconstructing palaeoclimate. *Palaeogeography Palaeoclimatology Palaeoecology*, 137, 205-271.
- Pearson P N, van Dongen B E, Nicholas C J, Pancost R D, Schouten S, Singano J, Wade B S, 2007. Stable warm tropical climate through the Eocene Epoch. *Geology*, 35, 211-214, doi: 10.1130/G23175A.1.
- 18. Robert C, Kennett J P, 1994. Antarctic subtropical humid episode at the Paleocene–Eocene boundary—clay-mineral evidence. *Geology*, 22, 211-214.
- Sluijs A, Schouten S, Pagani M, Woltering M, Brinkhuis H, Sinninghe Damste´ J S, Dickens G R, Huber M, Reichart G, Stein R, Matthiessen J, Lourens L J, Pedentchouk N, Backman J, Moran K, the Expedition 302 Scientists, 2006. Subtropical Arctic Ocean temperatures during the Palaeocene/Eocene thermal maximum. *Nature*, 441, 610-613, doi:10.1038/nature04668.
- 20. Sluijs A, Brinkhuis H, Schouten S, Bohaty S M, John C M, Zachos J C, Reichart G, Damste J S S, Crouch E M, Dickens G R, 2007. Environmental precursors to rapid light carbon injection at the Palaeocene/Eocene boundary. *Nature*, 450, 1218–1221.
- Thorn V, Deconto R, 2003. Eocene and Oligocene vegetation in the Antarctic region, a review to assist general circulation model experiments. http://www.victoria.ac.nz/geo/croberts/downloads/paperstalks/AGUNice%20Thorn%20DeConto%20Poster.pdf.
- Tripati A K, Delaney M L, Zachos J C, Anderson L D, Kelly D C, Elderfield H, 2003. Tropical seasurface temperature reconstruction for the early Paleogene using Mg/Ca ratios of planktonic foraminifera. *Paleoceanography*, 18, 1101, doi:10.1029/2003PA000937.
- 23. Tripati A K, Elderfield H, 2004. Abrupt hydrographic changes in the equatorial Pacific and subtropical Atlantic from foraminiferal Mg/Ca indicate greenhouse origin for the thermal maximum at the Paleocene-Eocene Boundary. *Geochem. Geophys. Geosyst.*, 5, Q02006, doi:10.1029/2003GC000631.
- Weijers J W H, Schouten S, Sluijs A, Brinkhuis H, Sinninghe Damsté J S, 2007. Warm arctic continents during the Palaeocene-Eocene thermal maximum. *Earth and Planetary Science Letters*, 261, 230-238, doi:10.1016/j.epsl.2007.06.033.
- 25. Wing S L, Bao H, Koch P L, 2000. An early Eocene cool period? Evidence for continental cooling during the warmest part of the Cenozoic. In: Huber, B.T., MacLeod, K.G., Wing, S.L. (Eds.), *Warm Climates in Earth History*. Cambridge University Press, Cambridge UK, pp. 197-237.
- Wing S L, Harrington G J, Smith F A, Bloch J I, Boyer D M, Freeman K H, 2005. Transient Floral Change and Rapid Global Warming at the Paleocene-Eocene Boundary. *Science*, 310, 993-996, doi: 10.1126/science.1116913.
- 27. Zachos J C, Stott L D, Lohmann K C, 1994. Evolution of early Cenozoic marine temperature. *Paleoceanography*, 9, 353-387.

Oxygen and carbon isotope data

Site ¹	$PLat^2$	Mean ³	Stdvar ³	N^3	Reference
690	-65.32	-0.3347	0.2502	43	Kennett and Stott, 1990
689	-64.71	0.0019	0.3153	5	Kennett and Stott, 1990
738	-63.86	-0.4870	0.2080	14	Barrera and Huber, 1991
699	-53.96	-0.8496	0.4716	7	Katz and Miller, 1991
700	-53.94	-0.6543	0.2087	14	Katz and Miller, 1991
698	-53.91	-0.6032	0.1812	10	Katz and Miller, 1991
702	-53.28	-0.3725	0.3302	17	Katz and Miller, 1991
757 M	-43 4	0 1 1 4 7	0 2710	17	Zachos et al., 2001;
/0/ 111	13.1	0.1117	0.2710	17	Veizer et al., 1999
525	-35.29	0.2197	0.1052	7	Shackleton et al., 1984
525 M	-35.29	0.1450	0.3530	16	Shackleton et al., 1984
528 M	-34.66	0.1750	0.4172	2	Shackleton et al., 1984
215 M	-34 5	-0.2300	0 2935	5	Zachos et al., 2001;
210 101	5115	0.2000	0.2755	5	Veizer et al., 1999
527	-34.10	0.3010	0.2035	7	Shackleton et al., 1984
527 M	-34.10	0.3943	0.1827	7	Shackleton et al., 1984
213 M	-31.8	0.0600	0.2762	10	Zachos et al., 2001;
210 101	51.0	0.0000	0.2702	10	Veizer et al., 1999
1220	2.13	-0.4044	0.2556	84	Nunes and Norris, 2005
1221	3.90	0.1078	0.2897	93	Nunes and Norris, 2005
1257-	6.79	-0.9500	0.2121	2	Bice and Norris, 2005
1260 M					
865	9.09	0.0895	0.2331	21	Zachos et al., 2001;
	20.02	0.6266	0 1156	26	Veizer et al., 1999
577	39.02	-0.6366	0.4456	26	Pak and Miller, 1992
883	42.21	-0.5666	0.4244	21	Pak and Miller, 1995
884	42.43	0.2045	0.3382	10	Pak and Miller, 1995
401	43.26	-0.6235	0.4370	34	Pak and Miller, 1992
550	44.39	-0.6923	0.3799	101	Stella and Birger, 1996
548	44.77	-0.9743	0.4001	7	Poag et al., 1985
Demark	60.84	-2.1010	0.4271	81	Schmitz et al., 1996

Supplementary Table 2. Early Eocene Oxygen isotope data used in Figure 1e.

The mixed benthic foraminiferal δ¹⁸O values are marked with M. Others are corrected to *Cibicidoides* spices according to Katz et al., (2003).
Paleolatitude is calculated according to Scotese (2001)
Mean values of Early Eocene δ¹⁸O samples. Stdvar is standard variation. N is

sample number.

~ 1	2	3 5 3	~ 1 3	a -3	
Site	PLat ²	Mean	Stdvar	N^{3}	Reference
690	-65.32	0.8251	0.3509	43	Kennett and Stott, 1990
689	-64.71	1.0780	0.3463	5	Kennett and Stott, 1990
738	-63.86	0.7264	0.4134	14	Barrera and Huber, 1991
699	-53.96	1.0223	0.3491	7	Katz and Miller, 1991
700	-53.94	0.7141	0.3932	14	Katz and Miller, 1991
698	-53.91	0.6593	0.2846	10	Katz and Miller, 1991
702	-53.28	0.8146	0.2428	17	Katz and Miller, 1991
525	-35.29	0.8771	0.3767	7	Shackleton et al., 1984
525 M	-35.29	0.6863	0.3192	16	Shackleton et al., 1984
528 M	-34.66	1.0200	0.0141	2	Shackleton et al., 1984
527	-34.10	0.9000	0.2462	7	Shackleton et al., 1984
527 M	-34.10	0.5971	0.2616	7	Shackleton et al., 1984
1220	2.13	0.4882	0.5395	84	Nunes and Norris, 2005
1221	3.90	0.8720	0.4059	93	Nunes and Norris, 2005
1257-1260 M	6.79	0.2000	0.2828	2	Bice and Norris, 2005
865	9.09	0.6670	0.5729	21	Bralower et al., 1995
577	39.02	0.6800	0.4231	26	Pak and Miller, 1992
883	42.21	0.5343	0.2992	21	Pak and Miller, 1995
884	42.43	0.3920	0.1524	10	Pak and Miller, 1995
401	43.26	0.6368	0.3488	34	Pak and Miller, 1992
550	44.39	0.3744	0.4029	101	Stella and Birger, 1996
548	44.77	0.5243	0.5796	7	Poag et al., 1985
Denmark	60.84	-0.1964	0.2614	81	Schmitz et al., 1996

Supplementary Table 3. Early Eocene Carbon isotope data used in the Figure 1f.

The mixed benthic foraminiferal δ¹³C values are marked with M. Others are corrected to *Cibicidoides* spices according to Katz et al., (2003).
Paleolatitude is calculated according to Scotese (2001)
Mean values of Early Eocene δ¹³C samples. Stdvar is standard variation. N is

sample number.

References for supplementary tables 2 and 3.

- 1. Barrera E, Huber B T. 1991. Paleogene and Early Neogene oceanography of the Southern Indian Ocean: Leg 119 foraminifer stable isotope results. In, *Proceedings of the Ocean Drilling Program, Scientific Results*, 119, 693-717.
- Bice K L, Norris R D. 2005. Data report: Stable isotope ratios of foraminifers from ODP Leg 207, Sites 1257, 1258, and 1260 and a cleaning procedure for foraminifers in organicrich shales. In, Mosher D C, Erbacher J, Malone M J (Eds), *Proceedings of the Ocean Drilling Program*, 207, 1–23.
- Bralower T J, Zachos J C, Thomas E, Parrow M, Paul C K, Kelly D C, Silva I P, Sliter W V, Lohmann K C. 1995. Late Paleocene to Eocene paleoceanography of the equatorial Pacific Ocean: Stable isotopes recorded at Ocean Drilling Program Site 865, Allison Guyot. *Paleoceanography*, 10(4), 841-865.
- 4. Katz M E, Katz D R, Wright J D, Miller K G, Pak D K, Shackleton N J, Thomas E. 2003. Early Cenozoic benthic foraminiferal isotopes: Species reliability and interspecies correction factors. *Paleoceanography*, 18(2), 1024, doi:10.1029/2002PA000798.
- 5. Katz M E, Miller K G. 1991. Early Paleocene benthic foraminiferal assemblages and stable isotopes in the southern ocean. In, *Proceedings of the Ocean Drilling Program Scientific Results*, 114, 481-512.
- 6. Kennett J P, Stott L D. 1990. Proteus and Proto-oceanus: Ancestral Paleogene Oceans as Revealed from Antarctic stable isotopic results; ODP Leg 113. In, *Proceedings of the Ocean Drilling Program Scientific Results*, 113, 865-880.
- Nunes F, Norris R D. 2005. Data report: High-resolution stable isotope records across the Paleocene/ Eocene boundary, ODP Sites 1220 and 1221. In, Wilson P A, Lyle M, Firth J V (Eds), Proceedings of the Ocean Drilling Program Scientific Results, 199, 1–12.
- 8. Pak D K, Miller K G. 1992. Paleocene to Eocene benthic foraminifera isotopes and assemblages: implications for deepwater circulation. *Paleoceanography*, 7(4), 405-422.
- 9. Pak D K, Miller K G. 1995. Isotopic and faunal record of Paleogene deep-water transition in the North Pacific. In, *Proceedings of the Ocean Drilling Program Scientific Results*, 145, 265-281.
- 10. Poag C W, Reynolds L A, Mazzullo J M, Keigwin L D. 1985. Foraminiferal, Lithic, and Isotopic Changes across Four Major Unconformities at Deep Sea Drilling Project Site 548, Goban Spur. In, *Initial Reports of the Deep Sea Drilling Project*, 80, 539-555, doi:10.2973/dsdp.proc.80.114.1985.
- 11. Schmitz B, Heilmann-Clausen C, King C, Steurbaut E, Andreasson F P, Corfield R M, Cartlidge J E. 1996. Stable isotope and biotic evolution in the North Sea during the early Eocene: the Albæk Hoved section, Denmark. *Geological Society, London, Special Publications*, 101, 275-306.
- 12. Scotese C R. 2001. Digital Paleogeographic Map Archive on CD-ROM, PALEOMAP Project, Arlington, Texas.
- 13. Shackleton N J, Boersma A. 1984. Oxygen and Carbon Isotope Data from Leg 74 Foraminifers. In, *Initial Reports of the Deep Sea Drilling Project*, 74, 599-612, doi:10.2973/dsdp.proc.74.115.1984.
- 14. Stella D C, Birger S. 1996. Early Eocene palaeoceanography and palaeoclimatology of the eastern North Atlantic: stable isotope results for DSDP Hole 550. *Geological Society, London, Special Publications*, 101, 457-472.
- Veizer J, Ala D, Azmy K, Bruckschen P, Buhl D, Bruhn F, Carden G A F, Diener A, Ebneth S, Godderis Y, Jasper T, Korte C, Pawellek F, Podlaha O, Strauss H. 1999. ⁸⁷Sr/⁸⁶Sr, d¹³C and d¹⁸O evolution of Phanerozoic seawater. *Chemical Geology*, 161, 59-88.
- 16. Zachos J, Pagani M, Sloan L, Thomas E, Billups K. 2001. Trends, Rhythms, and Aberrations in Global Climate 65 Ma to Present. *Science*, 292, 686-693, doi: 10.1126/science.1059412.