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Abstract

We investigate the consistency of various ensembles of model simulations with the
Multiproxy Approach for the Reconstruction of the Glacial Ocean Surface (MARGO)
sea surface temperature data synthesis. We discover that while two multi-model en-
sembles, created through the Paleoclimate Model Intercomparison Projects (PMIP and5

PMIP2), pass our simple tests of reliability, an ensemble based on parameter variation
in a single model does not perform so well. We show that accounting for observational
uncertainty in the MARGO database is of prime importance for correctly evaluating the
ensembles. Perhaps surprisingly, the inclusion of a coupled dynamical ocean (com-
pared to the use of a slab ocean) does not appear to cause a wider spread in the sea10

surface temperature anomalies, but rather causes systematic changes with more heat
transported north in the Atlantic. There is weak evidence that the sea surface temper-
ature data may be more consistent with meridional overturning in the North Atlantic
being similar for the LGM and the present day, however, the small size of the PMIP2
ensemble prevents any statistically significant results from being obtained.15

1 Introduction

Recent work investigating the performance of the CMIP3 ensemble (Meehl et al.,
2007), has found that it may be considered to be reasonably “reliable”, at least on
the global scale, when tested against modern climatology (Annan and Hargreaves,
2010a). By this we mean that we do not reject the hypothesis that the the ensem-20

ble is statistically indistinguishable from the truth, at least when subjected to simple
(but standard) tests based on rank histograms, explained below. However this sort of
testing against modern data does not address the question of the extent to which that
reliability may hold for forecasts or projections of future change. It is possible that the
models may share biases through their similar parameterisations, and there could also25

be processes which will affect future climate changes but which are not included in the
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models, either because the scientific understanding about them is as yet insufficient
for them to be well represented in the models, or because they are (erroneously) not
considered to be of sufficient importance (Hargreaves, 2010).

We will never be able to directly evaluate the performance of long-term climate model
predictions, other than by the impractical method of waiting to see what happens.5

Therefore, we can only update our level of confidence in the existing models by more
indirect methods, such as by evaluating their behaviour under a wide range of external
forcings, preferably considering epochs and data that were not used during the model
development and which can therefore provide independent validation. One of the most
obvious such epochs is the Last Glacial Maximum (LGM, 21 ka before present). While10

the existence of the large ice sheets during that cold period may complicate the signal,
this is the most recent time in the past when carbon dioxide level were substantially
different to today, and a considerable amount of data has been collected which may, in
principle, be used to evaluate the models (Hargreaves et al., 2007).

In this paper we primarily investigate two ensembles of models which contributed to15

the Paleoclimate Modelling Inter-comparison Projects, PMIP (Joussaume and Taylor,
2000, hereafter PMIP1) and PMIP2 (Braconnot et al., 2007). The main difference be-
tween the two ensembles is that fully coupled ocean dynamics are included in PMIP2,
whereas PMIP1 models used a slab ocean with ocean heat transport calibrated to
pre-industrial values. An additional set of PMIP1 runs with prescribed sea surface tem-20

perature (SST) are not included in our analysis. We also consider results from a single
model ensemble which was generated by changing parameter values in the MIROC3.2
ASGCM (Hasumi and Emori, 2004; Annan et al., 2005b).

It is not always straightforward to compare model outputs to paleoclimate data, as the
former have low spatial resolution and substantial smoothness, whereas the latter are25

generally derived from point sources such as cores which sample small spatial scales
and which additionally have heterogeneous uncertainties arising from the calibration
of the proxies. The data we consider here the Multiproxy Approach for the Recon-
struction of the Glacial Ocean Surface (MARGO) sea surface temperatures (MARGO
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Project Members, 2009). This dataset is in a very modeller-friendly form. It is a synthe-
sis of three different proxies and includes estimates of the uncertainty in the tempera-
tures obtained, so may be considered to represent the combined expertise of at least
a sizeable fraction of the LGM paleo-data community. As such we consider it to be
a powerful dataset against which to evaluate the multi-model ensemble, which likewise5

may be considered to represent the combined expertise of the modelling community
(Hargreaves, 2010; Annan and Hargreaves, 2010a).

2 Reliability

Reliability is a key concept in probabilistic prediction. Probabilistic predictions are de-
scribed as reliable if the frequency of occurrence equals the predicted probability, over10

a large set of instances. If the distribution described by a model ensemble is such that
reality could be treated statistically as if it were a random sample from the probability
density function described by the model ensemble, then the ensemble may be called
statistically indistinguishable from the truth. For such an ensemble, the direct interpre-
tation of the ensemble via counting, or using the mean and standard deviation (e.g.15

Figs. SPM.5 and SMP.7 of the IPCC AR4 Summary for Policymakers, Solomon et al.,
2007) will be reliable. If, instead, the ensemble spread was increased such that ob-
servations were relatively closer to the mean than the ensemble members, then this
indicates that a tighter prediction should be possible. On the other hand, a very nar-
row ensemble implies that we have a substantial bias such that the ensemble rarely20

includes the truth. In both of these cases, a direct probabilistic interpretation of the en-
semble would be misleading, but the second example is probably the more worrisome
of the two, as it provides no bounds on the future outcome.

One standard test of ensemble reliability is to evaluate the rank histogram, also
known as Talagrand diagram (Talagrand et al., 1997). A consequence of reliability25

is that when the ensemble of outputs for a particular (scalar) variable, together with the
observation representing the variable, is sorted from highest to lowest, the data lies
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equiprobably at each position in the rank order. The rank histogram is simply a his-
togram of these ranks for all the data points under consideration, and so will be flat (to
within sampling error) for a reliable ensemble. Note that, even for a reliable ensemble,
the truth would be expected to fall outside the ensemble range for a fraction of 2/(n+1)
of the observations, where n is the number of models. In order to quantitatively eval-5

uate the rank histograms, we use the method presented by Jolliffe and Primo (2008).
This is based on chi-square tests on the contents of the bins, and allows us to efficiently
check whether the ensemble is generally biased, or over- or under-dispersive.

One point that must not be overlooked, which may be expected to be more important
for paleoclimate studies than those looking at modern climate, is the issue of uncer-10

tainty in the observational data. If the truth is sampled from the same distribution as the
ensemble members, then the inevitable presence of this observational error will result
in the observations themselves tending to have a somewhat broader distribution than
the ensemble members. A standard method to account for this is to simply add equiva-
lent (randomly generated) perturbations onto the model outputs (Anderson, 1996). Of15

course this requires some estimate of the magnitude of the observational uncertainties.
Fortunately, some estimates of uncertainty were provided for the MARGO synthesis.

3 Models and data

3.1 The PMIP ensembles

For the PMIP1 experiments (Joussaume and Taylor, 2000) (and other papers in the20

same volume), the focus was on atmospheric general circulation models (AGCMs), run
with prescribed forcing to simulate the conditions of the mid-Holocene (6 ka BP) and
the LGM (21 ka BP), and the pre-industrial control climate. For some of the models, the
LGM and control runs were performed with the atmospheric climate model coupled to
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a slab ocean. In addition, one model (CLIMBER) was an EMIC (Claussen et al., 2002;
Weber, 2010) with reduced complexity but including a fully coupled atmosphere-ocean
system. It is this subset of models, which permit the SST to evolve, that we analyse
here. The result is a 10 member ensemble including models of varying resolution
and complexity (see Table 1). See also the PMIP1 website, http://pmip.lsce.ipsl.fr/, for5

further information about the PMIP1 database.
For a slab ocean AGCM, the model is first run with a prescribed modern SST field

for the pre-industrial climate, and the heat fluxes (the Q-flux) required to maintain this
SST, in addition to the heat flux due to the processes in the model, are calculated. The
model is then run again, imposing the Q-flux but allowing the slab ocean to adjust the10

temperature. For the modern climate there should, therefore, be very little drift in SST
away from the data that were used to calculate the fluxes. When these models are
integrated for past or future climates this modern Q-flux field is applied, with the SST
allowed to change. Running models of this type is far less computationally expensive
than running a model with a fully coupled ocean, due primarily to the shorter spin-up15

time. The physical interpretation of this simplification is that the horizontal heat flux in
the ocean is assumed to remain fixed, but the vertical flux between the atmosphere and
ocean can vary. This has been described as allowing thermodynamic but not dynamic
ocean processes to act (Ohgaito and Abe-Ouchi, 2007).

Unfortunately the SST outputs are not in the PMIP1 database, so here we used the20

air temperature variable (called “TAS”, 2 m surface air temperature). As will be dis-
cussed in more detail in Sect. 4.1.1, this presents some problems for our analysis.
While, for most of the ocean, the change in temperature between pre-industrial and
LGM is similar for both the SST and air temperature, the air temperature over sea ice
is generally very much colder than the SST beneath the ice. Thus, for high latitudes25

where the sea ice is present at the LGM, the PMIP1 results cannot be directly com-
pared with the MARGO SST data, and so we analyse PMIP1 for the low latitude region
only (35◦ S–35◦ N). Since annual average output was not available for one model (LMD
4) we used the monthly mean output. Details on the number of days in the months
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of the PMIP1 models is not available, so we used a simple average of the monthly
means to make an annual mean. The potential error incurred in doing this is small in
the context of the ensemble results presented here.

By the time of the second PMIP experiment, PMIP2 (Braconnot et al., 2007), new
versions of the GCMs had been developed. Another major difference was the coupling5

of fully dynamic ocean models to the AGCMs. A small number of models also included
coupled vegetation components. In addition, for the LGM experiment, the forcing pro-
tocol was slightly refined, but we do not expect this to have a major effect on the results.
The PMIP2 database (see http://pmip2.lsce.ipsl.fr/) includes SST model output (called
“tos”), thus enabling direct comparison with the MARGO data for 9 ensemble mem-10

bers. For these data (and the PMIP2 air temperature) the annual means were created
from the monthly means. For PMIP2, the month length information was available in
the netcdf files, so we could make annual means based on the actual number of days
in the month. There is some inconsistency in variables in the database, particularly
the ocean variables. For meridional overturning and northward heat transport, around15

half the models have annual averages available, one has only daily output, one has
only some of the variables, another nothing at all, and the rest have monthly means.
See Table 1 for details. Two AOVGCMs, which are AOGCMs with a coupled vegetation
model, are included in the ensemble. For one of these we also have the equivalent
AOGCM. For two such closely related models we would expect some similarities be-20

tween the two, but since the coupling of a whole new sub-model is a larger change
than just a change in resolution, we do expect them to differ significantly, and so in-
clude both in our ensemble. For ECHAM there is also an AOGCM and an AOVGCM
in the database. We use only the AOVGM model, since SST, the principle variable for
comparison with MARGO, was not available for the AOGCM.25

3.2 JUMP ensemble

The single-model ensemble (SME) analysed here is the ensemble of MIROC3.2.2 that
has been included in several previous analyses (Hargreaves et al., 2007; Hargreaves
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and Annan, 2009; Yokohata et al., 2009; Yoshimori et al., 2011). Created by the Japan
Uncertainty Modelling Project, it is hereafter called the JUMP ensemble. This 40 mem-
ber ensemble was derived by varying 13 parameters in a slab-ocean version of the
MIROC3.2.2 GCM, using the Ensemble Kalman Filter to tune the parameters to mod-
ern seasonal mean climatological data using the same methods described in Annan5

et al. (2005a) and Annan et al. (2005b). As described in Annan et al. (2005a), a simple
approximation to accounting for structural model error is made during the tuning. This
error is approximated by the difference between the control model run with the default
parameter set and the climatological data, which is then treated in the same way as
data error. The result is intended to be an ensemble that is broadly consistent with10

climatological data. The model has the same atmosphere as the MIROC3.2.2 AOGCM
submitted to the PMIP2 database, except, for reasons of computational cost, we ran
the ensemble at the lower resolution of T21 (rather than T42). In this analysis we retain
the entire 40 member ensemble, run for both the LGM and pre-industrial simulations
described in Hargreaves et al. (2007), using the PMIP2 forcing protocol for the LGM15

simulations.

3.3 MARGO synthesis

The LGM cold period has long been recognised as a target for evaluating the response
of the climate system to large perturbations (cf. Randall et al., 2007, p. 447). Con-
sequently, a relatively large amount of paleo-SST data is available. The most recent20

synthesis of LGM SST data is presented by the MARGO Project Members (2009) as
the result of a large international community effort (see also Kucera et al., 2005).

The “Multiproxy Approach for the Reconstruction of the Glacial Ocean surface”
(MARGO) is based on 696 individual SST reconstructions and combines the results
of six proxies. Four of these are microfossil proxies based on the species composi-25

tion of planktonic foraminifera, diatoms, dinoflagellates and radiolaria. The other two
are geochemical proxies based on alkenones with 37 C atoms produced by unicel-
lular algae (coccolithophores) in slightly different composition in relation to changes in
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temperature, as well as the ratio of magnesium to calcium found in planktic foraminiferal
shells.

Figure 1a shows the reconstructed LGM SST anomaly with respect to the present-
day SST taken from the World Ocean Atlas 1998 (Levitus, 1998). Hereafter we use the
term “LGM anomaly” to refer to the value of an annually-averaged variable at the LGM5

climate minus that at the control/present-day climate.
The MARGO project members also present the first attempt at a quantitative treat-

ment of uncertainty and the propagation of errors in a multi-proxy reconstruction of
climate. It is based on a combination of expert judgment and some basic statistics,
including the different sources of uncertainty and their propagation. Thus it takes into10

account (1) the error of calibration for each proxy, (2) its uncertainty due to the station-
arity through time and in space, (3) the number of samples upon which each individual
LGM SST reconstruction is based and (4) the quality of the age model for each ocean
sediment core (MARGO Project Members, 2009). These uncertainties are propagated
during the calculation of “block averages” and combined with the degree of conver-15

gence among the SST estimates within each block. The resulting block-averaged un-
certainties clearly demonstrate more confidence in the reconstructed SST anomalies
in some places than others (Fig. 1b).

We note that the MARGO error estimate is only defined within a constant factor,
because it is proportional to the so-called “mean reliability index”, which is deliberately20

scaled such that its minimum value is one (MARGO Project Members, 2009). In order
to incorporate this qualitative statistic in our analysis, we assume that the errors are
Gaussian with a standard deviation at datapoint i , σi , given by σi =A×Erri , where Err i
is the MARGO error estimate, and A=1. This assumption is considered reasonable in
the expert opinion the MARGO project members who worked on the derivation of the25

uncertainty estimate.
It turns out that large discrepancies with respect to reconstructed LGM SST anoma-

lies recorded by different proxies remain. Paradoxically, LGM conditions in the most
densely sampled Northern North Atlantic Ocean remain associated with large scatter
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and uncertainties (MARGO Project Members, 2009, p. 127). Possibly, the uncertainty
assigned to each MARGO SST value does not fully capture the ambiguity of its attri-
bution to a certain season and depth.

For both the PMIP1 and PMIP2 ensembles the 2-D model output was all interpolated
onto the MARGO 5◦ ×5◦ grid. The whole MARGO dataset has data in 307 grid boxes.5

For some of the PMIP2 interpolated grids, MARGO data points coincided with land.
These points were therefore excluded from the analysis of PMIP2, leaving 293 grid
boxes in all. For PMIP1, the analysed region (35◦ S to 35◦) includes 190 data points.
Since the T21 MIROC grid has a similar grid size to that of MARGO, but is displaced,
the MARGO dataset was recalculated from scratch onto the MIROC grid, for better10

comparison with that ensemble.

4 Results

4.1 Reliability of the paleoclimate ensembles

4.1.1 PMIP1

As briefly discussed in Sect. 3.1, sea surface temperature output is unavailable for15

PMIP1, so we must use the surface air temperature in our analysis instead. For the
present day, the difference between surface air and sea temperatures are of the order of
a degree, and over open ocean we would expect the air and surface ocean temperature
changes to be about the same due to their tight coupling (Jones et al., 1999). The
LGM was, however, a much colder climate than the pre-industrial climate, resulting20

in a considerable southward extension of sea-ice. The sea-ice acts as an insulating
layer so that, while the water beneath the ice is at or near the freezing point of water,
the air above the ice can get much colder. Therefore, in the high latitudes, we expect
the surface ocean and air temperatures to diverge significantly. Figure 2 illustrates the
effect, by showing the zonally averaged LGM anomaly for the PMIP2 surface air and25
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ocean temperatures. We conclude that, in order to compare the PMIP1 TAS with the
MARGO SSTs, we should restrict the region of analysis to the lower latitudes, 35◦ S to
35◦ N.

The results of the basic reliability analysis are shown in Fig. 3. Figure 3a shows the
rank of the observations in the 10 member PMIP1 ensemble for each MARGO grid5

point in the restricted latitude range. Throughout this work, a high rank indicates that
the MARGO LGM state is relatively warm compared to the ensemble. While the plot
appears red rather than blue overall, the eastern side of the Atlantic is blue, indicating
that the models have generally more cooling in this region than the data. This area off
the west coast of Africa, which is an upwelling region for the modern climate, is a region10

where models are known to perform poorly, being generally too warm (Randall et al.,
2007, Fig. 8.2), due partly to insufficient resolution (for CCSM3 model, Large and Dan-
abasoglu (2006); for HiGem model, P.L. Vidale, personal communication). Thus it is
perhaps no surprise that the PMIP1 models are doing less well in this region, and the
result also indicates that accounting for biases in the base state may be important when15

using anomalies to estimate climate changes. Figure 3b shows the overall rank his-
togram. Assuming an effective dimension of 5, the histogram is statistically consistent
with a flat distribution (see Table 2). Some work has been done attempting to calcu-
late the effective dimension of the CMIP3 ensemble (Annan and Hargreaves, 2010b),
which suggests that a lower value than 5 may be appropriate for a limited region such20

as the tropical ocean. We choose, however, to err on the side of caution, as assuming
a higher value increases, rather than decreases the stringency of the statistical test.
Figure 3c shows the histogram of the ensemble mean difference between the LGM
anomaly for the MARGO synthesis and PMIP1 for each MARGO grid point, indicating
that the ensemble mean error is only about 1 ◦C for much of the ensemble.25

The analysis was repeated, inflating the PMIP1 ensemble to account for the esti-
mated data error, as described in Sect. 3.3. The results can be seen in Fig. 4a,b. The
rank histogram appears dome shaped, compared to the histogram in Fig. 3, which is
the indication of an ensemble that is too wide. The “Vshape” statistic (i.e. how similar

785

http://www.clim-past-discuss.net
http://www.clim-past-discuss.net/7/775/2011/cpd-7-775-2011-print.pdf
http://www.clim-past-discuss.net/7/775/2011/cpd-7-775-2011-discussion.html
http://creativecommons.org/licenses/by/3.0/


CPD
7, 775–807, 2011

Paleoclimate
model-data
consistency

J. C. Hargreaves et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

the rank histogram is to a V shape or its inverse, Jolliffe and Primo, 2008) measures
the significance of this shape and, as shown in Table 2 the ensemble remains consis-
tent with a uniform distribution. As shown by Fig. 4b, the model-data differences are
also slightly inflated. Overall the PMIP1 results are encouraging, although the fact that
we have analysed only a subset of the latitudes for a single variable means we cannot5

make a very strong statement about the ensemble reliability.

4.1.2 PMIP2

Figure 5 illustrates the results for the PMIP2 ensemble compared to the global MARGO
synthesis. Previously, (Figs. 3b, 4a, Annan and Hargreaves, 2010a) we have shown
only the area-weighted histograms, but because the distribution of the MARGO data10

over the globe is so far from uniform and many of the data points really do represent
observed points rather than area averages, we also show the unweighted histogram.
By far the most complete data coverage for the MARGO synthesis is in the North
Atlantic region. In this region the pattern of the MARGO data in Fig. 1a is a band of
small LGM anomalies or even warming closer to the Greenland coast, and a band of15

large cooling further away. While some of the PMIP2 models do show similar patterns,
the amplitude of the pattern is smaller, with close to zero cooling near to Greenland and
moderate cooling further away. Due to this difference in the amplitude of the pattern
in the North Atlantic, this region contributes to both ends of the rank histogram. Since
this region is a relatively high latitude area and the grid is regular in degrees, area20

weighting the ensemble tends to reduce the influence of these points and makes the
rank histogram more uniform. Even so, the area-weighted rank histogram fails two of
the statistical tests in Table 2. Of course, even after area weighting, the high density
of points in the Atlantic means that the evaluation of the ensemble is weighted towards
the performance in that region. It could be argued that giving prominence to the North25

Atlantic may not be unreasonable as it is seen as a key indicator of the general state of
the ocean circulation. If we analyse just the limited region of tropical latitudes analysed
for PMIP1, 35◦ S to 35◦ N, then the PMIP2 results are also found to be reliable, so, from
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this analysis alone we do not have evidence that either PMIP1 or PMIP2 produced
superior results.

The MARGO dataset contains 307 grid points. Of these there are 48 points scat-
tered around the globe for which the LGM anomaly indicates warming. Typically the
magnitude of the warming at those points is less than a degree in the lower latitudes,5

but there are a few points in the northern high latitudes in which the warming is greater,
up to a maximum of 6.3 ◦C. North of the UK, most points in the North Atlantic indicate
warming. In contrast, points that warm are very rare in the PMIP2 ensemble; consid-
ering only the grid boxes populated with MARGO data, 3 models have no warming
points, and there are only 11 warming points among the other 6 models, with only 4 of10

those points in the North Atlantic. This result is of some concern. To many modellers,
it is considered counterintuitive to have warming in regions of the globe at the LGM,
which causes them to question the quality of the data. It should be noted, however,
that, for the MARGO data, there are only 8 points, all in the high latitudes, out of the 48
warming points, for which the amount of warming exceeds the estimated uncertainty15

of the data. Thus these data provide relatively low confidence that warming did in fact
occur. We repeated the reliability analysis, including the MARGO error estimates as
described previously. On the spatial plot of the rank (Fig. 6a), the area of low rank
off the west coast of Africa that was apparent in PMIP1 remains, and two further blue
patches in the high latitudes are apparent, around New Zealand and the North Atlantic,20

as discussed above. On the whole, however, the rank seems quite variable, suggestive
of reliability on scales less than global. Applying the statistics, we find that the reliabil-
ity of the ensemble is increased to the point at which it passes all the statistical tests
at the 5% level (Table 2). This result indicates the great importance of consideration
of the uncertainty in the data when comparing models and data, particularly for pale-25

oclimates. Quantitative uncertainty estimates are far from ubiquitous in paleoclimate
data, and the methods for deriving the estimates are not always well established, and
open to development. For example, it may be desirable to indicate likely correlations
between closely located points or points based on the same proxy types. Further work
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in this area is undoubtedly warranted.

4.1.3 JUMP ensemble

Figure 7a–d and Table 2 show the overall results for the JUMP ensemble. Figure 7a,b
shows the results without including the MARGO error. The results are in stark con-
trast to those for both PMIP1 and PMIP2; the JUMP ensemble is clearly very biased5

and therefor too narrow and unreliable. In this case, only a slight improvement in the
statistics occurs when the uncertainty in the MARGO data is included (Fig. 7c,d). The
ensemble was created by varying 13 parameters found in previous experiments to af-
fect the climate sensitivity and global LGM temperature anomaly. While not designed
with the specific purpose of producing regional variability in LGM ocean temperatures,10

it is still of some concern that the range of the ensemble compares so poorly with the
data. When considering the zonal means, the LGM anomaly of the JUMP ensemble is
rather cold, although it does overlap with the PMIP2 ensemble. This is consistent with
previous work with the JUMP ensemble, which found that the whole ensemble has cli-
mate sensitivity greater than 4 ◦C (Hargreaves and Annan, 2009), and so is at the high15

end of the range thought likely, whereas most GCMs have climate sensitivity spread
throughout the canonical range. It appears, therefore, that such high values for climate
sensitivity may be harder to reconcile with the MARGO data than the more moderate
climate sensitivities of the PMIP2 ensemble, although this could also just be an arte-
fact of this specific model. As can be seen in Fig. 2, there is considerable variation20

in the latitudinal variation of zonal mean LGM anomaly between models in the PMIP2
ensemble. For the JUMP ensemble (not shown), while the width of the ensemble of
zonal means is comparable to that of PMIP2, this latitudinal variation pattern looks
very similar for all the ensemble members. The effect of varying the parameters has
thus been to change the amplitude of the variations rather than produce different pat-25

terns of variation. These results are consistent with those found in other ongoing work
analysing several different SMEs from different GCMs (Yokohata et al., 2011). While
SMEs may be of great value for understanding the sensitivity and behaviour of a model,
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these results suggest that caution is required in their interpretation, since they appear
to exhibit a more limited range of variation when compared to the PMIP multi-model
ensembles.

4.2 Systematic differences between PMIP1 and PMIP2

While model improvements may be expected to have played a role, the principal dif-5

ference between the PMIP1 and PMIP2 ensembles is probably the incorporation of
a 3-dimensional coupled ocean module in all of the PMIP2 models. In this section we
consider the effect of including this dynamical element of the climate system by looking
at some of the systematic differences between the two ensembles. Since we do not
have SST for PMIP1, we start by comparing air temperature (TAS) over the ocean in10

the two ensembles. The zonal means over the populated MARGO grid boxes of the
LGM anomaly for TAS are shown in Fig. 2. The first clear difference is that there is
a wider spread in the PMIP1 results. On the one hand we may expect general model
improvements over the years between PMIP1 and PMIP2 to have caused the mod-
els to converge closer to the data. On the other hand, we might expect that increasing15

model complexity should increase the uncertainty in model outputs, which would there-
fore be expected to inflate the ensemble. It seems that at least in the case of TAS, the
addition of a dynamic ocean has not increased the inter-model variability. Indeed, par-
ticularly around 20◦–60◦ N the TASs seem constrained to follow very much closer to the
MARGO SSTs than PMIP1. To investigate this further we looked at the sea-ice thick-20

ness (variable names in the database, “sit”) in the PMIP1 and PMIP2 databases. We
found that at the LGM in PMIP2 there is very little sea-ice south of 50◦ N, whereas there
is sea-ice present at this latitude in PMIP1. This explains why the TAS more closely
follow the MARGO SST in this region; the ocean is not covered by the insulating layer
of ice. Thus it appears that the inclusion of the dynamical ocean components has pre-25

vented the over-extension of sea ice that was seen in the PMIP1 simulations, resulting
in better agreement with the MARGO data.
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We now move our attention to the Atlantic ocean. As the PMIP2 models incorporated
3-dimensional coupled ocean modules, an obvious target of the project was to estimate
the state of the LGM circulation. While arguments based on paleoclimate data led to
the hypothesis that the main meridional overturning circulation cell in the North Atlantic
(AMOC) was both weaker and shallower than the present day (Labeyrie et al., 1992;5

Sarnthein et al., 1994; Lynch-Stieglitz et al., 2007), there is no direct evidence. The
result from PMIP2 did little to either confirm or deny this hypothesis, since the PMIP2
models produced a wide spread of results, ranging from strongly strengthened to mildly
weakened circulations (Otto-Bliesner et al., 2007; Weber et al., 2007). We have direct
information on the ocean circulation for just 7 of the PMIP2 ensemble members (Ta-10

ble 1). This small ensemble size means that relationships would have to be very strong
in order to pass tests of statistical robustness. Thus our discussion is rather tentative
in nature. Figure 8a shows the SST LGM anomaly for PMIP2 and MARGO averaged
over the MARGO Atlantic grid points. The deep spike around 50◦ N indicates where
there is sea-ice for the LGM but not the present day, since the area further north where15

there is sea-ice for both epochs does not cool so much at the LGM due to the insulating
properties of the sea-ice. On the whole, the models reproduce this spike in qualitative
terms, but the magnitude varies and the location tends to be a little to the south. In
the box on the same figure are shown the maximum AMOC anomalies for the PMIP2
models. Three of the four models with the smallest maximum AMOC anomalies have20

the deepest spikes, closest to the observations. Figure 8b shows that the Northward
Heat Transport (NHT) in the Atlantic is increased at the LGM at least as far as 30◦ N for
all the PMIP2 models. This is another systematic difference caused by adding the dy-
namical ocean; the PMIP1 slab-ocean models require the LGM anomaly for Northward
Heat Transport to be zero. This systematic difference (consistent with the results of25

Murakami et al., 2008) indicates that, irrelevant of the AMOC, the dynamical ocean is
compensating for the cooling in the northern high latitudes by transporting more heat
northward at the LGM. This seems a natural consequence of the greater latitudinal
temperature gradient, since this implies that a given volume transport will carry more
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heat from the tropics to high latitudes than it does in the control climate.
In order to more quantitatively compare the models and data, we also calculate the

root mean square error (RMSE) in the Atlantic for MARGO and PMIP2 LGM anomalies
for SST. We weight the squared model data differences by the grid box area and the
MARGO uncertainty. We then compare the values obtained to the maximum AMOC5

and maximum NHT anomalies for the North Atlantic, by correlation. The results are
shown in Table 3. ECBILT is the only EMIC in the ensemble, and it is interesting that,
although the RMSE of that model is the third lowest of the 9 models (the range of this
dimensionless error is 1.35–1.92, ECBILT has a value of 1.72, while IPSL has 1.35),
the correlations between the RMSE and NHT is stronger when that model is excluded10

from the ensemble, indicating that this model may be behaving rather differently to the
others. However, we have no reason to exclude ECBILT from the ensemble a priori.
Whether or not ECBILT is included in the ensemble, the AMOC-RMSE and AMOC-
NHT correlations are also positive, although not statistically significant for such a small
ensemble. As indicated in Table 1, the AMOC and NHT data are not available from the15

PMIP2 database for the IPSL model. The maximum AMOC LGM anomaly can, how-
ever, be derived from Table 3 of Swingedouw et al. (2009). When this value (+3.4 Sv)
is included the AMOC-RMSE correlation, the coefficient drops from 0.7 to 0.3, nicely
illustrating the lack of robustness in the statistics from such a small ensemble size. So
we conclude that there is weak evidence that a small change in AMOC and a smaller20

increase in NHT at the LGM are more consistent with the data, but that a larger en-
semble size (20–30 members) would be required for robust results to be obtained.

5 Conclusions

We have analysed the reliability of two PMIP ensembles and one single-model ensem-
ble using the MARGO sea surface temperature data synthesis for the Last Glacial Max-25

imum. Within the constraint that for PMIP1 only air temperature data can be analysed
and this only for the lower latitudes, due to the unavailability of sea surface temperature
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data, we find that both ensembles provide reliable predictions of the MARGO data. The
PMIP2 ensemble is somewhat narrower than that of PMIP1, but once the uncertainty
in the MARGO data is taken into account, there is no indication that it is too narrow.
Rather it seems that model development including the addition of the coupled dynam-
ical oceans in PMIP2 have caused the ensemble to be improved. This work indicates5

the vital importance of including uncertainty estimates along-side paleoclimate data. If
we had not had the error estimate, we might have falsely concluded that the PMIP2
ensemble is too narrow. Further work to better model the data uncertainty estimate
would be valuable for analyses such as these.

The JUMP ensemble is found to be extremely unreliable, even when the MARGO10

data uncertainty is included in the analysis. This result is consistent with ongoing work
analysing several single model ensembles for the present day (Yokohata et al., 2011).
It would appear that, in order to sample as wide a range as the multi-model ensembles,
a much broader range of parametric changes would need to be varied, which would be
computationally problematical. Comparing the JUMP and PMIP2 ensembles supports15

our previous conclusion (Annan et al., 2005b), that the JUMP climate sensitivities of
greater than 4 ◦C are less consistent with the data than the generally lower climate
sensitivities of the PMIP2 models.

Comparison of PMIP2 with the PMIP1 reveals that the addition of the coupled ocean
models in PMIP2 have caused systematic differences in the modelled LGM state, which20

generally improve agreement with the data. There is a less southward extension of sea-
ice with the PMIP2 models, and northward heat transport is also increased at least as
far as 30◦ N. These systematic differences may be contrasted with the large range
in the AMOC LGM anomaly in PMIP2. This indicates that, irrelevant of the meridional
circulation, the dynamical oceans are all transporting heat further north. Comparing the25

ensembles to the data in more detail it can be inferred from the surface air temperatures
that the PMIP2 is probably more consistent with the data in the high latitudes than
PMIP1. There is also weak evidence for the PMIP2 models with lower AMOC (and
NHT) LGM anomaly being more consistent with the data. The ensemble size is not
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however sufficiently large to draw confident conclusions, and so it is important that
this is increased to enable robust characterisation of the climate system behaviour.
The ensemble size for the LGM is expected to increase considerably over the next
few years, as the PMIP3/CMIP5 runs become available. Increasing the robustness of
these result would also be helped by having available data representative of a range5

of variables including in the ocean at depth rather than only the surface, and initiatives
are underway to increase the scope of ocean data syntheses (Paul and Mulitza, 2009).
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Table 1. Variables available for PMIP1 and PMIP2. 2-D model output: “tas”, 2 m surface
air temperature, “tos”, SST. Zonally averaged regional output: “stfmmc”, overturning steam
function; “hfogo”, northward heat transport. There are 4 regions (global, pacific, indian and
atlantic) for the PMIP2 models, apart from CCSM, which has only 2 (global-marginal seas and
atlantic+mediterranean+ labrador+GIN+Arctic). Temporal resolution: “cm”, monthly mean
output from PMIP1; “mo”, daily data for 100 years?; “se”, monthly mean output for 12 months
averaged over 100 years; “an”, 100 (or 99 for HADCM3 AOVGCM) years of annual average
output.

Model Model type tas tos stfmmc hfogo

PMIP1 models Joussaume and Taylor (2000); Petoukhov et al. (2000)
CCC 2 AGCM cm
CCM 1 AGCM cm
CLIMBER 2 EMIC cm
GENESIS 1 AGCM cm
GENESIS 2 AGCM cm
GFDL AGCM cm
LMD 4 AGCM cm
MRI 2 AGCM cm
UGAMP AGCM cm
UKMO AGCM cm
PMIP2 models Braconnot et al. (2007); Randall et al. (2007)
MIROC3.2.2 (medres)4 AOGCM se/mo se se se
CCSM3 AOGCM se se se se1

CNRM-CM3.3 AOGCM se se se se
ECHAM5.3/MPIOM127/LPJ AOVGCM se se se –
ECBILTCLIO EMIC se mo an3 an3

FGOALS g1.0 AOGCM se se se2 se
HADCM3M2 AOGCM se se an an
HADCM3M2 AOVGCM se se an an
IPSL-CM4 v1 AOGCM se se – –

1 For CCSM, “hfogo” files were in error and new files (100 years of monthly output) were obtained directly from Bette Otto Bleisner.
2 For FGOALS, the stfmmc files appear to be the negative of what was expected, but otherwise reasonable. Contact with the developers could not be achieved,
and so this was not confirmed, but is assumed to be the case.
3 For ECBILT stfmmc and hfogo, the region labelled global appears to correspond to the atlantic, and vice versa. See the PMIP websites for more details of
the models.
4 MIROC3.2.2, the official CMIP3 version of MIROC was used, rather than MIROC3.2. Not all variables for MIROC3.2.2 are available on the PMIP2 database,
but they are available to the authors.
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Table 2. Statistics for the ensembles, with and without including the MARGO data uncertainty
estimates. p-values for statistical significance of non-uniformity for the rank histograms, follow-
ing Jolliffe and Primo (2008). We specifically test for bias, V-shape (including the inverted V)
and whether one or both end bins are significantly different from a uniform distribution. Total
refers to the chi-square test on the full histogram.

Ensemble Bias Vshape Ends Left Right total

PMIP1 0.1 0.9 1. 0.6 0.6 1.
PMIP1 including MARGO errors 0.5 0.3 0.5 0.5 0.7 1.
PMIP2 0.2 0.1 0.05 0.7 0.03 0.8
PMIP2 including MARGO errors 0.6 0.8 0.8 0.8 1. 1.
JUMP <0.0001 <0.0001 <0.0001 0.56 <0.0001 <0.0001
JUMP including MARGO errors 0.0001 0.02 0.007 0.9 <0.0001 1

798

http://www.clim-past-discuss.net
http://www.clim-past-discuss.net/7/775/2011/cpd-7-775-2011-print.pdf
http://www.clim-past-discuss.net/7/775/2011/cpd-7-775-2011-discussion.html
http://creativecommons.org/licenses/by/3.0/


CPD
7, 775–807, 2011

Paleoclimate
model-data
consistency

J. C. Hargreaves et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Table 3. Correlations between LGM anomalies in the Atlantic. AMOC is the change in the
maximum Atlantic Meridional Overturning Circulation; NHT the change in the maximum At-
lantic Northward Heat transport; RMSE is the weighted (by area and MARGO error) PMIP2-
MARGO root mean square difference in SST. Bold font indicate statistical significance at the 5%
level.The ensemble size used in each calculation is given by the column labelled “n”. When the
AMOC value for IPSL n from Swingedouw et al. (2009) is included the AMOC-RMSE correlation
drops to 0.3.

Correlated quantities Whole PMIP2 n excluding ECBILT n

AMOC-RMSE 0.5 8 0.7 7
NHT-RMSE 0.2 7 0.9 6
AMOC-NHT 0.6 7 0.6 6
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MARGO synthesis, LGM anomaly 

MARGO synthesis, uncertainty in LGM anomaly 

oC

(a)

(b)

oC

Fig. 1. (a) MARGO LGM SST anomaly with respect to WOA data. For ease of comprehension,
zero is place at the centre of the colour bar, giving a range of −10 ◦C to +10 ◦C. The minimum
value is actually −11.8 ◦C and the maximum 6.32 ◦C. (b) The value of the uncertainty on the
annual mean included in the MARGO synthesis dataset.
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Fig. 2. The LGM anomaly for PMIP2 SST, PMIP2 TAS and PMIP1 TAS, and the MARGO data.
As explained in the text, the PMIP model output is interpolated onto the MARGO grid. The
zonal means are made by averaging only over the grid boxes for which there are MARGO data.

801

http://www.clim-past-discuss.net
http://www.clim-past-discuss.net/7/775/2011/cpd-7-775-2011-print.pdf
http://www.clim-past-discuss.net/7/775/2011/cpd-7-775-2011-discussion.html
http://creativecommons.org/licenses/by/3.0/


CPD
7, 775–807, 2011

Paleoclimate
model-data
consistency

J. C. Hargreaves et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Area 
weighted

Rank of MARGO data in PMIP1 ensemble

Rank histogram Ensemble mean bias

Temperature (oC)Rank

(a)

(b) (c)

Fig. 3. (a) The rank of the MARGO data in the PMIP1 TAS for the range 35◦ S to 35◦ N. (b)
Area-weighted rank histogram of the ranks in plot (a). (c) The histogram of the difference
between the PMIP1 TAS ensemble mean and the MARGO data for each data point in plot (a).
The uncertainties in the MARGO data are not taken into account.
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PMIP1 including uncertainty in MARGO

Rank histogram Ensemble mean bias

Rank Temperature (oC)

Area 
weighted

(a) (b)

Fig. 4. As in Fig. 3b,c, but the uncertainty in the MARGO data are taken into account in the
analysis of the PMIP1 ensemble. (a) Area-weighted rank histogram. (b) Histogram of the
difference between the PMIP1 ensemble mean and the MARGO data.
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Point-wise
Area weighted

Rank of MARGO data in PMIP2 ensemble

Rank histogram Ensemble mean bias

Temperature (oC)Rank

(a)

(b) (c)

Fig. 5. (a) The rank of the MARGO data in the PMIP2 SST for the whole globe. (b) Area-
weighted rank histogram of the ranks in plot (a). (c) The histogram of the difference between
the PMIP2 SST ensemble mean and the MARGO data for each data point in plot (a). Both
area-weighted and point-wise rank histograms are shown. The uncertainties in the MARGO
data are not taken into account.
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Point-wise
Area weighted

Rank of MARGO data in PMIP2 ensemble, 
including data uncertainty

Rank histogram Ensemble mean bias

Temperature (oC)Rank

(a)

(b) (c)

Fig. 6. (a) The rank of the MARGO data in the PMIP2 SST for the whole globe. (b) Area-
weighted rank histogram of the ranks in plot (a). (c) The histogram of the difference between
the PMIP2 SST ensemble mean and the MARGO data for each data point in plot (a). Both
area-weighted and point-wise rank histograms are shown. The uncertainties in the MARGO
data is taken into account.
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JUMP without including uncertainty in MARGO

JUMP including uncertainty in MARGO 

Rank histogram Ensemble mean bias

Rank Temperature (oC)

Rank histogram Ensemble mean bias

Rank Temperature (oC)

Point-wise
Area weighted

(a) (b)

(c) (d)

Fig. 7. Rank histogram analysis for the JUMP ensemble JUMP analysis with (c,d) and with-
out (a,b) inclusion of MARGO data uncertainty. (a,c) Area-weighted, and point-wise rank
histograms. (b,d) Histograms of the difference between the JUMP ensemble mean and the
MARGO data.
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Fig. 8. PMIP2 and MARGO for the Atlantic ocean, zonal averages over the MARGO grid points:
(a) SST; (b) Northward Heat Transport. The NHT is cutoff at 30◦ S, as further south some of
the model outputs appear to include data from other ocean basins. The values of the LGM
anomaly of the AMOC maximum are listed in the order of the magnitude of the minimum in
the LGM SST anomaly around 40–50◦ N. The MOC data for IPSL is not included in the PMIP2
database so the value of the AMOC maximum for the IPSL model is derived from Table 3 of
Swingedouw et al. (2009). There are no values for NHT from this model.
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