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Abstract

The study of weather extremes and their impacts, such as weather-related disasters,
plays an important role in climate-change research. Due to the great societal con-
sequences of extremes – historically, now and in the future – the peer-reviewed lit-
erature on this theme has been growing enormously since the 1980s. Data sources5

have a wide origin, from century-long climate reconstructions from tree rings to short
databases with disaster statistics and human impacts (30 to 60 yr).

In scanning the peer-reviewed literature on weather extremes and impacts thereof
we noticed that many different methods are used to make inferences. However, discus-
sions on methods are rare. Such discussions are important since a particular method-10

ological choice might substantially influence the inferences made. A calculation of a
return period of once in 500 yr, based on a normal distribution will deviate from that
based on a Gumbel distribution. And the particular choice between a linear or a flexi-
ble trend model might influence inferences as well.

In this article we give a concise overview of statistical methods applied in the field15

of weather extremes and weather-related disasters. Methods have been evaluated as
to stationarity assumptions, the choice for specific probability density functions (PDFs)
and the availability of uncertainty information. As for stationarity we found that good
testing is essential. Inferences on extremes may be wrong if data are assumed sta-
tionary while they are not. The same holds for the block-stationarity assumption. As20

for PDF choices we found that often more than one PDF shape fits to the same data.
From a simulation study we conclude that both the generalized extreme value (GEV)
distribution and the log-normal PDF fit very well to a variety of indicators. The appli-
cation of the normal and Gumbel distributions is more limited. As for uncertainty it is
advised to test conclusions on extremes for assumptions underlying the modeling ap-25

proach. Finally, we conclude that the coupling of individual extremes or disasters to
climate change should be avoided.
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1 Introduction

The study of weather extremes and impacts thereof plays an important role in climate-
change research. Due to the great societal consequences of extremes – historically,
now and in the future – the peer-reviewed literature on this theme has been growing
enormously since the important findings of Mearns et al. (1984) and Wigley (1985).5

These authors showed that small shifts in the mean of a weather or climate variable
might lead to a strong non-linear shift in the frequency of extreme values of that vari-
able. Examples of recent publications on extremes are Trenberth and Jones (2007,
Sect. 3.8), Gamble et al. (2008) and Karl et al. (2008). Furthermore, the litera-
ture shows that inferences on extremes can be based on all types of meteorologi-10

cal/climatological information: documentary evidence and paleo-climatological prox-
ies (Battipaglia et al., 2010; Stoffel et al., 2010; Büntgen et al., 2011), instrumental
data (Alexander et al., 2006; Klein Tank et al., 2006), disaster statistics (Pielke, 2006;
Bouwer, 2011) and model-generated climate data (Kharin and Zwiers, 2005; Tebaldi et
al., 2006; Orlowsky and Seneviratne, 2011).15

In scanning the peer-reviewed literature on weather extremes and impacts we no-
ticed that many different methods are used to make inferences on extremes. However,
discussions on methods are rare. One exception we found, is that of Wigley (2009)
and Cooley (2009), where the use of linear trends and normal distributions (Wigley)
is opposed to the use of extreme value theory with time-varying parameters (Cooley).20

Clearly, the calculation of a return period of, say, once in 500 yr, based on a normal
distribution will deviate from that based on a generalized extreme value (GEV) distri-
bution. In other words, the specific choice of methods (here the shape of PDFs) might
influence the inferences made on these extremes. Another example is the particular
choice of a trend model to highlight temporal patterns in extreme-weather indicators.25

Conclusions based on an OLS straight line might differ from those made by more flex-
ible trends. And the inclusion or exclusion of uncertainty information may influence
inferences made either: a rising trend or increasing return periods are not necessarily
statistically significant.
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In this article we will review the statistical methods used in the peer-reviewed litera-
ture. First, we will give a concise overview of methods applied. These methods deal
with the computation of return periods of extremes, chances of crossing a pre-defined
high (or low) threshold, or with the estimation of a trend in weather indicators which are
defined as extreme by their definition (number of warm and cold days, annual maximum5

of 1-day/5-day precipitation, global number of floods, etc.).
Next to this overview we will discuss a number of methodological aspects. We will

discuss (i) the assumption of a stationary climate when making inferences on extremes,
(ii) the choice of (extreme value) probability distributions for the data at hand, (iii) the
availability of uncertainty information and (iv) the coupling of weather or disaster statis-10

tics to climate change. As for point (iv) we will pay attention to methods in the peer-
reviewed literature and to the way these results are assessed by the Intergovernmental
Panel on Climate Change (IPCC).

There are two aspects of weather extremes and their impacts (disasters) which will
not be dealt with in this methods review. The first aspect concerns the quality of the15

data, and more specifically, methods for testing the quality of data and correcting them,
if necessary. For homogeneity issues the reader is referred to Aguilar et al. (2003) and
Klein Tank et al. (2009). For the reliability of disaster statistics please refer to Gall et
al. (2009).

The second methodological aspect not dealt with, is that of methods for detecting20

anthropogenic influences in climate or disaster data. For detection studies in relation
to extremes please refer to Hegerl and Zwiers (2007), Zwiers et al. (2011) and Min
et al. (2011). A critical view has been given by Stephens et al. (2010). For a review
on detecting climate change influences in disaster trends, the reader is referred to
Höppe and Pielke (2006) and Bouwer (2011). We further note that we will use the term25

“climate change” in the general sense, thus climate change both due to natural and
anthropogenic influences (unless denoted otherwise).
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The contents of this article is as follows. In Sect. 2 we will give a concise description
of how inferences on extremes are made in the peer-reviewed literature. Then, we will
discuss these methods in Sects. 3 through 6 with respect to four aspects: the assump-
tion of a stationary climate (Sect. 3), assumptions on probability distributions (Sect. 4),
the use of uncertainty information (Sect. 5) and the coupling of extremes to climate5

change (Sect. 6). Conclusions are given in Sect. 7. A number of statements through-
out this article will be illustrated by an analysis of annual maxima of daily maximum
temperatures for station De Bilt in the Netherlands (TXXt; Figs. 1, 4 and 6).

2 Methods for making inferences on extremes

2.1 Preliminaries10

There is a diverse use of terminology of weather extremes. Terms used in the literature
comprise weather or climate extremes, weather or climate extreme events, weather
or climate indicators, weather or climate extreme indicators, indices of extremes, and
weather-related disasters. Various definitions can be found in Alexander et al. (2006) or
the ECA website http://eca.knmi.nl/indicesextremes/indicesdictionary.php. In the con-15

text of this article we need only one simple distinction. We will discern two types of
indicators: weather indicators and extreme weather indicators. We will not make a
conceptual distinction between “weather indicators” or “climate indicators”. Weather
indicators, as used here, comprise variables such as regional or global mean temper-
atures, annual total precipitation, annual averaged wind speeds, etc. Extreme weather20

indicators comprise a wide range of indicators which use the predicate “extreme” since
they have or point to adverse, or sometimes benign, societal consequences. Extreme
weather indicators can be constructed from weather indicators. Examples are the an-
nual maximum value of daily maximum temperatures (TXXt), the number of warm or
cold days, the annual maximum value of one- or five-day precipitation totals (RX1Dt,25

RX5Dt), the annual number of flood disasters or the annual global economic damage
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due to weather-related disasters. All indicators from disaster research will fall here in
the category of “extreme weather indicators”.

In case of weather indicators, inferences on extremes are made in terms of (i) lists
of extreme values over some predefined sample period, (ii) the chance on exceeding a
pre-defined high (or low) threshold, (iii) the corresponding return period, (iv) the indica-5

tor value that is crossed once in x yr (the “x-year return period”) and (v) the comparison
of probability density functions (PDFs), calculated over distinct sub-periods of interest.
As for extreme weather indicators, inferences can be made as mentioned above, or by
estimating a trend through the data.

An example illustrates a number of these inference possibilities. Suppose we are10

interested in the following extreme weather indicator: annual extreme temperatures
TXXt, with t in years. For the Netherlands we constructed a time series of this indicator
over the period 1901–2010 for station De Bilt. Homogeneity tests showed a large dis-
continuity in 1950, the year where the type of temperature screen changed. Therefore,
we decided to limit analyses to the period 1951–2010. Other homogeneity tests were15

satisfactory (Visser, 2007). The TXXt series is shown in Fig. 1.
The upper panel shows the data along with the Integrated Random Walk (IRW) trend

model and 95 % confidence limits (Visser, 2004; Visser and Petersen, 2009). Tests
showed the residuals (or in Kalman filter terms: innovations or on-step-ahead predic-
tion errors) to be normally distributed. These normal distributions are shown in the20

lower panel for the years 1951, 1980 and 2010. The panel shows how chances (p35
t )

of crossing a certain threshold, here 35 ◦C, is changing for these three distributions (the
yellow area). For this example we find p35

1951 = 0.002, p35
1980 = 0.02 and p35

2010 = 0.18.

Average return periods are simply gained by taking the inverse of p35
t , yielding return

periods R35
t of once in 420, 62 and 5.6 yr, respectively. For the calculation of annual25

20-yr return periods (TXX20
t ) we choose the yellow area such that it covers 5 % of

right-hand tail of the normal distributions. For this example we find the temperature
thresholds 32.8, 34.1 and 36.4 ◦C, respectively (cf. Fig. 6).
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In the following paragraphs we will categorize methods as to the stationarity as-
sumptions researchers have made in their analyses. We discern four situations: no
assumptions on stationarity (Sect. 2.2), assuming a stationary climate (Sect. 2.3), as-
suming a block-stationary climate (Sect. 2.4), and assuming a non-stationary climate
(Sect. 2.5). Trend methods are reviewed in Sect. 2.6.5

2.2 Enumerating extreme events

The first method of treating extremes is simply by enumerating a number of record-
breaking values. These records can be discussed with respect to their spreading over
time. If x of the highest values occurred in the past decade, this might give an indication
of a shifting climate. The method of enumeration is often applied in communication10

to the media. An example is the annually returning discussions on the extremity of
global mean temperatures. E.g. see the NOAA and NASA GISS websites http://www.
noaanews.noaa.gov/stories2011/20110112 globalstats.html and http://www.giss.nasa.
gov/research/news/20110113/, discussing the extremity of the 2010 value.

In the peer-reviewed literature enumeration is found only incidentally. For instance,15

Prior and Kendon (2011) studied the UK winter of 2009/2010 in relation to the severity
of winters over the last 100 yr. They give an overview of coldness rankings for monthly
and seasonal average temperatures, as well as rankings for the number of days with
snow. Furthermore, Battipaglia et al. (2010) study temperature extremes in Central Eu-
rope reconstructed from tree-ring density measurements and documentary evidence.20

Their tables and graphs show a list of warm and cold summers over the past five cen-
turies.

In the grey literature (reports) many examples of enumeration can be found. Buis-
man (2011) gives a detailed description of weather extremes and disasters, for a large
part based on documentary information in the area of the Netherlands. His enumer-25

ation covers the period from the Middle Ages up to the present. Enumerations of
disasters in recent decades are found in, e.g. WHO (2011) and Munich Re (2011).
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2.3 Assuming a stationary climate

There is a wide range of studies which assume the data at hand to be stationary. Sta-
tionarity means in practice that the data are stable over time (no trends, breaks, shocks,
ramps or changes in variance over time). Using this assumption, a number of statisti-
cal techniques have been applied. We give a number of examples from the literature.5

Theoretical background of extreme- value methods can be found in Coles (2001) or the
literature mentioned, and is not clarified here.

Zorita et al. (2008) consider the likelihood that the observed recent clustering of
warm record-breaking mean temperatures at global, regional and local scales may
occur by chance in a stationary climate. They conclude this probability to be very low10

(under two different hypotheses).
Schär et al. (2004) estimate a normal distribution through monthly and summer tem-

peratures in Switzerland, 1864–2003, to characterize the 2003 European heat wave
(their Figs. 1 and 3). Barriopedro et al. (2011) estimate a normal distribution for Eu-
ropean summer temperatures for 1500–2010. See their Fig. 2. The five coldest and15

highest values are highlighted. The 2010 summer temperature appears to be the high-
est by far.

Wehner (2010) estimates GEV distributions to pre-industrial control runs from 15
climate models in the CMIP3 dataset. These control runs are assumed to be sta-
tionary. 20-yr return periods are estimated for annual maximum daily mean surface air20

temperatures along with uncertainties in these return periods. Min et al. (2011) also es-
timate the GEV distribution. They analyze 49-yr time series of the largest one-day and
five-day precipitation accumulations annually (RX1Dt and RX5Dt). Afterwards, these
distributions are used to transform precipitation data to a “probability-based index” (PI),
yielding a new 49-yr time series with values between 0 and 1. Time-dependent behav-25

ior of the PIt series is shown by estimating trends (their Fig. 1).
Della-Marta et al. (2009) apply the Peaks Over Threshold (POT) approach with

declustering, and apply it to extreme wind speed indices (EWIs). The POT parame-
ters are regarded to be time-independent.
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2.4 Assuming a block-stationary climate

The block-stationary assumption differs from overall stationarity in that researchers
define a period or “block” of a certain length, typically between 20 to 30 yr, where
climate is assumed to be stationary. For this block PDF shapes can be assumed or
fitted. Then, statistics such as average return periods can be calculated for differing5

blocks over time. We give four examples from the literature:

– Kharin and Zwiers (2007) evaluate temperature and precipitation extremes in the
IPCC ensemble of global coupled model simulations. For that purpose they as-
sume climate to be stationary over 20-yr periods. For selected blocks GEV dis-
tributions are estimated and 20-yr return periods are calculated. They argue that10

longer return periods (≥50 yr) are less advisable given the short block length of
20 yr.

– Beniston and Diaz (2004) use a block length of 30 yr to analyze the rarity of the
2003 heat wave in Europe. They estimate a normal distribution through mean
summer maximum temperature data at Basel, Switzerland, for the 1961–1990 pe-15

riod. They argue that what may be regarded as an extreme beyond the 90th per-
centile under current (= stationary) climate, becomes the median by the second
half of the 21st century. Their results are repeated in Trenberth and Jones (2007,
p. 312, Fig. 2, lower panel).

– Barriopedro et al. (2011) analyze multi-model projections of future mega-20

heatwaves (their Fig. 4). To this end they choose blocks of 30 yr and base their
return-period calculations on these 30-yr blocks. Uncertainties in return periods
are gained through 1000 times resampling of block data. Zwiers et al. (2011)
choose 10-yr blocks for the location parameter of the GEV distribution. The other
two GEV parameters are kept constant in their approach.25
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– Brown et al. (2010) analyze temporal changes in PDFs in their Figs. 5 and 6. Data
are seasonal minimum and maximum temperatures over the period 1893–2005,
taken from northeastern US stations. Their block size is around 28 yr. No specific
PDF shape is assumed.

2.5 Assuming a non-stationary climate5

Opposed to the approaches in the preceding sections there are techniques which
are designed for non-stationary situations. Such techniques are time-varying extreme
value approaches based on GEV and POT theory with time-varying coefficients (e.g.
Coles, 2001, Sect. 6), or methods where trends and the behavior of residuals are stud-
ied. These latter methods fall apart into two groups: (i) methods which analyze trends10

and residuals in two stages by detrending the data first and analyzing residuals af-
terwards, and (ii) methods where these two stages are combined into one analysis.
Examples of applying non-stationary extreme value theory are the following:

– Clarke (2002) estimates time trends in Gumbel distributed data by means of gen-
eralized linear models (GLMs). He discusses estimation issues and the detec-15

tion/existence of small time trends. Trömel and Schönwiese (2005, 2007) analyze
monthly total precipitation data from a German station network of 132 time se-
ries, covering the period 1901–2000. They use a decomposition technique which
results in estimations of Gumbel distributions with a time-dependent location and
scale parameter.20

– Kharin and Zwiers (2005) estimate extremes in transient climate-change simula-
tions. Their sample period is 1990–2100. They assume annual extremes of tem-
perature and precipitation to be distributed according to a GEV distribution with all
three parameters time-varying (linear trends). In doing so their GEV model has
six unknown parameters to be estimated. Brown et al. (2008) essentially follow25

the same approach for extreme daily temperatures over the period 1950–2004.
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– Fowler et al. (2010) estimate GEV distributions with linear changing location
parameters and apply this technique to UK extreme precipitation simulations
over the period 2000–2080. Their approach deviates from that of Kharim and
Zwiers (2005) and Brown et al. (2008) in that they do not assume this approach to
be the only approach possible. They estimate eight different modeling approaches5

and evaluate the best fitting model using Akaike’s AIC criterion.

– Parey et al. (2007) assume a POT model with time-varying parameters and ana-
lyze 47 temperature stations in France over the 1950–2003 period. As in Fowler
et al. (2010) they consider a suit of models such as situations where station data
are assumed to be stationary versus those where they are assumed to be non-10

stationary.

The examples thus far integrated the estimation of trends and extreme value distri-
butions in one model. Other approaches are directed to trend estimation as such and
analyze the behavior of residuals afterwards. Two examples of this two-stage approach
are:15

– In dendroclimatology tree-ring data are often detrended first and residuals are
analysed afterwards, e.g. Stoffel et al. (2010), Visser et al. (2010) and Büntgen et
al. (2011).

– Charpentier (2011) analyzes temperature data from Paris over the period 1900–
2004 to evaluate the extremity of the 2003 heatwave. First, he estimates two20

trend models for detrending purposes: a spline nonlinear regression model and a
LOWESS regression model. Then he applies a suit of ARMA, SARIMA, GARMA
and fractional processes to analyze the residuals.

Examples of the integrated treatment of trends and residuals are the following:

– Wigley (2009) analyzes changes in return periods using OLS trend fitting plus25

a normal distribution for the residuals. He gives an example for monthly mean
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summer temperatures in England (the CET database). We come to this approach
into more detail in Sect. 4.1.

– Visser and Petersen (2009) apply a trend model from the group of structural time
series models, the so-called Integrate Random Walk (IRW) model. This IRW
model has the advantage of being flexible where the flexibility can be chosen by5

maximum likelihood optimization. The OLS straight line is a special case of the
IRW model. They apply this trend model to an indicator for extreme cold condi-
tions in the Netherlands for the period 1901–2008. Return periods are generated
along with uncertainty information on temporal changes in these return periods
(cf. the TXXt example shown in the Figs. 1, 4 and 6).10

2.6 Trends in extreme weather indicators

If a particular weather or climate indicator has an extreme character by definition, im-
portant inferences can be gained by estimating trends through the time series available.
If we scan the climate literature on trend methods, an enormous amount of models
arises. We found the following trend models or groups of models (without being com-15

plete): low pass filters (various binomial weights; with or without end point estimates),
ARIMA models and variations (SARIMA, GARMA, ARFIMA), linear trend with OLS,
kernel smoothers, splines, the resistant (RES) method, Restricted Maximum Likeli-
hood AR(1) based linear trends, trends in rare events by logistic regression, Bayesian
trend models, simple Moving Averages, neural networks, Structural Time-series Mod-20

els (STMs), smooth transition models, Multiple Regression models with higher order
polynomials, exponential smoothing, Mann-Kendall tests for monotonic trends (with or
without correction for serial correlations), trend tests against long-memory time series,
robust regression trend lines (MM or LTS regression), Seidel-Lanzante trends incor-
porating abrupt changes, wavelets, Singular Spectrum Analysis (SSA), LOESS and25

LOWESS smoothing, Shiyatov corridor methods, Holmes double-detrending methods,
piecewise linear fitting, Students t-test on sub-periods in time, extreme value theory
with a time-varying location parameter, and last but not least, some form of expert
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judgment (drawing a trend “by hand”). See Mills (2010) and references therein for a
discussion.

This long list of trend approaches holds for trends in climate data in general. How-
ever, the number of trend models applied to extreme weather indicators, appears to be
much more limited. The trend model almost exclusively applied, is the OLS straight5

line. This model has the advantage of being simple and generating uncertainty infor-
mation for any trend difference [µt−µs] (indices t and s are arbitrary time points within
the sample period)1. Uncertainty estimates are available since the slope of the trend is
estimated along with its uncertainty. Examples of OLS trend fitting are given by Brown
et al. (2010). They estimate trends in 17 temperature and 10 precipitation indices (all10

for extremes) at 40 stations. Their sample period is 1870–2005. Furthermore, Brown et
al. (2010) analyze the sensitivity of their results with respect to the linearity assumption.
To do so, they splitted the sample period in two parts of equal length and estimated the
OLS trends on these two sub-periods.

Other examples of OLS linear trend fits can be found in Klein Tank et al. (2006) and15

Alexander (2006), be it that the significance of the trend slope is estimated differently.
Klein Tank et al. apply the Student’s t-test, while Alexander et al. apply Kendall’s tau-
based slope estimator along with a correction for serial correlation according to a study
of Wang and Swail. Karl et al. (2008, Appendix A) choose linear trend estimation in
combination with ARIMA models for the residuals. This is another way of correcting for20

serial correlation.
In the field of disaster studies OLS trends are the dominant method, be it that the

original data are log-transformed in most cases. See Pielke (2006, Figs. 2 and 3) or
Munich Re (2011, p. 47) for examples. Another trend method in this field is the moving
average trend model where the flexibility is influenced by the length of the averaging25

window chosen. See Pielke (2006, Fig. 5) for an example.

1The OLS regression model reads as yt =µt+εt =a+b ·t+εt , with “a” the intercept, “b” the
slope of the regression line and εt a noise process. Now, the variance of any trend differential
[µt−µs] follows from var (µt−µs)=var (b̂ · (t−s))=(t−s)2 ·var (b̂).
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Occasionally, other trend approaches for extreme weather indicators are reported.
E.g. Klein Tank et al. (2006) use the LOWESS smoother to highlight trend patterns
in extreme weather indicators (their Figs. 3, 4, 6 and 7). Tebaldi et al. (2006) do not
apply any specific trend model but show increases or decreases over two distant 20-
yr periods: indicator differences between 2080–2099 and 1980–1999, and between5

1980–1999 and 1900–1919 (their Figs. 3 and 4). Visser (2005) applies sub-models
from the class of STMs to estimate trends and uncertainty in weather indicators where
trends may be flexible. The measure of flexibility is estimated by ML optimization.
Frei and Schär (2001) apply logistic regression to time series of very rare precipitation
events in the Alpine region of Switzerland. They include a quantification of the poten-10

tial/limitation to discriminate a trend from the stochastic fluctuations in these records.
Hu et al. (2011) apply Mann-Kendall tests with correction for serial correlation (no ac-
tual trend estimated in this approach).

Finally, some authors acknowledge that the use of a specific trend model, along with
uncertainty analysis, may lead to deviating inferences on (significant) trend changes.15

Therefore, they chose to evaluate trends using more than one trend model. E.g.
Moberg and Jones apply two different trend models to the same data: the OLS trend
model and the resistant (RES) model. Subsequently, they evaluate all their results with
respect to these two trend models. Even more methods are evaluated by Young et
al. (2011). They estimate five different trend models to 23-yr wind speed and wave20

height data and evaluate uncertainty information for each model (their supporting ma-
terial). We note that the application of more than one trend model to the same data
has been published more often (not specifically for the evaluation of extremes). The
reader is referred to Harvey and Mills (2003), Mills (2010) and references therein.
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3 Stationarity assumptions

3.1 Stationarity

We have seen in Sect. 2 that methods fall apart with respect to their assumption of
stationarity (Sects. 2.3, 2.4 and 2.5). At first glance one may judge this choice as a
matter of taste. As long as one makes his or her assumptions clear, all seems okay5

at this point. Of course, there is no problem as long as the data at hand are truly
stationary, such as in the study of Wehner (2010) who estimates GEV distributions to
pre-industrial control runs from 15 climate models, part of the CMIP3 dataset. The
same holds for Villarini et al. (2011) who apply GEV distributions for extreme flooding
stations with stationary data over time only.10

However, inferences might go wrong if data are assumed to be stationary while they
are not. Figure 2 gives an illustration of this point by simulation. Suppose that a specific
weather index shows an increasing trend pattern over time. However, the year-to-year
variability slowly decreases over time (heteroscedastic residuals). Now, if we would
assume these data to be stationary, we would conclude that the frequency of high15

extremes is decreasing over time. This conclusion could be easily interpreted as an
absence of climate change. However, the increasing trend in these data is contradictory
to this conclusion. The example shows that conclusions on the influence of climate
change should not be done on the behavior of extremes alone. Proper methods for
stationary checks should be applied.20

A second danger of assuming stationarity while data are in fact non-stationary, oc-
curs if GEV distributions are applied. GEV distributions are very well suited to fit data
which are stable at first and start to rise at the end. See the simulation example in
Fig. 3, upper panel. This example is composed of an exponential curve where nor-
mally distributed noise is added. Now, if we regard this hundred-year long record as25

stationary and estimate for example the Gumbel distribution to these data, a perfect fit
is found, as illustrated in the lower panel.
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This result might seem surprising, but it is not. The residuals of the simulated series
are normally distributed, having symmetric tails. Due to the higher values at the end
of the series the right-hand tail of the distribution will become “thicker” than the tail of
the normal distribution if we discard the non-stationarity at the end of the series. And
this is exactly the shape of the right-hand tail of the Gumbel distribution, and more5

generally the GEV distribution. In practice the GEV distribution will give a good fit in
many such occasions since it has three fit parameters instead of the two of the Gumbel
distribution.

Our conclusion is that care should be taken if climate is assumed to be stationary.
If data are assumed to be stationary while they are not, inferences might become10

misleading.
Thus, proper testing for stationarity versus non-stationarity is a prerequisite. For

examples of stationarity tests please refer to Feng et al. (2007), Fowler et al. (2010),
Furió and Meneu (2011), Villarini et al. (2011) and Rea et al. (2011).

3.2 Block stationarity15

As we have shown in Sect. 2.4, a number of authors assume their data to be stationary
over short periods of time, typically periods of 20 to 30 yr. Such assumptions are often
made in climatology and is clearly reflected in the definition of “climate” (IPCC, 2007,
WG I, Annex I): Climate in a narrow sense is usually defined as the average weather,
or more rigorously, as the statistical description in terms of the mean and variability of20

relevant quantities over a period of time ranging from months to thousands or millions
of years. The classical period for averaging these variables is 30 yr, as defined by the
World Meteorological Organization [...].

Of course, if the (extreme) weather indicator at hand shows a stable behavior over
the block period chosen, the choice for stationarity satisfies. However, due to rapid25

climate change, the stationarity assumption may be invalid, even for very short periods.
Young et al. (2011) give such examples for 23-yr extreme wind speed and wave height
data. They find many significant rising trends (their Table 1 and Fig. 3).
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Another example is the TXXt series shown in the upper panel of Fig. 1. The Fig-
ure shows an almost linear increase of these annual maximum temperatures. To
analyze the local behavior of this trend more closely, we estimated the trend differ-
ences [µ2010 −µt−1] and [µt −µt−1] along with 95 % confidence limits (statistical ap-
proach explained in Visser, 2004). See Fig. 4. The figure shows that the trend value5

µ2010 in the final year 2010 is significantly larger than any trend value µs in the pe-
riod 1951–2009 (α=0.05). The lower panel shows an even stronger result: all trend
differences [µt−µt−1] over the period 1967–2010 are significantly positive (α=0.05).

Again, our conclusion is that care should be taken in assuming stationarity, even for
such short periods of time (20 to 30 yr). Changes in extreme weather variables may be10

highly significant even over these short periods.

4 Choice of probability distribution assumptions

4.1 PDF shapes: normal or GEV?

As described in Sects. 2.2, 2.3 and 2.4 different types of probability distributions have
been applied to both stationary and non-stationary data. E.g. Beniston and Diaz (2004)15

applied the normal distribution, Visser and Petersen (2009) applied the log-normal
distribution, Trömel and Schönwiese (2006) applied the Gumbel distribution and Brown
et al. (2008) applied the GEV distribution. This leads to the question which distribution
is preferable in which situation? Or would it be possible that different PDFs fit equally
well to the same data? If the latter were true, it would still be worthwhile to choose the20

PDF with care if extrapolations are made far beyond the sample record length (return
periods of once in 500 to 1000 yr, as in Della-Marta et al. (2009) or Lucio et al. (2010)).

In this context a discussion between Wigley (2009) and Cooley (2009) is relevant.
Wigley estimated linear trends and normal distributions to monthly mean tempera-
tures in England (the CET database, Parker and Horton (2005)). Cooley estimated25

GEV distributions with time-varying parameters to annual maxima of daily maximum
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temperatures, also taken from the CET database. He finds a linear fit for the GEV
location (mean) parameter, and constants for the variance and shape parameter. Coo-
ley discusses the advantages of taking the GEV distribution rather than the normal
distribution. Who is right, or are both right?

We re-estimated the CET TXXt data2 with the IRW trend model (cf. Fig. 1), and5

checked the distribution of the residuals. The IRW flexibility is estimated by ML op-
timization and appears to be a straight line, mathematically equal to the OLS linear
trend. The innovations (=one-step-ahead prediction errors) show perfect normal be-
havior and we conclude that a straight line, along with normally distributed residuals,
gives feasible results for these TXXt data. Compared to the trend of Cooley, our trend10

appears to have a slightly steeper slope: 0.0155±0.005 (1−σ) against their slope es-
timate 0.0142. This result implies that (i) more than one PDF may be applied to the
same data and (ii) the choice of the PDF shape (slightly) influences the trend slope
estimate (cf. the simulation example shown in Fig. 3).

4.2 Comparing four PDF shapes15

To get a better grip on this “PDF shape discussion” we have tested four PDF shapes
frequently encountered in the literature, on the same data. PDF shapes are (i) the nor-
mal distribution, (ii) the log-normal distribution, (iii) the Gumbel distribution and (iv) the
GEV distribution (of which the Gumbel distribution is a special case). For such a test,
we performed two groups of simulations yielding a number of TXXt and RX1Dt “look20

alikes”. We varied the time series length N (65, 130 and 1300 yr) and the number of
effective days Neff (1, 60, 180 and 365 days). The latter parameter mimics the effective
number of independent daily data within a year for a certain weather variable. Details
are given in Appendix A.

2The CET TXXt temperatures can most easily be downloaded from the Climate Explorer
website: http://climexp.knmi.nl/. Choose “Daily climate indices”, “UK temperatures”, “maxi-
mum”, and in the bottom panel: “annual (Jan–Dec)” and new variable: “max”.

2910

http://www.clim-past-discuss.net
http://www.clim-past-discuss.net/7/2893/2011/cpd-7-2893-2011-print.pdf
http://www.clim-past-discuss.net/7/2893/2011/cpd-7-2893-2011-discussion.html
http://creativecommons.org/licenses/by/3.0/
http://climexp.knmi.nl/


CPD
7, 2893–2935, 2011

Weather extremes
and weather-related

disasters

H. Visser and
A. C. Petersen

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

An example from these simulations is given in Fig. 5. Here we have plotted four PDFs
for the same TXXt simulation (Neff =60 days; N =130 yr). This simulation resembles
the Wigley-Cooley case with daily CET temperatures since 1880. The four panels show
the Kolmogorov-Smirnov goodness of fit test, along with three graphic presentations
(as in the lower panel of Fig. 3). The panels show that the only distribution which fits5

not very well, is the Gumbel distribution (right tail deviates in the QQ plot, panel lower
left).

Although the simulation excercise described in Appendix A, is certainly not exhaus-
tive, the following inferences can be made:

– both log-normal and GEV distribution fit very well for the vast majority of simu-10

lations, (both TXXt and RX1Dt simulations). This result is in line with the many
examples of these PDFs in the literature, applied to real data.

– the Gumbel distribution fits only moderately to the TXXt simulations. Much
better fits are found for data which are skewed in nature, such as in case of
the RX1Dt simulations. This result is in line with the findings of Trömel and15

Schönwiese (2007) who find Gumbel distributions for 132 precipitation series in
Germany (1901–2000). No Gumbel distributions have been reported in the litera-
ture for temperature data, which is in line with our TXXt simulation results.

– The normal distribution fits well for the TXXt simulations as long the number of
years is rather small (sample periods shorter than ∼130 yr). This result is in line20

with the Wigley-Cooley discussions for CET data since 1880. For skewed data, as
in the second group of simulations, the normal distribution is not a good choice.

One might conclude from the inferences above that the GEV distribution would be
the ideal PDF choice in general: (i) it fits in almost all cases and (ii) it has an interpre-
tational background in relation to extremes. However, we note that the estimation of25

time-varying GEVs in combination with linearity assumptions on the three parameters,
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demands the estimation of six parameters (Kharin and Zwiers, 2005). And the linear-
ity assumption for GEV parameters might be limiting in some cases. In contrast, the
estimation of flexible trends and normal distributions (as in the TXXt examples for CET
and De Bilt) (i) does not fit for skewed data and (ii) lacks interpretation. However, it de-
mands the estimation of only one parameter. Also uncertainty information on extremes5

is gained more easily (cf. Fig. 6). The same advantage is gained after taking logarithms
of the indicator at hand, as in Visser and Petersen (2009, their Fig. 5 and Appendix).
And the simulations in Appendix A show that log-normal distributions fit very well.

5 Uncertainty information

5.1 Available statistical techniques do not suffice in all cases10

Uncertainty information is an important source of additional information pertaining to
inferences on extremes. Within climate science, and particularly within the Intergov-
ernmental Panel on Climate Change (IPCC), there has been increased attention for
dealing with uncertainties over the last decade or so (see e.g. Moss and Schneider,
2000; Petersen, 2000, 2006; IPCC, 2005; Risbey and Kandlikar, 2007; Swart et al.,15

2009; Hulme and Mahony, 2010; Mastrandrea et al., 2010). Uncertainty plays a role in
Sects. 2.3 through 2.6.

We scanned the literature as for their treatment of statistical uncertainties. In doing
so, we discerned three levels of statistical uncertainty information:

– Class 0: research giving no statistical uncertainty information.20

– Class 1: research giving point-estimate uncertainty for extreme statistics. Here,
we mean uncertainty statistics at one specific point in time, such as confidence
limits for a return period Rt or confidence limits for a trend estimate µt. An example
for extremes has been given in the three panels of Fig. 6. An example for trends
has been given in Fig. 1, upper panel.25
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– Class 2: research giving uncertainty information both for point estimates and for
differential estimates. Here, we mean “Class 1” uncertainty information along with
uncertainty information on differential statistics such as the return-period differen-
tial [Rt−Rs], or trend differentials [µt−µs] (times t and s lie in the sample period
with t> s)3. An example has been given in Fig. 4. This graph shows the trend5

differentials [µ2010−µt] and [µt−µt−1], along with 95 % confidence limits.

With respect to return periods or the chance for crossing pre-defined thresholds
we found only rarely examples of “Class 0”. In most cases “Class 1” uncertainty in-
formation is given: Feng and Nadarajah (2007), Della-Marta et al. (2009), Fowler et
al. (2010), Wehner (2010) and Lucio et al. (2010). However, we found that “Class 2”10

uncertainty information is lacking almost completely. The only example we found, was
in a previous paper of ours (Visser and Petersen, 2009). There we give approximate
uncertainty estimates for return period differentials in an Appendix A.

As for trends we only rarely found examples of “Class 0” uncertainty. Examples
lacking uncertainty information are mostly found in the estimation of trends in disaster15

data: although OLS linear trends have been applied (and thus uncertainty information
is easily available), no uncertainty information is given in publications. Other examples
are those where moving averages of other digital filters have been applied. These trend
models are not statistical in nature and, thus, do not give uncertainty information.

Since most articles apply OLS linear trend fits to their data, both “Class 1” and “Class20

2” uncertainty information are covered at the same time (cf. footnote 1). Examples are
Klein Tank and Können (2003), Klein Tank et al. (2006), Alexander et al. (2006), Brown
et al. (2010), Min et al. (2011) and Charpentier (2011). Brown et al. (2008) give full
statistical uncertainty information for the time-varying location parameter of the GEV

3We note that some researchers apply the Mann-Kendall test for monotonic trends (e.g.
Nasri and Modarres, 2009; Young et al., 2011). Here, the significance is tested for the whole
sample period only, without specifying the trend shape. Thus, this approach does not fall within
the category of “Class 2”. The same holds for trends based on ARIMA models: trends are
filtered from the data but an actual trend is not given.

2913

http://www.clim-past-discuss.net
http://www.clim-past-discuss.net/7/2893/2011/cpd-7-2893-2011-print.pdf
http://www.clim-past-discuss.net/7/2893/2011/cpd-7-2893-2011-discussion.html
http://creativecommons.org/licenses/by/3.0/


CPD
7, 2893–2935, 2011

Weather extremes
and weather-related

disasters

H. Visser and
A. C. Petersen

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

distribution. Trends from the class of structural time series models (STMs), as shown
here in Figs. 1 and 4, give a generalization of the OLS linear trend: they also give full
statistical uncertainty information (Visser, 2004; Visser et al., 2010).

Our “uncertainty scan” shows that full uncertainty information (“Class 2”) is missing
for statistics such as return periods or the chance for crossing thresholds. And the5

reason for that is simple: the statistical literature on extremes, such as Coles (2001),
does not report methods to compute these differential uncertainties. Therefore, our
conclusion is a simple one: such methods should be developed. For trend estimation
we conclude that full uncertainty information is available as long as OLS linear trends
or trend models from the class of STMs are chosen.10

5.2 Best modeling practices and uncertainty

As described at the end of Sect. 2.6 some authors have chosen to apply more than
one trend model to analyze their data. This type of sensitivity analysis does not eval-
uate uncertainties in estimators only, but also tries to find the influence of under-lying
model assumptions – thus often moving beyond the realm of statistical uncertainty into15

scenario (what-if) uncertainty. See Mills (2010) and Charpentier (2011, Sect. 2). Other
examples are:

– Moberg and Jones (2005) evaluate trends in extreme weather indicators using
two trend models: the OLS linear trend and the RES method. The latter method
is more appropriate if the data contain outliers and behave non-normal.20

– A variation is given by Young et al. (2011, Table S1). They present five different
significance tests for their trends.

In fact, the evaluation of different trend models, and corresponding uncertainty infer-
ences, is a way of evaluating structural uncertainty, i.e. evaluating the potential influ-
ence of specific model assumptions.25
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An illustration of the importance of considering more than one trend model, is given
in Fig. 7. The upper panel shows the economic losses due to global weather-related
disasters, as published by Munich Re (2010). We note that this graph is published in
many variations such as losses due great natural disasters, etc. (Pielke, 2006, Fig. 2;
Munich Re, 2011, p. 47). The trend is estimated by fitting the OLS linear trend model,5

after taking logarithms of the event data. The result is an exponential increasing trend.
If an IRW trend is estimated, where the flexibility is optimized by ML (Visser, 2004), a
different trend pattern arises (lower panel): an increase up to 1995 and a stabilization
afterwards. The trend value in 2009 is significant higher than trend values before 1987
(tested for α = 0.05, graph not shown here). This example illustrates that the interpre-10

tation of trend patterns in extreme weather indicators might be influenced by the trend
method chosen.

Another approach to assess structural uncertainty is the evaluation of the
stationarity/non-stationarity of the data at hand (cf. discussion in Sect. 3). Examples
are:15

– Feng and Nadarajah (2007) estimate both stationary and non-stationary GEVs,
and calculate return periods for both approaches.

– Fowler et al. (2010) evaluate 8 GEV models, both stationary and non-stationary.
For choosing the most appropriate model they use the AIC criterion.

We found two other sensitivity approaches which could be categorized under the20

term “best modeling practices”. In the field of future extremes it might be of importance
to evaluate extreme statistics on the basis of more than one GCM or RCM. Examples
are:

– Kharin et al. (2007) give multi-model uncertainty limits for 20-yr return periods in
their Figs. 3, 5, 6 and 7, based on 14 IPCC AR4 models.25

– Wehner (2010, Fig. 1) calculates the inter-model uncertainty for return periods,
based on daily data from 15 different CMIP3 models.
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– Barriopedro et al. (2011, Figs. 4 and S12) evaluate return periods for mega-
heatwaves on the basis of 11 RCMs and one reanalysis run.

A second sensitivity approach deals with the sensitivity of trend estimates and cor-
responding uncertainties in relation to the sample period length. Examples are:

– Moberg and Jones (2005, Table III) show significant trends for four periods: 1901–5

1999, 1921–1999, 1901–1950 and 1946–1999.

– Klein Tank et al. (2006, Table 2) show trend decadal increments with uncertainties
for the periods 1961–2000 and 1901–2000.

We note that an analoguous sensitivity example for linear trends has been given by
Trenberth and Jones (2007, FAQ 3.1, Fig. 1) for global mean temperatures.10

In our judgment, some form of sensitivity analysis is important to assess the relia-
bility of results. This conclusion of course pertains more generally to environmental
research.

6 Coupling extremes or disasters to climate change

There are several ways to couple trends in extremes or disaster to (anthropogenic)15

climate change (see, e.g. Hegerl and Zwiers (2007), Zwiers et al. (2011) and Min et
al. (2011) for spatio-temporal approaches). One has to be careful, however, in coupling
individual extremes to climate change. In fact, statistical inferences are about chances
for groups of events and not about individual events.

Even though most publications do not strictly couple single extremes to climate20

change, that is, with 100 % certainty, many are suggestive about the connection while
they focus actually on the changed chances. A recent example on flooding is Pall
et al. (2011) and an example of suggestive information on the Pakistan floodings in
2010 is given in Fig. 8. An earlier example is constituted by publications on the 2003
heatwave in Europe.25
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PBL (2010) has analyzed the presenting of this 2003 heat wave as a consequence
of climate change in IPCC (2007). The Working Group II Summary for Policymakers
states, for Europe, on p. 14: “For the first time, wide-ranging impacts of changes in
current climate have been documented: retreating glaciers, longer growing seasons,
shift of species ranges, and health impacts due to a heat wave of unprecedented mag-5

nitude. The observed changes described above are consistent with those projected
for future climate change.” This text, as well as its counterparts in Table TS 4.2 of the
Technical Summary (p. 51) and in the Executive Summary (p. 543), present the health
impacts from the 2003 heat wave as an example of “wide-ranging impact of changes in
current climate”. Thus, the text implicitly suggests that the 2003 heat wave is the result10

of recent climate change.
However, one can never attribute a specific extreme weather event of the past –

such as that particular heat wave – to changes in current climate. In fact, we agree
with Schär and Jendritzky (2004) who stated the following: “The European heatwave
of 2003: was it merely a rare meteorological event or a first glimpse of climate change15

to come? Probably both.” Stott et al. (2004) come to a comparable conclusion: “It is an
ill-posed question whether the 2003 heatwave was caused, in a simple deterministic
sense, by a modification of the external influence on climate – for example, increasing
concentration of greenhouse gases in the atmosphere – because almost any such
weather event might have occurred by chance in an unmodified climate.”20

7 Conclusions

In this article we have given a concise overview of methods applied in the peer-review
literature. Furthermore, we have evaluated these methods as for specific choices that
researchers have made. These choices are (i) the choice for a specific type of station-
arity, (ii) the choice for a specific PDF shape for the data (or residuals) at hand, (iii) the25

treatment of uncertainties and (iv) the coupling of extremes or disasters to climate
change. We draw the following conclusions:
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– In making a choice for treating data as stationary or non-stationary, good testing
is essential. Inferences on extremes may be wrong if data are assumed station-
ary while they are not (cf. Figs. 2 and 3). Some researchers choose for block-
stationarity (blocks of 20 to 30 yr). However, climate may be non-stationary even
for such short periods (cf. Figs. 1 and 4). Thus, such an assumption needs testing5

too.

– In calculating statistics such as average return periods, a certain PDF shape is
assumed. We found that often more than one PDF shape fits to the same data
(cf. the Cooley-Wigley example, and Fig. 5). From a simulation study we conclude
that both the GEV and the log-normal PDF fit very well to a variety of indicators10

(both symmetric and skewed data/residuals). The normal PDF performs well for
data which are (i) essentially symmetrical in nature (such as extremes for temper-
ature data) and (ii) have relatively short sample periods (∼130 yr). The Gumbel
PDF fits well for data which are skewed in nature (such as extreme indicators for
precipitation). For symmetrical situations the Gumbel PDF does not perform very15

well.

– Statistical techniques are not available for all cases of interest. We found that
theory is lacking for uncertainties for differential statistics of return periods, i.e.
uncertainties for a particular differences [Rt−Rs]. For trends these statistics are
available as long as OLS trends or structural time series models (STMs) are cho-20

sen (cf. Figs. 1 and 4).

– It is advised to test conclusions on extremes with respect to assumptions under-
lying the modeling approach chosen (structural uncertainty). Examples are given
as for (i) the application of different trend models to the same data, (ii) station-
ary versus non-stationary GEV models, (iii) evaluation of extremes for a suite of25

GCMs or RCMS to evaluate statistics in the future, and (iv) the role of the sample
period length. An example has been given where the choice of a specific trend
model influences the inferences made (Fig. 7).
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– The coupling of extremes to climate change should be performed by spatio-
temporal detection methods. However, in the communication of extremes to the
media it occurs that researchers couple one specific exceptional extreme event or
disaster to climate change. This (suggestive) coupling should be avoided (Fig. 8).
Statistical inferences are always directed to chances for groups of data. They do5

not allow to give a clue for one specific occurrence within that group.

Appendix A

Simulation and PDF shapes

As described in Sect. 4.2 we have tested four PDF shapes frequently encountered10

in the literature, on the same data. PDF shapes are: the normal, the log-normal,
the Gumbel and the GEV distribution (of which the Gumbel distribution is a special
case). For such a test, we performed two groups of simulations, one yielding TXXt
“look alikes” and one yielding RX1Dt “look alikes”. The first set is totally based on
random drawings from a normal distribution for daily values; the second set is based15

on real daily precipitation totals over the period 1906–2005 (De Bilt, the Netherlands).
We varied the time series length N (65, 130 and 1300 yr) and the number of effective
days Neff (1, 60, 180 and 365 days). The latter parameter mimics the effective number
of independent daily data within a year for a certain weather variable. The judgment of
distributional fit has been done with two criteria: visual inspection of the QQ plot and20

the p value from the Kolmogorov-Smirnov goodness of fit test (p< 0.05: bad result;
p> 0.80: very good result). See Fig. 5 for an example. Each judgment was repeated
three times to rule out the influence of incidental deviating simulation results.

Table 1 shows that the log-normal and the GEV distribution give good fits for all
simulations (all judgments are “+/++” or “++”). This result is independent of the spe-25

cific choices made for Neff or N. The normal distribution fits well for the TXXt “look
alikes” as long as time series are shorter than ∼130 yr of length and Neff shorter than
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180 days. The fit for the precipitation simulations are moderate to bad throughout. For
the Gumbel distribution, the situation is the other way around: a moderate result for
the temperature simulations and a good result for the precipitation simulations. Time
series with 1300 yr of length are the only exception here.
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Table 1. Judgments of distributional fits for (i) simulated meteorological data (cf. Fig. 5) and
(ii) daily precipitation data in the Netherlands. Meaning of codes: – – stands for a very bad fit;
– stands for a bad fit; + stands for a good fit; ++ stands for a very good fit. These judgments
are based on visual inspection of the actual fits and on p-values of the Kolmogorov-Smirnov
goodness of fit tests. All judgments are based on three repeated simulations (using different
seeds in random number generation).

Simulations based on Simulations based on 100 yr of
normally distributed daily data daily precipitation data in the

Netherlands

Normal Log-normal Gumbel GEV Normal Log-normal Gumbel GEV

N =65 yr ++ NA – – + + ++ + ++
Neff =1 day

N =65 yr + +/++ –/+ + –/+ + +/++ +/++
Neff =60 days

N =65 yr + ++ + ++ –/+ +/++ + +/++
Neff =180 days

N =65 yr –/+ +/++ +/++ ++ –/+ +/++ + +/++
Neff= 365 days

N =130 yr ++ NA – – ++ –/+ NA + ++
Neff =1 day

N =130 yr + ++ –/+ +/++ –/+ +/++ + +/++
Neff =60 days

N =130 yr –/+ + + ++ – + + +
Neff =180 days

N =130 yr – + + ++ – ++ ++ ++
Neff =365 days

N =1300 yr ++ NA – – + – – NA ++ ++
Neff =1 day

N =1300 yr – – +/++ – – +/++ – – + – –
Neff =60 days

N =1300 yr – – + –/– – ++ – – + – – – –
Neff =180 days

N =1300 yr – – + – – ++ – – –/+ – – – –
Neff =365 days
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Fig. 1. Example of an extreme weather indicator, the TXXt series for station De Bilt in the
Netherlands. The upper panel shows the annual data, along with an IRW trend fit (µt) and 95 %
confidence limits. The lower panel shows three normal distributions corresponding to the years
1951, 1980 and 2010. The yellow area illustrates the chance of crossing the 35 ◦C threshold.
Clearly, the area for the years 1951 and 1980 is much smaller, a phenomenon first shown by
Mearns et al. (1984) and Wigley (1985). A return period is calculated as the inverse of these
chances. For each of the three normal distributions one could calculate the temperature which
is exceeded once in x years, the x-year return periods. For statistical details see Von Storch
and Zwiers (1999, Sect. 2). Chances and return periods are further illustrated in Fig. 6.
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Fig. 2. Simulated extreme weather indicator for the sample period 1911–2010. The “measure-
ments” are gained by choosing an exponential as a “trend” (green line) and adding a normally
distributed white noise process to this trend. The variance of the noise is linearly decreasing
over time.
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Fig. 3. The upper panel shows a simulated extreme weather indicator over the sample period
1911–2010. The “measurements” are gained by choosing an exponential as a “trend” and
adding normal distributed white noise to this trend (constant variance) . If it is assumed that
the measurements follow a stationary process, the data appear to follow an extreme value
(Gumbel) distribution. This is shown in the lower four panels which are generated by the S-
PLUS Envstats module. Shown is the Kolmogorov-Smirnov test, where the data are compared
to a Gumbel distribution. The Gumbel distribution appears to fit very well (QQ-plot shows all
data on the 0–1 line; p-value of the KS test is 0.93).
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Fig. 4. Uncertainties for the IRW trend estimates shown in Fig. 1. The upper panel shows
the trend difference [µ2010 −µt] along with 95 % confidence limits, the lower panel the trend
differences [µt−µt−1] along with 95 % confidence limits.
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Fig. 5. Kolmogorov-Smirnov graphs and statistics for a simulation example shown in Table 1 of
Appendix A (maximum of 60 effective data in a year, and a sample length of 130 yr). All four
PDFs have been computed to the same data. Upper left panel: normal distribution; upper right
panel: log-normal distribution; lower left panel: Gumbel distribution; lower right panel: GEV
distribution.
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Fig. 6. Three characterizations of extremes with uncertainties corresponding to the TXXt exam-
ple from Fig. 1. The first panel shows the annual chance of crossing the 35 ◦C threshold (p35

t );
the second panel shows the corresponding return period for crossing that threshold (R35

t , ex-
pressed in years); the third panel shows the temperature threshold that will be exceeded once
every 20 yr (TXX20

t , expressed in ◦C). In all three panels 95 % confidence limits are shown.
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Fig. 7. Economic losses due to weather-related disasters in the period 1980–2009. The data
and trend in the upper panel are taken from Munich Re (2010). The trend has been estimated
by the OLS straight line fit after taking logarithms. The lower panel shows the IRW trend fit
on logarithms of the same data. Flexibility of the trend has been optimized by ML estimation
(Visser, 2004).
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Fig. 8. Example of coupling climate change to one particular disaster: the 2010 flooding in
Pakistan. Text taken from the Scientific American website: http://www.scientificamerican.com/
article.cfm?id=is-the-flooding-in-pakist.
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