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Abstract

Data assimilation is a promising approach to obtain climate reconstructions that are
both consistent with observations of the past and with our understanding of the physics
of the climate system as represented in the climate model used. Here, we investigate
the use of Ensemble Square Root Filtering (EnSRF) – a technique used in weather5

forecasting – for climate reconstructions. We constrain an ensemble of 29 simulations
from an atmosphere-only general circulation model (GCM) with 37 pseudo-proxy time
series. Assimilating spatially sparse information with low temporal resolution (semi-
annual) improves the representation of not only surface quantities such as tempera-
ture and precipitation, but also upper-air features such as the intensity of the northern10

stratospheric polar vortex or the strength of the northern subtropical jet. Given the
sparsity of the assimilated information and the limited size of the ensemble used, a lo-
calisation procedure is crucial to reduce “overcorrection” of climate variables far away
from the assimilated information.

1 Introduction15

Compared to conventional reconstruction methods, data assimilation represents a no-
vel approach to increase our understanding of past climate. In this paper, we explore
in an idealised setup if assimilation of sparse and indirect observations of past climate
states as recorded in climate proxies provides sufficient constraints to skilfully update
existing model simulations.20

Two distinct approaches have often been used when reconstructing past climate:
Empirical methods relate the changes in climate proxies – such as tree ring widths
or δ18O concentrations in ice cores – to changes in climate variables during past
decades (see Jansen et al., 2007 and Jones et al., 2009 for an overview of recent ad-
vances). This relationship is then extended backwards, allowing for the reconstruction25

of said climate variables for times when no direct observations of the climate system

2836

http://www.clim-past-discuss.net
http://www.clim-past-discuss.net/7/2835/2011/cpd-7-2835-2011-print.pdf
http://www.clim-past-discuss.net/7/2835/2011/cpd-7-2835-2011-discussion.html
http://creativecommons.org/licenses/by/3.0/


CPD
7, 2835–2862, 2011

EnSRF for climate
reconstructions

J. Bhend et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

are available. Empirical methods rely on the stationarity of the relationship between
climate and proxy record. In addition, the specifics of high-resolution proxy archives
make it hard to quantify low frequency variability (Moberg et al., 2005). Dynamical
methods, on the other hand, use reconstructed external forcings (e.g. changes in so-
lar irradiance, land cover, atmospheric aerosol and greenhouse gas concentrations) to5

constrain simulations of past climate states (e.g. Jungclaus et al., 2010; Wanner et al.,
2008; Ammann et al., 2007). In contrast to empirical approaches, dynamical methods
allow us to also reconstruct climate variables which are only loosely correlated to cli-
mate proxies. Ensembles of climate model simulations, however, are often not well
constrained, as a large part of the variability is generated in the climate system itself10

and is thus independent of external forcings.
To overcome the relative weaknesses of these two approaches, it has been pro-

posed to directly assimilate proxy data into climate model simulations (Goosse et al.,
2009; Hughes and Ammann, 2009; Widmann et al., 2010). Data assimilation in a pa-
leoclimatology context proceeds as follows: The climate model simulations are used15

to learn about the distribution of climate states consistent with model physics (repre-
senting our understanding of the system) and external forcings. In each analysis cycle,
the model simulations are then updated with all available observations. These updated
simulations are referred to as the analysis and the update procedure ensures that the
analysis is both consistent with the assimilated observations and with model physics20

and boundary conditions.
First attempts to assimilate climate proxy information into models include the pio-

neering work of von Storch et al. (2000), Hargreaves and Annan (2002), van der Schrier
and Barkmeijer (2005), Goosse et al. (2006), and Franke et al. (2010). The proposed
approaches can be roughly separated in three groups: The methods of von Storch et al.25

and van der Schrier and Barkmeijer seek to push a model simulation towards a large-
scale target state through nudging (von Storch et al., 2000) or using singular forcing
vectors (van der Schrier and Barkmeijer, 2005). The methods by Goosse et al. (2006)
and Franke et al. (2010) select optimal matches with the available proxy information
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among a set of model states and combine these to “pseudo-simulations”. All of the
approaches discussed so far do not generically provide confidence intervals together
with their best estimate. A shortcoming that is overcome by the approach proposed by
Hargreaves and Annan. In contrast, their fully probabilistic approach is not tractable
with a complex and computationally expensive model. Therefore, we propose a new5

approach that both allows us to assimilate proxy data into a high-resolution general cir-
culation model (GCM) and that provides a generic quantification of the uncertainties.

Data assimilation has long been used in numerical weather forecasting to estimate
optimal initial conditions for weather predictions (Kalnay, 2003). The variational data
assimilation techniques developed for weather forecasting, however, are not suitable for10

reconstruction of past climate with a much smaller number of observations or climate
proxies. A much simpler to implement and computationally less expensive method to
assimilate data into climate model simulations is represented by the class of square
root filters.

We use the Ensemble Square Root Filter (EnSRF) – a variant of the Ensemble15

Kalman Filter (EnKF, see Evensen, 2003, and references therein) – as introduced by
Whitaker and Hamill (2002) to update the ensemble of model simulations with infor-
mation from climate proxies. The EnSRF has successfully been used to produce a
reanalysis for the period from 1870 to present using sea-level pressure measurements
(Compo et al., 2006, 2011). Here we investigate, whether EnSRF can also be used20

with spatially sparse observations with low temporal resolution.
Our main goal is to learn how to best assimilate climate proxy information into model

simulations. In order to be able to experiment with the details of the setup and properly
explore the potential of data assimilation for climate reconstructions at a reasonable
computational cost, we want to be able to run the data assimilation off-line. Thus, we25

use an atmosphere-only GCM to provide a first guess of past climates. In this setup,
the proxy information has a temporal resolution (semi-annual in our case) that is far
greater than the deterministic predictability of most atmospheric processes (Lorenz,
1969; Kalnay, 2003). Therefore, we can assimilate the data off-line and we do not have
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to feed back the corrected states as new initial conditions for the next simulation cycle.
Ultimately, we aim at assimilating climate proxy data into a coupled atmosphere-ocean
GCM. This study contributes to our understanding of the strengths and limitations of
data assimilation using EnSRF for climate reconstructions.

In the following section, the model data and analysis scheme is introduced and we5

discuss the EnSRF algorithm in detail. In Sect. 3, we present the results from the
validation assessment of the analysis versus the unconstrained ensemble of model
simulations. We discuss the strengths and limitations of data assimilation using EnSRF
for climate reconstructions in the final section of the manuscript.

2 Materials and methods10

2.1 Model simulations

For the assessment of EnSRF for climate reconstructions, we use an initial condi-
tion ensemble of 30 simulations with the atmosphere-only model (GCM) ECHAM5.4
(Roeckner et al., 2003, 2004). The model has been run in T63L31 resolution, cor-
responding to an approximate horizontal resolution of 1.875 ◦ with 31 vertical levels15

from the surface to 10 hPa. We use a segment of 50 years from 1850 to 1899 of
the 411 simulated years from 1600 to 2010. The model has been forced with recon-
structed sea-surface temperatures (SST, reconstruction by Mann et al., 2009) aug-
mented with ENSO-dependent intra-annual variability according to the reconstructed
NINO3.4 index of Cook et al. (2008) and climatological sea-ice according to the20

HadISST climatology (Rayner et al., 2003). We further use reconstructed solar irradi-
ance (Lean, 2000) and land surface parameters derived from the land-use reconstruc-
tions of Pongratz et al. (2008). Additionally, the model is forced with reconstructions of
volcanic activity by Crowley et al. (2008) and concentrations of long-lived greenhouse
gases as used in Yoshimori et al. (2010, and references therein). Finally, transient sul-25

phate concentrations are prescribed according to the reconstructed aerosol loads of
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Koch et al. (1999); before 1850, tropospheric sulphate aerosol concentrations are set
to their 1850 values.

The solar irradiance reconstruction by Lean (2000) exhibits an increase in irradiance
of approximately 2.5 Wm−2 since the Maunder Minimum (MM). Recent reconstructions,
however, show less of a change in solar irradiance between the MM and present con-5

ditions (Wang et al., 2005; Krivova et al., 2007). Nevertheless, we chose a strong solar
forcing, as the recent study by Jungclaus et al. (2010) has shown that this leads to a
slightly more realistic climate response over the past 1000 yr in ECHAM5.4.

2.2 Analysis scheme

We analyse simulated near-surface temperature and precipitation over land and sev-10

eral derived indices characterising atmospheric circulation according to Brönnimann
et al. (2009). The data are aggregated for boreal winter (November to April) and sum-
mer (May to October), reflecting the approximate temporal resolution of climate proxies.
In order to keep computations tractable, we thin out the initial model grid by selecting
grid boxes only at every third longitude and latitude. The state vector used in the EnKF15

approach thus consists of semi-annual temperature and precipitation at 694 locations
over land plus four derived indices. These indices include the strength of the north-
ern subtropical jet (SJ), defined as the maximum zonal mean zonal wind at 200 hPa
between the equator and 50◦ N, the strength of the Hadley Cell (HC), defined as the
maximum of the zonal mean meridional streamfunction at 500 hPa between the equa-20

tor and 30◦ N, the strength of the northern stratospheric polar vortex (z100), defined as
the difference in geopotential height at 100 hPa between 75–90◦ N and 40–55◦ N, and
the dynamic indian monsoon index (DIMI), defined as the difference in average zonal
winds at 850 hPa in the boxes 5–15◦ N, 40–80◦ E and 20–30◦ N, 70–90◦ E. For further
discussion of these indices, please refer to Brönnimann et al. (2009).25

Of the thirty-member initial condition ensemble, we select the thirtieth simulation as
the target or reference time series used for validation, and the remaining 29 simula-
tions represent the unconstrained ensemble. The initial condition ensemble is then
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updated by temperature time series at 37 different locations (see Fig. 1). The locations
have been chosen to reflect the distribution of temperature sensitive proxies over land
such as tree ring series and ice cores (e.g. Mann et al., 2009). Proxy networks such
as collections of tree-ring series in North America and Europe are represented by a
single pseudo-proxy. We analyse the potential of the data assimilation technique using5

perfect observations (the time series extracted from the reference simulation) and – in
a more realistic framework – also using pseudo-proxies computed from the reference
simulation.

We use a simple approach to fabricate pseudo-proxy time series: At the respective
locations, we extract near-surface temperature time series from the reference simula-10

tion and disturb these with red noise generated by an AR(1) process with an autore-
gression coefficient of 0.7. The disturbance is further scaled to 1.5 standard deviations
of the reference time series – thus resulting in correlations between 0.36 and 0.74 as
shown in Fig. 1. The pseudo-proxies are slightly biased compared to the original se-
ries, with normally distributed biases centred at zero and ranging from −3.85 to 2.65 K15

(not shown). The bias in the pseudo-proxy time series reflects a potential estimation
error when calibrating real-world proxy time series. Unlike in a real-world situation,
however, the biases and red noise added to the reference time series have no spatial
pattern and the variance of the disturbance is known exactly.

2.3 Ensemble Square Root Filtering20

We use a variant of the Ensemble Kalman Filter (EnKF, see Evensen, 2003, and refer-
ences therein) to update model simulations with measurements of the climate system
– here pseudo-proxy time series derived from one model simulation.

In each analysis cycle, the background state, i.e. the climate model simulations, is
updated with observations to produce the analysis. The analysis represents an optimal25

combination of the observations and the model simulations given observation error and
the range of possible model states inferred from the ensemble. In the traditional EnKF,
the observations are randomly perturbed to sample the observational error distribution.
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Consequently, EnKF is biased due to sampling uncertainty in both the background co-
variance Pb estimated from the ensemble of model simulations and the observation
perturbations. Due to the nonlinear dependence of the analysis covariance Pa on the
background covariance Pb, Pa will be biased low and therefore underestimate ensem-
ble mean errors on average. This underestimate of Pa can lead to filter divergence. As5

we are not assimilating data on-line, filter divergence is not an issue in this study, there-
fore, we do not deal with the problem of filter divergence explicitly. The perturbation
of observations on the other hand, increases sampling error and leads to the analysis-
error covariance estimate Pa being less accurate on average. To overcome the above
limitations, Whitaker and Hamill (2002) propose a novel approach that does not rely on10

the perturbation of observations; this approach is referred to as the Ensemble Square
Root Filter (EnSRF).

Let the background state, xb, denote one simulation in the initial condition ensemble.
x

b is a vector of length m= 1392. In the analysis step, the background states are
updated with the observations y, a vector of size n= 37. Using EnSRF, the update15

can be separated in an ensemble mean update (Eq. 1) which is identical to the EnKF
update and an update of the anomalies about the ensemble mean (Eq. 2). Thus, we
decompose the background state x

b into the ensemble mean background state x̄
b and

the deviation from the ensemble mean x
′b and express the update equations as follows

x̄a = x̄b+K(ȳ−Hx̄b) (1)20

x′a = x′b+ K̃(y′−Hx′b)= (I− K̃H)x′b with: y′ =0 (2)

H, a matrix of size n×m, is the forward model that extracts the observations from
the model state x. The Kalman gain matrix K (m×n) is identical to the gain matrix in
the classical EnKF approach as shown in Eq. (3). The gain matrix for the ensemble
anomalies, K̃, is expressed as follows25

K = PbHT
(

HPbHT +R
)−1

(3)
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K̃ = PbHT
[(√

HPbHT +R
)−1

]T

×
(√

HPbHT +R+
√

R
)−1

(4)

Pb is the m×m background error covariance matrix estimated from the ensemble
of background states x

′b and R is the n×n observation error covariance matrix. The
magnitudes of the observation errors are known and we assume that the observation
errors are uncorrelated (R is diagonal). Therefore, we can update the ensemble se-5

rially, including one observation at a time. This greatly enhances the computational
tractability of the problem.

Due to the limited ensemble size, the background error covariance Pb is subject to
considerable sampling uncertainty. We deal with the problem of spurious covariances
far off the diagonal in Pb by deflating the off-diagonal elements of Pb according to Eq. 5.10

P b
i ,j =

1
nens−1

nens∑
k=1

x′b
i ,k x′b

j,k exp(−
|di −dj |

2

2L2
) (5)

P b
i ,j denotes the i th row and j th column of Pb, k indexes the nens different ensemble

members. |di −dj | is the distance in km between grid box i and grid box j , and L is
the cutoff distance. We set L to 5000 km to reduce inter-hemispheric influence. The
covariance deflation used here is identical with the Schur product localisation as pro-15

posed by Houtekamer and Mitchell (2001, see Gaspari and Cohn 1999 for correlation
functions).

2.4 Metrics of skill

We analyse the skill in reconstructing different global and continental-scale indicators.
Skill is measured using a mean squared error skill score (Murphy and Epstein, 1989),20
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which is also known as the reduction of error (RE, Cook et al., 1994).

RE=1−
∑

(xa
i −xref

i )2∑
(xb

i −xref
i )2

(6)

xa and xb denote the analysis and the unconstrained initial condition simulation respec-
tively, xref is the reference simulation (the target). The summation is over i and i counts
the different time steps. This skill score ranges from 1 to −∞; positive values indicate5

that the analysis is closer to the reference simulation in mean square error terms than
the unconstrained simulation. As we constrain the full set of simulations, we investigate
both the skill for the ensemble mean and the individual simulations. In doing so, we
compare the ensemble mean analysis x̄a with the unconstrained ensemble mean x̄b,
and each individual analysis simulation with its unconstrained counterpart.10

Furthermore, we also analyse the change in correlation from the correlation of the
unconstrained simulations with the reference simulation to the correlation of the analy-
sis with the reference simulation.

3 Results

First, we analyse the effect of the covariance localisation to deal with spurious covari-15

ances. Figure 2 illustrates the benefits of localisation of Pb. Without localisation, skill
– measured in terms of mean squared error of the ensemble mean compared with the
reference time series (Murphy and Epstein, 1989) – is confined to the regions where
proxy data are assimilated; elsewhere, we find negative skill. That is, without locali-
sation, assimilation of perfect proxies leads to an “overcorrection” of the ensemble in20

regions far away from where information is assimilated (Fig. 2, a and b). With locali-
sation, skill is less confined to the regions where we assimilate data (Fig. 2, c and d)
as the closest proxies are given more weight in the data assimilation procedure. In
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regions far away from proxy locations such as Africa or the Amazon Basin, the above
mentioned overcorrection disappears resulting in zero skill.

We can think of the initial-condition ensemble of ECHAM5.4 simulations and the
analysis after data assimilation as hindcasts of past climate states. The spread of the
ensemble - here expressed as the intra-ensemble standard deviation - indicates hind-5

casting uncertainty. In the case of the unconstrained hindcast, the spread represents
the uncertainty due to internal variability. In the case of the analysis, we hope to make
use of the information about the state of internal variability of the reference and thus we
expect to reduce the hindcast uncertainty and thereby reduce ensemble spread. The
influence of the data assimilation on the ensemble spread for temperature is shown in10

Fig. 3. We find that the uncertainty is significantly reduced in regions close to the as-
similated information (e.g. Europe). As a consequence of the localisation, the spread
is only marginally reduced in regions far from the assimilated information (e.g. sub-
saharan Africa). Furthermore, data assimilation leads to more wide-spread and larger
reductions in spread in boreal winter.15

In the following figures, the skill scores for the ensemble mean are displayed as
arrowheads and the individual simulations as box plots (see Fig. 4). The boxes indicate
the interquartile range of the 29 simulations in the analysis, the thick horizontal line
indicates the median simulation, and the whiskers denote the range of the simulations.

In Fig. 4, northern hemispheric and northern European land temperature, northern20

European precipitation, and various circulation indices are analysed in detail. These
aggregated indices have been chosen to illustrate the advantages and limitations of
the method as well as for ease of comparison with other climate reconstructions look-
ing at northern hemispheric temperature (e.g. Mann et al., 2005; Moberg et al., 2005),
European temperature (e.g. Luterbacher et al., 2004; Franke et al., 2010), or European25

precipitation (Pauling et al., 2006). We look both at the mean square error skill (Fig. 4,
a and b) and changes in correlation (panels c and d) between the unconstrained en-
semble and the analysis. The mean square error skill is generally more positive for
the individual simulations (boxes in Fig. 4, a and b) than for the ensemble average

2845

http://www.clim-past-discuss.net
http://www.clim-past-discuss.net/7/2835/2011/cpd-7-2835-2011-print.pdf
http://www.clim-past-discuss.net/7/2835/2011/cpd-7-2835-2011-discussion.html
http://creativecommons.org/licenses/by/3.0/


CPD
7, 2835–2862, 2011

EnSRF for climate
reconstructions

J. Bhend et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

(arrowheads in Fig. 4, a and b). This is due to the fact that the unconstrained ensem-
ble average is – due to its low variance and small bias – an a priori good guess for an
additional simulation in mean square error terms. Correlation of the ensemble mean
with the reference simulation, however, is generally greatly increased when information
is assimilated (see Fig. 4, c and d).5

We find positive skill for most indicators in boreal winter (Fig. 4a). Not surprisingly,
skill is strongest in regions that are close to the assimilated information (e.g. northern
European temperature and precipitation). However, we find positive skill also for the
strength of the northern subtropical jet (SJ) and the stratospheric polar vortex (z100).
Only for the intensity of the northern Hadley Cell (HC) we find negative skill for most10

simulations and the ensemble mean. In boreal summer, skill is generally reduced but
still positive for most of the indicators shown in Fig. 4.

Correlation increases considerably with data assimilation for all indicators except
the strength of the northern Hadley Cell (HC) in boreal winter (Fig. 4c). For northern
European temperature over land (NEUt2m), correlation of most individual simulations15

(boxes) and the ensemble mean (arrowheads) increases from close to zero to above
0.5 after assimilation. As with skill, the benefits of data assimilation decrease slightly
with increasing distance from the assimilated information. In boreal summer, in con-
trast, increases in correlation after data assimilation are much more moderate except
for northern European temperature (Fig. 4d).20

Finally, we investigate the effect of the ensemble size on data assimilation. In EnSRF,
the model physics are represented through the error covariance matrix Pb which is
estimated directly from the ensemble. Thus, increasing ensemble size allows us to
capture more details of the interrelation of variables and its spatial features. In addition,
estimation errors decrease with increasing ensemble size. Computation of very large25

ensembles, however, is very costly and therefore we would like to learn about minimal
requirements for climate reconstructions. Therefore, we run the EnSRF approach with
randomly selected sets of 5, 10, 15, 20, 25, and 29 ensemble members and compare
the results with the reference simulation. In order to reduce sampling issues, we repeat
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the experiment 10 times for each ensemble size.
Mean square error skill increases with ensemble size for the various indicators shown

in Fig. 5. This increase in skill is moderate for indicators close to the assimilated infor-
mation such as mean temperature over land in the Northern Hemisphere or northern
European total precipitation (Fig. 5, a, b, e, and f). In contrast, the increase in skill with5

increasing ensemble size is considerable for indicators with marginal skill such as the
strength of the subtropical jet (SJ, Fig. 5, c and g) or the strength of the stratospheric
polar vortex (z100, Fig. 5d). For these indicators, we find positive skill for most of the
individual simulations only with ensembles of size 10 or more. We find simulations
that perform well even with small ensembles, the positive effect of increasing ensemble10

size, however, is clearly visible in reducing the number of simulations with negative
skill.

4 Discussion

This study illustrates the potential of data assimilation using EnSRF for paleoclima-
tology. Depending on the indicator of interest, we find considerable skill even when15

assimilating spatially sparse information with low temporal resolution. Positive skill is
not only constrained to the climatic parameters that are assimilated, but it extends to
other climatic variables as well. Furthermore, we find positive skill constraining upper-
air quantities such as the strength of the northern subtropical jet or the strength of the
polar vortex through assimilation of surface quantities (here near-surface temperature).20

Skill is generally confined to the Northern Hemisphere. This is a consequence of
both the greater number of proxy records and the larger fractional land area in the
Northern Hemisphere. As a consequence of the experimental setup (an atmosphere-
only GCM), we do not expect large differences over oceans and adjacent land due
to the dominant influence of sea-surface temperatures (SSTs) which are prescribed25

in the model simulations. We find strongest positive skill for variables in boreal win-
ter, when weather in the northern midlatitudes is strongly influenced by large-scale
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circulation. In boreal summer, when weather is much more dependent on local pro-
cesses, data assimilation is less beneficial (see Fig. 4). This finding is in line with other
studies (Brönnimann and Luterbacher, 2004; Rutherford et al., 2005; Franke et al.,
2010; Griesser et al., 2010).

We assimilate semi-annual data and analyse skill both in summer and in winter. The5

extension of the methodology to be able to assimilate data with higher (monthly) or
lower (annual to decadal) temporal resolution is straight-forward. Most temperature-
sensitive climate proxies such as tree rings reflect summer temperatures, however, we
assess skill for the winter half-year as well in order to explore the potential benefits of
assimilating early instrumental observations and documentary evidence.10

The skill metric presented here reflects value added to the initial condition ensemble
by the data assimilation. The results are thus not comparable with previous studies
making use of pseudo-proxies (Mann and Rutherford, 2002; von Storch et al., 2004;
Bürger et al., 2006). In the following we highlight the most important difference be-
tween the study presented here and earlier work involving pseudo-proxies. The crucial15

element of empirical climate reconstructions is to establish the relationship between
proxy records and certain climatic features (e.g. local climate or large-scale patterns)
in the calibration period. Pseudo-proxy analyses have been used to investigate how
well these relationships can be extrapolated to characterise past climates (see Ruther-
ford et al., 2005; Bürger et al., 2006; Mann et al., 2007; Christiansen et al., 2009, for20

a discussion of different reconstruction methods). In the data assimilation framework,
this proxy–climate relationship is characterised by the forward operator (proxy forward
model) H and the observation error covariance R. As we are interested in quanti-
fying the skill emerging from the assimilation of spatially sparse information with low
temporal resolution, we do not touch on this issue. Instead, we focus on the differ-25

ences between an unconstrained ensemble and the analysis after data assimilation.
Nevertheless, we recognise that correct formulation of forward proxy models is crucial
for real-world applications of the data assimilation procedure for climate reconstruction
and we are currently working on this issue.
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Correlations between individual simulations and the reference simulation improve
considerably after assimilation of pseudo-proxies (Fig. 4, c and d). This indicates that
we can indeed use data assimilation to constrain internal variability. It is noteworthy,
that positive correlations occur also in the unconstrained simulations (grey boxes and
right-facing arrows). This is due to the deterministic response to changing bound-5

ary conditions or at random due to sampling issues related with the limited ensemble
size. Further analysis reveals that of the indicators shown only NHt2m in both seasons
and the DIMI in summer exhibit consistent variation across the ensemble (not shown).
Therefore, we conclude that the deterministic response to varying boundary conditions
seems to be much weaker than the fluctuations due to internal variability for most of the10

indicators. The dominance of internal variability in turn highlights the potential benefits
for data assimilation approaches.

The only indicator for which we find clearly negative skill is the intensity of the north-
ern Hadley Cell (HC) in boreal winter. This is due to a combination of reasons: First,
variability in HC does not seem to be strongly linked to extratropical climate in ECHAM15

and the variability in HC is thus not well represented in the assimilated pseudo-proxies.
Second, in contrast to near-surface climate quantities for individual grid boxes, we do
not apply a localisation procedure for the derived indices (HC, SJ, z100, and DIMI).
Thus, spurious correlation within the ensemble is fully exploited to update these series.
This can lead to the issue of “overcorrection” as discussed above and thus to decreas-20

ing skill and/or decreasing correlation. Additional analyses reveal that skill for the HC in
boreal winter can be both negative or positive, depending on which simulation is used
as the reference simulation. With a similar localisation procedure as applied for the
gridded variables, we find zero skill in the HC (not shown). This illustrates that locali-
sation is crucial for successful proxy assimilation. Therefore, we recommend for future25

applications to use spatially explicit data with a localisation procedure in the analysis
scheme, and to compute the integrated indicators after assimilation from the spatially
explicit fields to avoid the above described issues.

We apply a fairly simple localisation procedure in this explorative study. The
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localisation uses only horizontal distance to artificially reduce correlation and thus
suppress the influence of spurious correlation arising from the small ensemble size
used to estimate the correlation. This seems to work well for surface quantities (e.g.
near-surface temperature and precipitation). Nevertheless, we cannot rule out the pos-
sibility that our localisation procedure suppresses real, far-reaching correlations (e.g.5

tele-connections) and that we thus unintentionally reduce skill in areas far away from
the assimilated information. Given the issue of “overcorrection” without localisation
(see Fig. 2 and HC in Fig. 4), we consider the potential reduction in skill due to overly
restrictive localisation to be a conservative approach. Several authors developed adap-
tive approaches to allow for spatially and temporally more complex patterns of influence10

(see Anderson, 2007; Bishop and Hodyss, 2007; Fertig et al., 2007). While these adap-
tive approaches are potentially useful to overcome the problem described above, their
implementation is much less straight-forward and beyond the scope of this study.

Furthermore, we investigate the effect of ensemble size on our ability to successfully
constrain the simulations with the available proxy information (see Fig. 5). We find the15

strongest positive effect of increasing ensemble size on simulations with no or negative
skill. In addition, we note that in boreal summer we need larger ensemble sizes to
satisfactorily represent regional climate. This is in line with earlier findings (Franke
et al., 2010) noting the lower degrees of freedom of wintertime weather in the Northern
Hemisphere. We conclude that while EnSRF with ensembles as small as 15 ensemble20

members leads to considerable skill in regions close to the assimilated information,
larger ensembles are needed to reduce uncertainty in areas with little skill.

Finally, we would like to touch on more general limitations arising from the experi-
mental setup. By using an atmosphere-only GCM, we restrict climate to closely follow
reconstructed boundary conditions. These reconstructions, in turn, are themselves un-25

certain. It would thus be desirable to allow for uncertainties in the boundary conditions
as well. We refrain from perturbing boundary conditions, as such an ensemble would
not allow us to properly investigate the strengths and limitations of the data assimilation
approach due to severe sampling issues. Instead, our experimental setup and the thus
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resulting ensemble offers us the opportunity to develop our capabilities in assimilating
proxy data (this study) and in formulating proxy forward models (on-going work) and to
understand the respective impacts on our ability to reconstruct climate.

The natural extension of our approach would be to assimilate data in a coupled
Earth system model to better quantify our uncertainty about past climates. Such an5

experimental setup, however, requires on-line data assimilation, as the temporal limit
for predictability of slowly varying parts of the Earth system such as the ocean or the
land surface exceeds the temporal resolution of the assimilated information. While
such a coupled Earth system model with data assimilation is our final goal, we again
stress the importance of developing the capabilities required to setup and run such a10

model with a simpler and controllable experimental setup.

5 Conclusions

Data assimilation provides a third alternative to the traditional empirical methods for cli-
mate reconstructions and purely model based approaches (see Jansen et al., 2007, for
a review of recent advances). We conclude that Ensemble Square Root Filtering (En-15

SRF) is a promising way to reconstruct past climates. Previously, the technique has
been successfully applied in the twentieth century reanalysis project (Compo et al.,
2011). Here, we show that data assimilation through EnSRF is beneficial even when
assimilating much sparser information with low temporal resolution and with consider-
able measurement errors. This approach extends previous suggestions for data as-20

similation in paleoclimatology to a high-resolution GCM with data assimilation as used
in weather forecasting applications.

The use of an ensemble of initial condition simulations allows us to express the
uncertainty about past climate states in a natural way. Whereas intra-ensemble spread
in the initial-condition ensemble indicates how well the past climate state is constrained25

by the boundary conditions, the change in spread from the unconstrained ensemble
to the analysis can be used to assess the value added through the assimilation of

2851

http://www.clim-past-discuss.net
http://www.clim-past-discuss.net/7/2835/2011/cpd-7-2835-2011-print.pdf
http://www.clim-past-discuss.net/7/2835/2011/cpd-7-2835-2011-discussion.html
http://creativecommons.org/licenses/by/3.0/


CPD
7, 2835–2862, 2011

EnSRF for climate
reconstructions

J. Bhend et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

observations.
We assimilate temperature-sensitive pseudo-proxies with semi-annual resolution at

37 locations mainly in the Northern Hemisphere. Thereby, we manage to reduce the
spread of the unconstrained ensemble – and thus our uncertainty about past climate –
by up to 50 % for near-surface temperature in areas close to the assimilated informa-5

tion. For parameters other than near-surface temperature such as total precipitation,
assimilation of temperature proxies is less beneficial but we still find positive skill. Fur-
thermore, positive skill is not only constrained to near-surface quantities, but we find
value added through data assimilation also for indicators of extratropical and subtropi-
cal circulation.10

A crucial element of the data assimilation procedure is the background error co-
variance localisation. This reduces “overcorrection” in areas far away from the as-
similated information and gives local information more weight. With the localisation,
mean square error skill increases in all regions. The effect of the localisation, how-
ever, is most obvious in regions far away from the assimilated information where we15

find negative skill without the localisation. This negative skill reduces to zero with the
localisation.
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Grosjean, M., Joos, F., Kaplan, J. O., Küttel, M., Müller, S. A., Prentice, I. C., Solomina,
O., Stocker, T. F., Tarasov, P., Wagner, M., and Widmann, M.: Mid- to late holocene climate

2856

http://www.clim-past-discuss.net
http://www.clim-past-discuss.net/7/2835/2011/cpd-7-2835-2011-print.pdf
http://www.clim-past-discuss.net/7/2835/2011/cpd-7-2835-2011-discussion.html
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1007/s00382-005-0090-8
http://dx.doi.org/10.1175/JCLI3351.1
http://dx.doi.org/10.1007/s00382-005-0053-0


CPD
7, 2835–2862, 2011

EnSRF for climate
reconstructions

J. Bhend et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

change: an overview, Quaternary Sci. Rev., 27, 1791–1828, 2008. 2837
Whitaker, J. S. and Hamill, T. M.: Ensemble data assimilation without perturbed observations,

Mon. Weather Rev., 130, 1913–1924, 2002. 2838, 2842
Widmann, M., Goosse, H., van der Schrier, G., Schnur, R., and Barkmeijer, J.: Using data as-

similation to study extratropical northern hemisphere climate over the last millennium, Clim.5

Past, 6, 627–644, doi:10.5194/cp-6-627-2010, 2010. 2837
Yoshimori, M., Raible, C. C., Stocker, T. F., and Renold, M.: Simulated decadal oscillations

of the Atlantic meridional overturning circulation in a cold climate state, Clim. Dynam., 34,
101–121, 2010. 2839

2857

http://www.clim-past-discuss.net
http://www.clim-past-discuss.net/7/2835/2011/cpd-7-2835-2011-print.pdf
http://www.clim-past-discuss.net/7/2835/2011/cpd-7-2835-2011-discussion.html
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.5194/cp-6-627-2010


CPD
7, 2835–2862, 2011

EnSRF for climate
reconstructions

J. Bhend et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

●

●

●

●

●

● ●
●

●

●

●

●
●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Correlation

< 0.3
0.3−0.4
0.4−0.5
0.5−0.6
0.6−0.7
> 0.7
Nov. to April
May to Oct.

Fig. 1. Correlation of pseudo-proxies with reference time series in boreal winter (November to April,
open circles) and summer (May to October, filled dots).
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Fig. 1. Correlation of pseudo-proxies with reference time series in boreal winter (November to
April, open circles) and summer (May to October, filled dots).
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Fig. 2. Mean square error skill score (RE) for near-surface temperature of the analysis ensemble mean
compared to the unconstrained ensemble mean without (panels a and b) and with localisation (c and d).
Results for boreal winter (November to April, a and c) and for boreal summer (May to October, b and
d). Black dots indicate locations at which perfect proxies are assimilated.

23

Fig. 2. Mean square error skill score (RE) for near-surface temperature of the analysis ensem-
ble mean compared to the unconstrained ensemble mean without (panels a and b) and with
localisation (c and d). Results for boreal winter (November to April, a and c) and for boreal
summer (May to October, b and d). Black dots indicate locations at which perfect proxies are
assimilated.
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Fig. 3. Average intra-ensemble standard deviation (spread) for temperature of the ECHAM ensemble
in winter (a, November to April) and summer (b, May to October). Percentage of the intra-ensemble
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analysis with pseudo-proxies and localisation in c and d.
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Fig. 3. Average intra-ensemble standard deviation (spread) for temperature of the ECHAM
ensemble in winter (a, November to April) and summer (b, May to October). Percentage of the
intra-ensemble standard deviation in the analysis ensemble with respect to the unconstrained
ensemble for the EnSRF analysis with pseudo-proxies and localisation in c and d.
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Fig. 4. Skill in reconstructing large-scale indicators. The indicators are: northern hemispheric near-
surface temperature over land (NHt2m), northern European temperature (NEUt2m) and precipitation
(NEUpr) over land, the strength of the northern subtropical jet (SJ), the northern Hadley Cell (HC), the
stratospheric polar vortex (z100), and the dynamic indian monsoon index (DIMI). Mean square error skill
score for boreal winter and summer in panels a and b, and correlation for boreal winter and summer in
panels c and d respectively. Boxes indicate the interquartile range of skill (correlation) for the individual
simulations and the whiskers indicate the range of skill (correlation), the arrowheads indicate the skill
(correlation) of the ensemble mean. In panels c and d, the grey boxes and right-facing arrowheads
indicate correlation between the unconstrained ensemble and the reference simulation, the white boxes
and left-facing arrowheads are the correlation between the simulations after data assimilation and the
reference simulation. 25

Fig. 4. Skill in reconstructing large-scale indicators. The indicators are: northern hemispheric
near-surface temperature over land (NHt2m), northern European temperature (NEUt2m) and
precipitation (NEUpr) over land, the strength of the northern subtropical jet (SJ), the northern
Hadley Cell (HC), the stratospheric polar vortex (z100), and the dynamic indian monsoon index
(DIMI). Mean square error skill score for boreal winter and summer in panels a and b, and
correlation for boreal winter and summer in panels c and d respectively. Boxes indicate the
interquartile range of skill (correlation) for the individual simulations and the whiskers indicate
the range of skill (correlation), the arrowheads indicate the skill (correlation) of the ensemble
mean. In panels c and d, the grey boxes and right-facing arrowheads indicate correlation
between the unconstrained ensemble and the reference simulation, the white boxes and left-
facing arrowheads are the correlation between the simulations after data assimilation and the
reference simulation.
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Fig. 5. Skill in dependence of ensemble size for different aggregated indicators. The boxes summarise
the distribution of the mean squared error skill for individual simulations (10 times the number of en-
semble members). The black bars denote the spread of skill for the ensemble mean for the 10 different
realisations of varying ensemble size, the black diamond indicates the average ensemble mean skill over
these 10 realisations. For 29 ensemble members, there is only one analysis.
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Fig. 5. Skill in dependence of ensemble size for different aggregated indicators. The boxes
summarise the distribution of the mean squared error skill for individual simulations (10 times
the number of ensemble members). The black bars denote the spread of skill for the ensemble
mean for the 10 different realisations of varying ensemble size, the black diamond indicates the
average ensemble mean skill over these 10 realisations. For 29 ensemble members, there is
only one analysis.
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