
CPD
7, 2655–2718, 2011

Benchmarking
monthly

homogenization
algorithms

V. K. C. Venema et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Clim. Past Discuss., 7, 2655–2718, 2011
www.clim-past-discuss.net/7/2655/2011/
doi:10.5194/cpd-7-2655-2011
© Author(s) 2011. CC Attribution 3.0 License.

Climate
of the Past

Discussions

This discussion paper is/has been under review for the journal Climate of the Past (CP).
Please refer to the corresponding final paper in CP if available.

Benchmarking monthly homogenization
algorithms

V. K. C. Venema1, O. Mestre2, E. Aguilar3, I. Auer4, J. A. Guijarro5, P. Domonkos3,
G. Vertacnik6, T. Szentimrey7, P. Stepanek8, P. Zahradnicek8, J. Viarre3,
G. Müller-Westermeier9, M. Lakatos7, C. N. Williams10, M. Menne10, R. Lindau1,
D. Rasol11, E. Rustemeier1, K. Kolokythas12, T. Marinova13, L. Andresen14,
F. Acquaotta15, S. Fratianni15, S. Cheval16,17, M. Klancar6, M. Brunetti18,
C. Gruber4, M. Prohom Duran19,20, T. Likso11, P. Esteban21,19, and T. Brandsma22

1Meteorological institute of the University of Bonn, Germany
2Meteo France, Ecole Nationale de la Meteorologie, Toulouse, France
3Center on Climate Change (C3), Tarragona, Spain
4Zentralanstalt für Meteorologie und Geodynamik, Wien, Austria
5Agencia Estatal de Meteorologia, Palma de Mallorca, Spain
6Slovenian Environment Agency, Ljubljana, Slovenia
7Hungarian Meteorological Service, Budapest, Hungary
8Czech Hydrometeorological Institute, Brno, Czech Republic
9Deutscher Wetterdienst, Offenbach, Germany
10NOAA/National Climatic Data Center, USA

2655

http://www.clim-past-discuss.net
http://www.clim-past-discuss.net/7/2655/2011/cpd-7-2655-2011-print.pdf
http://www.clim-past-discuss.net/7/2655/2011/cpd-7-2655-2011-discussion.html
http://creativecommons.org/licenses/by/3.0/


CPD
7, 2655–2718, 2011

Benchmarking
monthly

homogenization
algorithms

V. K. C. Venema et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

11Meteorological and hydrological service, Zagreb, Croatia
12Laboratory of Atmospheric Physics, University of Patras, Greece
13National Institute of Meteorology and Hydrology – BAS, Sofia, Bulgaria
14Norwegian Meteorological Institute, Oslo, Norway
15Department of Earth Science, University of Turin, Italy
16National Meteorological Administration, Bucharest, Romania
17National Institute for R&D in Environmental Protection, Bucharest, Romania
18Institute of Atmospheric Sciences and Climate (ISAC-CNR), Bologna, Italy
19Grup de Climatologia, Universitat de Barcelona, Spain
20Meteorological Service of Catalonia, Area of Climatology, Barcelona, Catalonia, Spain
21Centre d’Estudis de la Neu i de la Muntanya d’Andorra (CENMA-IEA), Andorra
22Royal Netherlands Meteorological Institute, De Bilt, The Netherlands

Received: 23 July 2011 – Accepted: 8 August 2011 – Published: 12 August 2011

Correspondence to: V. K. C. Venema (victor.venema@uni-bonn.de)

Published by Copernicus Publications on behalf of the European Geosciences Union.

2656

http://www.clim-past-discuss.net
http://www.clim-past-discuss.net/7/2655/2011/cpd-7-2655-2011-print.pdf
http://www.clim-past-discuss.net/7/2655/2011/cpd-7-2655-2011-discussion.html
http://creativecommons.org/licenses/by/3.0/


CPD
7, 2655–2718, 2011

Benchmarking
monthly

homogenization
algorithms

V. K. C. Venema et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Abstract

The COST (European Cooperation in Science and Technology) Action ES0601: Ad-
vances in homogenization methods of climate series: an integrated approach (HOME)
has executed a blind intercomparison and validation study for monthly homogenization
algorithms. Time series of monthly temperature and precipitation were evaluated be-5

cause of their importance for climate studies and because they represent two important
types of statistics (additive and multiplicative). The algorithms were validated against
a realistic benchmark dataset. The benchmark contains real inhomogeneous data as
well as simulated data with inserted inhomogeneities. Random break-type inhomo-
geneities were added to the simulated datasets modeled as a Poisson process with10

normally distributed breakpoint sizes. To approximate real world conditions, breaks
were introduced that occur simultaneously in multiple station series within a simulated
network of station data. The simulated time series also contained outliers, missing data
periods and local station trends. Further, a stochastic nonlinear global (network-wide)
trend was added.15

Participants provided 25 separate homogenized contributions as part of the blind
study as well as 22 additional solutions submitted after the details of the imposed inho-
mogeneities were revealed. These homogenized datasets were assessed by a number
of performance metrics including (i) the centered root mean square error relative to the
true homogeneous value at various averaging scales, (ii) the error in linear trend es-20

timates and (iii) traditional contingency skill scores. The metrics were computed both
using the individual station series as well as the network average regional series. The
performance of the contributions depends significantly on the error metric considered.
Contingency scores by themselves are not very informative. Although relative homog-
enization algorithms typically improve the homogeneity of temperature data, only the25

best ones improve precipitation data. Training was found to be very important. More-
over, state-of-the-art relative homogenization algorithms developed to work with an
inhomogeneous reference are shown to perform best. The study showed that currently
automatic algorithms can perform as well as manual ones.
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1 Introduction

Monitoring and analysis of our climate has received more and more attention following
assessments that most of the temperature change observed over the last fifty years
can be attributed to anthropogenic forcings (IPCC, 2007). To study climate change and
variability, at the surface many long instrumental climate records are available. These5

datasets are essential since they are the basis for assessing century-scale trends, for
the validation of climate models, as well as detection and attribution of climate change
at a regional scale. The value of these datasets, however, strongly depends on the
homogeneity of the underlying time series.

In essence, a homogeneous climate time series is defined as one where variations10

are caused only by variations in weather and climate. Long instrumental records are
rarely if ever homogeneous. Results from the homogenization of instrumental western
climate records indicate that detected inhomogeneities in mean temperature series
occur at a frequency of roughly 15 to 20 yr. Moreover the typical size of the breaks
is often of the same order as the climatic change signal during the 20th century (Auer15

et al., 2007; Menne et al., 2009; Brunetti et al., 2006; Caussinus and Mestre; 2004,
Della-Marta et al., 2004). Inhomogeneities are thus a significant source of uncertainty
for the estimation of secular trends and decadal-scale variability.

Homogenization is important at two spatial scales. Homogenization should produce
station series that more consistently reflect true variations in climate to allow for more20

reliable assessments of local climatic variability and change. If all inhomogeneities
would be purely random perturbations of the climate records, collectively their effect
on the mean climate signal for a large network and, especially, global average time
series would be small. However, numerous studies indicate that inhomogeneities are
not always independent, but can collectively lead to artificial biases in climate trends25

across large regions (Menne et al., 2010; Brunetti et al., 2006; Begert et al., 2005). For
example, for the Greater Alpine Region a bias in the temperature trend between 1870s
and 1980s of half a degree was found, which was due to decreasing urbanization of

2658

http://www.clim-past-discuss.net
http://www.clim-past-discuss.net/7/2655/2011/cpd-7-2655-2011-print.pdf
http://www.clim-past-discuss.net/7/2655/2011/cpd-7-2655-2011-discussion.html
http://creativecommons.org/licenses/by/3.0/


CPD
7, 2655–2718, 2011

Benchmarking
monthly

homogenization
algorithms

V. K. C. Venema et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

the network and systematic changes in the time of observation (Böhm et al., 2001).
The precipitation records of the early instrumental period are biased by −10 % due to
the systematic higher installation of the gauges at the time (Auer et al., 2005). Other
possible bias sources are new types of weather shelters (Brunet et al., 2010; Brunetti
et al., 2006), the change from liquid and glass thermometers to electrical resistance5

thermometers (Menne et al., 2009), as well as the tendency to replace observers by
automatic weather stations (Begert et al., 2005), the much discussed urban heat island
effect (Hansen et al., 2001; Peterson 2003) and the transfer of many urban stations to
airports (Trewin, 2010).

The most commonly used method to detect and remove the effects of artificial10

changes is the relative homogenization approach, which assumes that nearby stations
are exposed to almost the same climate signal and that thus the differences between
nearby stations can be utilized to detect inhomogeneities (Conrad and Pollack, 1950).
In relative homogeneity testing, a candidate time series is compared to multiple sur-
rounding stations either in a pairwise fashion or to a single composite reference time15

series computed for multiple nearby stations.
Homogenization has a long tradition. In the early instrumental period, documented

change-points have been removed with the help of parallel measurements. For exam-
ple, biases due to changes in observing times, were adjusted using multi-annual 24 h
measurements (Kreil, 1854a, b). In the early 20th century Conrad (1925) made use of20

the Heidke criterion (Heidke, 1923) using ratios of two precipitation series. As a con-
sequence, he recommended the use of additional criteria to test the homogeneity of
series, dealing with the succession and alternation of algebraic signs, the Helmert cri-
terion (Helmert, 1907) and the tedious Abbe criterion. The use of Helmert’s criterion for
pairs of stations and Abbe’s criterion still has been described as appropriate tool in the25

1940s (Conrad, 1944). Some years later the double-mass principle was popularized
for break detection (Kohler, 1949).

Modern techniques were then developed using classical statistical tests (Alexander-
sson, 1986; Gullett et al., 1990), regression models (Easterling and Peterson, 1995;
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Vincent, 1998), or Bayesian approaches (Perreault et al., 2000). More recent proce-
dures focus on methods specifically designed to detect and correct multiple change-
points and work with inhomogeneous references (Szentimrey, 1999; Mestre, 1999;
Caussinus and Mestre, 2004; Menne and Williams, 2009, among others). To stimulate
the development of homogenization methods, the Hungarian Meteorological Service5

started a series of “Seminars for Homogenization” in 1996 (HMS, 1996; WMO, 1999,
2004, 2006, 2011; OMSZ, 2001). A review on existing homogenization methods and
national approaches for creating homogenized data sets was given by Peterson et
al. (1998), a work complemented a few years later under the auspices of WMO by
Aguilar et al. (2003). A recent review by Trewin (2010) focused on the causes of inho-10

mogeneities.
An early intercomparison study by Buishand (1982) compared several classical ho-

mogenization methods for precipitation data. Reeves et al. (2007) compared various
absolute (without using neighboring stations) homogenization methods with each other.
A number of intercomparison studies for relative homogenization was inspired by the15

work of Easterling and Peterson (1995). This may have been the first peer reviewed
validation of homogenization algorithms with candidate time series containing multi-
ple break points. Their candidate and reference series were modeled as first-order
autoregressive processes and represent one century of annual data. To the candi-
dates breaks of 0.5 to 2.0 times the standard deviation of the candidate are added at20

fixed positions, which are at least 10 yr apart. This set-up, but with three homoge-
neous reference time series, was also combined with a multiple break-point candidate
by Ducré-Robitaille et al. (2003) to examine eight different homogenization techniques.
The comparison study by DeGaetano (2006) of seven homogenization methods, made
this set-up more realistic by reproducing cross-correlations of real data, by varying the25

length of the data and decreasing the minimum break size to 0.11 ◦C. In their intercom-
parison study of homogenization techniques for precipitation, Beaulieu et al. (2008)
used the same assumptions for the homogeneous data, but inserted one to three in-
homogeneities with sizes determined by a beta-distribution and also inserted trend
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segments in the candidate.
The annual dataset generated by Menne and Williams (2005) was more realistic

than the previously mentioned studies. They also inserted breaks in the reference time
series and did not enforce an artificial minimum period between breaks. Moreover,
by studying the sizes of breaks known from metadata, they showed that these sizes5

follow a normal distribution; such breaks were thus implemented in their dataset. The
consequence of such a distribution is that the dataset contains many small breaks
that are hardly detectable; see also Domonkos and Štepánek (2009). However, these
small breaks are important for the detection of the climatologically more important de-
tectable ones (Domonkos, 2011a) and likely for the correction as well (Easterling and10

Peterson, 1995). A recent validation study by Domonkos (2011a) directly generated
artificial difference time series to compare eight different objective detection methods.
The inserted inhomogeneities range from simple one-break cases, to cases with a very
complete and realistic description of the inhomogeneities, including platform-like inho-
mogeneities in which after the first break there is soon a second break in the opposite15

direction.
The large number of different monthly homogenization methods and the need for a

realistic comparative study was the reason to start a coordinated European initiative,
the COST Action HOME ES0601: Advances in Homogenization Methods of Climate
Series: an integrated approach (HOME). Its main objective was to review and improve20

common homogenization methods, and to assess their impact on climate time series
(HOME, 2011). As part of the Action a dataset was generated that serves as a bench-
mark (Sim et al., 2003) for comparing homogenization algorithms. This study analyses
the results of this exercise. Based upon a survey among homogenization experts,
the Action has chosen to focus on networks with monthly values for temperature and25

precipitation. Temperature and precipitation were selected because most participants
consider these elements as most relevant. Furthermore, these elements represent
two important types of statistical models (additive and multiplicative). For climate data
aggregated to monthly scales, there is a large selection of possible homogenization
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algorithms. However, so far intercomparison studies have been based on annual data.
Consequently, an intercomparison study is most needed for monthly data.

All studies before Domonkos (2008) have assessed the skill of homogenization algo-
rithms based on the accuracy of the detection of breaks, which is a basic metric for a
developer of homogenization algorithms. However, a climatologist may want to know to5

what degree decadal variability and trends in homogenized data may be due to remain-
ing small inhomogeneities. To be able to answer such questions requires an evaluation
of the output of full homogenization methods in terms of other statistical metrics, for
instance the remaining error in linear trend estimates and the mean square error be-
tween the true time series and the homogenized ones (Domonkos, 2008; Domonkos et10

al., 2011). For these errors to be applicable to real datasets and to be able to perform
a benchmarking of homogenization algorithms, the structure of the artificial data and
its inserted inhomogeneities should be realistic.

Realistic climate data are generated with the surrogate data approach (Venema et
al., 2006a), which is able to reproduce the cross-correlation structure of existing ho-15

mogenized networks, as well as the auto-correlation functions of the stations and their
difference time series. For comparison also Gaussian white noise is generated for the
so-called synthetic data section of the benchmark dataset. In the homogeneous artifi-
cial datasets, known inhomogeneities are randomly inserted. Break inhomogeneity are
modeled as an independent Poisson process and the sizes are normally distributed.20

Additionally, breaks are introduced that occur simultaneously in a multiple stations.
Furthermore, outliers, missing data and local trends are inserted and a random global
(network-wide) trend is added.

To be able to study how realistic the inserted inhomogeneities are, a third section of
the benchmark contains real inhomogeneous data. This allows for a comparison of the25

statistical properties of the detected inhomogeneities in real and artificial data.
The organization of this study is different from previous works, being the first open –

the dataset was published online and everyone was invited to homogenize it – as well
as the first blind test – the truth was only revealed after all homogenized datasets were
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returned. Among the papers studying multiple algorithms, this study can be consid-
ered the most comprehensive one with 25 contributions based on 13 algorithms being
returned by the participants, including contributions based on manual methods. For
well-known algorithms – MASH, PRODIGE and SNHT – multiple contributions have
been returned; see Sect. 4. This allows the study of the importance of the implemen-5

tation of an algorithm or of the operator of the software.
This paper will focus on the properties of the benchmark dataset and provides a first

analysis of the accuracy of the algorithms. It is intended as a reference for follow-up
studies analyzing the results in more detail. In Sect. 2, the data and the methods
are presented that are used to generate the three data sections (real, surrogate and10

synthetic data) of the benchmark. The surrogate and synthetic data are treated as
real homogeneous climate data, to which inhomogeneities are added. Section 3 will
explain how the inhomogeneities are introduced to the artificial dataset. Further details
on the datasets and the types of breaks added can be found in the report by Venema
et al. (2011). Section 4 provides a discussion of the homogenization principles and15

algorithms employed. The metrics used in the assessment are explained in Sect. 5. A
general analysis of the submitted results is provided in Sect. 6. Some discussion and
conclusions are offered in Sect. 7.

2 Data for benchmark dataset

The benchmark contains three data sections, one with observed, unhomogenized cli-20

mate data (see Sect. 2.1) and two with artificial data. The main features of the real
inhomogeneous data set and the generation of the homogeneous artificial data are
summarized below.

While the general statistical properties of the artificial data and the inhomogeneities
required to simulate real world observing networks were discussed and approved within25

the COST Action HOME management team, the dataset was generated solely by the
first author. The true underlying homogeneous artificial data was therefore not known
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to other participants until after the deadline for submitting homogenized results. After
the deadline, the truth and all homogenized contributions were made available to all
contributors for analysis and are now freely available via HOME (2011).

The main type of artificial data, which most contributors homogenized, is the so-
called surrogate data section; see Sect. 2.2. Surrogate data reproduce the distribu-5

tion, power spectrum and cross spectra of a real homogenized dataset. The power
spectrum is equivalent to the correlation function, thus the auto- and cross-correlation
functions of the input data are also replicated.

For every surrogate network, a so-called synthetic network was also generated.
The difference (or ratio) time series of the synthetic dataset is temporally uncorrelated10

Gaussian white noise. To generate pairs of surrogate and synthetic networks with a
similar configuration, the cross-correlation matrix, mean and standard deviation of the
synthetic networks mimic those of a corresponding surrogate network; see Sect. 2.3.

While the surrogate data is most realistic, the statistical properties of the synthetic
data are those of most statistical tests used for homogenization. A comparison of15

the results between these two types of artificial data can thus be used to study the
influence of violations of these conditions. The benchmark dataset contained 20 surro-
gate and 20 synthetic networks for both temperature and for precipitation. During the
analysis it was found that some of the input data was not homogenized well enough.
Consequently, only the best 15 surrogate networks were used in the analysis. Se-20

lecting stronger did not change the results anymore. For the comparison of surrogate
and synthetic data, a new dataset was generated using only well homogenized input
networks; see Sect. 6.3.1.

2.1 Real data section

The real data section contains inhomogeneous datasets from various European re-25

gions. The six precipitation datasets come from The Netherlands, France (Bourgogne),
Norway (two regions in Western Norway), the Catalonian region (North-East Spain,
Andorra and Southern France), and Romania. The six temperature datasets originate
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from The Netherlands, Norway (a coastal region and a group of light houses, both in
the south), Romania, France (Brittany), and the Catalonian region. Most real datasets
are about one century long, except for Romania and Brittany, which span about half a
century.

2.2 Surrogate data section5

Networks with 100 yr of data (1900 to 1999) with 5, 9 or 15 stations were generated.
The statistical properties of the surrogate data are based on homogenized complete
(or with estimated values for missing data) temperature datasets from Austria, France
(Brittany), and the Catalonian region, as well as such precipitation datasets from Aus-
tria and France (Bourgogne). These precipitation datasets were demeaned, detrended10

and cropped to one century. The temperature records were deseasonalised and de-
trended. After generating the surrogate, these means of the precipitation stations and
the seasonal cycles of the temperature stations were added again. Some temperature
datasets were shorter than 100 yr and were extended by mirroring them as often as
needed and then cropping the dataset to 100 yr. To generate networks with different15

network configurations and a range of spatial correlations a different subset of stations
was selected for each surrogate network.

The surrogate data was generated using the Iterative Amplitude Adjusted Fourier
Transform Algorithm (IAAFT), developed by Schreiber and Schmitz (1996), with a small
modification of the second iterative step as described in Venema et al. (2006b). The20

IAAFT algorithm tends to generate time series that are not very intermittent in the
sense of the variance of the (small-scale) variance (Venema et al., 2006a). Thus, if the
input data contains inhomogeneities, its large-scale variability will be reproduced in the
surrogate (difference) time series and the intense small-scale variability of the jump will
be spread over the full period.25

To produce a new time series each time, the iterative IAAFT algorithm starts with
white noise. The first iterative step adjusts the Fourier coefficients. The second step ad-
justs the (temperature or precipitation sum) distribution. The latter changes the Fourier
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spectrum somewhat, which necessitates several iterations. These Fourier spectra and
distributions stem from an example homogenized dataset

2.3 Synthetic data section

Every surrogate network has a corresponding synthetic network. The generation of the
synthetic data begins with computing a time series with the network mean precipitation5

or temperature. A difference (temperature) or ratio (precipitation) this mean is then
computed to create each station series. This relative time series is converted to Gaus-
sian white noise, which has the same mean, standard deviation and a similar spatial
cross-correlation matrix, and added (or multiplied) to the network mean time series as
described in Venema et al. (2011).10

After the transformation to a Gaussian distribution, negative precipitation totals may
occur; these values are explicitly set to zero. The cross-correlation matrix of the ratio
time series of the synthetic data is close to that of the surrogate data, but after mul-
tiplying the ratio time series to network mean time series the cross-correlations are
perturbed. . For this reason, the cross-correlation between the precipitation stations15

within a network are biased by several percent points towards low correlations.

3 Inserted inhomogeneities

The artificial surrogate and synthetic data represent homogeneous climate data. To
create the benchmarks, known inhomogeneities and other data disturbances are
added: two types of break-type inhomogeneities and local trends, as well as outliers.20

Furthermore two types of missing data are simulated and a global trend is added.
The two types of step-type breaks are random and clustered. Random breakpoints

are inserted to the serial data at an average rate of five per hundred years. To vary
the quality of the data on a station by station basis, this frequency is drawn from a
uniform distribution between 2 and 8 %. The break events are independent of each25
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other (Poison process). Breaks are thus also inserted in missing data periods, in close
succession or near the beginning or end of the series.

The size of the break points is based on a Gaussian distribution with a standard
deviation of 0.8 ◦C for temperature and 15 % for rain. These mean break sizes have
a seasonal cycle with standard deviation 0.4 ◦C and 7.5 %. The breaks points are in-5

serted by multiplying the precipitation with monthly factors or adding monthly constants
to temperature.

To simulate network-wide changes, clustered breaks are also added in 30 % of the
networks. In the affected networks, 30 % of the stations have a break point at the same
time. The random numbers for the mean size and seasonal cycle of these breaks10

are drawn from the same distributions and have the properties as the random breaks.
However, in this case the random numbers are not only drawn for every station, but
additional once for all breaks. The random numbers are then averaged with a weight of
80 % for the random number for all breaks and a weight of 20 % for the station specific
break.15

In 10 % of the temperature stations a local linear trend is introduced. The station and
beginning date of the trend were selected at random. The length of the trend has a
uniform distribution between 30 and 60 yr. The beginning and the trend length were
reselected as often as necessary to ensure that the local trend ended before the year
2000. The size of the trend at the end is randomly selected from a Gaussian distribution20

with a standard deviation of 0.8 ◦C. In half of these cases the perturbation due to the
local trend continues at the end of the trend, e.g. to simulate urbanization, in the other
half the station returns to its original value, e.g. to simulate a growing bush or tree that
is cut at the end.

A small number of outliers was inserted to study the influence of imperfect quality25

control. The outliers are generated with a frequency of 1 per 100 yr per station. The
outliers are added to the anomaly time series, i.e. without the annual cycle for temper-
ature. The value of the outliers is determined at random by a value from the tails of the
distribution.
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Two types of missing data are added. The earliest data is removed to simulate a
gradual increase in the availability of data, which is common in real datasets. This is
done by forcing a linear increase in the number of stations from a total of three with
data in 1900 to all stations having data in 1925. In addition, a large part of the network
is set to missing during the years covered by World War II, which is typical for European5

datasets. In this case, there is a 50 % chance that the data is missing in 1945. For the
years preceding backward from 1944 to 1940, the stations with missing data have a
probability of 50 % that the data for the previous year is also missing.

Finally, a global trend is added to every station in a network to simulate climate
change. This trend is nonlinear given that homogenization should be independent of10

preconceived ideas about climate change. Furthermore, a different trend is stochasti-
cally modeled for every network because a known trend would allow for an improper
validation of the results. The trend is generated as very smooth fractal Fourier “noise”
with a power law power spectrum with an exponent of −4; only part of the signal is
used to avoid the Fourier periodicity. This noise is normalized to a minimum of zero15

and a maximum of unity and then multiplied by a random Gaussian number. The width
of this distribution is 1 ◦C or 10 %.

4 Homogenization algorithms

This section describes the main characteristics of the homogenization methods. This
paper will only list features used to homogenize the benchmark; many tools have addi-20

tional possibilities. Most of the algorithms test for relative homogeneity, which implies
that a candidate series is compared to some estimation of the regional climate (“com-
parison phase”). Comparison may be performed using one composite reference se-
ries assumed homogeneous (e.g. SNHT), several ones, not assumed homogeneous
(MASH), or via direct pairwise comparison (USHCN, PRODIGE); see Table 1. The25

comparison series are computed as the difference (in case of temperature) or ratio
(precipitation) between the candidate and the reference. The time step of comparisons
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may be annual, seasonal or monthly. All four seasonal or twelve monthly time series
may be analyzed independently in parallel or serially as one time series. When sev-
eral comparisons are performed because multiple references are utilized or monthly
data are analyzed in parallel, a synthesis phase is necessary, that may be automatic,
semi-automatic, or manual.5

The comparison series are tested for changes. Detection implies a statistical crite-
rion to assess significance of changes, which may be based on a statistical test – Stu-
dent, Fisher, Maximum Likelihood Ratio (MLR) test, etc. – or on criteria derived from
information theory (penalized likelihood). Detection requires an optimization scheme,
to find the most probable positions of the changes among all possibilities. Such a10

searching scheme may be exhaustive (MASH), based on semi-hierarchic binary split-
ting (HBS), stepwise, or moving windows (AnClim) or may use dynamic programming
(DP).

The homogenization corrections, see Table 2, may be estimated directly on the com-
parison series (SNHT). When several references or pairwise estimates are available,15

a combination of those estimates is used, e.g. a mean or median. PRODIGE employs
a decomposition of the signal into three parts: a common signal for all stations, a sta-
tion dependent step function to model the inhomogeneities and random white noise. In
some methods, raw monthly estimates are smoothed according to a seasonal variation.

Once a first correction has been performed, most methods perform a review; see20

Table 2. If inhomogeneities are still detected, corrections with additional breaks are
implemented in the raw series (examination; raw data), except in MASH where the
corrected series receive additional corrections, until no break is found (called “exami-
nation; cumulative” in Table 2).

The 25 submitted contributions, their operators and main purposes are listed in Table25

3, where contributions denoted by “main” are the ones where the developer of the al-
gorithm deployed it himself with typical settings. Additional details on the contributions
can be found in the report Venema et al. (2011).
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5 Error metrics

A true benchmark would produce one or two numbers for every contribution for a rank-
ing and this error metric would be fixed in advance. In case of homogenization this is
not possible, different users have different requirements for the homogenized data and
the ranking of the contributions depends on the chosen error metric. For this study5

the focus is on a number of error metrics related to the expectations of the users of
homogenized data.

As the main aim of homogenization is not to improve the absolute values, but rather
the temporal consistency, the time series are centered by subtracting their mean values
before computing the RMSE. The centered root mean square error (centered RMSE,10

CRMSE) of the time series themselves is thus used as a basic accuracy metric of
the data at the highest available resolution (Sect. 6.1.1). This metric is similar to the
standard deviation of the time series of the difference between the homogenized data
and the truth. It is computed on single station data directly (station CRMSE), as well as
on the average climate signal of all stations in one network (network CRMSE). When15

one or more of the stations is missing for a particular month, the network mean is not
computed.

This metric is aggregated over all networks of each benchmark section in three dif-
ferent ways. The most direct way and important for a user is the arithmetic mean.
However, because not all contributions homogenized all networks and some networks20

may be easier than others, the arithmetic mean may lead to a distorted judgment for
the smaller contributions. Therefore, the mean of the CRMSE anomalies is also com-
puted, where the anomalies are computed by subtracting the mean station or network
CRMSE of a number of complete reference contributions (MASH main, PRODIGE
monthly, USHCN main, ACMANT and PMTred). This anomaly is the best metric to25

compare (incomplete) contributions. Furthermore, to show the improvements after ho-
mogenization, the ratio between the mean CRMSE over all homogenized data with the
mean CRMSE of the inhomogeneous data of the same cases is computed.
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The same metrics are computed on yearly averages and results are presented in
Sect. 6.1.2.

To assess the reproduction of decadal variability after homogenization, the yearly
time series are first smoothed, after which the CRMSE is computed (Sect. 6.1.3).
These smoothed time series or nonlinear trends are computed by a nonparametric5

regression method called locally weighted regression (LOESS; Cleveland and Devlin,
1998). For every year, the smoothed value is estimated by fitting a quadratic function
using weighted regression on the nearest 25 % of the data points. The standard local
weighting function described in Cleveland and Devlin (1998) is utilized. The effective
smoothing period is about six years. An advantage of this method is that small-scale10

variability is strongly reduced. Furthermore, the method is robust to distortions at the
edges of the time series. Nevertheless, the first and last five years were excluded from
the computation of the CRMSE.

To study the remaining error in trend estimates after homogenization, the difference
in the linear regression coefficient between the original data and the homogenized data15

is computed (for results see Sect. 6.1.4). The linear trend is estimated on the yearly
time series using least squares regression and the standard RMSE of the trend coeffi-
cients over all stations (or networks) is computed as aggregated trend error metric.

Since some methods do not perform reconstitution of missing data, or do not handle
outliers, data corresponding to missing data or outliers are not taken into account in the20

above computations. Thus while there is an influence of the outliers on the results of the
homogenization algorithm, the outliers do not influence the error metrics themselves.

In Sect. 6.1.5 the accuracy of break detection will be investigated. An algorithm,
which ranks high on detection, but is less good with respect to CRMSE or trends, may
need to work on its correction methods. Thus even if in many (iterative) algorithms25

detection and correction cannot be fully separated, such a comparison does give qual-
itatively important information for the developer.

A comparison of detection scores among the contributions is impaired by the use of
different methodologies. Most contributions aim at estimating the exact date a break
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physically happened, while others (PRODIGE main, C3SNHT ) associate the break
with the beginning or the ending of a year. Alternatively, all MASH contributions re-
port the breaks in the monthly time series, but do not synthesize these breaks to one
date; one true break may thus lead to up to 12 detected breaks. To mitigate this differ-
ence the data was analyzed at yearly resolution, i.e. every year containing a break is5

considered as break point, in both the tested contribution and the original time series.
Nevertheless, the MASH contributions should be compared to the other contributions
with care.

Four cases can be distinguished: true positives (hits, a), false positives (false alarms,
b), false negatives (misses, c) and true negatives (no breaks present, nor predicted,10

d ). Periods with missing data or with a local trend are ignored in this computation.
Using this notation, the most basic skill scores using are the probability of detection,
POD, and the probability of false detection, POFD, defined as:

POD=
a

a+c
(1)

POFD=
b

b+d
(2)15

The Peirce Skill Score (or true skill score) is defined as POD minus POFD. In addition,
the standard Heidke Skill Score (HSS) can be computed as:

HSSstd =
p−rstd

1−rstd
(3)

where

rstd =
a+c
n

a+b
n

+
b+d
n

c+d
n

(4)20

p=(a+d )/n and n = a+b+c+d . The reference r in Eq. (1) intends to correct for
randomly correct results: for a random prediction the HSS is on average zero. The
reference used within the standard HSS is equal to the proportion of random agreement
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for a given number of predicted breaks. It is independent from the fact whether this
number of predicted breaks is actually realistic, i.e. whether it is comparable to the
number of true breaks.

As an alternative Heidke special skill score, HSSspc, is considered where the rstd of
Eq. (3) is substituted by rspc given by:5

rspc =
a+c
n

f +
b+d
n

(1− f ) (5)

with f , the mean frequency of true breaks as reference for the proportion of predicted
positives and (1-f ) the frequency for the predicted negatives. The special HSS be-
comes zero if the correct number of breaks is predicted and if this number were ran-
domly inserted. Given that breaks are rarer than negatives, in essence this skill score10

mainly punishes false alarms stronger.

6 Results

This section starts with an analysis of the quality of the homogenized data for all blind
contributions in Sect. 6.1. This analysis is largely mainly based on the surrogate data
because these networks were homogenized most by the participants and are more15

realistic than synthetic. Furthermore, the focus is more on temperature than on precip-
itation because more contributions were submitted for this climatic element. The latter
may be because homogenization of temperature is less challenging and because there
is more interest in the homogeneity of temperature records.

Section 6.2 discusses some interesting contributions submitted after the deadline.20

In Sect. 6.3, the realism of the benchmark dataset is studied by comparing results
obtained for surrogate and synthetic data, as well as by comparing the detected in-
homogeneities of the artificial dataset with those of the real raw data section of the
benchmark. This information is needed for the interpretation of the results in the dis-
cussion in Sect. 7.25
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6.1 Results for blind contributions

This section assesses the homogenized data based on a range of different error met-
rics. The analysis follows the temporal scale of the data: Sect. 6.1.1 discusses er-
rors on monthly scales, Sect. 6.1.2 on yearly scales, Sect. 6.1.3 on decadal scales
and Sect. 6.1.4 treats the errors in secular trends after homogenization. Finally in5

Sect. 6.1.5, contingency scores are computed to investigate the accuracy of the detec-
tion of break inhomogeneities.

6.1.1 Errors on monthly scale

Figure 1 shows scatterplots of the centered RMSE before and after homogenization for
monthly surrogate temperature data by six comprehensive contributions. Good results10

can be achieved either by improving the homogeneity on average or by never increas-
ing the inhomogeneity of any station. PRODIGE seems to follow the former route,
USHCN the latter, with the others making a compromise. The USHCN contribution is
unique in that it has almost no stations with a higher error after homogenization, the
contribution also has many values exactly on the bisect (no changes performed) and15

it made only small changes to the network without any inserted breaks (values on the
ordinate). It should be noted that the same plots for yearly mean temperature show
many fewer data points above the bisect for all contributions. The exception is absolute
homogenization (PMFred abs), which typically decreases the homogeneity of the data
for both monthly and yearly mean values.20

For a more quantitative analysis of the monthly CRMSE, Fig. 2 shows boxplots for
the complete blind contributions and Table 4 lists aggregated error metrics for all blind
contributions for both temperature and precipitation. The boxplots show that the best
contributions, with respect to the mean CRMSE of the temperature station data, are
PRODIGE, ACMANT, MASH main and USHCN 52x ; the CRMSE anomalies in the25

table reveal that the incomplete iCraddock Vertacnik contribution is actually the most
accurate one for temperature. Five temperature contributions made the data more
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inhomogeneous, i.e. had an improvement quotient over the inhomogeneous data above
one.

If all station series in a network are averaged to one network series representing
the regional climate, the errors tend to become much smaller and results can be very
different; see the last four columns in Table 4. For the network CRMSE the USHCN5

52x performs best, followed by the best versions of iCraddock, MASH and PRODIGE.
Interestingly, ACMANT, one of the best for the station CRMSE, performs much less
well for the network CRMSE. Six contributions made the network average data more
inhomogeneous.

For precipitation many fewer contributions were submitted. The best contribution10

regarding the monthly CRMSE anomaly of the station data is PRODIGE main, where
monthly values are adjusted using a coefficient estimated on annual values. In con-
trast PRODIGE monthly made the data more inhomogeneous. The partial contribution
MASH Marinova achieved the smallest CRMSE, but the larger mean CRMSE anomaly
suggests that relatively easy networks were homogenized and that the contribution is15

actually second best. Over half of the contributions did not improve the CRMSE of the
station data and none of the algorithms improved the network CRMSE meaningfully.

6.1.2 Errors on yearly scale

The errors in the inhomogeneous yearly data are smaller than in the monthly data;
see Table 5. The monthly station temperature error of the inhomogeneous monthly20

data is 0.57 ◦C, whereas at yearly scale the error is reduced to 0.47 ◦C. Notably, the
reduction in error for the homogenized temperature data is typically much stronger; the
average reduction factor over all contributions for monthly data is 77 %, whereas for
yearly data it is 53 %. With some exceptions, the contributions with an improvement
factor for monthly data of around 1.0, perform similarly for yearly data, whereas the25

better contributions for monthly data achieve an even better improvement factor for
yearly data. For instance, where the best contributions improve the homogeneity of the
monthly station data by about a factor 0.6, the improvement ratio of these contributions
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of the yearly data is around 0.3. As mentioned above, scatterplots of the CRMSE
show that at yearly scales most contributions improve nearly all stations and networks
individually.

For precipitation the yearly station-based results are more encouraging than the
monthly results: only absolute homogenization increases the yearly CRMSE signifi-5

cantly. For the yearly CRMSE of precipitation MASH main is the most accurate algo-
rithm. Network average precipitation data is not clearly improved by homogenization.

6.1.3 Errors on decadal scale

The errors in the inhomogeneous decadal data are again smaller than in the yearly
data; see Table 6. Still, the intercomparison between the contributions are very similar10

for the CRMSE of yearly and decadal station data. The explained variance of a linear
fit of the CRMSE at these two scales is 98 % (97 %) for temperature (precipitation).
Therefore, only boxplots for the decadal CRMSE are shown in Fig. 3. Compared to
the monthly data, the range of the results is larger because the errors of the best
contributions decrease much more than for contributions that did not perform as well.15

At this scale ACMANT performs less well than the other contributions that were good
with respect to the monthly CRMSE.

For the network mean signal there is a strong difference between yearly and decadal
data as shown in Tables 5 and 6. The most evident difference is the typically much
smaller error. In contrast to the yearly network CRMSE of precipitation, the decadal20

CRMSE is improved by homogenization. For the network mean precipitation there is
almost no correlation between the yearly and decadal values. While in both cases
MASH main is one of the best and absolute homogenization increases the inhomo-
geneity of the data, the ranking of most other contributions changes considerably.
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6.1.4 Temporal behavior

For most contributions the CRMSE is lower near 2000 than in 1900. For example,
the monthly station CRMSE of temperature (precipitation) is around 0.2 ◦C (100 mm) in
2000 and around 0.5 ◦C (250 mm) in 1900 averaged over all contributions; see Fig. 4.
A clear feature of this figure is, furthermore, the u-shape of especially the yearly and5

decadal data. This is a natural consequence of using the centered time series to
compute the errors in case of systematic deviations such as differences in slope.

The period with missing data during the WWII seems to be important. This is where
the error often starts to grow more rapidly or even jumps higher. Another important
period is the first quarter of the century where many stations do not yet have data.10

Therefore, the CRMSE of selected contributions are shown in Table 7 for the first and
second quarter, as well as for the last half a century. The table shows that the error
of the homogenized data in the first quarter is always higher or equal compared to the
other two periods. For some contributions the errors in the second quarter are higher
than for the last half of the century; this points to problems with the missing data in the15

middle of the time series after the Second World War. An exceptional contribution is
Climatol, which has the lowest monthly temperature errors around 1900, which grow
slowly towards 2000; not shown. This fits to Climatol starting the correction of the
breaks at the beginning of the series.

6.1.5 Linear trends20

More accurate trend estimation is a primary motivation to homogenize climate data.
Figure 5 shows scatterplots of the station trends before and after homogenization for
six selected contributions. Vertical lines start at the trend in the inhomogeneous data
and end with a symbol at the trend estimate for the homogenized data. The figure
illustrates the improvement of the temperature trend estimates and indicates that trend25

improvement was smaller for precipitation. Because all stations in one network have
the same symbol, the figure also shows that all stations within one network tend to have
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a bias in the same direction, whereas for the networks overall there is no bias. Climatol
is an exception in that it greatly decreases the magnitude of any trend in temperature.

Figure 6 gives an overview of the differences between the trends in the homoge-
nized station data and the original data for all complete contributions; the smaller the
spread, the better the contribution. MASH main performs best for precipitation. For this5

selection PRODIGE monthly performs best for temperature.
Table 8 summarizes all contributions and metrics for both station and network trends.

Overall, the incomplete iCraddock and MASH Marinova contributions performed even
better for temperature station trends. With respect to the trends in station or network
precipitation trends MASH Marinova is the most accurate contribution.10

The correlation between the scores for the station-based and the network-based
trends is again modest. A considerable number of contributions do not decrease the
uncertainty of the trends of the network. For network averaged precipitation only three
contributions improve the trends: MASH Marinova, C3SNHT and AnClim main. Abso-
lute homogenization (PMFred) increases the uncertainty of the trends in the raw data15

by about a factor two for all four metrics in Table 8.

6.1.6 Detection scores

A scatterplot with the probability of detection, POD, against the probability of false
detection, POFD, for all complete contributions is presented in Fig. 7. As the Peirce
Skill Score, PSS, is defined as POD minus POFD, the isolines of PSS can be indicated20

by slant lines in Fig. 7. Table 9 shows all contributions and more detection skill scores.
Because these skill scores are computed on all networks simultaneously, anomalies
could not be computed as before. Therefore comparisons with incomplete contributions
have to be made with care.

The scatterplot shows that MASH is an outlier with respect to both detection scores.25

Because MASH reports breaks for multiple monthly time series, it naturally has more
breaks than the other algorithms, which combine monthly results to one date per
break. The scores are computed on the yearly scale to reduce this problem. However,
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because of the noise in the detected date, the larger number of detected monthly
breaks for MASH still leads to an artificially larger number of annual breaks and thus
false alarms. Thus intercomparisons of MASH with the other contributions remain dif-
ficult, especially for the POD and POFD. For both temperature and precipitation MASH
main performs best according to the Peirce skill score, while it has the lowest Heidke5

special score.
Most remarkable is that most other algorithms have a probability of false detection

well below the target 5 % level. C3SNHT PMTred rel and AnClim main are close to
this target level. The USHCN contributions have the lowest POFD. With respect to
the POD and the Heidke skill scores the incomplete iCraddock contributions stand out10

and the three USHCN contributions perform very well. ACMANT, PMTred rel, and
Climatol perform well, especially in contrast to the previous error metrics; Climatol is
even the best precipitation contribution with respect to the Heidke special score. All
SNHT and AnClim contributions as well as PMFred abs are characterized by relatively
low skill scores, mostly due to low probabilities of detection. The correlations between15

the various probability of detection and skill scores is modest, even between the two
Heidke scores.

Figure 8 shows the temporal behavior of the number of true and predicted breaks
(top panel), as well as the POD and the POFD (bottom) averaged over all complete
surrogate temperature contributions. In the middle of the period, between about 192520

and 1975, a high correlation between true and predicted data is found in the top panel.
However, there is a surplus of predicted breaks of 1 to 2 percentage points in this
period.

The POD and POFD are reduced markedly at the edges of the time series, espe-
cially in the beginning of the century. The reason for this is a decrease in the total25

number of predicted breaks. This is presumptive due to a combination of a large un-
certainty in the means needed to find a break and the smaller number of stations in
the beginning. PMFred abs and PMTred rel are designed to compensate for the former
problem. PMFred abs shows a reasonably constant POFD around the 2 percent level.
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On the other hand, PMTred rel shows a strong decline in POFD from 8 % in 1925 to
1 % in 1900, likely in response to the missing data.

6.2 Late contributions

This section describes contributions submitted after the deadline at which the truth
was revealed to the participants. Some of these contributions aim to mend problems5

discovered by the results for the blind contributions. While the results found for these
late contributions are interesting, their performance should be interpreted with care as
these updated contributions are by definition benefiting from knowing the truth.

6.2.1 ACMANT late

ACMANT late has been generated with an improved version of ACMANT (Domonkos,10

2011b). The main changes of ACMANT late compared to ACMANT are as follows. A
pre-homogenization is applied in which to avoid biases a candidate that used certain
reference stations is not reversely used as reference for those stations. Furthermore,
ACMANT late applies the decomposition model of PRODIGE for the final adjustment.

ACMANT late would have been the most accurate contribution with respect to the15

CRMSE of the station (0.27 ◦C) and network average (0.13 ◦C) data, as well as the
station (0.23 ◦C/100 yr) and network average linear trends (0.19 ◦C/100 yr). Especially,
the performance up to 1930 has improved considerably. However, ACMANT late is
optimized based on the benchmark data itself. It is thus not clear how much of this
performance would be realized in an application to a real dataset.20

6.2.2 Craddock late

After the deadline a contribution by Michele Brunetti, who is an experienced Craddock
user, was solicited. This contribution, Craddock late, with four networks is about as
accurate as the blind Craddock contributions. For instance, the monthly CRMSE of the
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stations is 0.34 ◦C and of the network average data is 0.16 ◦C. The linear trend estimate
shows an error of 0.26 ◦C/100 yr (station) or 0.21 ◦C/100 yr(network).

Notable is that the CRMSE is almost constant as a function of time. Craddock late
is consequently more accurate in the first half of the century, but less accurate than
iCraddock Vertacnik or Klanar in the second half. This may be due to four strategies.5

Firstly, the most relevant pairs of stations are selected not only based on correlation,
but for climatological similarity, e.g. exposure. Secondly, often only a part of the ho-
mogeneous subperiod is used for correction. Thirdly, also breaks that are not clearly
evident are corrected. Finally, depending on the strength of the seasonal cycle of the
break, the operator selects annual or monthly corrections.10

6.2.3 Climatol2.1a

Climatol’s blind contribution showed good results for detection, but strongly reduced
the trends. After the deadline a new Climatol2.1a contribution was submitted. The
important changes are as follows. The main change is in the normalization of the
series by the mean. As series are often incomplete, the means of the whole period are15

unknown, and therefore the normalization must be computed iteratively until getting
stable values. The new stopping criterion for the iterations is stricter. Furthermore, the
test of the squared relative mean difference was replaced by the SNHT test.

The late contribution shows a clear improvement over the blind contribution. With
respect to all CRMSE metrics Climatol2.1a is the most accurate SNHT version; except20

for precipitation on decadal scales for which C3SNHT is more accurate. More impor-
tantly, Climatol2.1a no longer shows the reduction in the linear trends and the RMSE
of the station temperature trends decreased from 0.72 ◦C to 0.55 ◦C, for the trends in
the network means from 0.69 ◦C to 0.55 ◦C.
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6.2.4 PRODIGE automatic

This late contribution is similar to PRODIGE main, but the synthesis of the change
points is performed automatically. It computes a weighted mean number of breaks per
year, based on the cross-correlations between the stations. The decision to accept a
break depends on thresholds, which were found by training on the first two precipitation5

networks.
For monthly precipitation, this automatic version is more accurate than PRODIGE

main, whereas on larger averaging scales the error is larger. For linear trends in the
precipitation, the RMSE of PRODIGE automatic for station (network) data is 9.9 mm
(12.52 mm), respectively. Because this contribution was trained on a part of the bench-10

mark dataset, these errors may not be representative.

6.2.5 RhTestV3

After the deadline 16 surrogate temperature contributions similar to PMTred rel and
PMFred abs were produced, but with the detection and correction functions from the
new software package RhTestV3. After the deadline the outliers were known. Conse-15

quently in half of these late contributions the outliers could be removed to study their
influence. Furthermore, half of the contributions corrected monthly and the other half
yearly values; half did so correcting the mean values, half with quantile matching.

Comparing the contributions with and without outliers did not show a clear influence
of outliers on the CRMSE at different averaging scales and periods, nor on the RMSE20

of the linear trends. All contributions corrected using quantile matching or absolute ho-
mogenization made the station data more inhomogeneous. All contributions made the
network data more inhomogeneous. The results for the comparable late contributions
are similar to the blind ones.
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6.3 Benchmark properties

6.3.1 Surrogate versus synthetic

To answer the question whether there are differences between the surrogate and the
synthetic data, an additional large dataset with 200 networks for each data section was
generated. This dataset was homogenized with a newer version of ACMANT; see also5

Sect. 6.2.1. The analysis of the homogenized data showed that the remaining error
after homogenization, in terms of the monthly CRMSE, is 7 % smaller for the synthetic
data. The standard deviation of the trend differences is 15 % smaller for the synthetic
data compared to the surrogate data. All differences between surrogate and synthetic
data are statistically highly significant. Thus synthetic data is easier to homogenize10

than the more realistic surrogate data.

6.3.2 Artificial inhomogeneities

To investigate how realistic the inserted inhomogeneities are, the detected breaks in the
artificial data (surrogate and synthetic) are compared to those of the real data section of
the benchmark. Only USHCN, Climatol, Acmant, and AnClim main have homogenized15

all real temperature networks. From the three USHCN contributions, USHCN main
was selected to obtain independent data. Climatol was omitted as it showed problems
with temperature trends. For precipitation, only AnClim main is available for analysis.

In the comparison below between the real and artificial networks of the properties of
the detected breaks, also the power of detection should be taken into account and is20

analyzed first. The length of the record of the artificial data is set at 100 yr, whereas
the real temperature (precipitation) data has a lower average record length of 87 yr (95
yr). The real temperature data has more missing data (on average about 20 yr) and
it is more interspersed than in the artificial data, which on average has only 10 yr of
missing data. The precipitation in all data sections contains about 90 yr of data. The25

average cross-correlation of the best correlating temperature pairs is higher for the real
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data (94 %) than for the artificial data (90 %). For precipitation these cross-correlations
are 86, 81, 72 percent for real, surrogate and synthetic data, respectively.

The average annual break size in all data sections is not statistically different from
zero. The magnitude of the artificial temperature breaks is larger: the average standard
deviation of the annual detected break size distribution is 0.94 ◦C in the artificial data,5

whereas in the real data it is only 0.72 ◦C. For comparison, the average magnitude of
all inserted breaks was 0.8 ◦C. The artificial annual precipitation break sizes are larger
than the real ones: the standard deviation of the detected real breaks is 9.5 mm (10 %),
but of the artificial breaks 15 mm (19 %). For comparison: the size of the inserted
breaks is 15 %. Partially the smaller mean break size may be due to the stronger10

spatial correlations in the real precipitation dataset, which allows for the detection of
smaller breaks.

The frequency of the artificial temperature breaks is lower: average frequency of
detected breaks is 4.0 % and 4.7 % in the artificial and real data, respectively. More
breaks are detected in the artificial precipitation data: 2.3 %, against 1.0 % in the real15

data.
Taken together the statistical properties of the networks and the nature of the breaks

discovered do not differ greatly among the three data sections. Thus the differences
discussed below are probably due to real differences in the statistical properties of the
inhomogeneities and not due to differences in the accuracy of homogenization.20

If the perturbations applied at a break were independent, the perturbation time series
would be a random walk. In the benchmark the perturbations are modeled as random
noise, as a deviation from a baseline signal, which means that after a large break up
(down) the probability of a break down (up) is increased. Defining a platform as a
pair of breaks with opposite sign, this means that modeling the breaks as a random25

noise produces more than 50 % platform pairs. The percentage of platforms in the real
temperature data section is 59 (n= 742), in the surrogate data 64 (n= 1360), and in
the synthetic data 62 (n= 1267). The artificial temperature data thus contains more
platforms; the real data is more like a random walk. This percentage of platforms and
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the difference between real and artificial data become larger if only pairs of breaks
with a minimum magnitude are considered. In the precipitation data, the percentage of
platforms is also above 50 %, but the values for the real and artificial data are similar.
The perturbations in precipitation may thus be modeled as random noise, but more
data and algorithms would be needed for firm conclusions.5

Another important parameter is the seasonal cycle of the inhomogeneities. First the
monthly anomalies are computed by subtracting the yearly means. Consecutively, the
homogenization perturbations are computed from these anomalies. The size of the
seasonal cycle of a break is operationalized as the change in the standard deviation
of these perturbations before and after a break. The distribution of the break sizes10

of this seasonal cycle has a standard deviation of 0.19 (0.23) ◦C in the real (artificial)
data. The seasonal cycle of the breaks in the artificial data is thus larger than in the
real data and the homogenization algorithms underestimate the size of the seasonal
cycle of the breaks (the seasonal cycle of the breaks inserted into the benchmark is
0.4 ◦C). USHCN does not introduce a seasonal cycle and was omitted. ACMANT found15

stronger seasonal cycles in the breaks than AnClim main, but the difference between
real and artificial data is about the same. In the precipitation data, the seasonal cycle
of the breaks is 12 % in the real data and 19 % in the artificial data.

6.3.3 Global biases and inhomogeneities

If inhomogeneities have a tendency to be in one direction during a certain period, they20

may have an influence on the network average signal, even for large networks. This
could happen in case new technologies or measurement procedures are introduced.
This effect can be studied in the cross-correlations between stations of the homoge-
nization adjustments implemented and can be best seen in smoothed data.

Therefore, the perturbations were computed by comparing the inhomogeneous with25

the homogenized data and smoothing these perturbations in the same way as for
the computation for the decadal CRMSE (Sect. 5). Consecutively, the average cross-
correlation between all pairs of stations in a network was computed, after which this
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correlation was averaged over all networks in one of the three data sections of the
benchmark. The same contributions were analyzed as in Sect. 6.3.2.

For the real, surrogate and synthetic data the cross-correlations are 9.1, −4.3 and 3.5
percent, respectively. Surprisingly, the cross-correlation for the surrogate data is nega-
tive. For the real and surrogate data these correlations are significant and they are also5

significantly different from each other. The values depend strongly on the homogeniza-
tion method. Therefore only complete contributions have been used. However, when
additionally including incomplete contributions the above inferences stay the same.

For precipitation, only AnClim main is available for analysis. The same inferences
as for temperature may be made, but the difference between real and surrogate data10

is only significant at the p=7 % level.
The raw datasets studied here are relatively recent. Records from the early instru-

mental records typically show artificial trends in all stations, because all stations made
similar measurement errors. The bias effect studied here may thus be stronger in older
data.15

7 Discussion

The discussion is divided into two parts. The lessons learned about homogenization
of climate records will be discussed in Sect. 7.1, while Sect. 7.2 will deal with the
benchmarking itself.

7.1 Homogenization20

Before discussing the performance of the algorithms it should be stated that the re-
sults for individual contributions should not be compared in too much detail for three
reasons. First of all, the errors are non-Gaussian and dependent within one network.
Especially in case of networks with multiple breaks that happen in multiple stations
simultaneously, basically neutral changes in the algorithms can make the difference25
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between solving a combinatorial problem or not. Therefore, the number of 15 networks
is still quite limited and especially results for partial contributions should be interpreted
with care. Secondly, there are uncertainties due to the limited realism of the bench-
mark data. While Sect. 6.3 showed that the average properties of the breaks in the
temperature stations are reasonable in general, some deviations were found. The an-5

nual cycle of the breaks is somewhat exaggerated, which unfairly benefits the detection
of breaks by ACMANT. Moreover the perturbations due to inhomogeneities in the sta-
tions are stronger cross-correlated in real data, which leads to larger perturbations in
the network mean signal. As a consequence, the errors in the network mean signals of
the benchmark are small and harder to improve than in reality. See Sect. 7.2 for more10

details. Thirdly, results depend on the error metric analyzed, not only between the
CRMSE of the time series, the RMSE of the linear trends and the detection scores, but
also for the different averaging scale at which the CRMSE is computed and the period
under consideration. Moreover, different treatments of the data particularly with respect
to the missing data and the annual cycle, which are all reasonable, lead to differences15

in the errors found. In this context it should be noted that while many contributed to the
analysis, the final pre-processing and analysis was performed by authors who did not
submit homogenized data to avoid unfair biases.

The all-over best blind contributions are homogenized by Craddock, MASH, and
PRODIGE. The blind ACMANT contribution had some problems with the network mean20

signal and trends, but the updated ACMANT late contribution suggests that ACMANT
is currently the most accurate method available. USHCN, while less proficient than
the four best ones, is nonetheless the best for the monthly network mean CRMSE and
achieves its performance with a very low false alarm rate and without correcting the
seasonal cycle.25

All of these best methods have been designed to work with an inhomogeneous refer-
ence, either by using pairs or testing multiple reference time series for their suitability.
Algorithms that circumvent the inhomogeneous-reference problem by first detecting
the largest breaks are clearly less accurate. In praxis, the choice of a homogenization

2687

http://www.clim-past-discuss.net
http://www.clim-past-discuss.net/7/2655/2011/cpd-7-2655-2011-print.pdf
http://www.clim-past-discuss.net/7/2655/2011/cpd-7-2655-2011-discussion.html
http://creativecommons.org/licenses/by/3.0/


CPD
7, 2655–2718, 2011

Benchmarking
monthly

homogenization
algorithms

V. K. C. Venema et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

algorithm will also depend on the degree of automation desired or needed, which is
related to the size of the network, and the access to expertise. Expertise and training
is important; contributions using good algorithms by first time users often produced
sub-optimal results.

Some contributions result in data that is more inhomogeneous. In case of relative5

homogenization of temperature data, these cases could mostly be traced back to op-
erating or programming errors. The latter are often related to the way iterations are
performed. Algorithms using iterations have to be validated with extra care. Implicitly,
this connected to the advice “to always start homogenization from the beginning, as-
suming all series contain potential breaks and ignoring any previous homogeneity work10

undertaken for any of the series” (Auer et al., 2005).
Unfortunately only one contribution utilized absolute homogenization. This contri-

bution produced much more inhomogeneous data, both for temperature as well as
for precipitation. Absolute homogenization should thus be used with care and always
accompanied by metadata. A more detailed study using multiple absolute homog-15

enization methods (Reeves et al., 2007) would be worthwhile. The performance of
absolute homogenization may have been reduced by the sometimes strong nonlinear
global trends added to the data; see Sect. 3.

Precipitation data is expected to be more difficult to homogenize due to lower cross-
correlations. The lower correlations should, however, only lead to less improvement20

of the data. The increases in inhomogeneity, found especially for the network average
signals, are worrisome and warrant more research into the homogenization of precipi-
tation. Given that the break detection score were positive, the problem probably lies in
the noisy correction of precipitation data, especially for monthly correction. This is also
suggested by the considerable difference for precipitation between PRODIGE monthly,25

which experimentally performed monthly corrections, and PRODIGE main, which ap-
plied more stable yearly corrections and was more accurate. Annual corrections are
thus currently recommended for homogenization of typical precipitation networks.
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The improvements achieved in CRMSE were much larger for yearly and decadal
data than for monthly data. This is mainly related to the much smaller signal to noise
ratio in the ratio time series due to the high spatial variability of precipitation, but may
also be related to the fact that previous validation studies were limited to annual data.
Monthly correction methods warrant more study. The correlations between the error5

metrics based on the time series themselves and break detection scores are modest
(Sherwood et al., 2009), as well as for the detection scores amongst each other. The
use of detection scores as sole performance criterion should thus be discouraged.

Most, but not all contributions, showed much larger errors in the beginning quarter
or half of the century. This may point to possibilities for developers of homogenization10

algorithms to improve the handling of missing data and of networks with few stations.
Some contributions applied algorithms that did not remove outliers themselves. The

late surrogate temperature contributions applying the tests PMTred and PMFred did
not show an influence of outliers on the results. Probably the results for the other
temperature contributions without outlier removal are thus representative.15

The contribution PRODIGE trendy that corrected local trends did not perform better
than the versions that only corrected breaks, but trends were also only implemented
in ten series. It should be studied whether improvements are more evident in those
stations where local trends were present.

7.2 Benchmark20

The synthetic data is apparently easier to homogenize than surrogate data. Especially
the about 15 % smaller error in the linear trend estimation is climatologically relevant
when interpreting results based on homogenized data. As many validation studies did
take into account the lag-one auto-correlation, it would be interesting to study in more
detail whether this aspect of the surrogate data made it harder to homogenize. Alter-25

native explanations could be the variability on large temporal scales (the correlations
for all lags), or maybe the non-Gaussian nature of the distributions.
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In software engineering it has been observed that a benchmark can help a field of
science to mature, both due to social as well as technical factors (Sim et al., 2003). Also
in the COST Action, the definition of the properties of the benchmark and the joint work
on the same dataset helped to bring scientists closer together. The benchmarking also
led to technical improvements, ranging from finding bugs, to improved understanding,5

and to an upcoming open-source state-of-the-art homogenization package.
Sim et al. (2003) state that benchmarking is more than providing a problem, but

that is should also be announced in advance how the solutions will be judged. In this
respect, the homogenization effort did not constitute a true benchmark. In case of ho-
mogenization, it is difficult, and may even be impossible, to boil down the results to one10

or two accuracy metrics. The contributions have been judged with respect to how well
they reconstruct the temporal climatic variability, which is the most common reason
to homogenize data. The data could also have been judged on how well the cross-
correlations are reproduced or even the absolute values of the measured elements.
With such an aim, another benchmark should have been produced, one in which ob-15

servations performed at different locations are not merged to one long record. With the
current experience, it is possible to communicate how the contributions will be judged
in more detail for a future benchmarking exercise.

It is planned to redo the exercise every few years to monitor improvements in homog-
enization. As typical for a benchmarking project, also this benchmark will likely evolve.20

Updates will be implemented to avoid tuning and based on lessons from this study, see
Sect. 5.3. Correlations in the perturbation applied to stations are important to increase
the perturbations in network average data to realistic values. The best contributions
and especially ACMANT late perform very well. A future benchmark dataset should
thus be more challenging, for instance by reducing the density of the networks.25

The participants were requested to focus on homogenizing the surrogate data sec-
tion. In retrospect more emphasis on the importance of the real data section should
have been given and the real and surrogate data should be based on similar datasets
for better comparison. While the surrogate data provides an estimate of the accuracy of
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the homogenization algorithms, the comparison of the results for the surrogate and the
real data is needed to interpret the differences between the contributions. Furthermore,
this comparison is important for the development of more realistic future benchmarks.

8 General conclusions and recommendations

The main research impetus for the last two decades has been the development of5

homogenization algorithms that also function with an inhomogeneous reference time
series. This effort has paid off. There is a clear split in performance on the benchmark
data between these direct algorithms and the ones, which evade the inhomogeneous-
reference problem using older concepts such as stepwise or semi-hierarchical splitting,
as well as detection on moving windows. With mathematical argumentation, climato-10

logical reasoning and the benchmark metrics all pointing in the same direction, we
thus strongly recommend the use of direct homogenization algorithms. Such partici-
pating algorithms are: ACMANT, Craddock, MASH, PRODIGE and USHCN. ACMANT,
MASH and PRODIGE also tackle the multiple break-point problem directly, which is
also important for their performance.15

Almost all relative homogenization algorithms improved the homogeneity of the tem-
perature data. The exceptions could mostly be explained by inexperienced users or be
traced back to algorithms (or parts thereof) newly written for this exercise. The results
illustrate that statistical absolute homogenization has the potential to make the data
even more inhomogeneous. Some contributions created with the best algorithms were20

much less accurate than the contributions by the developers. This indicates that train-
ing of the operator is very important and that developers should invest more effort into
making their software easy to use and give out relevant warnings.

We feel that this blind test of homogenization algorithms has benefited the homog-
enization community, see Sect. 7.2, and advocate to repeat the exercise in future.25

One follow-up is the surface temperature initiative, which is working on a global ho-
mogenized surface temperature dataset and has started a benchmarking initiative for
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its homogenization algorithms (Thorne et al., 2011). Due to its sheer size, such a
benchmark would only be of interest to automatic homogenization algorithms. There
may thus be room for additional initiatives studying other climate variables and utilizing
smaller networks for comparison with manual methods.

Benchmarking is not only useful to study the performance of the homogenization5

algorithms. The definition of the properties of the benchmark, the work on the same
dataset and the joint analysis of the results has strengthened the community. The
benchmarking has also let to technical improvements, ranging from finding bugs, to
improved understanding, and to the recommendations for an upcoming open-source
state-of-the-art homogenization package.10

Benchmarking officially requires agreeing on the error metrics in advance. For ho-
mogenization there is not one clearly preferred metric, however. With the current ex-
perience, it should be possible, though, to define the initial analysis in more detail for
a future benchmark. The results showed only modest correlations between the break
detection scores, which developers of homogenization methods tend to focus on, and15

the other error metrics, which are close to the needs of climatologists. It is thus recom-
mended to use both types of error metrics in future validation studies.

In retrospect too little emphasis was given to the homogenization of the real data
section, which provides a validation of the statistical properties of the inserted inhomo-
geneities. For future benchmarking exercises, more studies on the statistical charac-20

teristics of inhomogeneities for various climate elements would be important. The size
distribution of temperature inhomogeneities in Western countries is studied reasonably
well, but for other regions and climatic variables more information would be valuable.
Too little studied and quantified are cross-correlations of the breaks between stations,
see Sect. 6.3.2. Especially periods in which breaks are biased in one direction lead25

to a much stronger perturbation of the regional climate signal (average over multiple
stations) as the random breaks used in this study and should be included in any future
benchmark dataset.

2692

http://www.clim-past-discuss.net
http://www.clim-past-discuss.net/7/2655/2011/cpd-7-2655-2011-print.pdf
http://www.clim-past-discuss.net/7/2655/2011/cpd-7-2655-2011-discussion.html
http://creativecommons.org/licenses/by/3.0/


CPD
7, 2655–2718, 2011

Benchmarking
monthly

homogenization
algorithms

V. K. C. Venema et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Furthermore, the breaks in the benchmark are modeled as deviations from the base-
line values, i.e. as random noise. An alternative way to model breaks would be relative
to the previous values, i.e. as a random walk. The random noise model was found to be
reasonable, but for the temperature records a mixed model with a small random-walk
component may be even more realistic.5

Irrespective of the above mentioned advantages of benchmarking and the reliability
of the blind results, there are also disadvantages to benchmarking and alternative vali-
dation methodologies should also be used. An important disadvantage is that the blind
test does not allow for the correction of problems discovered during the analysis. Con-
sequently, not all methods could deliver their optimal performance. The interpretation10

is furthermore hampered by differences in experience and effort of the participants.
Finally, because of its competitive character it is paramount that the statistical proper-
ties of the data and the inhomogeneities are realistic. Otherwise it would be possible
to tailor the algorithms to the benchmark and perform better on the benchmark than
on real data. Therefore, benchmarking does not allow for systematic studies aimed15

at understanding the algorithms, for instance by systematically testing varieties of an
algorithm, and for testing the limits of the methods with unrealistic easy or difficult data.
The latter being the strength of standard intercomparison studies and mathematical
analysis. Another valuable validation strategy is the testing of the methods on real data
with good metadata as in this case is the most realistic one.20

The use of metadata and reconstructions of past observation methodologies is pre-
ferred over statistical homogenization, especially in case sufficiently long parallel series
are available and to precise the dates of the breaks. To find additional not documented
breaks, statistical homogenization should always be used as well. In future, more ho-
mogenization algorithms should implement the automatic use of metadata, so that a25

future benchmark can also include simulated metadata. National Meteorological Ser-
vices should intensify their work on the digitization of metadata (Brunet and Jones,
2011) and the formulation of a standard machine-readable format for metadata.
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The intelligent use of metadata is an advantage of manual methods over automatic
ones and automatic methods may tempt people to rely less on metadata. Further
advantages of manual methods are the climatological knowledge of the operator on
how much variability is allowed in the difference time series, which accordingly allows
for an intelligent selection of similar stations. Furthermore, humans are good at solving5

combinatorial problems, which explains the quality of the Craddock and PRODIGE
contributions. Strengths of automatic methods are their objectivity and reproducibility.
Furthermore, automatic methods can be easily applied to large datasets and thus also
lend themselves better to validation and benchmarking, which aids their refinement.
This study showed that currently automatic algorithms can perform as well as manual10

ones.
A considerable difference in improvement of the data by homogenization was found

between annual and monthly data. Furthermore, the break detection scores are only
modestly related to the remaining centered root mean square error. Both findings
suggest that more work on the correction algorithms could be fruitful. The benchmark15

dataset could be used to study the performance of various correction methods.
The results for precipitation were not as good as for temperature. This may well

be due to the more difficult estimation of the correction factors. This is suggested
by the positive performance for detection and the higher accuracy of the PRODIGE
contribution with annual factors compared with the version with monthly factors. The20

operators also have more experience with temperature and the algorithms are better
validated for temperature. It should also be noted that the properties of the benchmark
data may have been less good for precipitation as less is known about the statistical
properties of breaks in precipitation and too little homogenized real data was available
for a stringent validation of the benchmark. Given these results and the importance of25

precipitation for climate impact research the homogenization of precipitation should be
given priority. It may be worthwhile to generate a dedicated benchmark for precipitation.

Many evidently interesting questions are not yet answered and will hopefully be stud-
ied in subsequent articles. For instance, the network without inserted inhomogeneities
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should be studied separately. This analysis was mainly based on statistical metrics of
interest to many users of the homogenized data. With the benchmark dataset being
available, any climatologist can now study the influence of remaining inhomogeneities
on a specific analysis. Users may for instance be interested in the annual cycle, the
cross-correlations between stations, as well as secular trends for individual months and5

long range dependence (Rust et al., 2008).
Based upon the results on the benchmark and theoretical consideration, the Action

is currently working on providing a free software package with recommended homog-
enization tools, which will be published on the HOME homepage (HOME, 2011).
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Table 1. Comparison and detection methods of participating homogenization algorithms.

Comparison Detection References
Method Comparison Time step Search Criterion

MASH Multiple references Annual
Parallel monthly

Exhaustive Statistical test
(MLR)

Szentimrey (2007, 2008)

PRODIGE Pairwise
Human synthesis

Annual
Parallel monthly

DP Penalized
Likelihood

Caussinus and Mestre
(2004)

USHCN Pairwise
Automatic synthesis

Serial monthly HBS Statistical test
(MLR)

Menne et al. (2009)

AnClim Reference series Annual, parallel
monthly

HBS,
moving window

Statistical test Štpánek et al. (2009)

Craddock Pairwise
Human synthesis

Serial monthly Visual Visual Craddock (1979)
Brunetti et al. (2006)

RhtestV2 Reference series or
Absolute

Serial Monthly Stepwise Statistical test
(modified
Fisher)

Wang (2008)

SNHT Reference series Annual HBS Statistical test
(MLR)

Alexandersson and
Moberg (1997)

Climatol Reference series Parallel monthly HBS, moving
window

Statistical test Guijarro (2011)

ACMANT Reference series Annual
Joint seasonal

DP Penalized
Likelihood

Domonkos et al. (2011)
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Table 2. Correction methods of participating homogenization algorithms.

Method Estimation Review Monthly correction

MASH Smallest estimate from Examination; cumulative Raw
multiple comparisons

PRODIGE ANOVA Examination; raw data Raw
USHCN Median of multiple comparisons No review Annual coefficients
AnClim Estimated from comparison Examination; raw data Smoothed
Craddock Mean of multiple comparisons Examination; raw data Smoothed
RhtestV2 Estimated on comparison No review Annual coefficients
SNHT Estimated on comparison Examination; raw data Raw
ACMANT Estimated from comparison No review Smoothed
Climatol Estimated from comparison No review Raw
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Table 3. Names of contributions, contributors, and the main purpose of the contributions.

Contribution Operator Main purpose

MASH main Szentimrey & Lakatos Main submission
MASH Marinova, Kolokythas Marinova or Kolokythas Two first-time users
MASH Basic, Light, Cheval Experimental1

Strict and No meta
PRODIGE main Mestre, Rasol & Rustemeier Main submission2

PRODIGE monthly Idem Monthly detection
PRODIGE trendy Idem Local trends corrected
PRODIGE Acquaotta Acquaotta & Fratianni First-time users
USHCN main Williams & Menne Produced USHCNv2 dataset
USHCN 52x, cx8 Idem Alternatives for small networks
AnClim main Stepanek Main submission
AnClim SNHT Andresen SNHT alternative
AnClim Bivariate Likso Bivariate test in AnClim
iCraddock Vertacnik, Klancar Vertacnik or Klancar Two first-time users
PMTred rel Viarre & Aguilar PMTred test of RhTestV2
PMFred abs Viarre & Aguilar PMFred test, absolute method
C3SNHT Aguilar SNHT alternative
SNHT DWD Müller-Westermeier SNHT alternative
Climatol Guijarro Main submission
ACMANT Domonkos Main submission

1 Experimental version that performs the four rules to combine yearly and monthly data separately, in stead of the
standard consecutive way.
2 Detection: yearly; Correction: temperature monthly, precipitation yearly.
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Table 4. The centered RMSE of monthly data for all blind contributions.

Station Network
Temperature Number1 CRMSE2 CRMSE Impr.4 Number CRMSE CRMSE Impr.

anomaly3 anomaly

Inhomogeneous data 111 0.57 0.18 1.00 15 0.23 0.01 1.00
MASH main 111 0.36 −0.03 0.63 15 0.22 0.00 0.94
MASH Marinova 23 0.26 −0.04 0.70 3 0.17 0.00 1.00
MASH Kolokythas 44 0.62 0.21 1.09 8 0.45 0.22 1.75
MASH Basic 20 0.35 −0.02 0.54 2 0.20 0.01 0.81
MASH Light 20 0.35 −0.02 0.54 2 0.20 0.02 0.83
MASH Strict 15 0.31 -0.02 0.46 1 0.13 0.01 0.66
MASH No meta 20 0.35 −0.01 0.55 2 0.20 0.02 0.83
PRODIGE main 111 0.35 −0.04 0.61 15 0.23 0.01 0.98
PRODIGE monthly 111 0.34 -0.05 0.59 15 0.22 0.01 0.96
PRODIGE trendy 111 0.35 −0.04 0.61 15 0.23 0.01 0.99
PRODIGE Acquaotta 40 0.48 0.09 0.79 6 0.40 0.17 1.50
USHCN main 111 0.39 0.00 0.69 15 0.20 −0.01 0.88
USHCN 52x 111 0.36 −0.03 0.63 15 0.19 −0.02 0.84
USHCN cx8 111 0.39 −0.01 0.67 15 0.20 −0.02 0.86
AnClim main 111 0.51 0.12 0.89 15 0.29 0.07 1.26
AnClim SNHT 5 0.64 0.15 1.15 1 0.34 0.09 1.20
AnClim Bivariate 35 0.69 0.25 1.14 5 0.28 0.05 1.09
iCraddock Vertacnik 55 0.35 −0.06 0.57 7 0.20 −0.02 0.78
iCraddock Klancar 5 0.44 −0.04 0.79 1 0.23 −0.02 0.81
PMTred rel 111 0.51 0.12 0.89 15 0.22 0.00 0.95
PMFred abs 111 0.66 0.27 1.15 15 0.32 0.10 1.36
C3SNHT 111 0.50 0.11 0.88 15 0.26 0.04 1.12
SNHT DWD 111 0.46 0.07 0.81 15 0.23 0.01 1.00
Climatol 110 0.69 0.30 1.20 14 0.39 0.17 1.71
ACMANT 111 0.34 −0.05 0.59 15 0.22 0.00 0.95

Precipitation

Inhomogeneous data 111 10.6 1.1 1.00 15 4.3 −0.4 1.00
MASH main 111 9.7 0.2 0.91 15 4.9 0.2 1.13
MASH Marinova 14 8.5 0.1 0.84 2 3.8 0.3 1.03
PRODIGE main 111 9.0 −0.5 0.85 15 5.0 0.3 1.16
PRODIGE monthly 111 12.8 3.3 1.20 15 7.0 2.3 1.63
PRODIGE trendy 111 9.0 −0.5 0.85 15 5.0 0.3 1.16
AnClim main 111 15.4 5.9 1.45 15 6.2 1.4 1.43
PMTred rel 111 9.7 0.3 0.92 15 4.3 −0.4 0.99
PMFred abs 111 11.3 1.8 1.06 15 4.9 0.2 1.15
C3SNHT 111 15.0 5.5 1.41 15 6.7 2.0 1.56
SNHT DWD 102 10.9 1.4 1.03 14 4.6 −0.2 1.06
Climatol 111 13.7 4.3 1.30 15 7.6 2.9 1.76

1 The number of homogenized stations or networks.
2 The mean CRMSE over all homogenized networks in ◦C or mm.
3 The mean anomaly of the CRMSE; anomalies are computed by subtracting the CRMSE of a number of complete
reference contributions to be able to make a fair comparison for contributions that did not homogenize all networks,
see Sect. 5.
4 The improvement over the inhomogeneous data is computed as the quotient of the mean CRMSE of the homogenized
networks and the mean CRMSE of the same inhomogeneous networks.
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Table 5. The centered RMSE of yearly data for all blind contributions.

Station Network
Temperature Number1 CRMSE2 CRMSE Impr.4 Number CRMSE CRMSE Impr.

anomaly3 anomaly

Inhomogeneous data 111 0.47 0.24 1.00 15 0.20 0.04 1.00
MASH main 111 0.16 −0.07 0.35 15 0.13 −0.02 0.67
MASH Marinova 23 0.12 −0.06 0.40 3 0.10 −0.03 0.62
MASH Kolokythas 44 0.28 0.02 0.60 8 0.19 0.02 0.86
MASH Basic 20 0.18 −0.06 0.31 2 0.13 −0.03 0.59
MASH Light 20 0.18 −0.06 0.32 2 0.13 −0.03 0.59
MASH Strict 15 0.17 −0.02 0.29 1 0.11 −0.01 0.59
MASH No meta 20 0.20 −0.03 0.36 2 0.15 −0.02 0.64
PRODIGE main 111 0.16 −0.07 0.34 15 0.13 −0.02 0.69
PRODIGE monthly 111 0.15 −0.08 0.32 15 0.13 −0.02 0.68
PRODIGE trendy 111 0.16 −0.08 0.34 15 0.14 −0.02 0.69
PRODIGE Acquaotta 40 0.19 −0.06 0.37 6 0.19 0.02 0.83
USHCN main 111 0.25 0.01 0.52 15 0.17 0.01 0.86
USHCN 52x 111 0.20 −0.03 0.43 15 0.16 0.00 0.80
USHCN cx8 111 0.24 0.00 0.50 15 0.16 0.01 0.84
AnClim main 111 0.33 0.10 0.71 15 0.23 0.08 1.19
AnClim SNHT 5 0.52 0.15 1.02 1 0.31 0.09 1.16
AnClim Bivariate 35 0.45 0.19 0.93 5 0.20 0.04 0.95
iCraddock Vertacnik 55 0.15 −0.10 0.29 7 0.13 −0.03 0.59
iCraddock Klancar 5 0.17 −0.19 0.34 1 0.10 −0.11 0.39
PMTred rel 111 0.40 0.16 0.84 15 0.18 0.02 0.92
PMFred abs 111 0.56 0.33 1.19 15 0.29 0.13 1.48
C3SNHT 111 0.29 0.05 0.61 15 0.18 0.02 0.91
SNHT DWD 111 0.36 0.12 0.75 15 0.19 0.04 1.00
Climatol 110 0.28 0.05 0.60 14 0.18 0.03 0.95
ACMANT 111 0.21 −0.02 0.45 15 0.17 0.01 0.85

Precipitation

Inhomogeneous data 111 7.3 2.4 1.00 15 3.1 0.0 1.00
MASH main 111 4.5 −0.4 0.62 15 2.9 −0.1 0.95
MASH Marinova 14 3.6 −0.4 0.56 2 1.6 −0.2 0.69
PRODIGE main 111 4.7 −0.3 0.63 15 3.3 0.2 1.07
PRODIGE monthly 111 4.7 −0.3 0.64 15 3.4 0.4 1.11
PRODIGE trendy 111 4.7 −0.3 0.63 15 3.3 0.2 1.07
AnClim main 111 6.5 1.5 0.88 15 3.8 0.7 1.23
PMTred rel 111 5.7 0.8 0.78 15 3.0 −0.1 0.97
PMFred abs 111 7.9 2.9 1.08 15 3.7 0.6 1.21
C3SNHT 111 5.8 0.8 0.79 15 3.0 −0.1 0.98
SNHT DWD 102 6.7 1.6 0.90 14 3.1 0.0 1.01
Climatol 111 6.3 1.3 0.86 15 3.4 0.4 1.12

For footnotes see Table 4.
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Table 6. The centered RMSE of decadal data for all blind contributions.

Station Network
Temperature Number1 CRMSE2 CRMSE Impr.4 Number CRMSE CRMSE Impr.

anomaly3 anomaly

Inhomogeneous data 111 0.44 0.24 1.00 15 0.18 0.06 1.00
MASH main 111 0.13 −0.07 0.29 15 0.09 −0.03 0.47
MASH Marinova 23 0.09 −0.06 0.33 3 0.08 −0.01 0.53
MASH Kolokythas 44 0.23 0.01 0.53 8 0.13 −0.00 0.64
MASH Basic 20 0.15 −0.04 0.29 2 0.12 −0.00 0.54
MASH Light 20 0.15 −0.04 0.29 2 0.12 −0.00 0.55
MASH Strict 15 0.15 −0.01 0.28 1 0.10 0.03 0.54
MASH No meta 20 0.17 −0.02 0.33 2 0.13 0.01 0.60
PRODIGE main 111 0.11 −0.09 0.25 15 0.06 −0.06 0.35
PRODIGE monthly 111 0.11 −0.09 0.24 15 0.07 −0.05 0.35
PRODIGE trendy 111 0.11 −0.09 0.24 15 0.06 −0.06 0.35
PRODIGE Acquaotta 40 0.14 −0.08 0.28 6 0.14 0.01 0.65
USHCN main 111 0.21 0.01 0.48 15 0.13 0.01 0.69
USHCN 52x 111 0.16 −0.04 0.37 15 0.10 −0.02 0.55
USHCN cx8 111 0.20 −0.00 0.45 15 0.12 0.00 0.66
AnClim main 111 0.25 0.05 0.56 15 0.18 0.06 1.00
AnClim SNHT 5 0.44 0.14 1.01 1 0.28 0.12 1.13
AnClim Bivariate 35 0.40 0.18 0.88 5 0.15 0.01 0.72
iCraddock Vertacnik 55 0.11 −0.11 0.22 7 0.06 −0.07 0.28
iCraddock Klancar 5 0.11 −0.18 0.26 1 0.08 −0.09 0.31
PMTred rel 111 0.36 0.16 0.82 15 0.16 0.04 0.90
PMFred abs 111 0.50 0.30 1.15 15 0.27 0.15 1.48
C3SNHT 111 0.25 0.05 0.57 15 0.16 0.04 0.90
SNHT DWD 111 0.30 0.10 0.69 15 0.18 0.06 0.97
Climatol 110 0.22 0.02 0.51 14 0.16 0.04 0.85
ACMANT 111 0.19 −0.01 0.43 15 0.16 0.04 0.86

Precipitation

Inhomogeneous data 111 6.5 2.7 1.00 15 2.8 0.4 1.00
MASH main 111 3.5 −0.3 0.54 15 2.3 −0.2 0.81
MASH Marinova 14 2.7 −0.1 0.51 2 1.4 0.1 0.69
PRODIGE main 111 3.3 −0.5 0.51 15 2.4 −0.1 0.84
PRODIGE monthly 111 3.3 −0.5 0.50 15 2.5 0.0 0.87
PRODIGE trendy 111 3.3 −0.5 0.51 15 2.4 −0.1 0.84
AnClim main 111 5.2 1.3 0.79 15 2.7 0.2 0.95
PMTred rel 111 4.6 0.8 0.71 15 2.7 0.2 0.95
PMFred abs 111 6.8 3.0 1.04 15 3.4 1.0 1.21
C3SNHT 111 4.2 0.4 0.65 15 2.6 0.2 0.93
SNHT DWD 102 5.7 1.8 0.87 14 2.9 0.3 0.99
Climatol 111 5.1 1.3 0.79 15 2.6 0.1 0.91

For footnotes see Table 4.
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Table 7. The centered RMSE of monthly, yearly and decadal station data for selected contri-
butions for three periods. The first period contains much missing data, the second ends with
WWII, the last fifty years contain high quality data.

Monthly Yearly Decadal

Temperature 1900– 1925– 1950– 1900– 1925– 1950– 1900– 1925– 1950–
1925 1950 2000 1925 1950 2000 1925 1950 2000

Inhomogeneous data 0.62 0.62 0.49 0.47 0.48 0.42 0.44 0.44 0.39
MASH main 0.47 0.39 0.30 0.19 0.15 0.14 0.16 0.12 0.11
PRODIGE main 0.41 0.37 0.28 0.17 0.13 0.15 0.13 0.09 0.10
PRODIGE monthly 0.41 0.36 0.28 0.16 0.12 0.14 0.12 0.09 0.10
PRODIGE trendy 0.42 0.37 0.28 0.16 0.13 0.15 0.12 0.09 0.10
USHCN main 0.45 0.41 0.33 0.26 0.21 0.23 0.23 0.19 0.18
USHCN 52x 0.41 0.38 0.30 0.20 0.16 0.20 0.17 0.15 0.15
USHCN cx8 0.44 0.41 0.32 0.25 0.20 0.22 0.23 0.18 0.18
AnClim main 0.63 0.54 0.44 0.34 0.32 0.31 0.28 0.25 0.22
iCraddock Vertacnik ∗ 0.44 0.37 0.29 0.16 0.11 0.14 0.11 0.08 0.10
PMTred rel 0.73 0.50 0.39 0.58 0.34 0.31 0.53 0.31 0.29
PMFred abs 0.81 0.62 0.60 0.68 0.47 0.54 0.64 0.44 0.46
C3SNHT 0.58 0.56 0.42 0.31 0.29 0.26 0.27 0.25 0.22
SNHT DWD 0.54 0.48 0.40 0.38 0.34 0.32 0.35 0.30 0.26
ACMANT 0.43 0.34 0.28 0.29 0.18 0.18 0.26 0.16 0.16

Precipitation

Inhomogeneous data 12.1 10.0 9.6 8.2 6.6 6.7 7.2 5.7 6.0
MASH main 12.0 9.9 8.4 5.2 4.0 4.2 4.0 3.1 3.3
PRODIGE main 10.1 8.3 8.6 4.9 3.7 4.6 3.5 2.6 3.2
PRODIGE monthly 15.8 13.2 11.1 5.0 4.0 4.6 3.6 2.8 3.1
PRODIGE trendy 10.1 8.3 8.6 4.9 3.7 4.6 3.5 2.6 3.2
AnClim main 20.5 16.9 11.8 7.6 6.0 5.7 6.2 4.3 4.7
PMTred rel 11.9 9.0 8.8 7.6 4.8 5.1 6.2 3.8 4.1
PMFred abs 13.9 9.9 10.4 10.1 6.2 7.4 8.9 5.2 6.4
C3SNHT 17.3 16.3 13.1 7.3 5.7 4.9 4.9 4.0 3.8
Climatol 12.8 12.0 14.2 7.1 5.5 5.9 5.9 4.4 4.7

∗ This contribution homogenized 55 stations, all other contributions are complete (contain 111 stations). If this contri-
bution had been complete, its errors would have been slightly smaller.
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Table 8. The RMSE of linear trend estimates for all blind contributions.

Station Network
Temperature Number1 RMSE2 RMSE Impr.4 Number RMSE RMSE Impr.

anomaly3 anomaly

Inhomogeneous data 111 1.19 0.57 1.00 15 0.53 0.08 1.00
MASH main 111 0.35 −0.27 0.29 15 0.33 −0.12 0.63
MASH Marinova 23 0.26 −0.36 0.22 3 0.24 −0.22 0.45
MASH Kolokythas 44 0.57 −0.05 0.48 8 0.39 −0.06 0.74
MASH Basic 20 0.31 −0.30 0.26 2 0.22 −0.24 0.41
MASH Light 20 0.31 −0.30 0.26 2 0.20 −0.25 0.39
MASH Strict 15 0.37 −0.25 0.31 1 0.12 −0.33 0.23
MASH No meta 20 0.40 −0.22 0.33 2 0.23 −0.22 0.44
PRODIGE main 111 0.33 −0.29 0.28 15 0.26 −0.19 0.50
PRODIGE monthly 111 0.32 −0.30 0.27 15 0.27 −0.18 0.52
PRODIGE trendy 111 0.32 −0.29 0.27 15 0.25 −0.20 0.48
PRODIGE Acquaotta 40 0.42 −0.20 0.35 6 0.54 0.09 1.03
USHCN main 111 0.69 0.07 0.58 15 0.48 0.03 0.92
USHCN 52x 111 0.61 −0.01 0.51 15 0.46 0.01 0.88
USHCN cx8 111 0.64 0.02 0.54 15 0.43 −0.02 0.82
AnClim main 111 0.77 0.15 0.65 15 0.70 0.25 1.32
AnClim SNHT 5 0.98 0.36 0.83 1 1.09 0.63 2.06
AnClim Bivariate 35 1.13 0.51 0.95 5 0.38 −0.07 0.73
iCraddock Vertacnik 55 0.30 −0.32 0.25 7 0.24 −0.22 0.45
iCraddock Klancar 5 0.10 −0.52 0.08 1 0.22 −0.23 0.42
PMTred rel 111 1.09 0.47 0.92 15 0.52 0.07 0.99
PMFred abs 111 2.52 1.90 2.12 15 1.15 0.69 2.17
C3SNHT 111 0.66 0.04 0.56 15 0.57 0.12 1.08
SNHT DWD 111 0.73 0.11 0.61 15 0.52 0.07 0.99
Climatol 110 0.72 0.10 0.61 14 0.69 0.24 1.31
ACMANT 111 0.63 0.01 0.53 15 0.66 0.20 1.24

Precipitation

Inhomogeneous data 111 15.0 6.2 1.00 15 7.4 −1.2 1.00
MASH main 111 7.5 −1.3 0.50 15 7.7 −0.9 1.04
MASH Marinova 14 7.1 −1.7 0.47 2 5.8 −2.8 0.78
PRODIGE main 111 8.8 0.0 0.59 15 10.0 1.4 1.36
PRODIGE monthly 111 9.3 0.5 0.62 15 10.3 1.7 1.39
PRODIGE trendy 111 8.8 0.0 0.59 15 10.0 1.4 1.36
AnClim main 111 16.0 7.2 1.07 15 7.3 −1.3 0.99
PMTred rel 111 10.1 1.3 0.67 15 8.1 −0.5 1.10
PMFred abs 111 27.8 19.0 1.86 15 17.4 8.8 2.36
C3SNHT 111 9.2 0.4 0.61 15 7.1 −1.4 0.97
SNHT DWD 102 12.9 4.2 0.86 14 8.5 −0.1 1.15
Climatol 111 12.3 3.6 0.82 15 8.0 -0.6 1.08

1 The number of homogenized stations or networks.
2 The mean RMSE over all homogenized networks in ◦C or mm.
3 The mean anomaly of the RMSE; anomalies are computed by subtracting the RMSE of a number of complete
reference contributions to be able to make a fair comparison for contributions that did not homogenize all networks,
see Sect. 5.
4 The improvement over the inhomogeneous data is computed as the quotient of the mean RMSE of the homogenized
networks and the mean RMSE of the same inhomogeneous networks.
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Table 9. A number of skill scores to compare the ability to detect breaks. The acronyms are
utilized in Fig. 7.

Temperature Acronym Number POD POFD Peirce Heidke Heidke
Standard Special

MASH main M1 111 0.63 0.09 0.53 0.31 -0.20
MASH Marinova M2 23 0.71 0.08 0.63 0.33 −0.12
MASH Kolokythas M3 44 0.43 0.07 0.36 0.27 0.00
MASH Basic M4 20 0.77 0.18 0.59 0.26 −0.83
MASH Light M5 20 0.77 0.19 0.58 0.24 −0.99
MASH Strict M6 15 0.82 0.20 0.62 0.25 −1.06
MASH No meta M7 20 0.81 0.26 0.55 0.19 −1.59
PRODIGE main P1 111 0.35 0.02 0.33 0.35 0.41
PRODIGE monthly P2 111 0.39 0.02 0.37 0.40 0.44
PRODIGE trendy P3 111 0.35 0.02 0.32 0.35 0.41
PRODIGE Acquaotta P4 40 0.34 0.04 0.31 0.30 0.28
USHCN main U1 111 0.34 0.00 0.33 0.46 0.61
USHCN 52x U2 111 0.40 0.01 0.39 0.51 0.62
USHCN cx8 U3 111 0.35 0.01 0.35 0.47 0.61
AnClim main A1 111 0.18 0.03 0.15 0.16 0.20
AnClim SNHT A2 5 0.14 0.04 0.10 0.12 0.12
AnClim Bivariate A3 35 0.44 0.12 0.32 0.17 −0.56
iCraddock Vertacnik C1 55 0.60 0.03 0.57 0.54 0.49
iCraddock Klancar C2 5 0.61 0.01 0.60 0.68 0.68
PMTred rel PT 111 0.41 0.04 0.37 0.34 0.27
PMFred abs PF 111 0.21 0.01 0.20 0.27 0.46
C3SNHT C3 111 0.23 0.05 0.18 0.16 0.04
SNHT DWD SN 111 0.12 0.01 0.11 0.15 0.40
Climatol CL 111 0.38 0.01 0.37 0.45 0.55
ACMANT AC 111 0.50 0.03 0.47 0.44 0.41

Precipitation

MASH main M1 111 0.26 0.04 0.22 0.21 0.19
MASH Marinova M2 14 0.23 0.03 0.20 0.22 0.27
PRODIGE main P1 111 0.19 0.03 0.16 0.19 0.29
PRODIGE monthly P2 111 0.20 0.03 0.17 0.19 0.27
PRODIGE trendy P3 111 0.19 0.03 0.16 0.19 0.29
AnClim main A1 111 0.14 0.02 0.12 0.16 0.34
PMTred rel PT 111 0.23 0.02 0.21 0.25 0.37
PMFred abs PF 111 0.08 0.01 0.08 0.13 0.46
C3SNHT C3 111 0.19 0.05 0.15 0.14 0.11
SNHT DWD SN 102 0.04 0.00 0.04 0.06 0.47
Climatol CL 111 0.12 0.00 0.11 0.18 0.50
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 1 

Figure 1. Scatterplot of the centered RMSE before and after homogenization for selected 2 

contributions. The squares display the errors of the stations; the dots show the errors of the 3 

network mean (regional climate) time series. Points on the bisect indicate no change, above 4 

the bisect the data is made more inhomogeneous, while below the bisect homogenization 5 

improved the homogeneity of the data. 6 
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Fig. 1. Scatterplot of the centered RMSE before and after homogenization for selected contri-
butions. The squares display the errors of the stations; the dots show the errors of the network
mean (regional climate) time series. Points on the bisect indicate no change, above the bisect
the data is made more inhomogeneous, while below the bisect homogenization improved the
homogeneity of the data.
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 62 

Figure 2. Boxplot of the centered RMSE of the complete contributions, for temperature (top) 1 

and precipitation (bottom). For comparison the error metric for the inhomogeneous data is 2 

plotted at the top. The outliers are not displayed for legibility. The cross depicts the mean 3 

CRMSE, the vertical bar denotes the median; the box spans the interquartile range (the range 4 

of the 25 to the 75 percentile); the whiskers span the range of the data, but maximally span 1.5 5 

times the interquartile range. Good homogenization algorithms should have low CRMSE 6 

values and little spread. 7 
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Fig. 2. Boxplot of the centered RMSE of the complete contributions, for temperature (top) and
precipitation (bottom). For comparison the error metric for the inhomogeneous data is plotted
at the top. The outliers are not displayed for legibility. The cross depicts the mean CRMSE, the
vertical bar denotes the median; the box spans the interquartile range (the range of the 25 to
the 75 percentile); the whiskers span the range of the data, but maximally span 1.5 times the
interquartile range. Good homogenization algorithms should have low CRMSE values and little
spread. 2712
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 1 

Figure 3. Boxplot of the decadal CRMSE of the complete contributions, for temperature (top) 2 

and precipitation (bottom). For comparison the error metric for the inhomogeneous data is 3 

plotted at the top. The abscissa is the same as the one of Fig. 2 to emphasis the smaller errors 4 

and larger improvement over the inhomogeneous data for the decadal data. The conventions 5 

of the boxplots are explained in Fig. 2.  6 

 7 

Fig. 3. Boxplot of the decadal CRMSE of the complete contributions, for temperature (top) and
precipitation (bottom). For comparison the error metric for the inhomogeneous data is plotted
at the top. The abscissa is the same as the one of Fig. 2 to emphasis the smaller errors and
larger improvement over the inhomogeneous data for the decadal data. The conventions of the
boxplots are explained in Fig. 2.
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 1 

Figure 4. The average temporal behavior over all contributions of the monthly, yearly and 2 

decadal CRMSE of the station data for temperature (top) and precipitation (bottom). The 3 

stripped vertical line at 1925 indicates the end of the period in which not all stations have 4 

started observations. The two stripped vertical lines at 1940 and 1945 indicate the period of 5 

the Second World War with much missing data.  6 
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Fig. 4. The average temporal behavior over all contributions of the monthly, yearly and decadal
CRMSE of the station data for temperature (top) and precipitation (bottom). The stripped verti-
cal line at 1925 indicates the end of the period in which not all stations have started observa-
tions. The two stripped vertical lines at 1940 and 1945 indicate the period of the Second World
War with much missing data.
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 1 

Figure 5. Trends in the original data versus the trends in the inhomogeneous or homogenized 2 

data. The top row shows trends for selected temperature contributions, the bottom row for 3 

precipitation. The open symbols denote the trends of homogenized stations, the closed black 4 

symbols the trend of the homogenized regional network averaged trend; every network has its 5 

own symbol, which shows that station trend errors are correlated. The vertical grey lines run 6 

from the trend in the inhomogeneous data to the trend in the homogenized data. 7 
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Fig. 5. Trends in the original data versus the trends in the inhomogeneous or homogenized
data. The top row shows trends for selected temperature contributions, the bottom row for
precipitation. The open symbols denote the trends of homogenized stations, the closed black
symbols the trend of the homogenized regional network averaged trend; every network has its
own symbol, which shows that station trend errors are correlated. The vertical grey lines run
from the trend in the inhomogeneous data to the trend in the homogenized data.
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Figure 6. Boxplot of the differences in the linear trends of the complete contributions, for the 1 

surrogate temperature section (top) and the surrogate precipitation section (bottom). Good 2 

homogenization algorithms should have little spread. The outliers are not displayed for 3 

legibility. The cross depicts the mean RMSE, the vertical bar denotes the median; the box 4 

spans the interquartile range (the range of the 25 to the 75 percentile); the whiskers span the 5 

range of the data, but maximally span 1.5 times the interquartile range.  6 
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Fig. 6. Boxplot of the differences in the linear trends of the complete contributions, for the
surrogate temperature section (top) and the surrogate precipitation section (bottom). Good
homogenization algorithms should have little spread. The outliers are not displayed for legibility.
The cross depicts the mean RMSE, the vertical bar denotes the median; the box spans the
interquartile range (the range of the 25 to the 75 percentile); the whiskers span the range of the
data, but maximally span 1.5 times the interquartile range.
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Fig. 7. Scatterplot of the probability of false detection against the probability of detection for
the surrogate temperature dataset. The slant lines represent the Peirce (true) skill score. The
crosses are the mean detection values of all complete surrogate temperature contributions. For
the abbreviations see Table 9.
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Fig. 8. The temporal behavior of the true breaks and predicted breaks (in top panel) and the
probability of (false) detection (bottom panel) based on the homogeneous surrogate tempera-
ture stations and all complete contributions.
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