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Abstract

Reconstructions of the past climate from proxy records involve a wide range of un-
certainties at every step of the process. These uncertainties and the subsequent
error bar in the reconstruction of a paleoclimatic variable need to be understood
and quantified in order to properly interpret the reconstructed variability and to per-5

form meaningful comparisons with climate model outputs. Classic proxy calibration-
validation techniques are not well-suited for identifying the causes of reconstruction
errors, estimating their relative contribution, or understanding how errors accumulate
from a multitude of sources. In this study, we focus on high resolution proxy records
based on calcium carbonate geochemistry of sessile organisms such as mollusks,10

corals, or sclerosponges, and propose an approach based on Monte Carlo simula-
tions with simple numerical surrogate proxies. A freely available algorithm (MoCo,
http://www.isem.cnrs.fr/spip.php?rubrique472) is provided for estimating systematic
and standard errors of mean temperature, seasonality and variance reconstructed from
marine accretionary archive geochemistry. This algorithm is then used for sensitivity15

experiments in a case study to characterize and quantitatively evaluate the sensitiv-
ity of systematic and standard errors to sampling randomness, stochastic uncertainty
sources and systematic proxy limitations. The results of the experiments yield an il-
lustrative example of the range of variations that climate reconstruction errors may
undergo, and bring to light their complexity. One of the main improvements of this20

method is the identification and estimation of systematic bias that would not otherwise
be detected. It thus offers the possibility of correcting the proxy-based climate from
these biases for a more accurate reconstruction. Beyond the findings of error sources
for coral and mollusk-based reconstructions, our study demonstrates that numerical
simulations based on Monte Carlo analyses are a simple and powerful approach to25

improve the proxy calibration process. A thourough understanding of the proxy record
errors is essential for the interpretation of paleoclimate records from proxies derived
from accretionary skeleton geochemistry. The error estimates provided by MoCo are
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much more comprehensive and therefore closer to reality than error estimates provided
by typical calibration studies.

1 Introduction

Reconstructions of the past climate from proxy records involve a wide range of uncer-
tainties at every step of the process. These uncertainties and the subsequent error bar5

in the reconstruction of a paleoclimatic variable need to be understood and quantified
in order to properly interpret the reconstructed variability and to perform meaningful
comparisons with climate model outputs. In a recent overview of methods used in high
resolution paleoclimatology, Hughes and Ammann (2009) concluded that “the study of
the processes by which climate proxy records are formed [. . . ] should be accorded high10

priority ”. Highly complex methods based on Bayesian statistics and involving biological
models have been developed for pollen assemblages that provide a probability distri-
bution of the paleoclimate reconstruction (Guiot et al., 2009). Considerable effort has
also been devoted to statistically estimate the sensitivity of climate field reconstructions
from tree rings to proxy uncertainties, the proxy network, and the calculation methods15

(Mann et al., 2005, 2007; Lee et al., 2008; Riedwyl et al., 2009). For many other
proxies, and especially in paleo-oceanography, the climate proxy development work
has been concentrated on the calculation of empirical regression models (or transfer
functions) linking the proxies to the environmental variables. Then, in most studies,
the uncertainty of the paleo-oceanographic variable reconstruction is estimated by the20

scattering of the empirical calibration dataset. Thus, in these cases, the reconstruction
error bar is assumed to be identical in every application of the transfer function. We ar-
gue that, although essential, the empirical calibration-verification work only provides a
first-order, generally underestimated, value of the error bar. The processes leading to a
climate proxy record involve randomness and a suite of stochastic parameters operat-25

ing at different scales of time and space, producing a range of potential deviation from
the “true” climate that is much broader than that contained in the necessarily limited

2479

http://www.clim-past-discuss.net
http://www.clim-past-discuss.net/7/2477/2011/cpd-7-2477-2011-print.pdf
http://www.clim-past-discuss.net/7/2477/2011/cpd-7-2477-2011-discussion.html
http://creativecommons.org/licenses/by/3.0/


CPD
7, 2477–2510, 2011

Exploring errors in
paleoclimate proxy

reconstructions

M. Carré et al.
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number of tests in a calibration-verification approach. There is growing agreement in
the paleoclimate science community on the need for better methods to evaluate the
uncertainties in climate proxy records (Jones et al., 2009).

In this study, we focus on high resolution proxy records based on calcium carbon-
ate geochemistry of sessile organisms such as mollusks, corals, or sclerosponges.5

Short-term windows of monthly to decadal sea surface temperature (SST) can be re-
constructed from these accretionary archives using paleo-temperature proxies such as
Sr/Ca (Beck et al., 1992; Marshall and McCulloch, 2002; Corrège et al., 2004; Rosen-
heim et al, 2004) or δ18O (Epstein et al., 1953; Grossman and Ku, 1986, Böhm et al.,
2000; Carré et al., 2005) serially measured along the growth axis. In most works based10

on this technique, SSTs are calculated using an empirical regression model, verified
with modern samples. The same error bar, assumed to be inherent to the proxy re-
gression model, is ascribed to all data points. However, paleoclimatic interpretations
are not based on a single data point, but rather on characteristics of the whole dataset
(mean, variance, spectral power density), which is taken to be representative of the15

mean climate of a time period over a defined region. Even considering that the error
bar was correctly estimated for single SST reconstructions, it is not readily applied to
the statistical properties of the dataset. Here we develop a quantitative framework for
evaluating how stochastic noise (analytic error, vital effect, weather, microenvironment
heterogeneity, growth breaks . . . ) and proxy-specific noise (physiological temperature20

tolerance, spawning growth breaks . . . ) influence the statistical properties of paleocli-
mate data derived from mollusk, coral, and coralline sponge geochemistry.

We propose an approach based on Monte Carlo simulations with simple numeri-
cal surrogate proxies. Monte Carlo simulations have been used in previous studies
(Briskin and Harrell, 1980; Ballentine and Hall, 1999; Touchan et al., 1999; Meibom et25

al., 2003; Kaufman, 2003; Evans et al., 2007) to estimate the error of a paleoclimate
reconstruction. The method is thus not novel but its use has been limited to the estima-
tion of a raw uncertainty value. Here we aim to show how powerful this tool can be for
performing sensitivity tests to explore the range of responses associated with a suite
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of stochastic parameters, and how it can significantly improve the understanding of the
proxy signal and eventually the quality of the paleoclimate reconstruction. This tech-
nique is conceptually very simple compared to the full probabilistic modelling studies
using Bayesian inferences that have been developed by statisticians for climate field
reconstructions (Haslett et al., 2006; Jones et al., 2009). It is intended for use as an5

intermediate method, efficient enough to provide reliable assessments of paleoclimate
errors, while being technically and conceptually accessible to a broad community in
paleoclimate science.

Specifically, we provide a ready-to-use, parameterize-yourself, open access algo-
rithm for estimating systematic and standard errors of mean temperature, seasonality10

and variance reconstructed from marine accretionary archive geochemistry (mollusks,
corals, sclerosponges . . . ). This algorithm is then used in a case study to characterize
and quantitatively evaluate the sensitivity of systematic and standard errors to sampling
randomness, stochastic uncertainty sources and systematic proxy limitations.

2 The surrogate paleoclimate proxy Monte Carlo algorithm for mollusks and15

corals (MoCo)

The starting hypothesis is that an empirical linear regression model, with no apparent
systematic bias, is available for the calculation of a climate variable from a single geo-
chemical proxy. This would thus apply to quaternary temperature reconstructions from
Sr/Ca ratios measured in corals (Beck et al., 1992) and sclerosponges (Rosenheim et20

al., 2004), or to temperature reconstructions from coral δ18O (Cobb et al., 2003) or
mollusk shell δ18O (Schöne et al., 2004) in conditions where the water isotopic compo-
sition can be constrained. As in all surrogate proxy (also referred to as “pseudo-proxy”)
studies, the basic principle is to use a realistic climate time series, sample and perturb
it in a way that mimics the proxy uncertainties, and compare the surrogate “recon-25

structed” climate with the “true” value, which is known from the original non perturbed
time series (Mann and Rutherford, 2002).
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2.1 Different types of error

We explore both systematic and standard errors of statistical climate properties [annual
mean Tm, variance of the annual mean var(Tm), mean annual amplitude ∆T , variance
of the annual amplitude var(∆T )] reconstructed from a random sample of specimens
taken to be representative of a time period. T refers here to the reconstructed environ-5

mental variable, which could be temperature, salinity, pH or something else. Identifying
and estimating systematic errors allows us to correct the reconstruction and improve
its accuracy. A quantitative estimate of the standard deviation is also essential to de-
termine a threshold of significance in the amplitude of the climate proxy variations.

Defining the error in a paleoclimate reconstruction from a local archive is not trivial.10

It may depend on the climate information sought. An ideal proxy would provide the
exact temperature in a precise location and thus be considered as error-free, but if the
aim is to have regional scale information, the proxy signal would still be noisy owing
to micro-environment effects. Weather also contributes to the noise inherent in climate
statistics. Thus some of the noise in the reconstruction is related to random sampling15

in time and space and is thus independent of the quality of the empirical regression
model.

The formation of the proxy record involves a complex chain of physical and biological
processes (for instance mechanisms of Strontium incorporation into coral aragonite)
that introduce non-climate-related stochasticity and limitations in the climate-proxy re-20

lationship (Meibom et al., 2003). The scatter inherent in in situ calibration datasets
partly captures this stochastic variability but does not allow the exploration of its full
range nor the characterization of the error from different sources. Stochastic param-
eters may contribute to the standard error in the reconstruction of climate statistical
properties as well as to systematic errors as we will show.25

Paleoclimate reconstructions also involve systematic errors that cannot be estimated
and corrected for, and could be referred to as potential systematic errors. Potential
systematic errors include for instance the uncertainty of the ice volume effect when
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carbonate δ18O is used as a paleotemperature proxy. They also include uncertainties
in the proxy calibration model. Considering that the mechanisms behind such errors
are identical for all specimens in the archive (which is generally assumed), then the
model would be identically wrong for all the climate calculations. Therefore, the pale-
oclimate errors due to the imperfection of the model do not contribute to the standard5

error, but instead are more comparable to a systematic error (although its value might
be linearly dependent on the proxy variable). Nevertheless, when the source of a po-
tential systematic error can be identified, it may be possible to estimate statistically its
impact on the reconstructed climate.

Owing to their different nature, and for a more complete representation of error, the10

standard error and the potential systematic error should be represented separately
in paleoclimate results (Carré et al., 2011). Systematic errors that can be estimated
should be corrected for. The MoCo algorithm yields estimates of the standard error,
systematic error, and potential systematic error.

2.2 The Monte Carlo simulation15

Monte Carlo techniques are useful for the analysis of complex stochastic systems
(Metropolis and Ullam, 1949; Hastings, 1970). In our study, surrogate proxy records
are produced by perturbing a known climate time series with a suite of random noise.
Each surrogate proxy record is only of realization of the infinite number of values and
combinations that noise can take. In the Monte Carlo simulation, this process is re-20

peated many times (5000 iterations in the experiments presented here) in order to have
a representative sample of the range of responses, and therefore of the probability dis-
tribution of the error (Fig. 1). The average value of the error population calculated in a
Monte Carlo simulation represents the systematic error. If the reconstruction method
is not biased, the mean value of the error population should be zero. If this is not25

the case, then a systematic bias has been identified and may be corrected for. The
standard deviation of all the possible errors is by definition the standard error.
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2.3 Using the MoCo.m application

MoCo.m is freely available and can be downloaded at http://www.isem.cnrs.fr/spip.
php?rubrique472, along with the MoCo readme.txt file which contains step by step
instructions for users. The program is designed to work with the Matlab software. The
algorithm is parameterized by the user according to the specifics of the study. These5

input parameters are listed in table 1 and described in the next section.

3 Inputs to the algorithm

3.1 A target time series

When using the MoCo algorithm, a climate time series is first chosen that will be used
as the “target climate”. As will be shown later, the characteristics of the target time10

series have a large influence on the reconstruction error. It is therefore important to
use a realistic time series with a variability that is as far as possible similar to the
paleoclimate that the proxy is being used to study. The length of the time series should
be much longer than the typical proxy record length to allow adequate random sampling
in time. For instance, if 50-yr long coral records are being used to study early Holocene15

climate, a time series of at least 1000 yr should be used as a target in the Monte
Carlo simulation. Such a long time series can only be provided by climate models.
Instrumental time series may be used for short-lived proxy archives such as one-year
long mollusk shells. The target time series for proxies with sub-annual resolution should
be monthly, starting in January, and include full years without missing data.20

3.2 Random sampling of target time series

Once the target time series is identified, N time windows of Ny years are randomly
extracted from it. N represents the sample size, or the number of specimens that were
analyzed to study the paleoclimate. Ny is the typical duration (number of years) of the
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proxy records. Two approximations are made in this process: (1) the proxy record time
resolution is assumed to be monthly and constant, (2) all specimens are assumed to
have the same duration equal to Ny years.

3.3 Signal perturbation

In this step, the random sample of N climate time windows is perturbed by stochastic5

noise and by archive-related limitations.

3.3.1 Spatial heterogeneity

Corals, mollusks and sclerosponges, as sessile organisms, record only a very local en-
vironmental variability that may differ from the regional environmental variability. This
effect is especially significant in coastal environments where large spatial heterogeneity10

can occur. Several specimens should thus be analyzed to average out this heterogene-
ity effect. In MoCo, this stochastic noise is represented by a random parameter with a
normal distribution N(0, σs). A random value is drawn for every specimen and added
uniformly to the climate variable over the whole time window.

3.3.2 Monthly noise15

MoCo provides for three additional sources of month-to-month noise: (1) the proxy
analytical error, (2) the weather scale variability, (3) biogenic carbonate heterogeneity
at the µm scale of microsampling owing to vital effects and diagenesis. These three
types of noise follow the normal distributions N(0, σa), N(0, σw), N(0, σc) respectively,
where the standard deviation are expressed in the proxy unit (e.g. mmol/mol for coral20

Sr/Ca). These three independent sources of uncertainty add in quadration and are
converted to the climate unit to yield a month-to-month noise with normal distribution
N(0, σm) (σm2=σa2+σw2 +σc2). A random value is drawn for every monthly value
of every time window. All the stochastic noise sources are here considered to be
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normally distributed because they are expected to have symmetric distributions, and
each is comprised of a large number of stochastic processes.

3.3.3 Limitations of the biological archives

The archives considered in this study, corals, mollusks, sclerosponges, coralline algae,
are living organisms. Their biology constrains their growth and thus the way in which5

they record the environment. Every species is defined by a range of physico-chemical
tolerances beyond which they stop precipitating new carbonate skeletal material. If
it is possible that the reconstructed variable may represent a growth limitation (like
temperature or salinity) the effect of these limits should be explored and quantified.
Upper and lower biological limits (Tls, Tli) for the variable T are thus considered in10

MoCo.
Some species systematically stop growing at a precise period of the year because

their resources are exclusively dedicated to reproduction. This implies a systematic
gap in the record that may affect the final calculated averages or variance. Parameters
gb1 to gb12 define the typical monthly growth pattern of the species (Table 1).15

Finally, growth breaks may occur randomly because of storms, predation, or sick-
ness. The MoCo program allows the choice of occurrence of zero to 12 random growth
breaks per year.

3.4 Proxy model calibration dataset

Here we only consider linear regression models between the reconstructed variable T20

and the proxy P : T =alpha.P +beta, which is the most common case for proxies used
on biocarbonate accretionary skeletons. The calculation of the potential systematic er-
rors related to the uncertainty of the regression model is based on the 95 % confidence
interval of parameters alpha and beta:
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I(alpha)=±t ·
σT

σP
·

√
(1−R2)

Nc−2
, I(beta)=±t ·σT ·

√
(1−R2)

Nc−2
(1)

Where Nc is the number of data points in the calibration dataset, σT and σP the stan-
dard deviations of T and P respectively in the calibration dataset, R is the Pearson’s
correlation coefficient, and t is the value of the Student variable at the 0.05 confidence
level and Nc-2 degrees of freedom.5

4 Sensitivity experiments

Five sensitivity experiments were performed using the MoCo algorithm to explore the
influence of (1) the random sampling (exp. 1 and 2), (2) stochastic perturbations (exp. 1,
2, and 3), (3) the biological limitations of the archive (exp. 4 and 5), and (4) the target
time series (exp. 3, 4, and 5) on the systematic and standard errors when reconstruct-10

ing the statistical characteristics of the target time series (Tm, var(Tm), ∆T , var(∆T )).
To perform these experiments we chose the illustrative case study of temperature re-
constructions in the eastern Pacific from mollusk shell oxygen isotopes. We used the
empirical proxy model established by Grossmann and Ku (1986) for biogenic aragonite
(Eq. 2), which is often considered as the definition of isotopic equilibrium for biogenic15

aragonite and has been widely used for paleoclimate studies from aragonitic mollusk
shells:

T (◦C)=19.73−4.34(δ18Oarag.−δ18Ow ) (2)

δ18Oarag. and δ18Ow are expressed in ‰ versus the V-PDB and V-SMOW standards
respectively. This proxy model is used only for the case study. Any other proxy model20

could be used with MoCo. The biological characteristics of the species (growth breaks,
temperature tolerance range, length of record . . . ) are varied in the experiments to
evaluate their influence on the reconstruction climate parameter.
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M. Carré et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Three sea surface temperature (SST) time series were used as “target” climatol-
ogy: (1) the 1925–2002 monthly in situ instrumental record from Puerto Chicama,
Peru (measured by IMARPE), (2) the 1950–2009 monthly SST time series of the
Niño1+2 area (both time series are available at http://jisao.washington.edu/data sets/
#time series), and (3) the 1000-yr long monthly SST time series of the Niño1+2 area5

from the preindustrial control simulation of the IPSL CM4v2 coupled ocean atmosphere
general circulation model (GCM) (for details about the simulation, see Servonnat et al.,
2010). The target time series are presented in Table 2. The first 2 time series were
used in all experiments except for the experiment 2 in which the GCM time series was
used (Table 3). The parameterization of the sensitivity experiments are summarized in10

Table 3.

4.1 Experiment 1: Influence of random sampling and stochastic noise

The first experiment was designed to test the effect of sampling on the standard and
systematic errors and compare it to the effect of three stochastic noises that were
turned off or on. Realistic values were assigned to σs (spatial heterogeneity) and σm15

(month-to-month noise) based on field measurements on the Peruvian coast. In this
experiment, shell records span one year and no biological limitations were included.

4.2 Experiment 2: Influence of the record length

Experiment 2 was designed to explore the effect of the record length on the skill of
the reconstructions considering the existence of realistic stochastic perturbations of20

the proxy signal. No biological limitations were included. The record length Ny ranged
from 1 to 200 yr as would be expected for coral-based records, and the total number
of years N*Ny recorded by the sample was held constant at 200 yr. No instrumental
record was long enough for this experiment so a 1000 yr long pre-industrial OA-GCM
simulation of the Niño1+2 SSTs was used as a monthly target time series.25

2488

http://www.clim-past-discuss.net
http://www.clim-past-discuss.net/7/2477/2011/cpd-7-2477-2011-print.pdf
http://www.clim-past-discuss.net/7/2477/2011/cpd-7-2477-2011-discussion.html
http://creativecommons.org/licenses/by/3.0/
http://jisao.washington.edu/data_sets/#time_series
http://jisao.washington.edu/data_sets/#time_series
http://jisao.washington.edu/data_sets/#time_series


CPD
7, 2477–2510, 2011

Exploring errors in
paleoclimate proxy

reconstructions

M. Carré et al.
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4.3 Experiment 3: Influence of month-to-month noise

Experiment 3 explored further the effect of the individual data point quality degraded by
the monthly noise, characterized by σm, which includes the analytical error, weather
scale noise, and skeletal carbonate heterogeneity. Here, all perturbations were turned
off and all parameters were fixed except for σm which varied from 0 (ideal proxy) to5

0.5 ‰. Simulations were performed with samples of 20 one-year long shells, and two
different target time series.

4.4 Experiment 4: Influence of a growth break

Experiment 4 was designed to test the effect of yearly growth breaks (such as spawning
growth breaks) on reconstruction errors. All other perturbations were turned off and all10

parameters except gbi were fixed. We only considered the case of a single one-month
growth break per year, and compared the effect of varying its month of occurrence.
Simulations were performed with samples of 20 one-year long shells, and with two
different target time series.

4.5 Experiment 5: influence of temperature tolerance range15

In experiment 5, we explored the effect of temperature limits on skeletal growth for the
reconstruction of two target time series. Obviously, the reconstruction would not be
affected if the biological temperature limits are outside the temperature range of the
time series. Therefore, in this experiment, the upper (lower) temperature limit ranged
from the maximum (minimum) temperature Tmax(Tmin) of the target time series to Tmax-20

10 ◦C (Tmin +10 ◦C). All other perturbations were turned off and all parameters except
Tls and Tli were fixed. Simulations were performed with samples of 20 one-year long
shells.
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5 Results

5.1 Potential systematic error

The MoCo program calculates the potential systematic error due to errors in the linear
proxy model calibration. This error not only depends on the proxy model but also on
the target climate. When calculating the mean temperature for instance, the error in-5

creases with the difference between the reconstructed conditions and the calibration
dataset mean value. The mean value T0 of Grossmann and Ku’s (1986) dataset was
10.5 ◦C. When using the Puerto Chicama time series (Tm =17.1 ◦C), the error for Tm
reconstruction due to the proxy model only is ±2.1 ◦C (95 % confidence level). This
error increases to ±3.9 ◦C with the Niño1+2 time series (Tm =23.0 ◦C). These uncer-10

tainties are so large because the target temperature range is far from the temperature
calibration range. If the mean value of the target time series was 11 ◦C, the uncertainty
at 95 % confidence level would only be ±0.4 ◦C. The error for the mean seasonal ampli-
tude (∆T ) was also significant for Puerto Chicama (±1.4 ◦C) and for Niño1+2 (±1.9 ◦C)
time series. This confirms the importance of local specific calibration works to minimize15

this type of errors.

5.2 Random sampling (Exp. 1 and 2)

In experiment 1, the effect of random sampling is quantitatively estimated and com-
pared to the stochastic proxy uncertainties (Fig. 2). The effect of sampling only is
represented in Fig. 2 by the “ideal proxy” curves. It appears that random sampling is20

one of the main sources of the standard error. This error decreases rapidly with the
sample size and becomes relatively insignificant for Tm and ∆T when N reaches 20.
On the other hand, the standard error for var(Tm) and var(∆T ) due to sampling remains
relatively significant up to N = 30.

In experiment 2, we test whether reconstructions from long proxy records are more25

reliable than reconstructions obtained from short proxy records. The total number of
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years recorded (N ·Ny ) is kept constant and equal to 200 in order to test only the in-
fluence of the record length. For regional mean temperature (Tm) reconstructions, it
appears that a large sample set of short records provides a more precise estimate than
a few long records. This result is due to the influence of local spatial temperature het-
erogeneity which is averaged with large sample sets but represents a significant error5

when determined from a single record. In a similar way, the spatial variance tends to
overwhelm the climatic variability var(Tm) when the sample is small, unless it is calcu-
lated from a single record (Fig. 3, N =1, Ny =200). Systematic errors are only affected
by record length in the case of var(Tm). While the annual temperature variance is
overestimated with short records because of the additional spatial variance, this effect10

decreases when the record lengthens. Finally it appears that intermediate values of N
and Ny (here 20 10-yr old shells) would yield the best compromise for accuracy and
precision in the reconstruction of Tm and var(Tm). The reconstruction skills for ∆T ,
and var(∆T ) are not significantly affected by the record length in our experiment.

5.3 Effects of stochastic noise (Exp. 1, 2, and 3)15

Three kinds of stochastic perturbations (see Sect. 2.3.3.) are applied to the climate
signal in experiments 1, 2, and 3. In the first experiment, their influence is observed
separately and compared to ideal proxy reconstruction errors. As expected, spatial
variability greatly affects the standard error of the Tm reconstruction (Fig. 2) and this
effect increases with the record length (Fig. 3). It also induces a systematic positive20

bias for the var(Tm) reconstruction which decreases with record length (Fig. 3). The
monthly variability in experiment 1 does not significantly affect the Tm and var(Tm) re-
constructions but it induces an unexpected overestimation of the annual amplitude ∆T
and of its variance (Fig. 2). This latter effect does not depend significantly on the record
length (Fig. 3). Random growth breaks have no significant impact on the standard error25

(Fig. 2). They induce a slight positive bias in var(Tm) and a slight negative bias in ∆T .
These bias are due to the time series properties since they are not observed when
using the Puerto Chicama time series (not shown).
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M. Carré et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

In our case study, the stochastic perturbation at the data point level characterized
by σm involves monthly water δ18O variability, carbonate δ18O analytic error, and shell
carbonate heterogeneity. Its effect on ∆T and var(∆T ) reconstructions is further ex-
plored in experiment 3 (Fig. 4) using two different target SST time series. In our ex-
periment, the maximum value of σm is 0.5 ‰ (or 2.2 ◦C on the temperature scale)5

which represents an extremely noisy proxy record. The systematic positive bias on
∆T estimate is ∼1◦C when σm=0.1 ‰ and increases to 3 ◦C when σm=0.4 ‰. For
other parameters, the response depends on the target time series. For σm=0.2 ‰,
the systematic error for var(∆T ) is about 100 % for the Niño1+2 time series while it is
almost null for the Puerto Chicama time series. Standard errors for Niño1+2 SSTs are10

more sensitive to the monthly noise than those for Puerto Chicama SSTs. This can
be explained by the higher variability of Puerto Chicama (Table 2), which makes the
noise-related variability relatively smaller.

5.4 Effects of biological limitations (Exp. 4 and 5)

Growth hiatuses may occur every year at approximately the same date for breeding or15

other reasons (Sato et al., 1999). In experiment 4 (Fig. 5), we showed that the date
of the growth break has little impact on the paleoclimate reconstruction standard error
but may produce systematic errors. As expected, the mean annual temperature would
be underestimated (overestimated) if the growth breaks occur in the warmest (coldest)
period. Here, the maximum systematic error for Tm was −0.3 ◦C. The annual amplitude20

may be largely underestimated if the growth hiatuses occur during seasonal extrema.
In our experiment the systematic bias for ∆T reached −0.4◦C with a systematic growth
break in March for the Niño1+2 SST time series. Proxy reconstructions of variances
were affected by growth hiatuses in a much less predictable way. For Puerto Chicama
SSTs, maximum systematic errors reached about 8 % for var(Tm) when growth breaks25

occurred in September and 8 % for var(∆T ) if they occurred in December. Again, the
error was strongly dependent on the target time series.
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Temperature tolerance for skeletal growth is an especially important biological lim-
itation that may induce significant systematic biases in paleoclimate reconstructions.
These biases were explored with 2 different time series in experiment 5 (Fig. 6). While
it is obvious that upper (lower) temperature limits cause underestimation (overestima-
tion) of the mean temperature Tm, and that ∆T is in both cases underestimated, our5

experiment permits calculation of a quantitative estimate of this error. In experiment
5, the systematic error responses to lower and upper limits were not symmetrical.
For Niño1+2, the effect of the lower temperature limit began to be significant when
it reached ∼1.5 ◦C above the minimum temperature, whereas the effect of the upper
limit began to be significant when it reached ∼3 ◦C under the maximum temperature.10

The systematic biases produced for var(Tm) and var(∆T ) reconstructions rapidly be-
came significant and had unpredictable profiles, switching from positive to negative
values (Fig. 6), especially for the lower temperature limit.

5.5 Importance of the target time series (exp 3, 4, and 5)

The results of experiments 3, 4, and 5 showed that the error strongly depends on15

the climate time series used as a target in the experiment because it depends on the
probability density function of the temperature. The Puerto Chicama time series has a
much wider distribution than the Niño1+2 time series (Table 2) so that standard error
due to random sampling is much larger for Puerto Chicama (Fig. 4 (σm=0); Fig. 5).
Target temperature distributions are also differently affected by proxy uncertainties,20

which generates different error responses (Figs. 4, 5, 6). In the three experiments,
the error responses to proxy uncertainties were strongly modulated by the character-
istics of the target time series. The same proxy perturbation may induce strong errors
with one time series and be insignificant with another. For instance, the upper growth
temperature limit had no significant effect on the reconstruction of Tm and ∆T until it25

reached ∼6 ◦C under the maximum value of the Puerto Chicama SST (Fig. 6) because
of the highly asymmetric distribution of temperature due to El Niño phenomenon at this
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location. These results show that the choice of the target time series when using MoCo
to estimate paleoclimate reconstruction errors is a critical step.

6 Discussion

6.1 Implications for paleoclimate error representation

Three types of errors have been distinguished in this study that should all be treated5

and represented explicitly. Standard error is the classic error bar. However, while the
error bar is generally represented for individual data points (σm in our case study), it
is generally not even mentioned for variables calculated from the whole dataset (Tm,
var(Tm), ∆T , and var(∆T )), as if it was implicitly considered to be the same as for
individual data points. Our experiments show how the standard error for statistical10

characteristics (Tm, var(Tm), ∆T , and var(∆T )) is related to σm (Fig. 4), but they also
show how distinct and how much more complex it is. Monte Carlo simulations are
reliable and simple tools to explore issues with this level of stochasticity and complexity.

Systematic errors are meant to be corrected for when detected and quantified, and
thus are not supposed to be represented. Systematic errors whose probability distri-15

butions only can be estimated, referred to here as potential systematic errors, should
be represented separately from the standard error. In our case study, they include the
error due to flaws in the proxy model and uncertainty about the regional ice volume
effect on sea water δ18O.

6.2 Understanding the proxy20

In many paleoceanographic studies, a precision value is attributed to the paleoclimate
proxy estimates similar to that for instrumental data. Our numerical experiments sim-
ulating the process of paleoclimate reconstruction from coral or mollusk shell geo-
chemistry show that the error cannot be considered a constant value characteristic of
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the proxy. Stochastic uncertainties and biological limitations significantly affect the re-
sulting climate reconstruction, in different manners depending on the location and the
climate parameter. Errors are affected by proxy uncertainties in a way that is so sensi-
tive to the parameterization and to the target time series that no general relationships
between errors and signal perturbations should be concluded from these experiments.5

The results of the experiments, however, yield an illustrative example of the range of
variations that climate reconstruction errors may undergo, and bring to light their com-
plexity. Classic calibration-validation techniques are not well-suited for identifying the
causes of reconstruction errors, estimating their relative contribution, or understanding
how errors accumulate from a multitude of sources.10

While the influences of several sources of error were qualitatively predictable, some
perturbations produced significant unpredictable systematic bias (Figs. 4, 5, 6). Be-
yond the findings of error sources for coral and mollusk-based reconstructions, our
study demonstrates that numerical simulations based on Monte Carlo analyses are a
simple and powerful approach to improve the proxy calibration process. A thourough15

understanding of the proxy record errors is essential for the interpretation of paleocli-
mate records from proxies derived from accretionary skeleton geochemistry.

6.3 Quantifying errors

Quantifying errors in paleoclimate reconstructions is essential for accurate and mean-
ingful proxy-proxy and proxy-model comparisons. The MoCo algorithm was designed20

to provide quantitative estimates of the three kinds of errors identified in Sect. 2.1 for
coral and mollusk based climate reconstructions. It implies that the linear proxy model
has been previously validated. The accuracy of the error quantification using MoCo
may be limited in three ways:

the model for the paleoclimate reconstruction process implies simplifications includ-25

ing: (1) proxy records in a sample are considered of equal duration and of con-
stant monthly resolution, (2) stochastic noise was represented by stationary normal
distributions.
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The full parameterization of MoCo by the user requires field measurements and
knowledge of the organism ecology and growth. Uncertainties in σs, σm, Tli or Tls
estimates may affect the quantification of errors.

By definition in paleoclimatology, the true target climate is unknown, and therefore
different from the target time series used in the MoCo simulation. The errors calculated5

by the simulation are therefore not true errors but only estimates whose accuracy de-
pends on the similarity between the true past climate and the target time series. In the
selection process for the simulation target time series, it is recommended to seek high
temporal variability so that errors will not be underestimated. Despite these caveats,
and even if the user-defined inputs are imperfect, the error estimates provided by MoCo10

are much more comprehensive and therefore closer to reality than error estimates pro-
vided by typical calibration studies. One of the main improvements of this method is the
identification and estimation of systematic bias that would not otherwise be detected.
It thus offers the possibility of correcting the proxy-based climate from these biases for
a more accurate reconstruction.15

6.4 Extending applications

Sensitivity experiments were based on an illustrative case study of SST reconstruction
from mollusk or coral δ18O in an environment where water δ18O is reasonably con-
strained. The same kind of experiment would improve the understanding of other prox-
ies including temperature reconstructions from Sr/Ca ratios in corals (Beck et al., 1992;20

De Villiers et al., 1994; Marshall and McCulloch, 2002) and sclerosponges (Swart et
al., 2002; Rosenheim et al., 2004), Mg/Ca ratios in coralline algae (Kamenos et al.,
2008), and pH from coral δ11B (Rollion-Bard et al., 2011).

In many environments, biocarbonate δ18O variations yield a mixed signal between
water temperature and water δ18O variations related to freshwater input. Under such25

conditions, proxy uncertainties should be evaluated in the space of the proxy variable
(δ18Ocarb) using an adapted version of the Monte Carlo simulation in the MoCo algo-
rithm. This requires a target time series of δ18Ocarb calculated from temperature and
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water δ18O time series. This approach, referred to as forward modelling, has been
applied to a variety of proxies, such as planktonic foraminifera δ18O (Schmidt, 1999),
or stalagmite δ18O (Baker and Bradley, 2010). The strength of forward modeling that
incorporates Monte Carlo analyses for paleoclimate proxy calibration was showed by
Evans (2007) through a case study with wood cellulose δ18O. To our knowledge it has5

never been applied to corals or mollusks. MoCo-type algorithms would be especially
useful for exploring the error of salinity or water δ18O reconstructions based on the
combination of coral δ18O and Sr/Ca ratios, since both proxies add and propagate in
an unpredictable way.

7 Conclusions10

We demonstrated that proxy climate reconstructions from biocarbonate accretionary
skeleton geochemistry involve errors that are much more complex and potentially larger
than those estimated from empirical calibration scatter. We showed in an illustrative
case study that surrogate proxy techniques associated with Monte Carlo analyses are
powerful tools to improve the understanding and calibration of proxy records. Sensi-15

tivity experiments showed the significant and often unpredictable influence of random
sampling, stochastic proxy perturbations, archive biological limitations, and the climate
characteristics. These numerical experiments are a fast and efficient technique for a
qualitative assessment of these influences and provide a first-order quantitative approx-
imation of the reconstruction errors. We provided an open access Matlab algorithm,20

MoCo.m, available at http://www.isem.cnrs.fr/spip.php?rubrique472, for quantitatively
estimating the error related to the proxy linear model, systematic biases, and the stan-
dard errors for proxy-based climate reconstructions. Although the algorithm is a very
simple model of the climate reconstruction process, it allows significant improvement
in the evaluation of the reconstruction uncertainties. Its conceptual simplicity should al-25

low it to be used and adapted for a wide range of applications in paleoclimate research
involving, among other archives, corals, mollusks, sclerosponges and coralline algae.
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Carré, M., Azzoug, M., Bentaleb, I., Chase, B. M., Fontugne, M., Jackson, D., Ledru, M.-P.,
Maldonado, A., Sachs, J. P., and Schauer, A. J.: Mid-Holocene mean climate in the south-
eastern Pacific and its influence on South America, Quatern. Int., in press, 2011.

Cobb, K. M., Charles, C. D., Cheng, H., and Edwards, R. L.: El Niño/Southern Oscillation and
tropical Pacific climate during the last millenium, Nature, 424, 271–276, 2003.30

2498

http://www.clim-past-discuss.net
http://www.clim-past-discuss.net/7/2477/2011/cpd-7-2477-2011-print.pdf
http://www.clim-past-discuss.net/7/2477/2011/cpd-7-2477-2011-discussion.html
http://creativecommons.org/licenses/by/3.0/


CPD
7, 2477–2510, 2011

Exploring errors in
paleoclimate proxy

reconstructions

M. Carré et al.
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Table 1. MoCo input parameters.

Parameters Description Type

Monte Carlo analysis

N Number of specimen per sample Integer
Ny Number of years spanned by individual records Integer
Tls Biological superior limit for skeletal growth Real (T unit)
Tli Biological inferior limit for skeletal growth Real (T unit)
gbi,i=1 to 12 Does skeletal growth occur during month i ? 0/1
gap How many random 1-month growth gaps per year ? 0/1
σs Standard deviation of spatial T variations Real (T unit)
σw standard deviation of weather monthly noise Real (P unit)
σc standard deviation of carbonate micro-heterogeneity Real (P unit)
σa Analytical error (1σ) Real (P unit)
Niter Number of iteration of the Monte Carlo analysis Integer

Proxy model calibration

Alpha Slope of the linear proxy model Real (T/P unit)
Beta Intercept of the linear proxy model Real (T unit)
σT Standard deviation of T in calibration dataset Real (T unit)
σP Standard deviation of P in calibration dataset Real (P unit)
R Pearson’s correlation coefficient in calibration dataset Real in [0, 1]
Nc Number of datapoints in calibration dataset Integer
T0 Average value of T in calibration dataset Real (T unit)
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Table 2. Characteristics of monthly SST time series used as target in sensitivity experiments.
Only the first 100 yr of the GCM Niño1+2 SST time series are shown.1 

2 

Table 2. Characteristics of monthly SST time series used as target in sensitivity experiments. 

Only the first 100 years of the GCM Niño1+2 SST time series are shown. 

Monthly SST target time series Tm var(Tm) ΔT var(ΔT) 

 

23.0 0.8 6.2 0.8 

 

17.1 1.6 4.5 4.3 

26.8 0.3 3.4 0.8 

3  

 25
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Table 3. Parameter setting in sensitivity experiments 1 to 5. Gray cells indicate varying param-
eters.

Parameters Exp. 1 Exp. 2 Exp. 3 Exp. 4 Exp. 5

Parameters of Monte Carlo analyses

N 1 to 30 1 to 200b 20 20 20
Ny 1 1 to 200 1 1 1
Tls 100 100 100 100 Tmax-10 to T c

max
Tli 0 0 0 0 Tmin to Tmin+10 c

gbi,i=1 to 12 1 1 1 0/1 1
gap 0/1 1 0 0 0
σs 0/1.5 1.5 0 0 0
σma 0/0.14 0.17 0 to 0.5 0 0
Niter 5000 5000 5000 5000 5000

Target SST time series

1950–2009 Niño1+2 x x x x
1950–2002 Puerto Chicama x x x x
GCM Niño 1+2 x

a σm2=σa2+σw2+σc2.
b N·Ny =200.
c Tmax and Tmin are the maximum and minimum temperature values of the SST time series used as a “target”.
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Random 
sampling

Monthly SST
time series

sample i of
N monthly 
SST windows

Signal 
perturbation

sample i of 
N surrogate 
proxy records

Tm0
var(Tm0)
∆T0
var(∆T0)

C0 =

Tmi
var(Tmi)
∆Ti
var(∆Ti)

Ci =

[Ei = Ci - C0]i=1, 5000

5000 iterations

Systematic Error = <Ei>i=1, 5000
Standard Error = σ(Ei)i=1, 5000

Potential systematic Error

Calibration dataset (Tj, Pj)
Proxy model, T=f(P)

Fig. 1. Conceptual representation of the calculation of reconstruction errors in the MoCo algo-
rithm.
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Fig. 2. Results of experiment 1 with the 1950–2009 Niño1+2 SST time series. Mean values
of Tm, var(Tm), ∆T , and var(∆T ) (black bold lines) calculated from 5000 iterations of surrogate
proxy simulations (MoCo algorithm), and compared to the expected values (green) of the target
time series, versus the sample size (e.g. number of shells). Systematic errors are indicated
by the difference between the mean calculated value and the expected value. Dotted lines
show the standard error interval (±1σ) for an ideal proxy (no signal perturbation) versus the
sample size. Thin black lines show the standard error interval (±1σ) for surrogate proxies
with stochastic noise. In the first three columns, the effects of spatial variability (σs), monthly
variability (σm), and the occurrence of random growth breaks (blue: 1 per year, black:2 per
year) are investigated separately. Their effects are combined in the fourth column.
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Fig. 3. Results of experiment 2 with the 1950–2009 Niño1+2 SST time series. Standard
error (left) and systematic error (right) obtained for the reconstruction of Tm, var(Tm), ∆T , and
var(∆T ) using the MoCo algorithm, versus the length (number of years) of the proxy record,
considering a constant number of 200 recorded years (from 200 one-year old shells to one 200-
years old shell). Results using an ideal proxy (dotted line) were compared to results involving
stochastic noise (black line).
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Fig. 4. Results of experiment 3. Standard error and systematic error for ∆T and var(∆T ) versus
the standard deviation of the monthly stochastic perturbation. The effect was investigated using
the 1950–2009 Niño1+2 (thin line) and the 1925-2002 Puerto Chicama (bold line) time series.
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Fig. 5. Results of experiment 4. Standard and systematic errors for proxy reconstruction of Tm,
var(Tm), ∆T , and var(∆T ) of Niño1+2 SSTs (blue) and Puerto Chicama SSTs (red), versus the
month of systematic growth hiatuses.
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Fig. 6. Results of experiment 5. Systematic errors for Tm, var(Tm), ∆T , and var(∆T ) due to
growth temperature limits. The effects of inferior (superior) temperature limits are shown on the
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and Puerto Chicama SSTs (red). The darker intervals show the range of temperature recorded
by the archive limited by Tli(left) and Tls (right).
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