1	Supplementary Material
2	
3	Table S1: Paleontological age constraints of the Cretaceous terrestrial deposits in the Asian
4	interior basins
5	
6	Table S2: Stratigraphic compilation of the climate-sensitive sediments with special emphasis
7	on desert (eolian dune) deposits cited in Figure 3.
8	
9	Supplementary Methods: Paleoposition and Age constraints for the eolian sandstone
10	formations in the Asian interior basins
11	
12	Figure S1: Lithostratigraphic column, paleowind direction data, and magnetic polarity
13	sequence of the eolian sandstone deposits (Jiaguan Formation) in Sichuan Basin, south China
14	
15	Figure S2: Lithostratigraphic column, paleowind direction data, and magnetic polarity
16	sequence of the eolian sandstone deposits (Phu Thok Formation) in the Khorat Basin,
17	northeast Thailand
18	
19	Supplementary References
20	
21	

22 **Table S1:** Paleontological age constraints of the Cretaceous terrestrial deposits in the Asian

- 23 interior basins based on the fossil assemblages of ostracods, charophytes, pollen and spores
- 24 (modified after, Li, 1982; Racey et al., 1996; Hao et al., 2000; Khand et al., 2000; Meesok,
- 25 2000; Chen et al., 2006; Sha, 2007; Hasegawa et al., 2010).
- 26

27 Gobi Basin

Formation	Lithology	Fossil assemblage	Age
Tsagantsav Fm	Reddish brown to whitish grey, conglomerate and sandstone, reddish brown mudstone, calcretes, basalts	Ostracodes: Cypridea unicostata Plants: Baiera manchurica, Cladophiledis onychiopsis, Nilssoniopteris denticulata	Ber.–Brm.
Shinehudag Fm	Greenish grey to whitish grey, siltstone & mudstone	Ostracodes: Cypridea fasciculata Charophytes: Aclistochara caii, Raskyella sp. Pollen & Spores: Cicatricosisporites australiensis, Densoisporites velatus, Pilosisporites trichopapilosus	Brm?–Apt.
Khukhteeg Fm	Whitish grey to brown, conglomerate, sandstone, mudstone, & lignites	Ostracodes: Cypridea acutituberculata, Tsetsenia mira, Trapeoidella khandae, Janinella tsaganensis Charophytes: Atopochara trivolvis, Mesochara voluta, M. tuzsoni Pollen & Spores: Foraminisporites assemmetricus, Alisporites elongatus, Abiespollenites sp.	Alb.
Bayanshiree Fm	Reddish brown to whitish grey, conglomerate, sandstone, mudstone, & calcretes	Ostracodes: Lycopterocypris baishintsavica, Charophytes: Atopochara multivolvis, Caucasuella gulistanica	CenSan.
Djadokhta Fm	Reddish to reddish brown, eolian sandstone & mudstone	Ostracodes: Gobiocypris tugrigensis	e. Camp.
Barungoyot Fm	Reddish to reddish brown, eolian sandstone & mudstone	Ostracodes: Talicypridea abdarantica	1. Camp.
Nemegt Fm	Reddish brown to whitish grey, conglomerate, sandstone, mudstone, & calcretes	Ostracodes: Talicypridea reticulata, Mongolocypris distributa Charophytes: Mongololiachara mesochara	e. Maas.
Dzunmod Fm	Reddish brown to whitish grey, eolian sandstone, mudstone, & calcretes	no fossils	m. Maas.

28

29 Ordos Basin

Formation	Lithology	Fossil assemblage	Age
Luohe Fm	Red to purple, fine- to	Ostracodes: Darwinula contracta	BerVlg.
	medium-grained, eolian	Vertebrates: Lycoptera sp.	_
	sandstone		
Huanhe Fm	Yellowish-green to	Ostracodes: Cypridea unicostata, C. koskule-	Vlg.
(Huachi Fm)	reddish-purple, fine-grained	nsis, Rhinocypris cirrita	
	sandstone, siltstone, &	Dinosaurs: Psittacosaurus sp.	
	mudstone		
Luohangdong	Red to purple, fine- to	Ostracodes: Cypridea vitimensis, C. consulta,	Vlg.–Hau.
Fm	medium-grained, eolian	C. koskulensis, Clinocypris scolia, Rhinocypris	
	sandstone	cirrita, Lycopterocypris infantilis, Darwinula	
		simplus, Rhinocypris foveata, Djungarica stolida	
		Dinosaurs: Psittacosaurus youngi	
Jingchuang Fm	Yellowish-green to	Ostracodes: Cypridea unicostata, C.	Hau.–Brm.
	reddish-purple, fine-grained	yumenensis, C. justa, C. koskulensis C. consulta,	
	sandstone, siltstone, &	C. subrostrata, Pseudocypridina globra,	
	mudstone	Clinocypris scolia, Lycopterocypris infantilis,	
		Jungarica stolida, Rhinocypris foveata, R. cirrita	

		Pollen & Spores: Cicatricosis porites, Densois	
		porites, Piceae pollenites	
		Dinosaurs: Psittacosaurus youngi	
Lamawan Fm	Yellowish-grey to	Plants: Elatocladus manchuricus, E. obtusifolia,	Brm.–Apt.
	whitish-grey, medium- to	Brachyphyllum japonicum, Sphenolepidium sp.,	
	coarce-grained sandstone,	Coniopteris onychioides, Czekanowskia rigida,	
	mudstone, & coals	Podozamites lanoeolatus, Stenorachis bulunensis	
Tegaimiao Fm	Red to orange, fine- to	Dinosaurs: Protoceratops sp.	San.–Camp.
_	medium-grained, eolian		-
	sandstone		

31 Tarim Basin

Formation	Lithology	Fossil assemblage	Age
Kezilesu Gp	Red to purple, conglomerate,	Ostracodes: Darwinnela contracta, Cypridea	Ber.–Brm.
	sandstone, & sandy mudstone	koskulensis, Lycopterocypris circulata,	
		Rhinocypris cirrita,	
		Charophytes: Cicatricosisporites sp.,	
		Crybelospprites sp.	
		Pollen & Spores: <i>Cicatricosis porites</i> ,	
		Schizaeois certus, Dicheiropollis etrusus,	
		Crybelospprites sp., Clavatipollenites sp.,	
		Liliacidites sp.	
Kumutake Fm	Red to orange, pebbly	Ostracodes: Talicypridea meliora, T. gemma,	ConCamp.
	sandstone, sandstone, &	Cypridea cavernosa, C. rostrata, Ziziphocypris	
	mudstone	simakovi, Candoniella mordvilkoi	
Subashi Fm	Whitish-grey to reddish,	Ostracodes: Cypridea mosuowanensi,	CampMaas.
	medium to coarse-grained	Talicypridea amoena, T. gemma, T. retusa	
	sandstone, & mudstone	Dinosaurs: Tarbosaurus sp., Nemegtosaurus	
		pachi, Oolithes spherides, Mongolimys	
		turfanensis, Shanshanosaurus huoyanshanensis	

32

33 Subei Basin

Formation	Lithology	Fossil assemblage	Age
Xihengshan Fm	Yellowish grey to purpe,	Ostracodes: Cypridea sp.	BerVlg.
	sandstone, mudstone, & coals	Plants: Gleichenites nipponensis, Brachyphyllum	
		besum, Sphenopteris nitidula	
Longwangshan	Whitish grey to purple,	no fossils	Vlg.
Fm	andesite lava, & andesitic tuff		
	breccia		
Dawangshan	Purple to grey, andesitic tuff	Plants: Pagiophyllum sp., Potozamites sp.,	Hau.–Brm.
Fm	breccia	Otozamites sp.	
Gecun Fm	Reddish orange, greenish	Charophytes: Sphaerochara vertieillata, S.	AptAlb.
	grey, sandstone, & mudstone	stontoni, Charites symmetrica, Flabellochara	
		jurongica	
		Pollen & Spores: <i>Classopollis sp.</i> ,	
		Cicatricosisporites sp.	
		Plants: Frenelopsis sp.	
Pukou Fm	Reddish-purple to grey,	Ostracodes: Cypridea sp., Talicypridea sp.,	CenCon.
	pebbly sandstone	Ziphocypris simakovi	
		Pollen & Spores: Hizaeois porites, Welwitshia	
		pites	
Chishan Fm	Reddish-purple to	Ostracodes: Cypridea cavernosa, Talicypridea	SanMaas.
	greenish-grey, sandstone &	sp., Eucypris sp.	
	mudstone	Plants: Manica tholistoma	

34

35 Jianghan Basin

Formation	Lithology	Fossil assemblage	Age
Wulong Fm	Reddish to yellowish-grey,	Ostracodes: Cypridea prognata, Mantelliana	Alb.
	conglomerate, sandstone,	gigantea, Ziziphocypris simakovi,	

	mudstone	Monosulcocypris sp. Charophytes: Mesochara symmetrica, M., stantoni, Flabellochara hangzhouensis, Euaclistochara mundula Pollen & Spores: Cicatricosisporites apicanalis, C. tersus, C. dorogensis, C. minutaetritatus, Klukisporites variegatus, Toroisporis pseudodorogensis, Lygodiumsporites subsimplex, Schizaeois porites cretaceousm S. phaseolus Plants: Manica parceramosa	
Luojinghu Fm	Reddish-purple to grey, conglomerate, sandstone	Ostracodes: Cypridea cavernosa	Cen.–Tur.
Honghuatao Fm	Reddish to yellowish orange, fine-grained eolian sandstone	Ostracodes: Cypridea cavernosa, Talicypridea amoena, T. longa Charophytes: Porochara anluensis	Con.–San.
Paomagang Fm	Reddish to whitish grey, sandstone & mudstone	Ostracodes: Cypridea cavernosa, C. nanxiongensis, C. tera, Talicypridea amoena, T. longa, T. chinensis, T. quadrata Charophytes: Latochara cylindrica, L. curtula, L. yunnanensis, Peckichara dangyangensis, Charites tenuis	Camp.–Maas.

37 Sichuan Basin

Formation	Lithology	Fossil assemblage	Age
Tianmashan Fm	Reddish-purple conglomerate, sandstone, & mudstone	Ostracodes: Deyangia lushanensis, D. postacuta, Cypridea sp., Jingguella obtusura, Lycopterocypris sp., Minheella sp., Ziziphocypris sp., Mongolianella sp.	Ber.–Brm.
Jiaguan Fm	Reddish-purple, fine- to medium-grained, eolian sandstone	Ostracodes: Cypridea angusticaudata, C. sichuanensis, C. yunnanensis, C. gunzulingensis, C. enodata, C. cf. ampullaceousa, C. concise, C. tera, C. cf. gibbosa, C. setina frorida, C. sentina acerata, C. setina bellatula, C. (Bisulcocypridea) sp., C. (B.) chuxiongensis, C. (Morinina) monosulcata, Harbinia jingshanensin, Latonia (Monosulcocypris) spp., Sinocypris (Quadracypris) cf. favosa, Talicypridea (Cristocypridea) sp., Ziziphocypris orbita, Z. acuta, Jinggunella sp., Kaitunia cuneata,Darwinnela sp., Timiriasevia sp., Lycopterocypris sp., Pinnocypridea sp.	Apt.–Tur.
Guankou Fm	Red to purple, fine-grained sandstone, mudstone, gypsum	Ostracodes: Cypridea gigantea, C. infidelis, Cristocypridea latiovata, C. chinensis, Sinocypris subfuningensis, Candona huangdianensis, C. qionglaiensis, Nonion sichuanensis,	Con.–Maas.

38

39 Simao Basin

Formation	Lithology	Fossil assemblage	Age
Jingxing Fm	Yellowish-grey to	Ostracodes: Monosulcocypris reticulata, Cyp-	Ber.–Brm.
	whitish-grey, sandstone,	ridea angusticaudata, Candona yunnanensis,	
	mudstone, & coals	Rhinocypris tuberculata, Limnocythere tumulosa	
Nanxin Fm	Red to purple, sandstone, &	Ostracodes: Monosulcocypris subovata, M.	Apt.–Alb.
	mudstone	subelliptica, M. longa, M. gigantea, M.	
		yunnanensis, M. ventriconvexa, M. reticulata,	
		Ziziphocypris simakovi, Rhinocypris tuberculata	
		Charophytes: Atopochara trivolvis,	
		Nodoclavator puchanghensis	
Bashahe Fm	Reddish-purple, eolian	no fossils	CenTur.
	sandstone and sandy		
	mudstone		
Mankuanhe Fm	Red to purple, sandy	Ostracodes: Eucypris anluensis, Cypridea	ConMaas.

mudstone, & mudstone	zhengdongensis, C. cavernosa, Sinocypris
	zhengdongensis, S. reniformis, Talicypridea
	subparallela, T. xishuangbananensis, T. amoena
	Charophytes: Peckichara dongyangensis,
	Charites tenuisa

Khorat Basin 41

Formation	Lithology	Fossil assemblage	Age
Phu Kradong	Reddish brown, sandstone,	Pollen & Spores: Cyathidites minor, Baculati-	E. Cretaceous
Fm	siltstone, & mudstone	sporites commaumensis, Corollina simplex	
Phra Wihan Fm	Whitish-grey, conglomerate,	Pollen & Spores: Cicatricosisporites augustus,	Ber.–Brm.
	sandstone, mudstone, &	Dicheiropollis etruscus, Corollina spp.,	
	lignites	Araucariacites australis, Ischyosporites cf.	
		variegatus, Gleichenidites senonicus,	
		Laevigatosporites sp., Perinopollenites elatoides,	
		Callialasporites dampieri, Anaplanisporites	
		dawsonensis, Apiculatisporites spp.,	
		Osmundacidites wellmanii, Todisporites minor,	
		Kraeuselisporites sp., Concavissmisporites sp.	
Sao Khua Fm	Reddish brown, sandstone,	Pollen & Spores: Vitreisporites cf. pallidus,	E. Cretaceous
	siltstone, & mudstone	Cicatricosisporites spp., Cyathidites minor spp.,	
		Ephedripites spp., ?Araucariacites australis	
Phu Phan Fm	Whitish-grey, conglomerate,	Pollen & Spores: Corollina spp., Cyathidites	E. Cretaceous
	sandstone, mudstone	minor, ?Todisporites sp.	
Khok Kruat Fm	Reddish brown, sandstone,	Pollen & Spores: no data presented*	Apt.?
	siltstone, & mudstone		
Maha Sarakhan	Reddish, sandstone, siltstone,	Pollen & Spores: no data presented*	Alb.?-Cen.?
Fm	salts, gypsums, & anhydrites		
Phu Thok Fm	Reddish, eolian sandstone &	no fossils	Apt.–Tur.?
	siltstone		
Phu Khat Fm	Reddish to whitish grey,	no fossils	L. Cretaceous
	sandstone & mudstone		

*Palynological age estimations of the Khok Kruat and Maha Sarakham Formations are quoted by Sattayarak et al. (1991a,b). However, no palyno-fossil assemblage data were presented. $\begin{array}{c} 42 \\ 43 \end{array}$

44

Table S2: Stratigraphic compilation of the climate-sensitive sediments with special emphasis

47 on desert (eolian dune) deposits cited in **Figure 3**.

Locali ty No.	Basin	Formation	Lithology	Age	References
1	Gobi basin, Mongolia	Khukhteeg & Bayanshiree Fms	Whitish-grey, conglomerate, sandstone, mudstone, lignite, & Reddish-brown to whitish-grey, conglomerate, sandstone, mudstone	Alb. to Cen.–San.	Jerzykiewicz & Russell, 1991; Khand et al., 2000
2	Subei basin, China	Gecun & Pukou Fms	Reddish-orange to greenish-grey, sandstone, mudstone, & Reddish-purple to grey, pebbly sandstone	AptAlb. to CenCon.	Jiang & Li, 1996; Hao et al., 2000
3	Jianghan basin, China	Wulong & Luojinghu Fms	Reddishtoyellowish-grey,conglomerate, sandstone, mudstone&Reddish-purpletogrey,conglomerate, sandstone	Alb. to Cen.–Tur.	Jiang & Li, 1996; Hao et al., 2000
4	Sichuan basin, China	Jiaguan Fm	Reddish-purple, fine- to medium-grained, eolian sandstone	Apt.–Tur.	Jiang et al., 2001
5	Simao basin, China	Nanxin & Bashahe Fms	Reddish-purple, sandstone, mudstone & Reddish-purple, <u>eolian</u> <u>sandstone</u> , sandy mudstone	Apt.–Alb. to Cen.–Tur.	Jiang et al., 2001
6	Khorat basin, Thailand	Maha Sarakhan & Phu Thok Fms	Reddish, sandstone, siltstone, salts, gypsums, & Reddish, <u>eolian</u> <u>sandstone</u> , siltstone	Apt.–Tur.?	Imsamut, 1996; Hasegawa et al., 2010
7	Iberian basin, Spain	Escucha & Utrillas Fms	Fine-grained <u>eolian sandstone</u> , siltstone, mudstone	Alb.–Cen.	Rodriguez-Lopez et al., 2006, 2008
8	British Columbia, Canada	Boulder Creek Fm	Grayish very fine-grained sandstone, Greenish-gray mudstone, sphaerosiderite- bearing paleosol	Alb.–Cen.	Leckie et al., 1989; Ufnar et al., 2005
9	North Alberta, Canada	Peace River Fm	Grayish sandstone, mudstone, sphaerosiderite-bearing paleosol	Alb.–Cen.	Ufnar et al., 2005
10	South Alberta, Canada	Mill Creek & Bow Island Fms	Reddish and grayish-greenish sandstone, pale yellow to dark red mudstone, paleosol	Alb.	McCarthy et al., 1997, 1999
11	Ontario basin, Canada	Mattagami Fm	Varicolored conglomerate, sandstone, mudstone, lignite	Apt.–Alb. to Cen.	White et al., 2000
12	Western Iowa basin	Dakota & Swan River Fms	Grayish sandstone, mudstone, sphaerosiderite-bearing paleosol	Alb.–Cen.	Ludvigson et al., 1998; White et al., 2000
13	Southwest Utah basin	Upper part of the Dakota Fm	Varicolored conglomerate, sandstone, mudstone, coal	Cen.–Tur.	Laurin & Sageman, 2007; Barclay et al., 2010
14	New Mexico basin	Sarten & Moreno Hill Fms	Reddish to pale yellowish sandstone, mudstone, paleosol	Alb.–Cen. to Tur.	Mack, 1992
15	Araripe basin, Brazil	Santana Fm	Sandstone, mudstone, black shale	Alb.	Heimhofer et al., 2008
16	Salta basin, Algentina	La Yesera Fm	Reddish-brown conglomerate, sandstone, siltstone, mudstone	Apt.–Alb.	Marquillas et al., 2005
17	Neuquen basin, Algentina	Lohan Cura Fm	Reddish-brown to greenish gray conglomerate, sandstone, siltstone, shale	Apt.–Alb.	Leanza et al., 2004

18	Orange basin, Namibia	Alb. to Cen. succession	Whitish conglomerate, sandstone, siltstone, mudstone	Alb.–Cen.	Stevenson & McMillan, 2004;
19	Tendaguru basin, Tanzania	Makonde Fm	Reddish to purple, conglomerate, fine- to medium-grained sandstone, siltstone, mudstone	Apt.–Alb.	Bussert et al., 2009
20	Saurashtra basin, India	Than & Wadhwan Fms	Grayish sandstone, mudstone, coal & Reddish conglomerate, sandstone, mudstone, limestone	E. Cretaceous	Aslam, 1992
21	Gippsland basin, Australia	Wonthaggi Fm	Volcanogenic sandstone, mudstone, coal	Apt.–Alb.	Douglas & Williams, 1982; Tosolini et al., 2002
22	Gobi basin, Mongolia	Djadokhta, Barungoyot, Dzunmod Fms	Reddish brown to whitish grey, eolian sandstone, sandy mudstone, calcrete	Camp.–Maas.	Jerzykiewicz & Russell, 1991; Hasegawa et al., in submitted
23	Ordos basin, China	Tagaimiao Fm	Red to orange, fine- to medium-grained, <u>eolian sandstone</u>	San.–Camp.	Jiang & Li, 1996; Hao et al., 2000
24	Tarim basin, China	Subashi Fm	Whitish-grey to reddish, medium to coarse-grained sandstone, mudstone	Camp.–Maas.	Jiang & Li, 1996; Hao et al., 2000
25	Subei basin, China	Chishan Fm	Reddish-purple to greenish-grey, sandstone, mudstone	SanMaas.	Jiang & Li, 1996; Hao et al., 2000
26	Jianghan basin, China	Paomagang Fm	Reddish to whitish grey, sandstone, mudstone	Camp.–Maas.	Jiang & Li, 1996; Hao et al., 2000
27	Sichuan basin, China	Guankou Fm	Red to purple, fine-grained sandstone, mudstone, gypsum	Con.–Maas.	Jiang et al., 2001
28	Simao basin, China	Mankuanhe Fm	Red to purple, sandy mudstone, mudstone	Con.–Maas.	Jiang et al., 2001
29	Khorat basin, Thailand	Phu Khat Fm	Reddish to whitish grey, sandstone, mudstone	L. Cretaceous	Hasegawa et al., 2010
30	South Alberta, Canada	Belly River & Willow Creek Fms	Reddish brown to whitish grey, conglomerate, sandstone, mudstone, calcrete	Camp.–Maas.	Jerzykiewicz & Sweet, 1988;
31	Western Montana basin, Canada	Two Medicine Fm	Reddish brown to whitish grey, conglomerate, sandstone, mudstone, calcrete	Camp.–Maas.	Lorenz, 1981
32	Eastern Montana basin, Canada	Hell Creek Fm	Varicolored conglomerate, sandstone, mudstone, coal	Maas.	Retallack, 1994; Johnson et al., 2002
33	North Dakota basin	Hell Creek Fm	Varicolored conglomerate, sandstone, mudstone, coal	Maas.	Fastovsky & mcSweeney, 1987 Johnson et al., 2002
34	Southwest Utah basin	Wahweap & Kaiparowits Fms	Varicolored conglomerate, sandstone, mudstone	Camp.–Maas.	Lawton et al., 2003
35	New Mexico basin	MacRae Fm	Reddish-brown to greyish, conglomerate, sandstone, mudstone, calcrete	Maas.	Buck & Mack, 1995
36	Western Texas basin	Aguja & Javelina Fms	Reddish purple to grayish, sandstone, mudstone, paleosol	Maas.	Lehman, 1989, 1990
37	Salta basin, Algentina	Lecho Fm	Whitish, fine- to medium-grained, eolian sandstone	Maas.	Marquillas et al., 2005
38	Bauru basin, Brazil	Rio Parana Fm, Caiua Gp.	Fine- to medium-grained, quartz eolian sandstone	Con.–Maas.	Fernandes et al., 2007

39	Parana basin, Brazil	Marilia Fm	Medium- to coarse-grained, quartz-feldspar <u>eolian sandstone</u> , calcretes	Maas.	Goldberg & Garcia, 2000
40	Neuquen basin, Algentina	Anacleto & Allen Fms	Reddish to greenish-gray, conglomerate, sandstone, siltstone, mudstone	San.–Maas.	Leanza et al., 2004
41	Anambra basin, Namibia	Mamu & Ajali Fms	Conglomerate, sandstone, shale, coal	Camp.–Maas.	Tuttle, 1999
42	Congo basin, Angola	Nsele Gp	Medium- to coarse-grained sandstone, <u>eolian accumulation</u> <u>texture</u>	L.Cretaceous	Giresse, 2005
43	Orange basin, Namibia	Upper Santonian succession	Brownish sandstone, mudstone	L. Santonian	Stevenson & McMillan, 2004;
44	Dongargaonba sin, India	Lameta Fm	Reddish to greenish, conglomerate, sandstone, mudstone, calcrete	Maas.	Mohabey et al., 1993; Mohabey, 1996
45	Gippsland basin, Australia	Latrobe Gp.	Conglomerate, sandstone, mudstone, coal, volcanics	Camp.–Maas.	Wagstaff et el., 2006; Gallagher et al., 2008

51 Supplementary Methods:

52 Paleoposition of eolian sandstone deposits in Asian interior basins

53Paleolatitude and rotation estimates of the studied basins, which are reconstructed based on paleomagnetic data (Cheng et al., 1988; Zhuang, 1988; Otofuji et al., 1990; Enkin et al., 541991; Zheng et al., 1991; Chen et al., 1993; Huang and Opdyke, 1993; Hankard et al., 2005; 55Charusiri et al., 2006; Fig. 1 and Table 1), are the critical basis for the present study which 5657demonstrate that the location of the subtropical high-pressure belt changed significantly during the Cretaceous. Based on the obtained paleomagnetic data sets, paleolatitudes of the 58North China block (Ordos Basin: N32.6°-41.0°; Cheng et al., 1988; Zheng et al., 1991) and 59the South China block (Sichuan Basin: N25.5°–29.6°; Zhuang *et al.*, 1988; Enkin et al., 1991) 60 61 were different by more than 5° during the Cretaceous (Fig. 1 and Table 1). The Gobi Basin of southern Mongolia was located much higher latitude during the Cretaceous (N44.0°-46.1°; 62 Hankard et al., 2005). Reconstruction of the paleoposition of Indochina block during the 63 64 Cretaceous, prior to the India-Asia collision, has been controversial. For example, Chen et al. (1992) argued that both Indochina block and South China block were located between N20° 65 and N30° during the Cretaceous, based on the paleomagnetic data reported by Yang and 66 67 Basse (1993). However, the paleomagnetic data reported by Yang and Basse (1993) is for the upper Triassic to the lower Cretaceous deposits in the Khorat Basin (Indochina block) in 68 69 northeastern Thailand, and no paleomagnetic data of the mid- to upper Cretaceous deposits, which contain eolian sandstone deposits in this area, was reported. On the other hand, 70 Charusiri et al. (2006) conducted the paleomagnetic study on the mid- to upper Cretaceous 7172deposits in the Khorat Basin, northeastern Thailand for the first time. They concluded that the 73Khorat Basin was located between N16.3° and 21.6° during the mid- to late Cretaceous time (Charusiri et al., 2006), which was much lower than that of South China block 7475(N25.5°-29.6°; Zhuang et al., 1988; Enkin et al., 1991). Therefore, eolian sandstones were distributed in ca. N30°-40° (Ordos and Tarim basins) during the early Cretaceous, shifted 76 77 southwards to ca. N20°-30° (Sichuan and Khorat basins) during the mid-Cretaceous, and shifted northwards again to ca. N30°-45° (Gobi and Ordos basins) during the late Cretaceous, 78implying that the significant latitudinal shifts of the distribution of eolian sandstone deposits 7980 have occurred between the early, mid-, and late Cretaceous (Fig. 1).

82 Age constraints for eolian sandstone formations in Asian interior basins

Although non-marine strata generally have chronostratigraphic uncertainties, our selected 83 data sets of eolian sandstone formations in the Asian interior basins have good age controls 84 based on magnetostratigraphy and/or biostratigraphy (Li, 1982; Jerzykiewicz and Russell, 85 1991; Jiang and Li, 1996; Racey et al., 1996; Hao et al., 2000; Khand et al., 2000; Meesok, 86 2000; Jiang et al., 2001; Chen et al., 2006; Sha, 2007; Fig. 1 and Table S1), including the 87 results of our magnetostratigraphic studies (Imsamut, 1996; Pan et al., 2004; Hasegawa et al., 88 89 2010; Figs. S1, S2). Paleontological age constraints provide a starting point for the ages of 90 the eolian sandstone formations cited in this study. A relatively rich record of fossil ostracods, charophytes, plants, pollens, and spores has been collected from the studied sites (Table S1). 91 92Particularly important are the ages of the eolian sandstone formations in Sichuan Basin and Khorat Basin (the Jiaguan Formation and the Phu Thok Formation), because they provide the 93 94 critical time constraints on the low latitude desert distribution during the mid-Cretaceous. 95The ages of these formations are well constrained by our magnetostratigraphic data (Imsamut, 1996; Pan et al., 2004; Hasegawa et al., 2010) in conjunction with paleontological age 96 97 constraints as described below.

98 The age of the Jiaguan Formation in Sichuan Basin is assigned to the Aptian–Turonian based on the ostracod's biostratigraphy of the Jiaguan Formation, which yields age-diagnostic 99 100 ostracodes such as Ziziphocypris orbita, Cypridea (Bisulcocypridea) sp. 101 (Cenomanian-Turonian), and Latonia (Monosulcocypris) spp. (Aptian) (Li, 1982; Hao et al., 1022000; Chen et al., 2006; Table S1). Such age constraint is consistent with the ostracod's biostratigraphy of the underlying Tianmashan Formation (Berriasian-Barremian) and 103 overlying Guankou Formation (Coniacian-Maastrichtian). In addition, the obtained 104 paleomagnetic polarity sequence of the Jiaguan Formation reveals short repetition of 105reverse-normal-reverse polarity changes in its lowermost part and thick normal polarity zone 106 107 in its main part (Pan et al., 2004), which correlate best with chron M1r to superchron C34n of the geomagnetic polarity time scale (GPTS; Gradstein et al., 2004). These results suggest that 108 109deposition of the Jiaguan Formation began approximately at 127 Ma and ended no later than ca. 84 Ma (from late Barremian-early Aptian to no later than late Santonian) (Pan et al., 110 2004; Fig. S1). 111

112 Age constraints of the Phu Thok Formation in Khorat Basin are provided by the 113 palynological evidences of the underlying strata, the lignite-bearing Phra Wihan Formation,

which yields age-diagnostic palyno-fossils such as Cicatricosisporites augustus indicating 114115the age no older than Berriasian and Dicheiropollis etruscus indicating the age of Barremian (Racey et al., 1996). Thus, age of the Phra Wihan Formation is assigned to the early 116117 Cretaceous (Berriasian-Barremian), and the age of the overlying Phu Thok Formation is younger than Barremian age (Racey et al., 1996; Meesok, 2000; DMR, 2001; Charusiri et al., 118 2006; **Table S1**). Our newly established paleomagnetic polarity sequence of the Phu Thok 119 Formation reveals short repetition of reverse-normal-reverse polarity changes in its 120121lowermost part and thick normal polarity zone in its main part (Imsamut, 1996; Hasegawa et al., 2010; Fig. S2), which can be correlated with chron M1n to superchron C34n of the GPTS 122123(Gradstein et al., 2004). Consequently, deposition of the Phu Thok Formation is interpreted 124as having started approximately at 126 Ma and ended no younger than ca. 84 Ma (from late Barremian–early Aptian to no younger then late Santonian), which is approximately the same 125126age as the Jiaguan Formation in Sichuan Basin. In summary, the low latitude deserts in Asia 127emerged between late Barremian and early Aptian and disappeared between Turonian and Coniacian according to the magnetostratigraphic correlations and paleontological age 128constraints of the eolian sandstone formations in the Sichuan Basin (Jiaguan Formation) and 129the Khorat Basin (Phu Thok Formation) given above (Fig. 1). 130

Fig. S1: Lithostratigraphic column, paleowind direction data, and magnetic polarity sequence of the eolian sandstone deposits (Jiaguan Formation) in Sichuan Basin, south China (Jiang et al., 1999; Pan et al., 2004; Hasegawa et al., 2010), and their correlation to the geomagnetic polarity time scale (GPTS) of the geological time scale 2004 (Gradstein et al., 2004). Magnetic polarity zones are shown by black and white bars for normal and reversed polarities.

132

141

Fig. S2: Lithostratigraphic column, paleowind direction data, and magnetic polarity sequence of the eolian sandstone deposits (Phu Thok Formation) in the Khorat Basin, northeast Thailand (Imsamut, 1996; Hasegawa et al., 2010), and their correlation to the GPTS (Gradstein et al., 2004). Magnetic polarity zones are shown by black (white) bars for normal (reversed) polarity.

149 Supplementary References

- Aslam, M., 1992. Delta plain coal deposits from the Than Formation of the Early Cretaceous
 Saurashtra basin, Gujarat, western India. Sedimentary Geology 81, 181–193.
- 152 Barclay, R.S., McElwain, J.C., Sageman, B.B., 2010. Carbon sequestration activated by a
- volcanic CO2 pulse during Ocean Anoxic Event 2. Nature Geoscience 3, 205–208.
- Buck, B.J., Mack, G.H. 1995. Latest Cretaceous (Maastrichtian) aridity indicated by
 paleosols in the McRae Formation, south-central New Mexico. Cretaceous Research 16,
 559–572.
- Bussert, R., Heinrich, W.D., Aberhan, M., 2009. The Tendaguru Formation (Late Jurassic to
 Early Cretaceous, southern Tanzania): definition, palaeoenvironments, and sequence
 stratigraphy. Fossil Record 12, 141–174.
- Douglas, J.G., Williams, G.E., 1982. Southern polar forests: The Early Cretaceous floras of
 Victoria and their palaeoclimatic significance. Palaeogeography, Palaeoclimatology,
 Palaeoecology 39, 171–185.
- Fastovsky, D.E., McSweeney, K., 1987. Paleosols spanning the Cretaceous-Paleogene
 transition, eastern Montana and western North Dakota. Geological Society of America
 Bulletin 99, 66–77.
- Gallagher, S.J., et al., 2008. Southern high latitude climate variability in the Late Cretaceous
 greenhouse world. Global and Planetary Change 60, 351–364.
- 168 Hasegawa, H., Suganuma, Y., Seike, K., Tada, R., Ichinnorov, N., Badamgarav, D., Khand, Y.,
- 169 in submitted. Magnetostratigraphy and depositional environments of Upper Cretaceous
- 170 deposits in the Gobi Basin, southern Mongolia: implications for desert development in
- 171 mid-latitude Asia. (in submitted to *Journal of Asian Earth Sciences*)
- 172 Heimhofer, U., et al., 2008. Evidence for photic-zone euxinia in the Early Albian Santana

- 173 Formation (Araripe Basin, NE Brazil). Terra Nova 20, 347–354.
- Jerzykiewicz, T., Sweet, A.R., 1988. Sedimentological and palynological evidence of
 regional climatic changes in the Campanian to Paleocene sediments of the Rocky
 Mountain Foothills, Canada. Sedimentary Geology 59, 29–76.
- Jiang, X.S., Pan, Z.X., Fu, Q.P., 1999. The variations of palaeowind direction of the
 Cretaceous desert in the Sichuan Basin and their significance. Sedimentary Facies and
 Palaeogeography 19, 1–11.
- Johnson, K.R., Nichols, D.J., Hartman, J.H., 2002. Hell Crek Formation: A 2001 synthesis.
 Geological Society of America Special Paper 361, 503–510.
- Laurin, J., Sageman, B., 2007. Cenomanian_Turonian coastal record in SW Utah, USA:
 Orbital scale transgressive-regressive events during Oceanic Anoxic Event II. Journal
 of Sedimentary Research 77, 731–756.
- Lawton, T.F., Polloch, S.L., Robinson, R.A.J., 2003. Integrating sandstone petrology and
 nonmarine sequence stratigraphy: Application to the late cretaceous fluvial systems of
 southwestern Utah, USA. Journal of Sedimentary Research 73, 389–406.
- 188 Leanza, H.A., Apesteguia, A., Novas, F.E., de la Fuente, M.S., 2004. Cretaceous terrestrial
- beds from the Neuque´n Basin (Argentina) and their tetrapod assemblages. Cretaceous
 Research 25, 61–87.
- Leckie, D., Fox, C., and Tarnocai, C., 1989. Multiple paleosols of the late Albian Boulder
 Creek Formation, British Columbia, Canada: Sedimentology 36, 307–323.
- 193 Lehman, T.M., 1989. Upper Cretaceous (Maastrichtian) Paleosols in Trans-Pecos Texas.
- 194 Geological Society of America Bulletin 101, 188–203.
- Lehman, T.M., 1990. Paleosols and the Cretaceous/Tertiary transition in the Big Bend region
- 196 of Texas. Geology 18, 362–364.

197	Lorenz, J.C., 1981. Sedimentary and tectonic history of the Two Medicine Formation, Late
198	Cretaceous (Campanian), northwestern Montana. Ph.D. Thesis, Princeton University,
199	Princeton, N.J., pp.214.
200	Mack, G.H., 1992. Paleosols as an indicator of climatic-change at the early-late Cretaceous
201	boundary, Southwestern New Mexico. Journal of Sedimentary Petrology 62, 483-494.
202	McCarthy, P.J., Martini, I.P., Leckie, D.A., 1997. Anatomy and evolution of a Lower
203	Cretaceous alluvial plain: Sedimentology and palaeosols in the upper Blairmore Group,
204	south-western Alberta, Canada. Sedimentology 44, 197–220.
205	McCarthy, P.J., Martini, I.P., Leckie, D.A., 1999. Pedogenic and diagenetic influences on
206	void coating formation in Lower Cretaceous paleosols of the Mill Creek Formation,
207	southwestern Alberta, Canada. Geoderma 87, 209–237.
208	Mohabey, D.M., Udhoji, S.G., Verma, K.K., 1993. Palaeontological and sedimentological
209	observations on non-marine Lameta Formation (Upper Cretaceous) of Maharashtra,
210	India: their palaeeoecological and palaeoenvironmental significance. Palaeogeography,
211	Palaeoclimatology, Palaeoecology 105, 83–94.
212	Mohabey, D.M., 1996. A new oospecies, Megaloolithus matleyi, from the Lameta Formation
213	(Upper Cretaceous) of Chandrapur district, Maharashtra, India, and general remarks on
214	the palaeoenvironment and nesting behaviour of dinosaurs. Cretaceous Research 17,
215	183–196.
216	Retallack, G.J., 1994. A pedotype approach to latest Cretaceous and earliest Tertiary paleosols
217	in eastern Montana. Geological Society of America Bulletin 106, 1377–1397.
218	Rodriguez-Lopez, J.P., de Boer, P.L., Melendez, N., Soria, A.R., Pardo, G., 2006.

coastal ergs in the mid-Cretaceous Iberian Basin, Spain. Terra Nova 18, 314–320. 220

219

16

Windblown desert sands in coeval shallow marine deposits: a key for the recognition of

- Rodriguez-Lopez, J.P., Melendez, N., de Boer, P.L., Soria, A.R., 2008. Aeolian sand sea
 development along the mid-Cretaceous western Tethyan margin (Spain): erg
 sedimentology and palaeoclimate implications. Sedimentology 55, 1253–1292.
 Sattayarak, N., Srigulwong, S., Patarametha, M., 1991a. Subsurface stratigraphy of the
 non-marine Mesozoic Khorat Group, Northern Thailand. GEOSEA VII, Bangkok, 36A.
 Sattayarak, N., Polachan, S., Charusirisawad, R., 1991b. Cretaceous rock salt in the
 northeastern part of Thailand. GEOSEA VII, Bangkok, 36A.
- Stevenson, I.R., McMillan, I.K., 2004. Incised valley fill stratigraphy of the Upper
 Cretaceous succession, proximal Orange Basin, Atlantic margin of southern Africa.
 Journal of the Geological Society, London 161, 185–208.
- Tosolini, A.M.P., McLoughlin, S., Drinnan, A.N., 2002. Early Cretaceous megaspore
 assemblages from southeastern Australia. Cretaceous Research 23, 807–844.
- 233Tuttle, M.L.W., Charpentier, R.R., Brownfield, M.E., 1999. The Niger Delta Petroleum234System: Niger Delta Province, Nigeria, Cameroon, and Equatorial Guinea, Africa.
- 235 Open-File Report, U.S. Department of the Interior, U.S. Geological Survey, pp.64.
- 236 Ufnar, D.F., et al., 2005. Reconstructing a mid-Cretaceous landscape from paleosols in
 237 western Canada. Journal of Sedimentary Research75, 984–996.
- Wagstaff, B.E., Gallagher S.J., Lanigan, K.P., 2006. Late Cretaceous palynological
 correlation and environmental analysis of fluvial reservoir facies of the Tuna Field,
 Gippsland Basin, southeast Australia. Review of Palaeobotany and Palynology 138,
 165–186.
- White, T.S., Witzke, B., Ludvigson, G., 2000. Evidence for an Albian Hudson Arm of the
 North American Cretaceous Western Interior Seaway. Geological Society of America
 Bulletin 112, 1342–1355.