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Response to Reviewer #3

C40 An autocorrelation of order one is assumed for all the time series. This is not
really correct. We assume a vector autocorrelation process of order 2 conditional on
the exogenous drivers. This implies that the model associates current temperatures,
say, with once and twice lagged values of it self and of all the other endogenous vari-
ables as well as the exogenous drivers (and similarly for all the other endogenous
variables). When a VAR model of order 2 is converted to a CVAR model, equation
(1) contains This allows for a very rich and complex dynamic adjustment structure. As

C584

climate variables (similarly as economic variables) exhibit pronounced persistence (i.e.
are strongly autocorrelated) a reformulation into differences and linear cointegration
relations is a useful device to eliminate as much as possible of the multicollinearity that
would otherwise produce less reliable results. Differences and cointegrated relations
are often close to being orthogonal while the levels of variables often are strongly corre-
lated. The latter leads to a problem of multicollinearity and can lead to spurious effects
as well difficulty to see real effects when they are there. This discussion is added to
the section that describes the statistical model (section 2.2) after equation (1).

C410 First, I am not convince that the CVAR method alone is able to solve the complex
issues addressed by the authors, at least not in the manner the authors conducted
their experiments. In my opinion, a single equilibrium state between climatic variables
that would be valid on such a long time period (400kyr) is questionable. This comment
indicates that we have not explained the nature of the cointegrating relation clearly.
There would be no single equilibrium state. Rather, the cointegrating relation gives the
equilibrium state for a given set of values for climate variables. In this case, the values
for the set of exogenous variables for solar insolation imply a single equilibrium state
for the set of endogenous climate variables. So, given the change in the set of solar
insolation variables over the 390Kyr, there would be 390 different equilibria. We explain
this by adding the following sentence to the description of the statistical model: “These
cointegrating relations then define a unique equilibrium for each endogenous climate
variable as a function of the exogenous variables. Under this condition, the rank of Π
is equal to the number of endogenous variables.”

C411 CVAR method as a pure stochastic method (no physics) has few chances to lead
to a physical equilibrium state. Although the CVAR model is not based on physical first
principles, it contains variables that represent the physical state of various aspects of
the climate system and these endogenous variables do come into a physical equilib-
rium state, and is a unique solution for a given set of exogenous variables for solar
insolation To illustrate, we run Model 4 to equilibrium using the values for the solar
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forcings at the LGM. As indicate in the figure, this suite of solar variables generates an
equilibrium value of about –14oC. Then we raise the concentration of CO2 by 180 PPM.
The model comes to a new equilibrium at a higher Antarctic surface temperature (about
–3oC). This change implies ∆T2x = 5.5oC when changes in Antarctic temperature are
corrected for global temperature (Masson-Delmmotte, 2006:2010). This estimate for
∆T2x is consistent with previous estimates and includes many feedbacks, including
changes in land ice, sea ice, sea level, etc. Indeed, we may be able to manipulate
the model to determine the size of these various feedbacks. As described in the orig-
inal Conclusion, we plan to write a paper that uses the fully identified CVAR model to
evaluate ∆T2x.

C411 In particular, autoregression order 1 for all the data series is questionable on long
time periods, regarding the non-linearities expected in the climate system dynamic and
the wide range of characteristic time scales for the feedback mechanisms. We are
confused by these comments. First of all we do not assume an AR(1) for all variables
as explained above. What we assume (after testing) is that the vector process is unit
root nonstationary which is what the pronounced persistence typical of climate data
suggests. To postulate that climate time series are stationary seems inconsistent with
theses features. For example, the simplest data generating process for a nonstationary
variable is Yt = Yt-1 + µt where Y is a climate variable (e.g. ice volume, CO2) and µ is a
normally distributed random error term. Most people would agree that the best forecast
(guess) of temperature, say, for the next period (t+1) would be the temperature value of
that variable in the previous period (t) as opposed to the average value of the variable
( ). The former would be an optimal forecast for a random walk variable the latter
for a stationary variable. The time series plots in figures 1-3 show how temperature,
CO2, and Ice drift away from their sample average for extended periods of time, which
suggests that the random walk hypothesis is consistent with the data.

C411 No statistical test is reported (Augmented Dickey-Fuller statistic) to test this as-
sumption. That we have not discussed the testing of stationarity is a point that needs to
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be clarified. We have added a section that describes that the trace test (a multivariate
Dickey-Fuller type of test) has been used and why the univariate augmented Dickey
Fuller test, such as the augmented statistic, is not appropriate in this case.

The number of common driving trends is equal to p-r. The rank is determined based
on the so-called trace test, which can be thought of as a multivariate Dickey-Fuller test.
Note, however, that a univariate Dickey-Fuller test of each variable is an inefficient
procedure that frequently leads to misleading and internally inconsistent results. It
should, therefore, not be used in a multivariate context.

Later in the text, we present evidence that the CVAR models contain characteristic
roots which are close to the unit circle and that the trace statistic indicates that the
long-run matrix has reduced rank, both of them suggesting that the time series are
nonstationary.

That paleoclimate variables seem to evolve in a nonstationary manner over time as
can be verified both by a visual inspection and by statistical tests. The characteristic
polynomial of the estimated CVAR models contained roots which were very close to
the unit circle (e.g. Model 4 Rank =10, root = 0.98). In this case, inference based
on the assumption of stationarity would be misleading and more precise results will
be obtained by assuming that our paleoclimatic variables are unit root nonstationary
(Johansen, 2006).

C411 In my opinion, the CVAR method might be relevant only if applied to very specific
climatic data and on short time intervals. We strongly disagree with this commen-
tâĂŤthe ability to evaluate statistical model as good or bad improves as the sample
period increases. For example, Kaufmann and Stern (2002) in an earlier application of
the CVAR model used it to estimate the relation between surface temperature and ra-
diative forcing over the last 150 year using annual data. Ironically, one of the comments
received from physical scientists is that the model’s reliability would have been im-
proved by extending the sample period (which, unfortunately, was not possible). Also,
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we disagree that the model does not include ‘very specific climate data.’ But to avoid
any misunderstanding, we add the following explanation of how our data can be used
to test various hypotheses about the drivers of climate cycles (starting after line 16 on
page 589 in italics):

Surface temperature, atmospheric CO2, and ice volume are among the most com-
monly used proxies for glacial cycles and are thought to be directly related to one
another, and so their inclusion requires little justification. Methane is included because
changes in its concentration are responsible for the second largest change in radia-
tive forcing due to greenhouse gases (Kohler et al 2010). Sea surface temperature
is included to proxy changes in stratification that affect convection and buoyancy flux
(e.g. Watson and Garabato, 2006), which may affect the exchange of CO$_2$ be-
tween the atmosphere and ocean. Finally, sea level is included because it affects the
Earth’s albedo and there is strong interest in understanding its long-term determinants
(vonStorch et al, 2008).

Indirect linkages among the six climate variables are proxied by four variables; iron
(Fe), sea salt sodium (Na), non sea-salt calcium (Ca), and non sea-salt sulfate (SO4).
Fe is derived almost entirely from terrestrial sources and is used as a proxy or a so-
called iron fertilization effect that may enhance biotic uptake of CO2 (Martin,1990).
Sulfate (SO4) originates mainly from marinebiogenic emissions of dimethylsulphide
(after removing sea-salt sources using the Na data), and so is a proxy for marine bio-
genic emissions (Wolff et al., 2008). It is included to test whether the increased levels
of iron-containing dust lead to an increase in biological activity. Sea salt sodium is
derived from the sea-ice surface and proxies winter sea-ice extent (Wolff et al 2006).
Sea salt sodium is included to represent the possible effect of sea ice on the flow of
CO2 from the ocean to the atmosphere (Stephens and Keeling, 2001). Non sea-salt
calcium has a terrestrial origin (mainly Patagonia) and may represent changes in tem-
perature, moisture, vegetation, wind strength, glacial coverage, or changes in sea level
in and around Patagonia (Basile et al 1997). It is included to represent local climate
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conditions and also has been used to proxy the iron fertilization effect (Rothlisberger et
al., 2004).

C411 The results and discussion seem confuse to me. Some statistical tests are ques-
tionable (R2 coefficient . Although the R2 statistic is questionable in a multiple regres-
sion model when data are nonstationary, it is a valid measure in the CVAR formulation.
To clarify this issue, we add the following material to the Introduction:

A significant association between two variables in the CVAR model is measured by
cointegration rather than by correlation. The difference between the two is that two
nonstationary variables can exhibit a high empirical correlation in spite of them being
unrelated, whereas cointegration would be statistically rejected in this case. For ex-
ample, R2 from a linea regression model with nonstationary variables is prone to be
spuriously high also when no causal relationship exits, whereas the R2 for the corre-
ponding CVAR equation would be close to zero in such a case. The condition for two
time series to be cointegrated is that they have been affected by the same stochastic
trend. This is a much stronger criterion for a causal relationship between two variables
than a correlation coefficient, however high it may be. Therefore, if a physically mean-
ingful relationship exists among variables for climate and solar insolation that contain
a stochastic trend, cointegration analysis is an efficient tool for estimating the unknown
parameters characterizing the relationship.

C411 and very few elements (No tables for the α matrix component) are given to jus-
tify the main point of the manuscript: how authors conclude that the equilibrium state
equations are valid or not (see "Specific comments" 2.3) are given to justify the main
point of the manuscript:. This comment shows that we have not explained the CVAR
methodology being followed in our paper sufficiently well. Even though the reduced
rank of the Π matrix (Π = αβ’) is crucial for the CVAR methodology as well as the iden-
tification of the elements of α and β, such identifying restrictions are not necessary
for the main purpose of the article (which is to evaluate the importance of exogenous
changes in Earth orbit relative to endogenous climate dynamics). This purpose can be
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achieved solely by knowing Π without knowing the elements of the α and β matrix as
the equality (Π = αβ’) shows, i.e. imposing identifying restrictions on α and β will have
no effect on the simulations used to evaluate the drivers of glacial cycles. This is why
there is no table for the α or β matrices and we should have explained this more clearly
in our manuscript. While we agree with the reviewer that the elements of α and β are
critical for the physical interpretation of the cointegrating relations, we found that such
an analysis was comprehensive enough to warrant a new article. To test hypotheses
about the drivers of glacial cycles by imposing a set of identifying restrictions on α and
β is the focus of a second paper which we are currently writing.

To explain this issue, have rewritten the description of the statistical model (section 2.2
and a new section 2.3) so that it focuses on how it is used in this manuscript to identify
the endogenous and exogenous drivers of glacial cycles.

C412 The improved fit from model 1 to model 2b (discussed section 4.4) was easy to
anticipate: Here we disagree with the reviewer. First, the model is able to show just
how much an improvement is associated with each component of solar insolation. (The
importance of this results is recognized by reviewer #2). For example, the relatively
small improvement from Model 1 to Model 1b, which uses the Milankovitch forcing
(insolation June 21 at 65oN) is surprisingâĂŤmuch of the literature talks about how
this is the critical driver to climate cycles. Conversely, the author is not surprised that
Insol275 and Insol550 have relatively little power. But this result would come as a
surprise the readers of Huybers and Denton (2008), who argue in Nature Geosciences
that these measures of insolation are critical to glacial cycles. So, our results confirm
some of the notions and dispel others. As such, these should be important results.

2.3 Statistical tests

surprisingly, very few explanations are provided concerning the specific result brought
by a CVAR analysis which is to say the "long term equilibrium state". As described
above, describing the long-run equilibrium state” is not the point of this analysis. It is
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the focus of a future paper on estimates for ∆T2x

What is the trace statistic? As described above, we have now changed the text ex-
plaining that the trace test is a multivariate Dickey-Fuller type of test. For the interested
reader, the mathematics of this statistic is described in (Juselius, 2006), which is refer-
enced in the manuscript.

The Π is not defined in manuscript. References are at least necessary. We agree with
the reviewer that this was an important omission in the original manuscript. Consistent
with this we have rewritten the section on the statistical model. In the revised version
we add a new section focusing on the use of the CVAR to identify the endogenous and
exogenous drivers of glacial cycles. The revised version has included an extensive
discussion of the Π matrix.

Moreover, regarding long discussions and tables connected to coefficient of determina-
tion R2 and S2a statistic test, more precisions are expected to justify their conclusions
about the cointegrated relationships. Obviously, an adjusted coefficient of determina-
tion would me more appropriate to discriminate the explanatory power of the models,
since they have growing number of degrees of freedom. The reported coefficient of
determination is the adjusted R2. There might be some misunderstandings regard-
ing the calculation of the degrees of freedom: as we add more variables, the degrees
of freedom decline, not increase. Thus the diagnostic statistics has a built-in penalty
for using additional explanatory variables. An increase in the number of explanatory
variables reduces the degrees of freedom, making it more difficult to reject the null
hypothesis that the results are statistically meaningful. For example, each equation in
Model 1 (the model with the fewest explanatory variables) has 380 degrees of freedom
whereas Model 4, (the model with the largest number of explanatory variables) has
339 degrees of freedom. Because the degrees of freedom is large in both cases, the
reduction in degrees of freedom has a tiny effect (third decimal point) on the critical
value of t and chi square distributions that are used to evaluate diagnostic statistics.
For example, the significance level for a t statistic of 2.0 based on 380 degrees of free-
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dom is 0.04621155, compared to 0.04629769 for 339 degrees of freedom. We add this
notion to the manuscript:

Differences in the number of explanatory variables among models affect the degrees
of freedom that are used to assess the statistical significance of the results. Because
the large number of observations is large (391 observations), the penalty for adding
additional explanatory variables is small. For example, each equation in Model 1 (the
model with the fewest explanatory variables) has 380 degrees of freedom. Model 4,
(the model with the greatest number of explanatory variables) has 339 degrees of free-
dom. This reduction in the degrees of freedom has a tiny effect on the critical value of
t and chi square distributions that are used to evaluate diagnostic statistics. For exam-
ple, the significance level for a t statistic with a value of 2.0 and has 380 degrees of
freedom is 0.0462, the significance level is 0.0463 for 339 degrees of freedom. Con-
sistent with this small effect, increases in the number of explanatory variables does
not automatically increase explanatory power. Section 4 describes several compar-
isons in which increasing the number of explanatory variables does not increase the
explanatory power of the model.

The issue of adding additional variables is illustrated by changes in the performance
of Model 1-3. For example, Model 2 adds nine variables to Model 1 and generates
a statistically measurable increase in the performance of Model 2 relative to Model
1. Conversely, Model 3 adds seven variables to Model 1, but this increase does not
generate a noticeable change in the performance of Model 3 relative to Model 1. This
issue is addressed directly by modifying the discussion on lines 24-28 on page 600:

While adding variables does not diminish a statistical model’s ability to simulate in-
sample (additional variables that do not have a statistically measurable effect will be
“zeroed out” by the estimation procedure), adding more variables does not automati-
cally improve a statistical model’s skill, as indicated by the performance of Model 3 and
Model 1. Model 3 has seven more endogenous variables than Model 1, which implies
an additional 14 parameters. Despite this increase, the in-sample simulations for Ice
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generated by Model 3 are not ‘more accurate than those generated by Model 1 (Table
4 Figure 1c).

2.4 Figures

C413 Too many experiments are compared on the same figure. Consistent with the
comment by Reviewer #2, who states that the CVAR’s model ability to identify the
components of solar insolation that have the greatest explanatory power, we expand
section 4.4 of the manuscript by using the S2a statistic to compare the accuracy of in-
sample forecasts generated by various versions of model 2. These results are shown
in a new Table 5. This is an explicit test and so addresses the difficulty associated with
the fact that the “9 curves on top of each other.” We alleviate this difficulty by creating a
new set of figures, Figures 4a-c that show results for Models 2e-g and Model 3a. The
results contained in the new table and Figures are discussed on detail in the revised
section 4.4.

Interactive comment on Clim. Past Discuss., 6, 585, 2010.
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Fig. 1.
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